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Preface 
 
It is our great pleasure to welcome you to the 16th International Society for Music Information 
Retrieval Conference (ISMIR 2015). The annual ISMIR conference is the world’s leading 
research forum on processing, analyzing, searching, organizing, and accessing music-related 
data. This year’s conference, which takes place in Málaga, Spain, from October 26th – 30th, 
2015, is organized by the ATIC Research Group of the Universidad de Málaga.  
 
The present volume contains the complete manuscripts of all the peer‐reviewed papers 
presented at ISMIR 2015. A total of 278 submissions were received before the deadline, out 
of which 242 complete and well‐formatted papers entered the review process. Special care 
was taken to assemble an experienced and interdisciplinary review panel including people 
from many different institutions worldwide. As in previous years, the reviews were 
double‐blinded (i.e., both the authors and the reviewers were anonymous) with a two‐tier 
review model involving a pool of 257 reviewers and a program committee. Reviewers and 
PC members were able to bid for papers. Each paper was assigned to a PC member and three 
reviewers. Reviewer assignments were based on topic preferences, bids, and PC member 
assignments. After the review phase, PC members and reviewers entered a (name‐disclosed) 
discussion phase aiming to homogenize acceptance vs. rejection decisions.  
 
Compared to previous years, the size of the program committee increased significantly and 
now comprises 61 members.  Taking care of four submissions on average, the PC members 
were asked to adopt an active role in the review process by conducting an intensive 
discussion phase with the other reviewers and by providing a detailed meta-review. Final 
acceptance decisions were based on 973 reviews and meta‐reviews. From the 242 reviewed 
papers, 114 papers were accepted resulting in an acceptance rate of 47.1%. The table shown 
on the next page summarizes the ISMIR publication statistics over the last years. 
 
The mode of presentation of the papers was determined after the accept/reject decisions and 
has no relation to the quality of the papers or to the number of pages allotted in the 
proceedings. From the 114 contributions, 24 papers were chosen for oral presentation based 
on the topic and broad appeal of the work, whereas the other 90 were chosen for poster 
presentation. Oral presentations have a 20-minute slot (including setup and questions/answers 
from the audience) whereas poster presentations are done in two sessions per day, the same 
posters being presented in the morning and in the afternoon of a given conference day.  
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Year Location Oral Poster 
Total

Papers 
Total
Pages 

Total 
Authors 

Unique
Authors 

Pages/
Paper 

Authors/ 
Paper 

Unique 
Authors/ 

Paper 

2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 
2001 Indiana 25 16 41 222 100 86 5.4 2.4 2.1 
2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 
2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 
2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2 
2005 London 57 57 114 697 316 233 6.1 2.8 2 
2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 
2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.1 
2008 Philadelphia 24 105 105 630 296 253 6 2.8 2.4 
2009 Kobe 38 85 123 729 375 292 5.9 3 2.4 
2010 Utrecht 24 86 110 656 314 263 6 2. 2.4 
2011 Miami 36 97 133 792 395 322 6 3 2.4 
2012 Porto 36 65 101 606 324 264 6 3.2 2.6 
2013 Curitiba 31 67 98 587 395 236 5.9 3 2.4 
2014 Taipei 33 73 106 635 343 271 6 3.2 2.6 
2015 Málaga 24 90 114 792 370 296 7 3.2 2.6 
 
 
The ISMIR 2015 conference runs for a 5-day period. The selected submissions are presented 
over a period of 3.5 days, preceded by a day of tutorials and followed by half a day of 
late‐breaking/demo & unconference sessions. Moreover, a satellite event called “Hacking 
Audio and Music Research” (HAMR) is offered, which is held on October 24th and 25th. We 
now give a summary of the highlights of the conference. 
 

Tutorials 
 
Six tutorials take place on Monday, providing a good balance between culture and 
technology. Three 3‐hour tutorials are presented in parallel on Monday morning, and three in 
parallel on Monday afternoon. 
 
Morning sessions: 
 

 Tutorial 1: Why singing is interesting (Simon Dixon, Masataka Goto, Matthias 
Mauch) 

 Tutorial 2: Addressing the music information needs of musicologists (Richard J. 
Lewis, Ben Fields, Tim Crawford) 

 Tutorial 3: Markov logic networks for music analysis (Helene Papadopoulos) 
 
Afternoon sessions: 
 

 Tutorial 4: COmputation and FLAmenco: Why flamenco is interesting for MIR 
research (Emilia Gómez, Nadine Kroher, Jose Miguel Díaz-Báñez, Sergio Oramas, 
Joaquín Mora, Francisco Gómez-Martín) 

 Tutorial 5: Using correlation analysis and big data to identify and predict musical 
behaviors (Jeff C. Smith) 

 Tutorial 6: Automatic music transcription (Zhiyao Duan, Emmanouil Benetos) 
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Keynote Speakers 
 
We are honored to have two distinguished keynote speakers: 
 

 Prof. Mark Sandler from Queen Mary University of London, UK.  
 

 Prof. J. Stephen Downie from the University of Illinois at Urbana-Champaign, USA.  
 
 

 

MIREX 
 
The Music Information Retrieval Evaluation eXchange (MIREX) is a collective effort to 
evaluate cutting-edge methods for various MIR tasks. Since 2005, MIREX has been an 
integral part of ISMIR. This year, ISMIR features the following MIREX-related events: 
 

 Plenary summary of tasks and results of MIREX 2015 
 Report of the “Grand Challenge 2015: User Experience” (GC15UX) 
 Plenary discussion of MIREX 2016 and GC16UX 
 Poster session of MIREX 2015 participants 

 
 
 

Late-Breaking/Demo & Unconference 
 
Friday afternoon is dedicated to late-breaking papers and MIR system demonstrations. 
Abstracts for these presentations are available online. Moreover, as in previous years, we 
have a special “unconference” session in which participants break up into smaller groups to 
discuss MIR issues of particular interest. This is an informal and informative opportunity to 
get to know peers and colleagues from all around the world. 
 
 

Music Program 
 
ISMIR 2015 includes a music program, which is centered around one curated concert that 
takes place on Wednesday, October 24th, at Sala Unicaja de Conciertos María Cristina. The 
aim of the concert program is two-fold: to encourage the use of Music Information Retrieval 
(MIR) techniques in the creation of new music and to explore music that can suggest novel 
ideas for research in the MIR field.  
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Social Events 
 
ISMIR 2015 not only offers interesting papers, posters, and tutorials, but also aims at giving 
the participants an unforgettable stay. The social program provides participants with an 
opportunity to relax after meetings, to experience Málaga, and to network with other ISMIR 
participants. The social program includes: 
 

 Monday, October 26, Welcome cocktail at “Vinoteca Museo Los Patios de 
Beatas”. 

 Wednesday, October 28, Concert at “Sala de Conciertos María Cristina” that 
includes, not only the music from the “ISMIR 2015 Call for Music” but also Live 
Flamenco Dancing & Music. 

 Thursday, October 29, Gala Dinner at “Hacienda del Alamo” and ISMIR 2015 
Pandora Jam Session. 

 
 
 
 

Conference Venue 
 
More than 3,000 years of history have passed since Málaga’s establishment by the 
Phoenicians. Today, Málaga is a beautiful, friendly, and cosmopolitan city that enchants 
tourists from all over the world. The conference venue is the hotel NH MALAGA, located in 
the heart of Málaga’s city centre. The venue is within walking distance to main attractions, 
including the Cathedral, the Picasso Museum, Larios Street, Muelle 1 (Pier 1), Alcazaba, and 
the sea promenade. Be sure to take the chance to explore Málaga and enjoy your stay in 
Spain! 
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Julio José Carabias-Orti, F. J. Rodriguez-Serrano, P. Vera-Candeas, N. Ruiz-Reyes,
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Keynote Talk 1  
 
Integrating Music Information Sources for Music Production and 
Consumption 
 
Mark Sandler 
Queen Mary University of London, UK 
 
 
Abstract 
 
For several years, research at Queen Mary's Centre for Digital Music has probed the 
intersection of signal analysis technologies with informatics technologies. More specifically, 
we have built audio signal-level feature extractors which output RDF―the language of the 
Semantic Web―which have enabled us to build prototypes that expose enhanced 
functionality and offer new experiences to music users of all kinds. This talk will summarise 
some of our early and recent work in Semantic Audio and Music Informatics, leading up to 
the current research themes of our FAST-IMPACt (Fusing Audio and Semantic Technologies 
for Intelligent Music Production and Consumption) project. FAST-IMPACt is a 5 year 
programme of research involving 3 UK universities together with commercial and 
non-commercial partners from around the world. Its overarching aim is to bring more 
engaging and immersive experiences based on musical knowledge of all kinds to users of all 
kinds. Where relevant and possible, the principles will be illustrated with demos. 
 
 
 
 
Biography 
 
Mark Sandler was born in 1955. He received the B.Sc. and Ph.D. degrees from the University 
of Essex, U.K., in 1978 and 1984, respectively. His PhD was an investigation into Digital 
Audio Power Amplification and he has been an active researcher in Digital Audio and Digital 
Music ever since. He is a Professor of Signal Processing at Queen Mary University of 
London, London, U.K., where he founded the Centre for Digital Music and he has published 
over 400 papers in journals and conferences and supervised over 30 PhD students. Mark 
Sandler is currently Director of the EPSRC/AHRC Centre for Doctoral Training in Media 
and Arts Technology, and Principal Investigator of the 5 year research project, Fusing Audio 
and Semantic Technologies for Intelligent Music Production and Consumption. Mark is a 
Fellow of the Institute of Engineering and Technology (FIET), a Fellow of the Audio 
Engineering Society (FAES), a Fellow of the British Computer Society (FBCS), and a Fellow 
of the Institution of Electronic and Electrical Engineers (FIEEE). 
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Keynote Talk 2  
 
The Promise of Music Information Retrieval: Are we there yet? 
 
J. Stephen Downie  
University of Illinois at Urbana-Champaign, USA 
 
 
Abstract 
 
In 1988, I needed to find some easy-to-play music for an upcoming flute performance exam.  
As a famously mediocre flute player, I was more than a little desperate to find something that 
would require the least amount of rehearsal time (and talent) to perform. I had previously 
played a baroque piece in the key of C that just might fit the bill. After too many hours of 
searching that included innumerable consultations with infinitely patient music librarians and 
fellow music students, we finally determined that the work in question was Bach's Flute 
Sonata in C, BWV 1033.  This real-world use case inspired me to ask: "Why is it so difficult 
to identify, and then locate, a rather famous piece of music that I had actually played before?" 
In this talk, I reflect on just how far music information retrieval research (MIR) has come in 
the intervening 27 years in making access to music resources quick and simple. As I expound 
on my personal journey as an MIR researcher, I will note some of the twists in the road that I 
have surprised me. I will also offer up some commentary on lesser-travelled paths that we as 
community should explore. 
 
 
Biography 
 
J. Stephen Downie is the Associate Dean for Research and a Professor at the Graduate School 
of Library and Information Science at the University of Illinois at Urbana-Champaign. 
Downie is the Illinois Co-Director of the HathiTrust Research Center (HTRC). He is also 
Director of the International Music Information Retrieval Systems Evaluation Laboratory 
(IMIRSEL) and founder and ongoing director of the Music Information Retrieval Evaluation 
eXchange (MIREX). Stephen Downie was the Principal Investigator on the Networked 
Environment for Music Analysis (NEMA) project, funded by the Andrew W. Mellon 
Foundation. Furthermore, he is Co-PI on the Structural Analysis of Large Amounts of Music 
Information (SALAMI) project, jointly funded by the National Science Foundation (NSF), 
the Canadian Social Science and Humanities Research Council (SSHRC), and the UK's Joint 
Information Systems Committee (JISC). Stephen Downie has been very active in the 
establishment of the Music Information Retrieval (MIR) community through his ongoing 
work with the International Society for Music Information Retrieval (ISMIR) conferences. 
He was ISMIR's founding President and now serves on the ISMIR board. Professor Downie 
holds a BA (Music Theory and Composition) along with a Master's and a PhD in Library and 
Information Science, all earned at the University of Western Ontario, London, Canada. 
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Tutorials 

 





Tutorial 1 
 
Why Singing is Interesting 
 
 
Simon Dixon (Queen Mary University of London, UK) 
Masataka Goto (AIST, Japan) 
Matthias Mauch (Queen Mary University of London, UK) 
 
 
Abstract 
 
This tutorial aims to introduce to the ISMIR community the exciting world of singing styles, 
the mechanisms of the singing voice, and provide a guide to representations, engineering 
tools, and methods for analyzing and leveraging it. The singing voice is arguably the most 
expressive of all musical instruments, and all popular music cultures around the world use 
singing. Across disciplines, a lot is known about singing culture and the intricate 
physiological and psychological mechanisms of singing, but this knowledge is not exploited 
enough in much of the music information retrieval literature. The three parts of the tutorial 
(one hour each) are designed to remedy this: an introduction to singing styles, techniques and 
forms around the world (including a short introduction to the psychology of singing), a 
practical guide to the analysis of singing using music informatics tools, and an overview over 
various systems for singing information processing. Our aim is for music information 
retrieval specialists to walk away with a newly sparked passion for singing, and ideas of how 
to use our knowledge of singing, and singing information processing, to create new, exciting 
research. 
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Tutorial 2 
 
Addressing the Music Information Needs of Musicologists 
 
 
Richard J. Lewis (Goldsmiths College, University of London, UK) 
Ben Fields (Goldsmiths College, University of London, UK) 
Tim Crawford (Goldsmiths College, University of London, UK) 
 
 
Abstract 
 
The music information needs of musicologists are not being met by the current generation of 
MIR tools and techniques. While evaluation has always been central to the practice of the 
music information retrieval community, the tasks tackled most often address the music 
information needs of recreational users, such as playlist recommendation systems; or are 
specified at a level which is not very relevant to the needs of music researchers, such as beat 
or key finding; or have focused on―and possibly even become over-fitted to―a narrow 
range of musical repertoire which doesn't cover musicological interests. In this tutorial we 
will present those music information needs through topics including at least the following: 
the metadata requirements of historical musicology; working with symbolic corpora; 
studying musical networks; passage-level audio search; and musical understandings of audio 
features. As well as these scheduled presentations and discussions, we will ask the attendees 
to submit suggestions of musicologically motivated research questions suitable for MIR 
during the course of the tutorial. These will then be reviewed and discussed during the 
conclusion of the tutorial. Finally, we have invited Meinard Müller to conclude the tutorial by 
outlining his view on the current state of MIR for musicology. We are aiming to enable 
attendees, as experts in their own areas of MIR, to find new applications of their tools and 
techniques that can also serve the needs of musicologists. Given the selection of MIR topics 
we intend to cover, this tutorial will be of particular interest to those working in: musical 
metadata; symbolic MIR; audio search; and graph analytics. We believe contemporary 
musicology to be a rich source of new and exciting challenges for MIR and we are confident 
the community can rise to those challenges. In the long term, we hope this tutorial will give 
rise to a selection of new MIREX tasks that focus on musicological challenges.   
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Tutorial 3 
 
Markov Logic Networks for Music Analysis 
 
 
Helene Papadopoulos (CNRS, Paris, France) 
 
 
Abstract 
 
The automatic extraction of relevant content information from music audio signals is an 
essential aspect of Music Information Retrieval (MIR). Music audio signals are very rich and 
complex, both because of the intrinsic physical nature of audio (incomplete and noisy 
observations, many modes of sound production, etc.), and because they convey multi-faceted 
and strongly interrelated semantic information (harmony, melody, metric, structure, etc.). 
Dealing with real audio recordings thus requires the ability to handle both uncertainty and 
complex relational structure at multiple levels of representation. Until recent years, these two 
aspects have been generally treated separately, probability being the standard way to 
represent uncertainty in knowledge, while logical representation being used to represent 
complex relational information. Markov Logic Networks (MLNs), in which statistical and 
relational knowledge are unified within a single representation formalism, have recently 
received considerable attention in many domains such as natural language processing, 
link-based Web search, or bioinformatics. The goal of this tutorial is to provide a 
comprehensive overview of Markov logic networks and show how they can be used as a 
highly flexible and expressive yet concise formalism for the analysis of music audio signals. 
We will show how MLNs encompass the probabilistic and logic-based models that are 
classically used in MIR. Algorithms for MLN modeling, training and inference will be 
presented, as well as open-source software packages for MLNs that are suitable to MIR 
applications. We will discuss concrete case-study examples in various fields of application.  
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Tutorial 4 
 
COmputation and FLAmenco: Why Flamenco is Interesting for 
MIR Research 
 
Emilia Gómez (Universitat Pompeu Fabra, Barcelona, Spain)  
Nadine Kroher (Universitat Pompeu Fabra, Barcelona, Spain) 
Jose Miguel Díaz-Báñez (Universidad de Sevilla, Spain) 
Sergio Oramas (Universitat Pompeu Fabra, Barcelona, Spain) 
Joaquín Mora (Universidad de Sevilla, Spain) 
Francisco Gómez-Martín (Universidad Politécnica de Madrid, Spain) 

 
 
Abstract 
 
This tutorial provides an introduction to flamenco music with the support of MIR techniques. 
At the same time, the tutorial analyzes the challenges and opportunities that this music 
repertoire offers MIR researchers, presents some research contributions and provides a forum 
to discuss about how to address those challenges in future research. As ISMIR 2015 is in 
Málaga, this tutorial will give ISMIR participants a unique chance to discover flamenco 
music in its original location. The tutorial will be structured in two main parts. First, we will 
provide a general introduction to flamenco music: origins and evolution, musical 
characteristics, instrumentation, singing and guitar. We will illustrate this introduction with 
multimedia material and live performance. Then we will analyze how MIR technologies 
perform for flamenco music. By discussing several MIR tasks and how they should be 
addressed in this context, we will discover more about flamenco and how methods tailored to 
this repertoire can be exploited in other contexts. We will focus on automatic transcription, 
singer identification, music similarity, genre classification, rhythmic and melodic pattern 
detection and context-based music description methods. Participants will have the chance to 
interact with MIR annotated datasets and tools developed for flamenco music in the context 
of the COFLA project.  
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Tutorial 5 
 
Using Correlation Analysis and Big Data to Identify and Predict 
Musical Behaviors 
 
Jeff C. Smith (Smule) 
 
 
Abstract 
 
New and significant repositories of musical data afford unique opportunities to apply data 
analysis techniques to ascertain insights of musical engagement. These repositories include 
performance, listening, curation, and behavioral data. Often the data in these repositories also 
includes demographic and/or location information, allowing studies of musical behavior, for 
example, to be correlated with culture or geography. Historically, the analysis of musical 
behaviors was limited. Often, subjects (e.g. performers or listeners) were recruited for such 
studies. This technique suffered from issues around methodology (e.g. the sample set of 
subjects would often exhibit bias) or an insufficient number of subjects and/or data to make 
reliable statements of significance. That is to say the conclusions from these studies were 
largely anecdotal. In contrast to these historical studies, the availability of new repositories of 
musical data allow for studies in musical engagement to develop conclusions that pass 
standards of significance, thereby yielding actual insights into musical behaviors. This 
tutorial will demonstrate several techniques and examples where correlation and statistical 
analysis is applied to large repositories of musical data to document various facets of musical 
engagement. Web site: https://ccrma.stanford.edu/damp/ Stanford University has created a 
new corpus of amateur music performance data, the Stanford Digital Archive of Mobile 
Performances, or DAMP, to facilitate the study of musical engagement through application of 
correlation and statistical analysis.  
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Tutorial 6 
 
Automatic Music Transcription 
 
 
Zhiyao Duan (University of Rochester, USA) 
Emmanouil Benetos (Queen Mary University of London, UK) 
 
 
Abstract 
 
Automatic Music Transcription (AMT) is a fundamental problem in music information 
retrieval. Roughly speaking, transcription refers to extracting a symbolic representation —a 
list of notes (pitches and rhythms)—from an audio signal. Music transcription is a fascinating 
but challenging task, even for humans: in undergraduate music education it is usually called 
dictation, and achieving a high level of proficiency requires years of practice and training. 
Empowering machines with this ability is an even more challenging problem, especially for 
automatically transcribing polyphonic music. To that end, the AMT problem has drawn great 
interest of researchers from several areas including signal processing, machine learning, 
acoustics, music theory, and music cognition. In terms of applications, a successful AMT 
system would be helpful for solving many MIR research problems, including music source 
separation, structure analysis, content-based music retrieval, and musicological study of 
non-notated music, just to name a few. This tutorial will give an overview of the AMT 
problem, including current approaches, datasets and evaluation methodologies. It will also 
explore connections with other related problems (i.e. audio-score alignment, source 
separation) as well as applications to related fields, such as content-based music retrieval and 
computational musicology. The tutorial is designed for students and researchers who have 
general knowledge of music information retrieval and/or computational musicology and are 
interested in getting into the field of AMT. A substantial amount of time will be spent in 
discussing challenges and research directions; we hope that this discussion will help move 
this field forward, and influence related fields in MIR and computational musicology to 
exploit AMT technologies. The tutorial will also include hands-on sessions on using AMT 
code and plugins - participants will be encouraged to bring their laptops and gain access to 
transcription datasets, as well as work on AMT examples.  
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IMAGE QUALITY ESTIMATION FOR MULTI-SCORE OMR

Dan Ringwalt, Roger B. Dannenberg
Carnegie Mellon University
School of Computer Science

ringwalt@cmu.edu, rbd@cs.cmu.edu

ABSTRACT

Optical music recognition (OMR) is the recognition of im-
ages of musical scores. Recent research has suggested
aligning the results of OMR from multiple scores of the
same work (multi-score OMR, MS-OMR) to improve ac-
curacy. As a simpler alternative, we have developed fea-
tures which predict the quality of a given score, allowing
us to select the highest-quality score to use for OMR. Fur-
thermore, quality may be used to weight each score in an
alignment, which should improve existing systems’ robust-
ness. Using commercial OMR software on a test set of
MIDI recordings and multiple corresponding scores, our
predicted OMR accuracy is weakly but significantly corre-
lated with the true accuracy. Improved features should be
able to produce highly consistent results.

1. INTRODUCTION

Optical music recognition (OMR) is the problem of con-
verting scanned music scores into a symbolic format such
as MIDI. The advantages of OMR for computer music ap-
plications are clear, but it has yet to be widely used in many
applications which use MIDI or MusicXML scores. Al-
though OMR has been studied extensively since the 1960s,
no OMR system has near-perfect accuracy. Commonly, the
output of an OMR system must be checked by hand and at
least a few corrections must be made, making the process
extremely time-consuming [2]. This limits the amount of
music which may be digitized, and in fact, much music is
still digitized completely by hand in sources such as the
Mutopia Project [1]. Recent research has focused on using
contextual information beyond what is present on a single
page to improve OMR results.

Recently, the Petrucci Music Library (or International
Music Score Library Project, IMSLP) [17] has become a
high-quality source of public domain music scores. The
site allows users to scan and upload scores. Therefore,
there may be several scores of the same work, which may
be musically identical, or different editions, arrangements,
or parts. There is a large discrepancy between the scan-
ning equipment each user has, along with their relative care

c© Dan Ringwalt, Roger B. Dannenberg.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Dan Ringwalt, Roger B. Dannenberg.
“Image Quality Estimation for Multi-Score OMR”, 16th International So-
ciety for Music Information Retrieval Conference, 2015.

in scanning, so image quality varies widely. At the time
of writing, IMSLP contains over 90,000 works, for which
there are over 300,000 uploaded scores.

Although many OMR errors are due to notational com-
plexity [2], we expect at least some mistakes to be due to
random deformation in the score, independent of the con-
tent. Then if multiple scores are available corresponding
to one piece, a consensus built from OMR applied to each
score should be more accurate than any one score. The
possibility of aligning multiple scores of the same work to
build a single result (multi-score OMR, MS-OMR) is al-
ready being explored [21].

However, scores available from IMSLP and other
sources vary widely in noise introduced in the scanning
process. Previous work on multi-recognizer OMR (MR-
OMR), where the results are aligned from several OMR
systems on the same score, has noted that a consensus re-
sult using simple voting may be worse than the result of
the best recognizer [4]. Similarly, if there are several poor
scores for a work and one good score, a MS-OMR result
may be worse than the result on the highest-quality score
alone. An MS-OMR system that correctly estimates the
quality of each score and acts accordingly should over-
come this limitation.

Formally, we want to predict some accuracy measure of
OMR, given features extracted from an image. We define
the quality of an image to be the predicted accuracy given
by our resulting model. Quality should depend on factors
such as random noise, deformation of the page, and resolu-
tion, and is expected to be correlated with OMR accuracy.
Our predicted value is mostly useful in comparisons be-
tween scores; even if the actual accuracy is on a 0 to 1
scale, a quality value learned using linear regression may
be outside this range for some scores, and so it may not
be interpretable as an accuracy value. However, even if we
evaluate multiple recognizers using the same methodology,
then we can learn a separate quality value for each recog-
nizer, and predict the best-performing recognizer for a new
score.

Clearly, the quality value gives useful information to a
MS-OMR system. We may want to throw out some scores
altogether if their quality is too low, as they may not con-
tribute much of a benefit in addition to the higher-quality
scores. As a simplification, we may only take the highest-
quality score, and perform normal OMR. If our quality
value is accurate, then this is the safest approach, because
by introducing other scores, we risk lowering the accuracy.
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This is clearly less computationally expensive than obtain-
ing and aligning multiple OMR results, but should result in
much higher accuracy than randomly choosing any avail-
able score. We consider this approach to MS-OMR in this
paper.

2. RELATED WORK

2.1 Multi-Recognizer and Multi-Image OMR

Recent research has focused on improving OMR accuracy
by aligning several OMR results and building a consensus
score. Byrd and Schindele [5] designed a multi-recognizer
OMR system which applies multiple OMR systems to the
same score, and resolves conflicts between results using
pre-defined rules. This is built on the assumption that each
OMR system will have particular situations in which it
outperforms the other systems. As OMR systems are un-
der development and their strengths and weaknesses may
change, a system is proposed which automatically learns
the performance of each system in different possible situa-
tions.

More recently, Bugge et al. [4] proposed another multi-
recognizer OMR system that resolves conflicts between
each recognizer by a simple majority vote. Scores are ex-
ported as MusicXML from each recognizer, and converted
to a custom subset of MusicXML, “MusicXiMpLe,” which
only stores the information necessary to decode note pitch
and duration.

Padilla et al. have suggested extending multiple-
recognizer OMR to align the results from multiple images
of the same score [21]. A method is proposed to profile the
response of each OMR tool to score quality, by adding ad-
ditional noise to existing scores with available ground truth
and measuring OMR accuracy.

2.2 Image Quality

Existing measures have been designed to estimate the level
of degradation present in an image due to the scanning pro-
cess. Kanungo et al. developed a local distortion model
(referred to as Kanungo noise) for binary images which is
an extension of simple salt-and-pepper noise, and uses 6
parameters [15]. The additional parameters capture the in-
creased noise near the boundary between black and white
pixels, and correlation in noise between nearby pixels.

Kanungo et al. previously estimated the Kanungo noise
parameters of a binary image of a text document [16]. The
estimation requires an ideal set of synthetic text documents
with similar font face and size to the scanned image. Given
an estimated set of parameters, each ideal image is de-
graded using the parameters. All 3x3 square patterns are
found in each degraded ideal image and the input image,
and a histogram for the count of each of 23∗3 = 512 pat-
terns is made for the degraded ideal images and the input.
A Kolmogorov-Smirnov test statistic is measured between
the cumulative distribution functions of both histograms.
This statistic is minimized using the Nelder-Mead simplex
method [19].

Additionally, prior work in OMR has focused on un-
doing global distortions present in the input image. The
level of distortion detected by these methods is another fea-
ture which should be negatively correlated with OMR ac-
curacy. For example, Fujinaga’s staff detection algorithm
[12] tries to correct bending of the staves due to page curl.
This deskewing process translates each column of the im-
age to make the staff lines more horizontal. We use the
mean vertical translation performed by deskewing as one
feature.

We may also robustly estimate the resolution of an im-
age using the distance between staff lines. Unlike the ac-
tual size of the image, this does not depend on the size
of the original page, and all symbols such as notes will
be directly proportional to the staffline distance. We use
Cardoso et al.’s robust estimated staffline distance [7] as
another feature.

3. METHODS

3.1 Data Acquisition

All available scores of Ludwig van Beethoven’s piano
sonatas were obtained from IMSLP. In total, there were
32 sonatas, with 285 different scores.

MIDI versions of several movements from the
Beethoven piano sonatas were obtained from the Mutopia
Project [1], and served as ground truth to compare with the
OMR results. The MIDI version was automatically gen-
erated from a manually transcribed LilyPond [20] source
file.

As the MIDI files are separated by movement, the
scores were also split into each movement. Therefore, each
work is defined to be a single movement of a sonata.

3.2 Score Preprocessing

The scores were preprocessed by a custom system before
extracting image quality features and performing OMR.
Our methods for rotation correction and staff and staff sys-
tem detection are described in [25].

Many scores had movements which started in the mid-
dle of the page. Therefore, the staff systems which formed
the start of each movement were labeled by hand. Our sys-
tem was used to automatically segment pages as necessary
to split the score into movements.

We kept 67 original scores from IMSLP which con-
tained an entire sonata and were not an arrangement or
other version, and had ground truth for at least one move-
ment available from the Mutopia Project. We success-
fully generated and processed 95 single-movement scores
for 16 works (single movements), belonging to 8 different
sonatas.

3.3 Image Quality Features

Kanungo parameter estimation was performed on each pre-
processed page. A page from a LilyPond-engraved score
obtained from the Mutopia Project was used as the ideal
image. Each image was scaled to a normalized staffline
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The interesting levels of describing CWMN begin with what Bellini et al (2007) call basic symbols 
(graphic elements: noteheads, flags, the letter “p”, etc.; these have no meaning by themselves) and 
composite or complete symbols (things with semantics: eighth notes with flags, beamed eighth notes, 
chords, dynamic marks like “pp” and “mp”, etc.). There is only a relative handful of basic symbols, but 
a huge number of composite symbols. Droettboom & Fujinaga comment: 

In many classification problems the evaluation metric is fairly straightforward. For 
example at the character level of OCR, it is simply a matter of finding the ratio between 
correctly identified characters and the total number of characters. In other classification 
domains, this is not so simple, for example document segmentation, recognition of maps, 
mathematical equations, graphical drawings, and music scores. In these domains, there are 
often multiple correct output representations, which makes the problem of comparing a 
given output to high-level ground truth very difficult. In fact, it could be argued that a 
complete and robust system to evaluate OMR output would be almost as complex and 
error-prone as an OMR system itself. Symbol-level analysis may not be directly suitable for 
comparing commercial OMR products, because such systems are usually “black boxes” 
that take an image as input and produce a score-level representation as output. 

Note particularly the last statement; their “symbols” are likely identical to the Bellini et al’s “basic 
symbols”, but their “score-level representation” is clearly a level above Bellini et al’s “composite-
symbol-level representation”. In fact, these problems of OMR directly reflect the intricate semantics of 
music notation. The last marked note in Figure 2(c) is a composite symbol consisting of notehead, 
stem, and flags. Its duration of a 16th note is clear just from the composite symbol. However, seeing 
that its pitch is (in ISO notation) E3 requires taking into account the four factors described under 
“Context and pitch notation” in Section 4 above. 
Instead of “basic” and “composite” symbols, many authors have spoken of low-level symbols and high-
level symbols, and we prefer the latter terminology. Table 1 lists the levels of description of CWMN 
that we have mentioned.  

Level Bellini et al. term Examples Has semantics? 
pixel --  no 
low-level symbol basic symbol noteheads, flags, the letter “p” no 
high-level symbol composite symbol 8th notes with flags, chords, 

dynamic marks “p” and “pp” 
yes 

score -- Schumann: Fantasiestücke, 
Henle ed. 

yes 

 
Table 1. Levels of description of CWMN 

5.1.2 Levels of Description and Error Rates 
Now consider Figure 12 (from Reed, 1995, p. 73). 

 
Figure 12. A minor problem at low level, but a serious problem at high level 

In this case, the high-level symbols, i.e., symbols with semantics, are the clef, time signature, notes—
64ths in Figure 12(a), 32nds in 12(b)—and slur. Each of the clef and the slur is a single low-level 
symbol. But the time signature and notes are comprised of multiple low-level symbols: for the former, 
digits; for the latter, noteheads and beams (and, in other cases, flags, accidentals, augmentation dots, 
etc.). 
Reed points out that in this example (ignoring the clef and time signature), the only problem in the 
reconstructed score is a single missing beam, and if low-level symbols are counted, 19 of 20 (95%) are 

Figure 1. This error only counts as one error under low-
level evaluation, but several under high-level evaluation, as
the length of each note is incorrect. Source: [24]

distance value of 8. Kanungo noise parameters were es-
timated using the SciPy [13] implementation of Nelder-
Mead optimization [19], as described in Section 2.2.
Nelder-Mead was run 10 times starting from a uniformly
random parameter distribution, and was stopped after 50
function evaluations each time. The resulting Kanungo pa-
rameters (ν, α0, α, β0, β, k) were used as features to pre-
dict OMR performance.

We also performed Fujinaga’s staff detection algorithm,
which skews the image to correct page curl. This gives us
the amount of page curl in the original image. We use the
mean vertical translation performed by this deskewing as
one feature, which represents the degree of distortion in the
page.

Finally, we used Cardoso et al.’s robust staffline distance
estimation method [7]. We used the staffline distance, and
the ratio of staffline thickness to distance, as two more fea-
tures. The staffline distance represents the resolution of the
image, while the thickness-to-distance ratio represents the
relative thickness of lines on the page.

3.4 OMR

The preprocessed movements were processed by the
SharpEye 2 OMR system, version 2.68. The result was
exported to MIDI.

4. EVALUATION

4.1 OMR Evaluation Methods

OMR researchers have yet to adopt any evaluation met-
ric as a common standard [6], and specialized evaluation
methods will likely be needed for most systems. We chose
as basic of an evaluation method as possible: simply com-
paring the start time of each note to the ground truth. This
still requires rests, accidentals, and other basic symbols to
be detected correctly in the usual case; it cannot detect a
too-short note followed by a too-long rest, but this partic-
ular error should be extremely rare. Although it does not
test other information like dynamic markings, we consider
these to be of secondary importance compared to the actual
notes. As we only consider the start position of each note,
and not the duration of notes and rests, our evaluation is a
further simplification of previous evaluations, which con-
sider both the start and end of notes [4, 14].

SharpEye 2 outputs a proprietary .mro format which
contains information such as the position of some individ-

ual symbols. Therefore, it is possible to conduct a low-
level evaluation if the score is labeled with the position of
each symbol. Although both values should be highly cor-
related, high-level accuracy may decrease drastically with
only a small decrease in low-level accuracy, as illustrated
in Figure 1.

Our evaluation method is considered high-level. This
allows us to use MIDI recordings from the Mutopia
Project, which only contain the actual notes, as our labeled
data. One potential issue with MIDI is that to simulate a
realistic performance, staccato notes may have a shortened
length followed by a rest for their remaining time. Our
evaluation, which only tests the start of each note, accounts
for this.

4.2 Accuracy Value

Given two aligned scores, we need to derive a single value
for the accuracy. Here, each note is represented as the time
in the score, and a pitch, and a note is correctly detected
if there is a note with the exact same values in the original
score. The OMR output may contain both false positives,
where a note is accidentally detected, and false negatives,
where a note is missing. We may calculate the precision
p, which is the proportion of true positives to all detected
notes, and the recall r, which is the proportion of true posi-
tives to all notes in the original score. The standard method
of combining these values, which we use as our accuracy
value, is the F1 score:

F1 =
2pr

p+ r

4.3 MIDI-MIDI Alignment

All MIDI files were imported into Python using
music21[8]. Next, we aligned each OMR output to the
ground truth, to correct for missing or extra measures due
to OMR errors. We noticed that LilyPond’s MIDI output
(used by Mutopia) pads a pickup measure to the length of
a full measure, while SharpEye 2’s does not. Therefore,
we align each beat rather than each measure, so that the
pickup will also be correctly aligned.

The standard alignment algorithm, used in both bioin-
formatics and computer music applications, is Needleman-
Wunsch [18, 3]. It minimizes the sum of the distance
between each aligned element of two sequences, plus a
penalty for each inserted gap. In our case, our distance
matrix has one row for each beat in the real score, and one
column for each beat in the OMR score. The distance entry
for each pair is 1 − F1 for the pair of beats, multiplied by
the maximum of the number of notes in both beats. (This is
implicitly 0 when both beats only contain rests, and the F1

score would normally be undefined.) We use a gap penalty
of 10.

After Needleman-Wunsch, we simply calculate the F1

score for the entire aligned scores, with new positions for
the notes accounting for inserted gaps. This is our OMR
accuracy value.
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Figure 2. The OMR F1 score for each movement com-
pared with the predicted accuracy, with the best-fit line.

4.4 Quality Estimation

We used a linear model to predict the OMR F1 score given
our features. We chose the Scikit-learn [22] implementa-
tion of Support Vector Regression with a linear kernel, as
it seemed to perform better than ordinary least squares lin-
ear regression. The model was validated by leave-one-out
testing on each work: for each work, a model was trained
excluding its corresponding scores, and the predicted best
score for the work was compared to the score with the
highest accuracy. Finally, we fit the model to the entire
dataset to determine the coefficients.

5. RESULTS

The OMR F1 score and predicted accuracy were weakly
but significantly correlated (R = 0.30, p = 0.0029). The
data is shown in Figure 2.

For each work, we compared the score with the high-
est OMR accuracy and the score with the highest predicted
quality using leave-one-out testing (Table 1). Six of the 16
works had a correctly predicted best score, whereas using
uniformly random guessing, the expected number of cor-
rect scores is only 2.82. The full OMR accuracy results are
presented in Table 2.

We also noted that the best few scores may all have
nearly the same high accuracy. In these cases, it is not
necessary that our top predicted score has the highest ac-
curacy, but the accuracy should be close to the highest.
For each work, we considered the mean accuracy of all
scores, which is the expected accuracy of a score selected
by random choice, the highest accuracy, and the accuracy
of the predicted best score. The mean of the expected ac-
curacy for random guessing is 0.61, and the mean of the
best accuracy (the best possible result) is 0.82, while the
mean accuracy of the best predicted scores is 0.74. The
chosen score’s accuracy was higher than expected in 14 of
16 cases. This confirms that our method reliably outper-
forms random guessing, but there is still room to improve

Work Best Pred. Best # Scores
1.1 IMSLP66390 IMSLP05524 8
1.4 IMSLP66390 IMSLP05524 7
5.1 IMSLP66394 IMSLP66394 5
5.3 IMSLP66394 IMSLP66394 5
6.3 IMSLP66395 IMSLP66395 5
19.1 IMSLP00019 IMSLP04073 6
19.2 IMSLP05545 IMSLP69581 6
20.1 IMSLP45469 IMSLP66410 7
20.2 IMSLP05546 IMSLP05546 7
23.2 IMSLP51795 IMSLP04078 3
23.3 IMSLP66412 IMSLP66412 6
25.1 IMSLP66414 IMSLP66414 6
25.2 IMSLP66414 IMSLP69588 6
25.3 IMSLP66414 IMSLP69588 6
27.1 IMSLP66416 IMSLP05553 6
27.2 IMSLP69590 IMSLP05553 6

Table 1. Accuracy predictions on the Beethoven piano
sonata test set. For each work (identified by sonata num-
ber.movement), we compare the score with the highest
OMR accuracy (Best) and the highest predicted quality
(Pred. Best).

in choosing one of the best scores.
The coefficients of our linear model (Table 3 in the ap-

pendix) are directly interpretable as the effect each pa-
rameter has on OMR accuracy. Many results were un-
expected. For example, ν represents the probability of
salt-and-pepper noise in the Kanungo model, which should
negatively affect OMR accuracy, but its coefficient is posi-
tive. However, as it is on a small scale (typically 0−0.05),
it has a smaller impact on accuracy. This result may be
due to a few outliers which had poor results for Kanungo
estimation.

The coefficient for mean skew, which is the deforma-
tion undone by Fujinaga’s deskewing, is also unexpect-
edly positive. This may indicate a flaw in our implemen-
tation, or again, outliers. We did find that staff dist is pos-
itively correlated with accuracy, as we expect that higher-
resolution scores will have better results. The coefficient is
small, but more significant as staff dist is on a larger scale
(usually at least 20).

6. CONCLUSIONS

We introduced an estimated OMR accuracy measure, and
showed that its correlation to the true accuracy is statis-
tically significant. However, the correlation is too low to
correctly predict the best-quality score a majority of the
time. On the other hand, this validates the use of features
extracted from the image to select higher-quality scores.
By refining our features and adding additional ones, we
should be able to build a practical quality estimation sys-
tem which can support multi-score OMR.

Since most of our current image features are parame-
ters for Kanungo noise, the success of the image quality
estimation is dependent on these parameters being accu-
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rate. The Kanungo estimation process is currently very
time-intensive, requiring around 2 minutes per page. Some
instances of Nelder-Mead will become stuck in a local op-
timum, so repeating Nelder-Mead even more times should
improve results. However, the time involved made this im-
practical in this case.

7. FUTURE DIRECTIONS

7.1 Image Quality Features

We only found a weak correlation between OMR accuracy
and predicted quality, and noted that the Kanungo parame-
ter estimates were noisy. Furthermore, the estimation pro-
cess is too slow to be practical for a large music library
such as IMSLP. Therefore, a better performing, faster Ka-
nungo estimation process is needed to make image quality
estimation practical.

We may be able to improve Kanungo estimation by us-
ing assumptions specific to music scores, which would al-
low us to test a much smaller area of the image. For ex-
ample, if we find all empty stretches of staff on the page,
we can concatenate some of these as the input to Kanungo
estimation. We may generate an ideal empty staff using
the estimated staffline distance and thickness. This uses a
much smaller image, and may even be more robust as dif-
ferences in typography between the ideal and input image
will not affect it.

Finally, our features only take into account errors in-
troduced in the scanning process. However, differences in
the original score, such as different fonts, should also af-
fect the accuracy of a particular OMR recognizer. Adap-
tive OMR systems [11, 23] improve their performance on
scores with a certain font and other particularities by learn-
ing from their corrected output. If an adaptive system is
trained using a homogenous set of scores with a particu-
lar font, then we may be able to extract information about
the font from its classification model. Features which have
been used for handwritten music writer identification [10]
may be useful.

7.2 OMR Evaluation

We mentioned that a small difference in low-level accu-
racy may make a dramatic difference in high-level accu-
racy. Therefore, low-level accuracy may be a more stable
value to use when performing regression. However, ob-
taining a real-world test set of a similar size with low-level
ground truth would be much more time-consuming.

Using scores from the Mutopia Project, it would be pos-
sible to modify LilyPond to output the position of each
symbol, giving us a low-level ground truth. Next, we could
apply deformations such as Kanungo noise to the output
before performing OMR. This is similar to Padilla et al.’s
proposal to add additional noise to real images from IM-
SLP to profile each OMR recognizer. However, if we start
from ideal computer-engraved images, then the parameters
we use to add noise to the image are exactly the same as
our image quality features. Therefore, we may design our
test set to cover the entire parameter space, and we can

directly learn our image quality function using regression
from the input parameters to the OMR accuracy for each
recognizer.

On the other hand, we may be able to improve our re-
sults while keeping high-level accuracy. We may obtain
a broader range of scores from IMSLP paired with MIDI
recordings from the Mutopia Project, which would provide
us with more training data. Using more data, we could
train a more sophisticated model than linear regression,
which would hopefully better predict accuracy. We noted
that a single error has a proportional effect in low-level ac-
curacy but a much bigger effect on high-level accuracy, so
high-level accuracy likely has a nonlinear relationship with
quality. Therefore, methods such as kernel SVR or random
forests may be able to capture this nonlinear relation.

We noticed that some MIDI scores were unable to be
opened by music21, and they were excluded from the anal-
ysis. This is believed to be because some note durations
cannot be unambiguously converted from a floating-point
time value back to the music-theoretic note values which
music21 uses. This should be possible to fix by using the
MIDI files in their original form, which would allow us to
include more data in our analysis.

7.3 Alignment-Based MS-OMR

Although we presented our method as a simpler alterna-
tive to existing MS-OMR systems, our image quality esti-
mate may be used in a larger system. An MS-OMR sys-
tem which aligns multiple results, as in [21], may be aug-
mented by weighting each score by its quality in the vote.
Furthermore, alignment-based MS-OMR systems require a
multiple sequence alignment, and finding the globally op-
timal such alignment is NP-complete [26]. Approximate
multiple alignment algorithms often use a series of pair-
wise alignments [9]. Recent research in aligning multiple
musical recordings or scores used a progressive alignment,
where pairwise alignments were performed sequentially on
the inputs [27, 4]. Ordering OMR results from highest to
lowest quality may work better than other orders.

We have demonstrated the usefulness of image quality
estimation in predicting OMR accuracy. A more robust
quality estimate should be useful for any MS-OMR sys-
tem. This should have a significant impact on OMR accu-
racy for large music libraries such as IMSLP.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 21



Work Score Accu. Qual. Score Accu. Qual. Score Accu. Qual. Score Accu. Qual. Score Accu. Qual.
1.1 00001 0.95 0.62 03796 0.70 0.79 05524 0.95 0.88 51707 0.57 Error 66279 0.70 0.75
1.1 66390 0.96 0.79 77993 0.61 0.50 90564 0.08 0.18 243106 0.84 0.83
1.4 00001 0.94 0.56 03796 0.79 0.66 05524 0.31 0.82 51707 0.37 Error 66279 0.78 0.85
1.4 66390 0.96 0.86 77993 0.62 0.70 243106 0.67 0.65
5.1 00005 0.92 0.82 02412 0.08 Error 03858 0.81 0.69 51714 0.85 Error 66394 0.96 0.83
5.1 68715 0.69 0.69 243114 0.91 0.75
5.3 00005 0.17 0.67 03858 0.49 0.46 51714 0.18 Error 66394 0.60 0.87 68715 0.47 0.71
5.3 243114 0.17 0.53
6.3 00006 0.41 0.79 03859 0.34 0.80 51715 0.40 Error 66395 0.43 0.85 68719 0.36 0.68
6.3 243121 0.10 0.80

19.1 00019 0.75 0.72 04073 0.15 0.89 05545 0.26 0.76 45370 0.26 0.62 51743 0.20 0.73
19.1 66408 0.28 Error 69581 0.72 0.62 345618 0.27 Error
19.2 00019 0.91 0.75 04073 0.84 0.74 05545 0.94 0.84 45370 0.94 0.78 51743 0.67 0.57
19.2 66408 0.98 Error 69581 0.93 0.93 345618 0.94 Error
20.1 00020 0.08 0.66 04075 0.85 0.75 05546 0.96 0.83 45469 0.97 0.52 51745 0.67 0.54
20.1 66410 0.07 0.82 69582 0.90 0.85
20.2 00020 0.95 0.59 04075 0.14 0.64 05546 0.98 0.88 45469 0.95 0.74 51745 0.79 0.50
20.2 66410 0.08 0.50 69582 0.94 0.70
23.2 03184 0.11 0.51 04078 0.46 0.70 51795 0.55 0.59
23.3 00023 0.57 0.67 03184 0.09 0.55 04078 0.38 0.72 05549 0.58 0.78 51795 0.41 0.53
23.3 66412 0.60 0.86
25.1 00025 0.97 0.52 03185 0.43 Error 04081 0.80 0.83 05551 0.96 0.76 51797 0.88 0.68
25.1 66414 0.98 0.88 69588 0.26 0.84
25.2 00025 0.84 0.73 04081 0.73 0.57 05551 0.95 0.85 51797 0.74 0.64 66414 0.99 0.68
25.2 69588 0.87 0.89
25.3 00025 0.92 0.56 04081 0.66 0.63 05551 0.96 0.79 51797 0.74 0.70 66414 0.96 0.74
25.3 69588 0.94 0.84
27.1 00027 0.88 0.75 04090 0.79 0.86 05553 0.90 0.83 51799 0.48 0.76 66416 0.91 0.81
27.1 69590 0.70 0.78
27.2 00027 0.27 0.69 04090 0.21 0.70 05553 0.27 0.75 51799 0.18 0.60 66416 0.29 0.74
27.2 69590 0.51 0.55

Table 2. OMR accuracy (F1) values for each score (by IMSLP ID), and predicted quality values.

Variable Coefficient Variable Coefficient
ν 4.2 mean skew 19.34
α0 1.7 staff dist 0.021
α 0.10 staff thick ratio 0.22
β0 −0.70
β −0.077
k −0.0026

Table 3. Coefficients of the linear model for image quality.
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ABSTRACT

We introduce a new application of transfer learning for
training and comparing music similarity models based on
relative user data: The proposed Relative Information-The-
oretic Metric Learning (RITML) algorithm adapts a Maha-
lanobis distance using an iterative application of the ITML
algorithm, thereby extending it to relative similarity data.
RITML supports transfer learning by training models with
respect to a given template model that can provide prior
information for regularisation. With this feature we use in-
formation from larger datasets to build better models for
more specific datasets, such as user groups from differ-
ent cultures or of different age. We then evaluate what
model parameters, in this case acoustic features, are rele-
vant for the specific models when compared to the general
user data.

We to this end introduce the new CASimIR dataset, the
first openly available relative similarity dataset with user
attributes. With two age-related subsets, we show that trans-
fer learning with RITML leads to better age-specific mod-
els. RITML here improves learning on small datasets. Us-
ing the larger MagnaTagATune dataset, we show that RITML
performs as well as state-of-the-art algorithms in terms of
general similarity estimation.

1. INTRODUCTION

Music similarity models are a central part of many ap-
plications in music research, particularly Music Informa-
tion Retrieval (MIR). When training similarity models, it
turns out that learnt models vary considerably for differ-
ent data sets and application scenarios. Recently, context-
sensitive models have been introduced, e.g. for the task of
music recommendation (Stober [9] provides an overview).
The main problem with context-sensitive similarity mod-
els is currently to obtain enough data to train the models
for each context. Transfer learning promises to enable ef-
fective training of models for specific contexts by includ-
ing information from related datasets. We here present an

c© Daniel Wolff, Andrew MacFarlane and Tillman Weyde.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Daniel Wolff, Andrew MacFarlane
and Tillman Weyde. “Comparative Music Similarity Modelling using
Transfer Learning Across User Groups”, 16th International Society for
Music Information Retrieval Conference, 2015.

approach of transfer learning in music similarity that im-
proves results of specialised models, using ourW0-RITML
extension of Information-Theoretic Metric Learning (ITML).
The template-based optimisation in W0-RITML allows for
a comparison of the general and specialised models – it
derives the latter from the former – which we suggest as
a tool for comparative analysis of similarity data by (e.g.
cultural) provenance.

We are particularly interested in modelling relative similar-
ity ratings collected from participants during Games With a
Purpose (GWAPs). Using similarity data from user groups
promises to provide tailored model performance and the
opportunity to compare such groups via the trained sim-
ilarity models. The new CASimIR dataset presented in
Section 3 contains such similarity ratings and information
about the contributing subjects. We use this extra data to
group users and here exemplarily train age-specific music
similarity models based on age-bounded subsets. How-
ever, the relatively small size of the CASimIR dataset re-
quires a different approach to training the group-specific
models as existing algorithms are not sufficiently effective
for this purpose.

We contribute a solution to this problem with a novel generic
algorithm for transfer learning with similarity models: The
RITML algorithm (see Section 5.2) extends on ITML to
allow for learning a Mahalanobis metric from relative sim-
ilarity data like in CASimIR. With W0-RITML, informa-
tion learnt from remaining data can be successfully trans-
ferred to an age-bounded dataset via a Mahalanobis ma-
trix. This transfer-learning increases performance on small
datasets and provides interpretable values in the Mahala-
nobis matrix. The Mahalanobis matrix provides a compact
representation of similarity information in a dataset. This
is useful in scenarios where the music data is difficult to
access due to its data volume or copyright restrictions. The
CASimIR dataset and code used in this paper are available
online 1 .

2. RESEARCH BACKGROUND

Transfer learning relates to many areas and approaches in
machine learning. A general overview of transfer learning
is given in Pan and Yang [6]. In their categorisation, our
task is an inductive knowledge transfer from one similarity
modelling task to another via model parameters. Note that

1 http://mirg.city.ac.uk/datasets/ismir2015dw
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in our example the tasks differ only in the dataset, but our
method can also be used for more divergent tasks.

In MIR, transfer learning is a relatively new method. In
2013, [2] described multi-task learning using a shared la-
tent representation for auto-tagging, genre classification and
genre-based music similarity. This representation includes
both the features and the labels for the different tasks. In
experiments on several datasets they showed improvement
of classification accuracy and modelling similarity accord-
ing to genre.

We here work with relative similarity ratings from humans
in our new CASimIR dataset for group-specific modelling.
Furthermore, we use the MagnaTagATune dataset [3] for
comparison on non-specific similarity learning. Here, the
Support Vector Machine (SVM) approach developed by
Schultz and Joachims [7] and applied in [10, 11] is used
as state-of-the art baseline.

Another state-of-the-art algorithm for learning from rela-
tive similarity data is Metric Learning To Rank (MLR).
McFee et al. [4] introduce MLR for parametrising a lin-
ear combination of content-based features using collabo-
rative filtering data. Their post-training analysis of feature
weights revealed that tags relating to genre or radio stations
were assigned greater weights than those related to music
theoretical terms.

3. A DATASET FOR USER-AWARE SIMILARITY

In order to perform a related analysis and comparisons of
models between different user groups, we have collected
the CASimIR datasets using Spot the Odd Song Out [13],
an online 2 multi-player Game With a Purpose (GWAP).
The similarity module of the Spot the Odd Song Out game
collects relative similarity data using an odd-one-out sur-
vey: From a set of three music clips, participants are asked
to choose the clip most dissimilar to the remaining clips,
i.e. the odd song out. The game motivates players by
rewarding blind agreement. For various reasons, includ-
ing personal data protection, little music annotation data is
publicly available with information about the provider of
the data and their context.

Although the game can collect anonymised personal in-
formation including gender, nationality, spoken languages
and musical experience, the amount and type information
available varies between participants, as data provision is
voluntary. Our overarching goal is to study the relation
between similarity and culture and we thus link annota-
tions to cultural profiles rather than indexing specific par-
ticipants. With this paper we publish the first set of simi-
larity data with anonymised profiles.

3.1 Constraints from Relative Similarity Ratings

The MagnaTagATune and CASimIR datasets both contain
relative similarity ratings. A participant’s rating of Ck as

2 http://mirg.city.ac.uk/camir/game/

the odd one out (of the triplet Ci, Cj , Ck) results in 2 rela-
tive similarity constraints: clipsCi andCj are more similar
than Ci and Ck, and clips Cj and Ci are more similar than
Cj and Ck. These constraints are denoted as (i, j, k) and
(j, i, k), respectively which are contained in the constraint
set Q̂.

Human ratings regularly produce inconsistent constraints.
We use the graph representation of the similarity data as
suggested by [5] to analyse and filter inconsistencies: Each
constraint (i, j, k) is represented by an edge connecting
two vertices (i, j)

αijk→ (i, k) corresponding to two clip
pairs, with the edge weight αijk = 1. When combining
all constraints in a graph, the weights αijk are accumu-
lated. Inconsistencies then appear as cycles in the graph,
which in their most common form are of length 2:

(i, j)
αijk

�
αikj

(i, k).

We remedy such cycles by removing the edge with the
smaller weight and assigning the weight |αijk − αikj | to
the remaining edge. For both the MagnaTagATune and
CASimIR datasets this already creates a cycle-free graph
Q as no larger cycles remain. The cycle-free sets Q are
used in this study for training and evaluation.

Compared to the MagnaTagATune dataset, the CASimIR
dataset features more frequent recurrences of clips between
the triplets presented to the users. Recurring clips relate the
corresponding similarity data, and result in large connected
components in the CASimIR similarity graph: While the
maximal number of clips directly or transitively related
to each other through similarity data in the MagnaTagA-
Tune dataset was 3 (see [11]), most clips in the CASimIR
similarity data are related to at least 5 other clips. The
repetition of clips across triplets results in fewer unique
referenced clips: the current CASimIR similarity dataset
contains only 180 clips referenced by 2102 ratings, while
MagnaTagATune references 2000 ratings with about 500
clips, and has 1019 clips with 7650 ratings in total.

3.2 Analysis of Age-bounded Similarity Ratings

The additional participant attributes allow us to select sub-
sets of similarity data according to specific profiles of the
participants. This enables the training of more specific
models that support better similarity predictions for the rel-
evant group of users, and allows for comparison of differ-
ent models.

As an example of group-based similarity modelling we
choose age as a separating criterion on the CASimIR simi-
larity data from over 256 participants: We divide the com-
plete set of similarity ratings R into two age-bounded sub-
sets R≤25 of data provided by participants not older than
25 years and R>25 containing data of older participants.
The boundary of 25 years was chosen as the best approxi-
mation to equal sizes of the subsets (data input is only in 5
year bands). As shown in Table 1, the number of ratings is
higher for the R≤25 dataset.
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R R≤25 R>25 R{(≤25) R{(>25)

ratings 2102 919 644 1183 1458
constr. 914 723 576 732 809

clips 180 171 163 175 176

Table 1. Number of votes, unique constraints and refer-
enced clips, after filtering inconsistencies, per dataset.

539 similarity ratings are not associated to a valid age and
stored separately in R∅. For the two age-bounded datasets,
we furthermore define complementary datasetsR{(≤25) and
R{(>25) combining the remaining similarity data, e.g. R{(≤25)

= R>25 ∪ R∅. These complementary sets will be used for
training of template models for transfer learning.

After splitting, the above (sub)sets of ratings are trans-
ferred into constraints (see Section 3.1) and separately fil-
tered for inconsistencies. We now use the corresponding
sets of unique constraints Q, Q≤25, Q>25, Q{(≤25) and
Q{(>25) for training and testing of models. The number of
constraints are also noted in Table 1, together with the total
number of clips referenced by the constraint sets. Due to
multiple ratings referring to the same constraint and filter-
ing the constraint count is lower than the number of ratings.

4. SIMILARITY MODELLING

The computational representations of music through fea-
tures, related to physical, musical, and cultural attributes
determine the basis of similarity models. Both the Magna-
TagATune and CASimIR datasets contain pre-computed
features created by The Echo Nest API. For our exper-
iments with CASimIR we derive acoustic features from
this data which are aggregated to the clip-level. The 41-
dimensional features contain 12 chroma and 12 timbre fea-
tures, both aggregated via averaging, 2 weight vectors and
further features after [8, 11]:

chroma timbre
segmentDurationMean tempo
segmentDurationVariance beatVariance
timeLoudnessMaxMean tatum
loudness tatumConfidence
loudnessMaxMean numTatumsPerBeat
loudnessMaxVariance timeSignature
loudnessBeginMean timeSignatureStability
loudnessBeginVariance –

Table 2. Features used in our experiments.

For experiments with the MagnaTagATune dataset we will
use the similar features provided in [12] which contain pre-
processed tag information in addition to the acoustic fea-
tures described above. For the CASimIR dataset, using un-
processed tags from Last.fm did not increase performance
in earlier experiments due to very sparse tag assignments.
Therefore, our experiments on CASimIR use acoustic fea-
tures only. For a clip Ci, we refer to its feature vector as
xi ∈ RN .

4.1 Mahalanobis Distances

We use the inverse of the distance of two feature vectors as
the similarity of the two corresponding clips. The mathe-
matical form of the Mahalanobis distance is used to spec-
ify a parametrised distance measure. Given two feature
vectors xi, xj ∈ RN , the distance can be expressed as

dW (xi, xj) =
√

(xi − xj)ᵀW (xi − xj),

where W ∈ RN×N is a square matrix parametrising the
distance function: the Mahalanobis matrix. dW qualifies
as a metric if W is positive definite and symmetric.

5. MODEL TRAINING WITH RITML

We now discuss our algorithm which can adapt Mahala-
nobis distances in order to fit relative similarity data. It is
based on the ITML algorithm as described below, which
cannot be used directly with relative similarity data. In-
stead, ITML requires upper or lower bounds on the sim-
ilarity of two clips, e.g. dW (xi, xj) < mi,j for similar
clips. In Section 5.2 we will iteratively derive such con-
straints during the RITML optimisation process.

5.1 Information-Theoretic Metric Learning

Davis et al. [1] describe Information-Theoretic Metric Lear-
ning (ITML) for learning a Mahalanobis distance from ab-
solute distance constraints (e.g. requiring dW (xi, xj) <
0.5). A particularly interesting feature of ITML is that
a template Mahalanobis matrix W0 ∈ Rn×n can be pro-
vided for regularisation. ThisW0 can be from a metric that
is predefined or learnt on a different dataset. If W0 is not
specified, the identity transform is used. The regularisation
of ITML exploits an interpretation of Mahalanobis matri-
ces as multivariate Gaussian distributions: The distance
between two Mahalanobis distance functions parametrised
by W and W0 is measured by the relative entropy of the
corresponding distributions, which in [1] uses the LogDet
divergence Dld:

Dld(W,W0) = tr(WW−10 )− log det(WW−10 )− n
= 2 ∗ KL (P (xi;W0) ‖ P (xi;W )) .

KL refers to the Kullback-Leibler divergence. For details
of the transformation see [1]. Given the constraints in form
of similar (Rs) and dissimilar (Rd) clip indices as well as
upper and lower bounds uij , lij , the optimisation problem
is then posed as follows:

ITML(W, ξ, c,Rs, Rd) =

argmin
W�0,ξ

Dld(W,W0) + c ·Dld(diag(ξ), diag(ξ0))

s.t. tr(WdLi,j(d
L
i,j)

ᵀ
) ≤ ξij ∀(i, j) ∈ Rs

tr(WdLi,j(d
L
i,j)

ᵀ
) ≥ ξij ∀(i, j) ∈ Rd

with dLi,j = (xi − xj).
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Here, ξij are slack variables enabling and controlling the
violation of individual constraints. The ξij are initialised to
given upper bounds uij , if (i, j) ∈ Rs or lower bounds lij ,
if (i, j) ∈ Rd. During optimisation, they are regularised by
comparison to the template slack ξ0 using triangular matri-
ces diag(ξ) and diag(ξ0).

5.2 Relative Learning with RITML

In order to allow for training with relative similarity con-
straints, we present Relative Information-Theoretic Metric
Learning (RITML) based on ITML. Motivated by [14], we
embed ITML into an iterative adaptation of the upper and
lower bounds.

We start with a training set of relative constraints (i, j, k) ∈
Qt. We require standard ITML parameters such as c, as
well as the relative learning parameters including shrink-
age factor η, margin τ and number of cycles k at the be-
ginning. We use the identity matrix for the template W0.
During iteration m, the active training set of violated con-
straints Qm is calculated as

Qm = {(i, j, k) ∈ Qt | dWm(xi, xj) > dWm(xi, xk)} .

Qm is then further divided into the sets of similar and dis-
similar constraints Rms and Rmd :

Rms = {(i, j) | (i, j, k) ∈ Qm}
Rmd = {(i, k) | (i, j, k) ∈ Qm},

Afterwards, absolute distance constraints ξij for the fol-
lowing ITML instance are acquired by adding a margin τ
to the average distance values µ =

dWm (xi,xj)+dWm (xi,xk)
2

of the clip pairs:

ξmij =

{
µ− τ (i, j) ∈ Rms
µ+ τ (i, j) ∈ Rmd

∀(i, j, k) ∈ Qm

Now, with ξm containing the upper and lower bounds, ∆W
can be calculated using

∆W = ITML(Wm, ξm, γ, Rms , R
m
d ) (1)

and the final Mahalanobis matrix is accumulated over iter-
ations using the model update function

Wm+1 =
m ∗Wm + η ∗∆W

m+ 1
.

In order for the algorithm to converge, the cardinality of the
active training set |Qm| needs to decrease. In our experi-
ments, k = 200 training iterations are usually sufficient.
Otherwise an early stopping of the algorithm takes place if
|Qm| does not decrease for 50 iterations. In this case the
Wm for the smallest |Qm| within the last 50 iterations is
returned. RITML does not guarantee dW to be a metric.

Algorithm 1: Relative Training with RITML
Data: Constraints Qt, features xi, template matrix W0,

regularisation factor c, shrinkage factor η, margin
τ , number of cycles k

m = 0 ;
while m ≤ k ∧Q∗ 6= ∅ do

Update training sets Qm, Rms and Rmd ;
Update absolute constraints ξm ;
Calculate parameter change ∆W ;
Calculate Wm+1 ;
m = m+1 ;

end
return Mahalanobis matrix W k

5.3 Transfer Learning with W0-RITML

The property that motivates our usage of RITML is that
it enables transfer learning: If a specific starting value or
template of W0 other than the identity matrix is provided,
the optimisation tends to produce results close to the pro-
vided W0. In order to sustain this effect for large numbers
of iterations we modify Equation (1) such that regularisa-
tion is fixed towards W0 instead of the Euclidean distance:

∆W = ITML(W0, ξ
m, γ, Rms , R

m
d )

This constitutes theW0-RITML algorithm for transfer learn-
ing with Mahalanobis matrices.

6. EXPERIMENTS
For all our experiments we use the 10-fold cross-validation
with inductive sampling as described in [11]: Instead of di-
viding the similarity constraints themselves into test/training
sets, the data are divided on the basis of connected clusters
in the similarity data. This approach prevents the recur-
rence of clips from a training-set in the corresponding test
set. It also leads to a greater variance in test-set sizes for
CASimIR where the clusters of connected similarity data
are larger.

We evaluate the algorithms’ performance based on the per-
centage of training and test constraints fulfilled by the trained
model. Our main focus is on the test-set results as we are
interested how well the learnt models generalise to unseen
data. As a baseline we use the Euclidean distance on the
features. We have tested results for statistical significance
using the Wilcoxon signed rank test on cross-validation
folds’ results with a threshold of p < 5%.

Both SVM as implemented in svmlight[7] and RITML have
hyper-parameters affecting the performance on different
datasets. The results reported here were selected on the
basis of best test-set performances after a grid-search over
a range of value combinations identified as reasonable in
preliminary experiments: The regularisation trade-off c is a
parameter common to SVM, RITML andW0-RITML with
a similar effective range: we explored a c ∈ [0.001, 10] us-
ing an approximately logarithmic scale. For RITML and
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W0-RITML we additionally used
τ ∈ {10−4, 10−3 . . . , 10−1, 0.5, 1 . . . 10} and
η ∈ {0.1, 0.15 . . . 0.95}.

6.1 Comparing the Performance of RITML
For a comparable evaluation of RITML we chose the Magna-
TagATune-based dataset and constraint sampling published
in [12]. Their evaluation compares various algorithms for
learning a Mahalanobis metric using two different sam-
plings. The inductive sampling used here corresponds to
the sampling B in their text. Table 3 shows the results on
MagnaTagATune and on the complete CASimIR dataset
(Q).

Algorithm MagnaTagATune CASimIR
Euclidean 59.80 / 59.77 59.75 / 59.82
RITML 71.12 / 73.41 64.23 / 93.36
SVM 71.20 / 85.75 63.22 / 69.11
MLR 68.90 / 100.0 62.79 / 73.37

Table 3. Comparison of Test / Training set performance on
the MagnaTagATune and CASimIR datasets for baseline,
RITML and SVM. Reported are the number of constraints
fulfilled by the learnt distance measures.

For MagnaTagATune, RITML achieves similar generalisa-
tion results as SVM (with parameters SVM: c = 0.7 and
RITML: c = 1, η = 0.85, τ = 0.5), while MLR over-
fits to the training data. For both the MagnaTagATune
and CASimIR datasets all methods perform significantly
better than the baseline. The RITML results are therefore
comparable to the state-of-the-art. The training results on
MagnaTagATune with SVM and MLR are far better than
the test results, indicating overfitting, which does not oc-
cur for RITML. Interestingly, on the CASimIR dataset, the
situation between RITML and SVM is reversed. Results
published by [11] for acoustic-only features on MagnaTag-
ATune show a performance of 66% on MagnaTagATune,
but the lower performance on CASimIR can be explained
by the smaller number of training examples.

6.2 Transfer Learning

A core motivation for transfer learning is the training on
highly specialised but small datasets. To evaluate the W0-
RITML method for transfer learning, we firstly compared
the SVM and RITML algorithms with the baseline on the
age-bounded datasets Q>25 and Q≤25 in Table 4. The
rightmost column shows the average performance across
both age-bounded datasets. Expectedly, on these smaller
datasets generalisation results for RITML as well as the
reference SVM and MLR are lower than on the whole CA-
SimIR. Only for RITML an increase of 4.37% from the
baseline is notable for the slightly larger Q>25 which im-
proves the average score for RITML.

We now apply transfer learning to improve generalisation
results on the age-bounded sets. The overall process is de-
picted in Figure 1. First, an similarity modelling experi-
ment is performed on both of the complementary subsets

Algorithm Q≤25 Q>25 Average
Euclidean 59.32 / 59.95 59.15 / 59.63 59.23 / 59.79
RITML 63.69 / 75.87 61.02 / 67.95 62.35 / 71.91
SVM 61.56 / 72.78 61.34 / 71.43 61.45 / 72.10
MLR 62.06 / 75.79 62.58 / 78.47 62.32 / 77.13

W0-Direct 63.96 / 66.17 64.82 / 69.57 64.39 / 67.87
W0-RITML 65.53 / 70.82 67.07 / 73.22 66.30 / 72.02

Table 4. Comparison of Test / Training set performance
on the age-bounded datasets. Training on single datasets
(top 3 rows) and transfer learning with W0-RITML and
W0-Direct.

Complement
Dataset
Q{(>25)

Template
model W0

Age-
specific

model W

RITML W0-RITML

Age-
bounded

DatasetQ>25

Figure 1. Flow diagram for transfer learning, exemplified
for the Q>25 dataset.

Q{(>25) and Q{(≤25) using cross-validation with training
and test data from only these sets. Comparing the indi-
vidual results for validation folds we choose the Maha-
lanobis matrices with the greatest test-set performance as
template matrix W0. The template matrix W0 learnt on
Q{(≤25) is then used for transfer learning on Q≤25, us-
ingW0-RITML. For comparison of the effectiveness of the
fine-tuning with W0-RITML, we report the performance
achieved with the unmodified W0 on Q≤25 as W0-Direct.
This process is repeated analogously forQ≤25 by applying
the template matrix W0 from Q{(≤25) on Q≤25.

The highlighted lower columns of Table 4 show the results
for transfer learning: Row W0-Direct reports the direct
performances of the template Mahalanobis matrices W0.
The results of fine-tuning these models with W0-RITML
are reported in the last row. We here find that using the ma-
trices trained on the larger datasets, and thus transfer learn-
ing, generally improves results. Only the results for W0-
RITML provide gains> 6.21% that are statistically signif-
icant when compared to the baseline. As the average result
of W0-RITML also significantly outperforms the average
SVM performance, W0-RITML works best for adapting
models to specialised datasets.

A drawback of RITML is that it is computationally de-
manding: For theQ dataset, RITML uses 50 seconds where
SVM converges in 5 seconds. On the other hand, SVM
learns a diagonal W which reduces the number of param-
eters and model flexibility.

6.3 Model Comparison

In order to identify specificities of the Q>25 dataset in
comparison to the remainingQ{(>25), we now analyse changes
made to the template matrix W0 in the fine-tuning pro-
cess. Instead of starting from the Euclidean metric, models
learnt from the W0-RITML method have a model already
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adapted to similarity data as basis.

Figure 2 shows the relative difference Ŵ − Ŵ0 of the Ma-
halanobis matrix before (W0) and after (W ) fine tuning.
As the fine tuning process rescales the similarity measure
and thereby W , the matrices have been normalised to the
interval of [0, 1] via 3

Ŵ =
W −mini,j (wij)

maxi,j (W −mini,j wij)ij
. (2)

The axes of the figure correspond to feature types, which
for better overview have been grouped into chroma, timbre
and ranges of the features in Table 2. The template matrix
W0 in Figure 3a has large values only in the diagonal and
homogeneous small values off the diagonal. In comparison
to this, Figure 2 shows that specific combinations of tim-
bre features (in the bottom centre) with (B)eat and tempo
statistics were raised in importance by W0-RITML, result-
ing in the final matrix W as shown in Figure 3b. Also,
the centre of the matrix shows increased values for combi-
nations of different timbre coefficients. The strongest in-
creases (20-24%) in weights are reported for the off-dia-
gonal fields of C11C1, T6T5, B4T4 and B4T5, where C, T
relate to chroma and timbre coefficients and B4 refers to
the tatumConfidence feature. Weights are increased mainly
at the cost of diagonal elements, and suggest at a speciali-
sation of the model to the specificities of the Q>25 similar-
ity subset. For this data collected from users aged over 25,
the analysed W0-RITML model with stronger influence of
the timbre and beat-statistics features performs best in our
evaluation.

C· · · · · · · · · · · ·T· · · · · · · · · · · ·S·L· · · · ·B· · · · · ·

C············T············S·L·····B······

Figure 2. Learnt model difference for W0-RITML on
Q>25. Axis labels represent ranges of feature types:
(C)hroma, (T)imbre, as well as (S)egment, (L)oudness and
(B)eat+Tempo statistics. Dark red / blue colours corre-
spond to strong weight increase / decrease.

3 Subtraction and division are applied to W in a point-wise manner.

C· · · · · · · · · · · ·T· · · · · · · · · · · ·S·L· · · · ·B· · · · · ·

C············T············S·L·····B······

(a)

C· · · · · · · · · · · ·T· · · · · · · · · · · ·S·L· · · · ·B· · · · · ·

C············T············S·L·····B······

(b)

Figure 3. (a) Template matrix W0 before and (b) final ma-
trix W after fine-tuning with W0-RITML on Q>25. The
latter shows higher variance in off-diagonal entries for the
specialised model. Axis labels represent ranges of fea-
ture types: (C)hroma, (T)imbre, as well as (S)egment,
(L)oudness and (B)eat+Tempo statistics. Dark red colours
correspond to strong weight increase, light yellow to de-
crease.

7. CONCLUSION & FUTURE WORK

We presented a method for analysing music similarity data
of different user groups via models trained with transfer
learning. To this end, the new RITML algorithm was de-
veloped extending ITML to relative similarity data. A key
feature of RITML is that it enables transfer learning with
template Mahalanobis matrices via W0-RITML. Our eval-
uation of the algorithm was performed on two datasets:
The evaluation on the commonly used MagnaTagATune
dataset showed that RITML performs comparably to state-
of-the-art algorithms for metric learning.

For evaluation of transfer learning with W0-RITML we
provide the CASimIR similarity dataset, the first open dataset
containing user attributes associated to relative similarity
data. Tests on the whole CASimIR dataset corroborated
our finding that RITML competes with current similarity
learning methods. Our analysis of W0-RITML was per-
formed on age-bounded subsets of the dataset. Results
showed that transfer learning withW0-RITML outperforms
the standard SVM algorithm on small datasets.

Our comparison of models allowed us to point out specific
features and combinations that determine similarity in user
data. For this first evaluation we chose age to group users.
We hope this will motivate further research in comparison
of similarity models and adaptation to data with regard to
cultural and user context.

For future work we are interested in collecting larger sim-
ilarity datasets, and applying the methods introduced here
for improved validation of results and the analysis of more
specific user groups. The set-up used for our experiments
motivates transfer learning across the MagnaTagATune and
CASimIR datasets with W0-RITML for further analysis of
the transferability of similarity information via Mahalano-
bis matrices.
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ABSTRACT

Genre provides one of the most convenient categorizations
of music, but it is often regarded as a poorly defined or
largely subjective musical construct. In this work, we
provide evidence that musical genres can to a large ex-
tent be objectively modeled via a combination of musi-
cal attributes. We employ a data-driven approach utiliz-
ing a subset of 48 hand-labeled musical attributes com-
prising instrumentation, timbre, and rhythm across more
than one million examples from Pandorar Internet Ra-
dio’s Music Genome Projectr. A set of audio features
motivated by timbre and rhythm are then implemented to
model genre both directly and through audio-driven mod-
els derived from the hand-labeled musical attributes. In
most cases, machine learning models built directly from
hand-labeled attributes outperform models based on audio
features. Among the audio-based models, those that com-
bine audio features and learned musical attributes perform
better than those derived from audio features alone.

1. INTRODUCTION

Musical genre is a high-level label given to a piece of mu-
sic (e.g., Rock, Jazz) to both associate it with similar music
pieces and distinguish it from others. Genre is a very pop-
ular way to organize music as it is being used by virtually
all actors in the music industry, from record labels and mu-
sic retailers, to music consumers and musicians via radio
and music streaming services on the internet.

Just because genres are widely used does not necessar-
ily mean that they are easy to categorize, or easy to rec-
ognize. In fact, previous research shows that the music in-
dustry uses inconsistent genre taxonomies [21], and there
is debate over whether genre is the product of objective or
subjective categorizations [28]. Furthermore, it is debated
whether individual musical properties (e.g. tempo, rhythm,
instrumentation), which are not always exclusive to a sin-

c© Matthew Prockup, Andreas F. Ehmann, Fabien Gouyon
Erik M. Schmidt, Oscar Celma, and Youngmoo E. Kim.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Matthew Prockup, Andreas F.
Ehmann, Fabien Gouyon Erik M. Schmidt, Oscar Celma, and Youngmoo
E. Kim. “Modeling Genre with the Music Genome Project: Comparing
Human-Labeled Attributes and Audio Features”, 16th International Soci-
ety for Music Information Retrieval Conference, 2015.

gle genre, represent defining components [1, 10]. For ex-
ample, an Afro-Latin clave pattern occurs many places,
both in Antonio Carlos Jobim’s The Girl from Ipanema
(Jazz) and in The Beatles’ And I Love Her (Rock). It can
even be heard in the recently popular song, All About that
Bass, by Meghan Trainor. However, when discriminating
the more specific subgenres of ‘Bebop’ Jazz (fast swing)
and ‘Brazilian’ Jazz (Afro-Latin rhythms), this clave prop-
erty becomes much more salient. Despite these intriguing
relationships, a large-scale analysis of the association of
musical properties to genre, to the knowledge of the au-
thors, has yet to be performed.

If it were possible to define a categorization of music
genres that is useful, meaningful, consensual and consis-
tent at some level, then an automated categorization of mu-
sic pieces into genres would be both achievable and highly
desirable. Since early research in Music Information Re-
trieval (MIR), and still to date, the automatic genre recog-
nition from music pieces has precisely been an important
topic [1, 28, 30].

In this work, we explore the intriguing relationship
of genre and musical attributes. In Section 3, we will
overview the expertly-curated data used. In Section 4,
we detail an applied musicology experiment that uses
expertly-labeled musical attributes to model genre. We
then report in Section 5 on a series of experiments regard-
ing automated categorization of music pieces into genres
using audio signal analysis. In the following section, we
will briefly outline each of these approaches.

2. APPROACH

In this work we explore four approaches to modeling mu-
sical genre, investigating both expert human annotations
as well as audio representations (Figure 1). We explore
a subset of 12 ‘Basic’ musical genres (e.g. Jazz) as well
as a selected subset of 47 subgenres (e.g. Bebop). In
the first approach, we address via data-driven experiments
whether objective musical attributes of music pieces carry
sufficient information to categorize their genre. The next
set of approaches uses audio features to model genre auto-
matically. In the second approach, we use audio features
directly. The third approach uses audio features to model
each of the musical attributes individually, which are then
used to model genre. In the fourth approach, the estimated
attributes are used in conjunction with raw audio features.
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Figure 1. An overview of the experiments performed.

By injecting human-inspired context, we hope to automat-
ically capture elements of genre in a manner similar to that
of models derived from attributes labeled by music experts.

3. DATA - THE MUSIC GENOME PROJECTr

Both the musical attribute and genre labels used were de-
fined and collected by musical experts on a corpus of over
one million music pieces from Pandorar Internet Radio’s
Music Genome Projectr (MGP) 1 . The labels were col-
lected over a period of nearly 15 years and great care was
placed in defining them and analyzing each song with that
consistent set of criteria.

3.1 Musical Attributes

The musical attributes refer to specific musical compo-
nents comprising elements of the vocals, instrumentation,
sonority, and rhythm. They are designed to have a gen-
eralized meaning across all genres (in western music) and
map to specific and deterministic musical qualities. In this
work, we choose subset of 48 attributes (10 rhythm, 38
timbre). An overview of the attributes is shown in Table 1.

Meter attributes denote musical meters separate from simple
duple (e.g, cut-time, compound-duple, odd)

Rhythmic Feel attributes denote rhythmic interpretation
(e.g., swing, shuffle, back-beat strength) and elements of
rhythmic perception (e.g., syncopation, danceability)

Vocal attributes denote the presence of vocals and timbral
characteristics of voice (e.g., male, female, vocal grittiness).

Instrumentation attributes denote the presence of instru-
ments (e.g., piano) and their timbre (e.g., guitar distortion)

Sonority attributes describe production techniques (e.g., stu-
dio, live) and the overall sound (e.g., acoustic, synthesized)

Table 1. Explanations of rhythm and timbre attributes.

1 “Pandora” and “Music Genome Project” are registered trademarks of
Pandora Media, Inc. http://www.pandora.com/about/mgp

Each of the attributes is rated on continuous scale from
0-1. In some contexts, it is helpful to convert them to bi-
nary labels if they show only low (absence) or high (pres-
ence) ratings with little in between [25].

3.2 Genre and Subgenre

In this work we will explore a selected subset of 12 ‘Ba-
sic’ genres and 47 additional sub-genres. ‘Basic’ genre is
assembled as a mix of very expansive genres (e.g., Rock,
Jazz) as well as some more focused ones (e.g., Disco and
Bluegrass), serving as an analog to many previous genre
experiments in MIR. The presence of a genre is notated in-
dependently for each song by a binary label. A selection
of genre labels and a simplistic high-level organization for
discussion purposes is shown in Table 2.

Basic Genre: Rock, Jazz, Rap, Latin, Disco, Bluegrass, etc.

Jazz Subgenre: Cool, Fusion, Hard Bop, Afro-Cuban, etc.

Rock Subgenre: Light, Hard, Punk, etc.

Rap Subgenre: Party, Old School, Hardcore, etc.

Dance Subgenre: Trance, House, etc.

World Subgenre: Cajun, North African, Indian, Celtic, etc.

Table 2. Some of the musical genres and subgenres used.

4. MUSICAL ATTRIBUTE MODELS OF GENRE

In order to see the extent to which genre can be modeled by
musical attributes, we first perform an applied musicology
experiment using the set of expertly-labeled attributes from
Section 3.1 and relate them to labels of genre. A model for
each induvidual genre is trained on each of the musical
attributes alone and in rhythm- and timbre-based aggrega-
tions. This will show the role that each attribute or collec-
tion of attributes plays and how they interact with one an-
other in order to create joint representations of genre. Each
model employs logistic regression trained using stochastic
gradient decent (SGD) [25]. The training data was sep-
arated on a randomly shuffled 70%:30% (train:test) split
with no shared artists between training and testing. Due
to the size of the dataset, a single trial for each attribute
is both tractable and sufficient. The learning rate for each
genre model is tuned adaptively.

4.1 Evaluating the Role of Musical Attributes

In order to evaluate each of the models, the area under
the receiver operating characteristic (ROC) curve will be
used. Each genre has large and varying class imbalance,
so this is first corrected for by weighting training exam-
ples appropriately in the cost function. However, accuracy
alone still does not tell the whole story. High accuracy can
be achieved by predicting only the negative class (genre
absence). Area under the ROC curve allows for a more
comparable difference between each of the models than
raw accuracy alone. It gives insight into the trade-off be-
tween true positive and false positive rates. Alternatively
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we could have used precision and recall (PR) curves for
evaluation, but it is shown that if one model dominates in
the ROC domain, it will also dominate in the PR domain
and vice-versa [5]. In this work, the area under the ROC
curve will be referred to as AUC.

The results for each of the attribute-based genre models
are shown in Tables 3 and 4. The tables outline the AUC
values for classifying genre using timbre attributes, rhythm
attributes, and their combination. Table 3 summarizes all
results, showing the mean of all AUC values for each genre
model contained in the subgroups defined in Section 3.2.
Using attributes of rhythm and timbre together show bet-
ter performance than using each alone. Secondly, timbre
tends to perform better than rhythm. This suggests that
the timbre attributes in this context are better descriptors.
However in some cases, the rhythm attributes, even though
there are less of them (10 rhythm, 38 timbre), are not that
far behind. They are especially important in defining Jazz
and Rap, where rhythms such as swing in Jazz or synco-
pated vocal cadences over back-beat heavy drums in Rap
play defining roles.

Genre Group Timbre Rhythm Both
Basic 0.905 0.841 0.918
Rock Sub 0.910 0.819 0.919
Jazz Sub 0.925 0.856 0.945
Rap Sub 0.901 0.891 0.940
Dance Sub 0.961 0.881 0.965
World Sub 0.885 0.833 0.904
Mean 0.913 0.848 0.931

Table 3. An overview of all models using musical at-
tributes.

In Table 4 we show the individual AUC results for
the set of ‘Basic’ genres and subgenres of Jazz. Within
these individual groups, rhythm and timbre attributes to-
gether are once again able to better represent genre than
when used individually. Each of the ‘Basic’ genres can be
represented reasonably well with just timbre, as each has
slightly differing instrumentation. However, we again see
the importance of rhythm, describing what instrumentation
and timbre cannot capture alone. Genres heavily reliant on
specific rhythms (e.g., Funk, Rap, Latin, Disco, Jazz) are
all able to be represented rather well with only rhythm at-
tributes. In the Jazz subgenre this emphasis on rhythm in
certain cases is even more clear. In the next subsection, we
will dive deeper into the attributes that best describe the
Jazz subgenres.

4.2 The Influence of Rhythm and Timbre in Jazz

In order to more deeply explore the defining relationships
of rhythm and instrumentation within a subgenre, we will
look further into Jazz. Table 5 shows a subset of the im-
portant musical attributes for the Jazz subgenres. The AUC
accuracy of classifying each subgenre based on individual
musical attributes is shown.

The presence of solo brass (e.g, trumpet), piano, reeds
(e.g., saxophone) and auxiliary percussion (e.g., congas)
are important defining characteristics of instrumentation.

Basic Jazz
Genre Timbre Rhythm Both Subgenre Timbre Rhythm Both
Rock 0.843 0.759 0.856 New Orleans 0.970 0.957 0.989
Blues 0.913 0.783 0.915 Boogie 0.943 0.893 0.978
Gospel 0.810 0.664 0.843 Swing 0.970 0.933 0.984
Soul 0.869 0.793 0.887 Bebop 0.976 0.965 0.988
Funk 0.937 0.862 0.937 Cool 0.964 0.928 0.975
Rap 0.926 0.890 0.951 Hard Bop 0.944 0.905 0.967
Folk 0.943 0.760 0.952 Fusion 0.843 0.750 0.886
Country 0.952 0.794 0.955 Free 0.906 0.855 0.936
Reggae 0.893 0.819 0.905 Afro-Cuban 0.961 0.910 0.972
Latin 0.940 0.904 0.945 Brazilian 0.871 0.847 0.905
Disco 0.899 0.891 0.902 Acid 0.886 0.660 0.891
Jazz 0.937 0.850 0.963 Smooth 0.862 0.667 0.871
Mean 0.905 0.814 0.918 Mean 0.925 0.856 0.945

Table 4. Experimental results for ‘Basic’ genre and Jazz
subgenre models using musical attributes.

Jazz Timbre Aux. Rhythm
Subgenre Solo Brass Piano Reeds Perc. BackBeat Dance Swing Shuffle Syncop.
New Orleans 0.808 0.786 0.790 0.680 0.652 0.564 0.936* 0.513 0.515
Boogie 0.510 0.924* 0.544 0.714 0.592 0.712 0.737 0.505 0.676
Swing 0.721 0.784 0.748 0.679 0.624 0.578 0.923* 0.511 0.508
Bebop 0.725 0.850 0.862 0.703 0.662 0.525 0.946* 0.509 0.602
Cool 0.639 0.750 0.836 0.701 0.697 0.424 0.890* 0.504 0.568
HardBop 0.606 0.774 0.737 0.669 0.726 0.555 0.808* 0.684 0.606
Fusion 0.604 0.497 0.669 0.507 0.574 0.577 0.507 0.500 0.693*
Free 0.606 0.538 0.784 0.615 0.809* 0.765 0.577 0.515 0.558
Afro-Cuban 0.696 0.822 0.706 0.832* 0.782 0.648 0.512 0.501 0.790
Brazilian 0.560 0.736 0.568 0.572 0.761* 0.555 0.532 0.504 0.635
Acid 0.591 0.513 0.658* 0.507 0.585 0.622 0.509 0.515 0.635
Smooth 0.530 0.577 0.748* 0.590 0.559 0.614 0.513 0.509 0.573

Table 5. Attributes important to the Jazz subgenres are
shown. AUC values greater than 0.70 are bold. The highest
performing attribute for each genre is denoted with a *.

Boogie and Afro-Cuban styles, even though different,
place heavy emphasis on the piano, which is shown here
as well. Bebop, Hard-bob, and Afro-Cuban Jazz show em-
phasis placed on solo brass, piano, and reeds, as they rely
heavily on solo artists of these instruments (e.g., “Dizzy”
Gillespie, Miles Davis, Thelonious Monk, John Coltrane).
The presence of auxiliary percussion is also a good de-
scriptor of Afro-Cuban Jazz, where the use of hand drums
(e.g., bongos, congas) is very prevalent.

Rhythm is also important in Jazz subgenres. The dance-
ability, back-beat, and presence of swing and syncopation
are defining characteristics of certain Jazz rhythms. It is
important to note that a high AUC does not necessarily de-
note the presence of that attribute, only its consistent re-
lationship. For example, back-beat is a good predictor of
Free Jazz possibly due to its absolute absence. Alterna-
tively, one may think that the presence of swing is impor-
tant in all Jazz. Bebop, Hard Bop, New Orleans, and Swing
Jazz do have a heavy dependence on swing being present.
However, Afro-Cuban Jazz relies on straight time, clave-
based rhythms, so syncopation is actually a better predic-
tor. It is also important to note that while the attributes
of swing and shuffle are musically related, there is a clear
distinction in their application. In this case, swing is very
important, while shuffle is only slightly useful (e.g., Boo-
gie). However, outside of the Jazz genre, the opposite case
may be true, where shuffle is the more important attribute
(e.g. Blues, Country). This suggests that it is important to
make a clear distinction between swing and shuffle.
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5. PREDICTING GENRE FROM AUDIO

There is a large body of work on musical genre recogni-
tion from and audio signals [28,30]. However, most known
prior work in this area focuses on discriminating a discrete
set of basic genre labels with little emphasis on what de-
fines genre. In response, researchers have tried to develop
datasets that focus on style or subgenre labels (e.g., ball-
room dance [7, 13, 24], latin [19], electronic dance [23],
Indian [17]) that have clear relations to the presence of
specific musical attributes. However, because models are
designed for these specific sets, the methods used do not
adapt to larger more generalized music collections. For ex-
ample, tempo alone is a good descriptor for the ballroom
dance style dataset, which is not true for more general col-
lections [12].

Other work in genre recognition avoids the problem of
strict genre class separations. Audio feature similarity, self
organizing maps, and nearest-neighbor approaches can be
used estimate genre of an unknown example [22]. Simi-
larly, auto-tagging approaches use audio features to learn
the presence of both musical attributes and genre tags cu-
rated by the public [2, 8] or by experts [29].

In this work, we compare modeling genre both with
audio features directly and with stacked approaches that
exploit the relationships of audio features and musical at-
tributes.

5.1 Timbre Related Features

In order to capture timbral components and model vo-
cal, instrumentation, and sonority attributes, block-based
Mel-Frequency Cepstral Coefficients (MFCC) are imple-
mented. Means and covariances of 20 MFCCs are cal-
culated across non-overlapping 3-second blocks. These
block-covariances are further summarized over the piece
by calculating their means and variances [27]. This yields
a 460 dimensional timbre based feature set.

5.2 Rhythm Related Features

In order to capture aspects of each rhythm attribute, a set
of rhythm-specific features was implemented. All rhythm
features described in this section rely on global estimates
of an accent signal [3]

The beat profile quantizes the accent signal between
consecutive beats to 36 subdivisions. The beat profile fea-
tures are statistics of those 36 bins over all beats. The fea-
ture relies on estimates of both beats [9] and tempo.

The tempogram ratio feature (TGR) uses the tempo es-
timate to remove the tempo dependence in a tempogram.
By normalizing the tempo axis of the tempogram by the
tempo estimate, a fractional relationship to the tempo is
gained. A compact, tempo-invariant feature is created by
capturing the weights of the tempogram at musically re-
lated ratios relative to the tempo estimate.

The Mellin scale transform is a scale invariant trans-
form of a time domain signal. Similar musical patterns
at different tempos are scaled relative to the tempo. The
Mellin scale transform is invariant to that tempo scaling. It

was first introduced in the context of rhythmic similarity by
Holzapfel [16], around which our implementation is based.
In order to exploit the natural periodicity in the transform,
the discrete cosine transform (DCT) is computed. Median
removal (by subtracting the local median) and half-wave
rectifying the DCT creates a new feature that emphasizes
transform periodicities.

The previous rhythm features are also extended to
multiple-band versions by using accent signals that are
constrained to be within a set of specific sub-bands. This
affords the ability to capture the rhythmic function of in-
struments in different frequency ranges. The rhythm fea-
ture set used in this work is an aggregation of the median
removed Mellin Transform DCT and multi-band represen-
tations of the beat profile and the tempogram ratio features.
This yields a 372 dimensional rhythm based feature set that
was shown in previous work to be relatively effective at
capturing musical attributes related to rhythm (see [25] for
more details).

5.3 Genre Recognition Experiments

In addition to the experiment from Section 4, we present
three additional methods for modeling genre, each based
on audio signal analysis. The second method (Figure 1b)
performs the task of genre recognition with rhythm and
timbre inspired audio features directly. The third method
(Figure 1c) is motivated similar to the first experiment,
which employs the expertly-labeled musical attributes.
However, inspired by work in transfer learning [4], au-
dio features are used to develop models for the humanly-
defined attributes which in turn are used to model genre.
Through this supervised pre-training of musical attributes,
models of genre can be learned from attributes’ estimated
presence. In the fourth approach (Figure 1d), inspired
by [6] and [18], the learned attributes are combined with
the audio features directly in a shared middle layer to train
models of genre.

Similar to Section 4, genre is modeled with logistic re-
gression fit using stochastic gradient decent (SGD). The
data was separated on the same 70%:30% (train:test) split.
Once again, there were no shared artists between training
and testing. Due to the size of the dataset, a single trial for
each genre, as well as for each learned musical attribute,
is both tractable and sufficient. The learning rate for each
model is tuned adaptively.

5.3.1 Using Audio Features Directly

Of the four presented approaches, the second uses audio
features directly to model genre. The features from Sec-
tions 5.1 and 5.2 are used in aggregation and a model is
trained and tested for each individual genre. This provides
a baseline for what audio features are able to capture with-
out any added context. However, this lack of context makes
it hard to interpret what about genre they are capturing.

5.3.2 Stacked Methods

The third and fourth approaches are also driven by au-
dio features. However instead of targeting genre directly,
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models are learned for each of the vocal, instrumentation,
sonority, and rhythm attributes. Inspired by approaches in
transfer learning [4], and similar in structure to previous
methods in the MIR community [20], the learned attributes
are then used to predict genre. This approach is formu-
lated similar to a basic neural network with a supervised
pre-trained (and no longer hidden) musical attributes layer.

The rhythm-based attributes are modeled with a feature
aggregation of the Mellin DCT, multi-band beat profile,
and multi-band tempogram ratio features. The vocals, in-
strumentation, and sonority attributes are modeled with the
block-based MFCC features. Each attribute is modeled us-
ing logistic regression for binary labels (categorical) and
linear regression for continuous labels (scale-based). If an
individual attribute is formulated as a binary classification
task (see Section 3.1), the probability of the positive class
(its presence) is used as the feature value.

The first version of the stacked methods (third ap-
proach) uses audio features to estimate musical attributes
and employs only those estimated attributes to model
genre. The second version (fourth approach) concatenates
the audio features and the learned attributes in a shared
middle layer to model genre [6, 18].

5.4 Results

In this section, we will give an overview of all of the re-
sults from the audio-based methods, and compare them
to the models learned from the expertly-labeled attributes.
In order to show the overall performance of each method
in a compact way, only combined rhythm and timbre ap-
proaches will be compared. Once again each genre model
will be evaluated using area under the ROC curve (AUC).
In order to better evaluate the stacked models, we will fin-
ish with a brief evaluation of the learned attributes.

5.4.1 Learning Genre

A summary of the results for the audio experiments us-
ing rhythm and timbre features is shown in Table 6. The
human attribute model results are also included for com-
parison. Similar to Table 3, the mean AUC of each genre
grouping is shown.

Genre Human Audio Learned Audio +
Group Attrib. Feat. Attrib. Learned
Basic 0.918 0.892 0.878 0.899
Rock Sub 0.919 0.902 0.903 0.911
Jazz Sub 0.945 0.910 0.893 0.923
Rap Sub 0.940 0.916 0.914 0.927
Dance Sub 0.965 0.963 0.955 0.966
World Sub 0.904 0.850 0.846 0.865
Mean 0.931 0.905 0.897 0.915

Table 6. An overview of experimental results using audio-
based models that utilize timbre and rhythm features.

Compared to the human attributes approach, using au-
dio features alone to model genre performs relatively well.
This is especially true for the ‘Basic’, Rock, and Dance
groups, where the audio feature AUC results are very close
to human attribute performance. Across the other groups,

the differences between the audio feature models and the
musical attribute models suggest that the audio features
lose some important, genre-defining information. Further-
more, performance that was close to musical attributes
when using only audio features alone is also close when
musical attributes learned from audio features. This sug-
gests that, in these cases, the audio features may be cap-
turing similarly salient components related to the musical
attributes that describe these genre groups.

Overall, the learned attributes perform just as good as
or worse than the audio features alone. This suggests that
they are at most as powerful as the audio features used
to train them. However, combining audio features and
learned attributes shows significant improvement (paired
t-test p < 0.01 across all genres) over using audio features
or learned attributes alone. This evidence suggests that
audio features and learned attribute models each contain
slightly different information. The added human context
of the learned attributes is helpful to achieve results that
approach those of the expertly-labeled attributes. This also
suggests that the decisions made from learned labels are
possibly more similar to the decisions made from human
attribute labels, and the errors in estimating the musical at-
tributes are possibly to blame for the performance decrease
when used alone.

Basic Human Audio Learned Audio + Jazz Human Audio Learned Audio +
Genre Attrib. Feat. Attrib. Learned Subgenre Attrib. Feat. Attrib. Learned
Rock 0.856 0.831 0.835 0.839 New Orleans 0.989 0.947 0.951 0.956
Blues 0.915 0.892 0.883 0.899 Boogie 0.978 0.962 0.939 0.962
Gospel 0.843 0.798 0.794 0.805 Swing 0.984 0.929 0.929 0.940
Soul 0.887 0.833 0.818 0.842 Bebop 0.988 0.951 0.943 0.957
Funk 0.937 0.911 0.886 0.918 Cool 0.975 0.900 0.901 0.916
Rap 0.951 0.963 0.951 0.969 HardBop 0.967 0.946 0.930 0.952
Folk 0.952 0.905 0.903 0.916 Fusion 0.886 0.844 0.812 0.867
Country 0.955 0.885 0.880 0.897 Free 0.936 0.920 0.923 0.931
Reggae 0.905 0.926 0.885 0.929 AfroCuban 0.972 0.934 0.912 0.946
Latin 0.945 0.921 0.905 0.923 Brazilian 0.905 0.879 0.858 0.904
Disco 0.902 0.936 0.893 0.938 Acid 0.891 0.841 0.763 0.846
Jazz 0.963 0.907 0.906 0.916 Smooth 0.871 0.868 0.853 0.894
Mean 0.918 0.892 0.878 0.899 Mean 0.945 0.910 0.893 0.923

Table 7. Experimental results for the ‘Basic’ genres and
Jazz subgenres using audio-based models.

The left half of Table 7 shows the results for predict-
ing the ‘Basic’ genre labels. Within this set, we see some
interesting patterns start to emerge. In the case of Rap,
Reggae, and Disco, audio features are actually able to out-
perform the musical attributes. This suggests that our small
selected subset of 48 human attribute labels do not always
tell the whole story, and that the audio features, which are
much larger in dimensionality, possibly contain additional
and/or different information. As in previous results, the
learned attribute models perform similarly to methods that
use audio features directly, but with a few exceptions. In
the cases that the audio feature models do better than the
human-labeled musical attribute models, the learned at-
tribute models are able to perform at most as good as the
human-labeled musical attribute models. This once again
suggests that the learned attribute approach may be better
approximating the decisions the human-labeled attribute
approach is making. When adding audio and learned at-
tributes together, the added context is once again benefi-
cial, with combined methods outperforming models that
use audio or learned attributes alone. Audio feature mod-
els that perform better than the human attributes models
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are additionally improved, showing again that the audio
features and human attribute labels contain complementary
information.

The right half of Table 7 shows the results for predict-
ing the Jazz subgenre labels. The Jazz genre shows more
expected relationships between the human attribute, au-
dio feature, and learned attribute methods. The combined
method outperforms each of the audio feature and learned
attribute methods. The human attribute method performs
better than all audio-based methods.

5.4.2 Learning Attributes

In order to further explore the stacked audio-based mod-
els, we performed a small evaluation of how well the audio
features are able to learn each of the expertly-labeled mu-
sical attributes. Sticking with a common theme, we will
explore the results of modeling attributes that are impor-
tant to Jazz (from Table 5). Table 8 shows the ability to
directly predict these attributes from audio features. AUC
accuracies are reported for the binary attributes; R2 values
are reported for continuous attributes. The results of eval-
uating the model for the training and testing sets is shown.

Musical Audio Training Testing Label
Attributes Features AUC/R2 AUC/R2 Type
Solo Brass Timbre 0.796 0.798 binary
Piano Timbre 0.721 0.716 binary
Reeds Timbre 0.790 0.789 binary
Aux Percussion Timbre 0.750 0.750 binary
FeelSwing Rhythm 0.907 0.902 binary
FeelShuffle Rhythm 0.919 0.920 binary
FeelSyncopation Rhythm 0.772 0.770 binary
FeelBackBeat Rhythm 0.400 0.393 continuous
FeelDance Rhythm 0.527 0.515 continuous

Table 8. The results for learning binary (AUC) and contin-
uous (R2) attributes important to Jazz are shown.

First of all, we see that testing and training AUC is
almost identical. Because of this, a single trial (fold) is
appropriate when learning attribute models. The learned
models should generalize over all music without over fit-
ting. This justifies using the the same 70%:30% (train:test)
split for each layer in the stacked models. We see that
MFCC’s do somewhat well for brass and reeds, but the
lower AUC overall shows that these timbre features are not
doing enough to capture these attributes, which may be a
source of error in genre models that rely heavily on timbre.
However, the rhythm results are much better, especially for
swing and shuffle, which was argued in Section 4 and Ta-
ble 5 as an important distinction to make when predicting
Jazz subgenres.

Attribute Type Num Mean Median Maximum
Continous Rhythm (R2) 3 0.432 ± 0.077 0.393 0.515
Continous Timbre (R2) 12 0.266 ± 0.192 0.194 0.514
All Continuous 15 0.299 ± 0.186 0.389 0.515
Binary Rhythm (AUC) 7 0.889 ± 0.059 0.902 0.946
Binary Timbre (AUC) 26 0.794 ± 0.074 0.794 0.925
All Binary 15 0.814 ± 0.080 0.806 0.946

Table 9. Overall summary of learned attributes.

Table 9 shows a summary of learning the all of the se-
lected 48 attributes from audio features. It shows similar
trends to Table 8, with rhythmic attributes better described
by audio features than timbral attributes. Furthermore, the
continuous timbral attributes, which are sometimes com-
plicated perceptually (e.g., vocal grittiness), are not mod-
eled very well at all. This suggests that MFCC’s, and pos-
sibly other spectral approximations, do not provide the full
picture into what we perceive as the components of timbre.
This is especially true in the context of instrument identi-
fication in mixtures, which is a main utility of the timbre
features in this context. While these models as a whole
can be improved, the problems of instrument identification
and rhythm analysis are separate, large, and active research
areas [14, 15, 25, 26].

6. CONCLUSION

In this work, we demonstrated that there is potential to de-
mystify the constructs of musical genre into distinct mu-
sicological components. The attributes we selected from
music experts are able to provide a great deal of genre dis-
tinguishing information, but this is only an initial investiga-
tion into these questions. We were also able to discover and
outline the importance of certain attributes in specific con-
texts. This strongly suggests that the expression of musical
attributes are necessary additions to definitions of genre.

It was also shown here (and in previous work [25]) that
audio features motivated by timbre and rhythm are, with
some success, able to model musical attributes. Audio fea-
tures are also able to describe musical genre directly and
through stacked approaches that exploit the learned models
of musical attributes. This is strong evidence suggesting
that audio-based approaches are learning the presence of
the musical attributes, to some degree, when distinguish-
ing genre. In some cases, the audio-based models were
more powerful than the human musical attribute models.
This suggests that there is more to genre than our chosen
subset of rhythm and orchestration attributes, and it makes
us contemplate that there is more about the definition of
genre yet to be discovered.

In seeking to improve on this work, we next look to
investigate replacing the feature concatenation with late
fusion of context-dependent classifiers (e.g., rhythm, tim-
bre), which has shown improved results for genre classifi-
cation [11]. It may also be helpful to use a greater number
of the available attributes than the chosen 48, as well as
additional attribute types (e.g., melody, harmony). Further-
more, perhaps the most interesting direction is to treat each
musical attribute model as a hidden layer in a neural net-
work. In these cases, the models that are trained to predict
musicological attributes will serve as a form of domain-
specific pre-training. These models would perform full
back propagation across an additional layer which con-
nects our attributes to genres. This will potentially help
to learn better models of genre as well as adjust the mod-
els of musical attributes in order better capture their genre
relationships.
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[16] André Holzapfel and Yannis Stylianou. Scale transform in
rhythmic similarity of music. IEEE Trans. on Audio, Speech
and Language Processing, 19(1):176–185, 2011.

[17] S Jothilakshmi and N Kathiresan. Automatic music genre
classification for indian music. In Proc. Int. Conf. Software
Computer App, 2012.

[18] Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Wid-
mer. Combining audio-based similarity with web-based data
to accelerate automatic music playlist generation. In Proc. of
the 8th ACM international workshop on Multimedia informa-
tion retrieval, pages 147–154. ACM, 2006.

[19] Miguel Lopes, Fabien Gouyon, Alessandro L Koerich, and
Luiz ES Oliveira. Selection of training instances for music
genre classification. In Proc. of the International Conference
on Pattern Recognition, pages 4569–4572. IEEE, 2010.

[20] F. Pachet and P. Roy. Improving multilabel analysis of mu-
sic titles: A large-scale validation of the correction approach.
IEEE Trans. on Audio, Speech and Language Processing,
17(2):335 –343, 2009.

[21] François Pachet and Daniel Cazaly. A taxonomy of musi-
cal genres. In Content-Based Multimedia Information Access
Conference, pages 1238–1245, 2000.

[22] Elias Pampalk, Arthur Flexer, and Gerhard Widmer. Improve-
ments of audio-based music similarity and genre classifica-
ton. In Proc. of the International Society for Music Informa-
tion Retrieval Conference, volume 5, pages 634–637, 2005.

[23] Maria Panteli, Niels Bogaards, and Aline Honingh. Model-
ing rhythm similarity for electronic dance music. Proc. of the
International Society for Music Information Retrieval Con-
ference, 2014.

[24] Geoffroy Peeters. Rhythm classification using spectral
rhythm patterns. In Proc. of the International Society for Mu-
sic Information Retrieval Conference, pages 644–647, 2005.

[25] Matthew Prockup, Andreas F. Ehmann, Fabien Gouyon,
Erik M. Schmidt, and Youngmoo E. Kim. Modeling musi-
cal rhythm at scale using the music genome project. IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics, 2015.

[26] Jeffrey Scott and Youngmoo E Kim. Instrument identification
informed multi-track mixing. In Proc. of the International
Society for Music Information Retrieval Conference, pages
305–310, 2013.

[27] Klaus Seyerlehner, Markus Schedl, Peter Knees, and Rein-
hard Sonnleitner. A refined block-level feature set for classi-
fication, similarity and tag prediction. Extended Abstract to
MIREX, 2011.

[28] Bob L Sturm. The state of the art ten years after a state of the
art: Future research in music information retrieval. Journal of
New Music Research, 43(2):147–172, 2014.

[29] Derek Tingle, Youngmoo E Kim, and Douglas Turnbull.
Exploring automatic music annotation with acoustically-
objective tags. In Proc. of the international conference on
Multimedia information retrieval, pages 55–62. ACM, 2010.

[30] George Tzanetakis and Perry Cook. Musical genre classifi-
cation of audio signals. IEEE Trans. on Audio, Speech and
Language Processing, 10(5):293–302, 2002.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 37



COVER SONG IDENTIFICATION WITH TIMBRAL SHAPE SEQUENCES

Christopher J. Tralie
Duke University Department of

Electrical and Computer Engineering
chris.tralie@gmail.com

Paul Bendich
Duke University Department of

Mathematics
bendich@math.duke.edu

ABSTRACT

We introduce a novel low level feature for identifying cover
songs which quantifies the relative changes in the smoothed
frequency spectrum of a song. Our key insight is that a
sliding window representation of a chunk of audio can be
viewed as a time-ordered point cloud in high dimensions.
For corresponding chunks of audio between different ver-
sions of the same song, these point clouds are approxi-
mately rotated, translated, and scaled copies of each other.
If we treat MFCC embeddings as point clouds and cast
the problem as a relative shape sequence, we are able to
correctly identify 42/80 cover songs in the “Covers 80”
dataset. By contrast, all other work to date on cover songs
exclusively relies on matching note sequences from Chroma
derived features.

1. INTRODUCTION

Automatic cover song identification is a surprisingly diffi-
cult classical problem that has long been of interest to the
music information retrieval community [5]. This problem
is significantly more challenging than traditional audio fin-
gerprinting because a combination of tempo changes, mu-
sical key transpositions, embellishments in time and ex-
pression, and changes in vocals and instrumentation can
all occur simultaneously between the original version of a
song and its cover. Hence, low level features used in this
task need to be robust to all of these phenomena, ruling out
raw forms of popular features such as MFCC, CQT, and
Chroma.

One prior approach, as reviewed in Section 2, is to com-
pare beat-synchronous sequences of chroma vectors be-
tween candidate covers. The beat-syncing helps this be
invariant to tempo, but it is still not invariant to key. How-
ever, many schemes have been proposed to deal with this,
up to and including a brute force check over all key trans-
positions.

Chroma representations factor out some timbral infor-
mation by folding together all octaves, which is sensible
given the effect that different instruments and recording en-
vironments have on timbre. However, valuable non-pitch

c© Christopher J. Tralie, Paul Bendich.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Christopher J. Tralie, Paul Bendich.
“Cover Song Identification with Timbral Shape Sequences”, 16th Inter-
national Society for Music Information Retrieval Conference, 2015.

information which is preserved between cover versions,
such as spectral fingerprints from drum patterns, is ob-
scured in Chroma representation. This motivated us to take
another look at whether timbral-based features could be
used at all for this problem. Our idea is that even if ab-
solute timbral information is vastly different between two
versions of the same song, the relative evolution of timbre
over time should be comparable.

With careful centering and normalization within small
windows to combat differences in global timbral drift be-
tween the two songs, we are indeed able to design shape
features which are approximately invariant to cover. These
features, which are based on self-similarity matrices of
MFCC coefficients, can be used on their own to effectively
score cover songs. This, in turn, demonstrates that even if
absolute pitch is obscured and blurred, cover song identifi-
cation is still possible.

Section 2 reviews prior work in cover song identifica-
tion. Our method is described in detail by Sections 3 and
4. Finally, we report results on the “Covers 80” benchmark
dataset [7] in Section 5, and we apply our algorithm to the
recent “Blurred Lines” copyright controversy.

2. PRIOR WORK

To the best of our knowledge, all prior low level feature de-
sign for cover song identification has focused on Chroma-
based representations alone. The cover songs problem
statement began with the work of [5], which used FFT-
based cross-correlation of all key transpositions of beat-
synchronous chroma between two songs. A follow-up
work [8] showed that high passing such cross-correlation
can lead to better results. In general, however, cross-
correlation is not robust to changes in timing, and it is
also a global alignment technique. Serra [22] extended this
initial work by considering dynamic programming local
alignment of chroma sequences, with follow-up work and
rigorous parameter testing and an “optimal key transposi-
tion index” estimation presented in [23]. The same authors
also showed that a delay embedding of statistics spanning
multiple beats before local alignment improves classifica-
tion accuracy [25]. In a different approach, [14] compared
modeled covariance statistics of all chroma bins, as well
as comparing covariance statistics for all pairwise differ-
ences of beat-level chroma features, which is not unlike the
“bag of words” and bigram representations, respectively,
in text analysis. Other work tried to model sequences of
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chords [2] as a slightly higher level feature than chroma.
Slightly later work concentrated on fusing the results of
music separated into melody and accompaniment [11] and
melody, bass line, and harmony [21], showing improve-
ments over matching chroma on the raw audio. The most
recent work on cover song identification has focused on
fast techniques for large scale pitch-based cover song iden-
tification, using a sparse set of approximate nearest neigh-
bors [28] and low dimensional projections [12]. Authors
in [9] and [17] also use the magnitude of the 2D Fourier
Transform of a sequences of chroma vectors treated as an
image, so the resulting coefficients will be automatically
invariant to key and time shifting without any extra com-
putation, at the cost of some discriminative power.

Outside of cover song identification, there are other
works which examine gappy sequences of MFCC in mu-
sic, such as [4]. However, these works look at matched
sequences of MFCC-like features in their original feature
space. By contrast, in our work, we examine the rela-
tive shape of such features. Finally, we are not the first
to consider shape in an applied musical context. For in-
stance, [29] turns sequences of notes in sheet music into
plane curves, whose curvature is then examined. To our
knowledge, however, we are the first to explicitly model
shape in musical audio for version identification.

3. TIME ORDERED POINT CLOUDS FROM
BLOCKS OF AUDIO

The first step of our algorithm uses a timbre-based method
to turn a block of audio into what we call a time-ordered
point cloud. We can then compare to other time-ordered
point clouds in a rotation, translation, and scale invariant
manner using normalized Euclidean Self-Similarity matri-
ces (Section 3.3). The goal is to then match up the relative
shape of musical trajectories between cover versions.

3.1 Point Clouds from Blocks and Windows

We start with a song, which is a function of time f(t) that
has been discretized as some vector X . In the following
discussion, the symbol X(a, b) means the song portion be-
ginning at time t = a and ending at time t = b. Given
X , there are many ways to summarize a chunk of audio
w ∈ X , which we call a window, as a point in some feature
space. We use the classical Mel-Frequency Cepstral coef-
ficient representation [3], which is based on a perceptually
motivated log frequency and log power short-time Fourier
transform that preserves timbral information. In our appli-
cation, we perform an MFCC with 20 coefficients, giving
rise to a 20-dimensional point.

MFCC(w) ∈ R20 (1)

Given a longer chunk of audio, which we call a block,
we can use the above embedding on a collection of K
windows that cover the block to construct a collection of
points, or a point cloud, representing that block. More for-
mally, given a block covering a range [t1, t2], we want a set
of window intervals [ai, bi], with i = 1..K, so that

• ai < bi

• ai < ai+1, bi < bi+1

• ∪Ki=1[ai, bi] = [t1, t2]

Where t1, t2, ai, and bi are all discrete time indices into
the sampled audio X . Hence, our final operator takes a set
of time-ordered intervals {[a1, b1], [a2, b2], ..., [aK , bK ]}
which cover a block [t1, t2] and turns them into a K-
dimensional point cloud in R20

PC({[a1, b1], ..., [aK , bK ]}) =

{MFCC(X(a1, b1)), ...,MFCC(X(aK , bK))} (2)

3.2 Beat-Synchronous Blocks

As many others in the MIR community have done, includ-
ing [5] and [8] for the cover songs application, we com-
pute our features synchronized within beat intervals. We
use a simple dynamic programming beat tracker developed
in [6]. Similarly to [8], we bias the beat tracker with three
initial tempo levels: 60BPM, 120BPM, and 180BPM, and
we compare the embeddings from all three levels against
each other when comparing two songs, taking the best
score out of the 9 combinations. This is to mitigate the ten-
dency of the beat tracker to double or halve the true beat
intervals of different versions of the same song when there
are tempo changes between the two. The trade-off is of
course additional computation. We should note that other
cover song works, such as [23], avoid beat tracking step
altogether, hence bypassing these problems. However, it is
important for us to align our sequences as well as possible
in time so that shape features are in correspondence, and
this is a straightforward way to do so.

Given a set of beat intervals, the union of which makes
up the entire song, we take blocks to be all contiguous
groups of B beat intervals. In other words, we create a
sequence of overlapping blocks X1, X2, ... such that Xi is
made up of B time-contiguous beat intervals, and Xi and
Xi+1 differ only by the starting beat of Xi and the fin-
ishing beat of Xi+1. Hence, given N beat intervals, there
are N − B + 1 blocks total. Note that computing an em-
bedding over more than one beat is similar in spirit to the
chroma delay embedding approach in [25]. Intuitively, ex-
amining patterns over a group of beats gives more informa-
tion than one beat alone, the effect of which is empirically
evaluated in Section 5. For all blocks, we take the win-
dow size W to be the length of the average tempo period,
and we advance the window intervals evenly from the be-
ginning of the block to the end of a block with a hop size
H = W/200. Hence, there is a 99.5% overlap between
windows. We were inspired by theory on raw 1D time
series signals [18], which shows that matching the win-
dow length to be just under the length of the period in a
delay embedding maximizes the roundness of the embed-
ding. Here we would like to match beat-level periodicities
and fluctuations therein, so it is sensible to choose a win-
dow size corresponding to the tempo. This is in contrast
to most other applications that use MFCC sliding window
embeddings, which use a much smaller window size on the
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(a) Window size 0.05 seconds (b) Window size 0.5 seconds

Figure 1. A screenshot from our GUI showing PCA on
the sliding window representation of an 8-beat block from
the hook of Robert Palmer’s “Addicted To Love” with two
different window sizes. Cool colors indicate windows to-
wards the beginning of the block, and hot colors indicate
windows towards the end.

order of 10s of milliseconds, generally with a 50% overlap,
to ensure that the frequency statistics are stationary in each
window. In our application, however, we have found that
a longer window size makes our self similarity matrices
(Section 3.3) smoother, allowing for more reliable matches
of beat-level musical trajectories, while having more win-
dows per beat (high overlap) leads to more robust matching
of SSMs using L2 (Section 4.1).

Figure 1 shows the first three principal components of
an MFCC embedding with a traditional small window size
versus our longer window embedding to show the smooth-
ing effect.

3.3 Euclidean Self-Similarity Matrices

For each beat-synchronous block Xl spanning B beats,
we have a 20-dimensional point cloud extracted from the
sliding window MFCC representation. Given such a time-
ordered point cloud, there is a natural way to create an im-
age which represents the shape of this point cloud in a rota-
tion and translation invariant way, called the self-similarity
matrix (SSM) representation.
Definition 1. A Euclidean Self-Similarity Matrix (SSM)
over an ordered point cloud Xl ∈ RM×k is an M ×M
matrix D so that

Dij = ||Xl[i]−Xl[j]||2 (3)

In other words, an SMM is an image representing all
pairwise distances between points in a point cloud ordered
by time. SSMs have been used extensively in the MIR
community already, spearheaded by the work of Foote in
2000 for note segmentation in time [10]. They are now
often used in general segmentation tasks [24] [15]. They
have also been successfully applied in other communities,
such as computer vision to recognize activity classes in
videos from different points of view and by different ac-
tors [13]. Inspired by this work, we use self-similarity ma-
trices as isometry invariant descriptors of local shape in
our sliding windows of beat blocks, with the goal of cap-
turing relative shape. In our case, the “activities” are mu-
sical expressions over small intervals, and the “actors” are
different performers or groups of instruments.

The Beatles Five Man Acoustical Jam

Ti
m
e

Ti
m
e

Time Time

(a) A block of 4 beats with 400 windows sliding in the song “We Can Work
It Out” by The Beatles with a cover by Five Man Acoustical Jam

Neil Young Annie Lennox

Ti
m
e

Time Time

Ti
m
e

(b) A block of 4 beats with 400 windows sliding in the song “Don’t Let It
Bring You Down” by Neil Young with a cover by Annie Lennox.

Figure 2. Two examples of MFCC SSM blocks which
were matched between a song and its cover in the cov-
ers80 dataset. Hot colors indicate windows in the block
are far from each other, and cool colors indicate that they
are close.

To help normalize for loudness and other changes in re-
lationships between instruments, we first center the point
cloud within each block on its mean and scale each point
to have unit norm before computing the SSM. That is, we
compute the SSM on X̂ l, where

X̂l =

{
x−mean(x)

||x−mean(x)||2
: x ∈ Xl

}
(4)

Also, not every beat block has the same number of sam-
ples due to natural variations of tempo in real songs. Thus,
to allow comparisons between all blocks, we resize each
SSM to a common image dimension d× d, which is a pa-
rameter chosen in advance, the effects of which are ex-
plored empirically in Section 5.

Figure 2 shows examples of SSMs of 4-beat blocks
pulled from the Covers80 dataset that our algorithm
matches between two different versions of the same song.
Visually, similarities in the matched regions are evident. In
particular, viewing the images as height functions, many
of the critical points are close to each other. The “We Can
Work It Out” example shows how this can work even for
live performances, where the overall acoustics are quite
different. Even more strikingly, the “Don’t Let It Bring
You Down” example shows how similar shape patterns
emerge even with an opposite gender singer and radically
different instrumentation. Of course, in both examples,
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there are subtle differences due to embellishments, local
time stretching, and imperfect normalization between the
different versions, but as we show in Section 5, there are
often enough similarities to match up blocks correctly in
practice.

4. GLOBAL COMPARISON OF TWO SONGS

Once all of the beat-synchronous SSMs have been ex-
tracted from two songs, we do a global comparison be-
tween all SSMs from two songs to score them as cover
matches. Figure 3 shows a block diagram of our system.
After extracting beat-synchronous timbral shape features
on SSMs, we then extract a binary cross-similarity matrix
based on the L2 distance between all pairs of self-similarity
matrices between two songs. We subsequently apply the
Smith Waterman algorithm on the binary cross-similarity
matrix to score a match between the two songs.

4.1 Binary Cross-Similarity And Local Alignment

(a) Full cross-similarity matrix
(CSM)

(b) 212 × 212 Binary cross-
similarity matrix (BM ) with κ =
0.05

(c) Smith Waterman with local
constraints: Score 93.1

Figure 4. Cross-similarity matrix and Smith Waterman on
MFCC-based SSMs for a true cover song pair of “We Can
Work It Out” by The Beatles and Five Man Acoustical Jam.

Given a set of N beat-synchronous block SSMs for a
song A and a set of M beat-synchronous block SSMs for a
song B, we compute a song-level matching between song
A and B by comparing all pairs of SSMs between the two
songs. For this we create anN×M cross-similarity matrix
(CSM), where

CSMij = ||SSMAi − SSMBj ||2 (5)

is the Frobenius norm (L2 image norm) between the SSM
for the ith beat block from song A and the SSM for jth

beat block for song B. Given this cross-similarity infor-
mation, we then compute a binary cross similarity matrix
BM . A binary matrix is necessary so that we can apply the
Smith Waterman local alignment algorithm [27] to score
the match between song A and B, since Smith Waterman

only works on a discrete, quantized alphabet, not real val-
ues [23]. To compute BM , we take the mutual fraction κ
nearest neighbors between song A and song B, as in [25].
That is, BM

ij = 1 if CSMij is within the κM th small-
est values in row i of the CSM and if CSMij is within
the κN th smallest values in column j of the CSM, and 0
otherwise. As in [25], we found that a dynamic distance
threshold for mutual nearest neighbors per element worked
significantly better than a fixed distance threshold for the
entire matrix.

(a) Full cross-similarity matrix
(CSM)

(b) 212 × 185 Binary cross-
similarity matrix (BM ) with κ =
0.05

(c) Smith Waterman with local
constraints: Score 8

Figure 5. Cross-similarity matrix and Smith Waterman on
MFCC-based SSMs for two songs that are not covers of
each other: “We Can Work It Out” by The Beatles and
“Yesterday” by En Vogue.

Once we have the BM matrix, we can feed it to the
Smith Waterman algorithm, which finds the best local
alignment between the two songs, allowing for time shift-
ing and gaps. Local alignment is a more appropriate choice
than global alignment for the cover songs problem, since
it is possible that different versions of the same song may
have intros, outros, or bridge sections that were not present
in the original song, but otherwise there are many sec-
tions in common. We choose a version of Smith Waterman
with diagonal constraints, which was shown to work well
for aligning binary cross-similarity matrices for chroma in
cover song identification [23]. In particular, we recursively
compute a matrix D so that

Dij = max





Di−1,j−1 + (2δ(Bi−1,j−1)− 1)+
∆(Bi−2,j−2, Bi−1,j−1),

Di−2,j−1 + (2δ(Bi−1,j−1)− 1)+
∆(Bi−3,j−2, Bi−1,j−1),

Di−1,j−2 + (2δ(Bi−1,j−1)− 1)+
∆(Bi−2,j−3, Bi−1,j−1),

0





(6)
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Figure 3. A block diagram of our system for computing a cover song similarity score of two songs using timbral features.
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Figure 6. Constrained local matching paths considered in
Smith Waterman, as prescribed by [23].

where δ is the Kronecker delta function and

∆(a, b) =





0 b = 1
-0.5 b = 0,a = 1
-0.7 b = 0,a = 0



 (7)

The (2δ(Bi−1,j−1) − 1) term in each line is such that
there will be a +1 score for a match and a -1 score for
a mismatch. The ∆ function is the so-called “affine gap
penalty” which gives a score of −0.5 − 0.7(g − 1) for a
gap of length g. The local constraints are to bias Smith
Waterman to choosing paths along near-diagonals of BM .
This is important since in musical applications, we do not
expect large gaps in time in one song that are not in the
other, which would show up as horizontal or vertical paths
through the BM matrix. Rather, we prefer gaps that occur
nearly simultaneously in time for a poorly matched beat or
set of beats in an otherwise well-matching section. Fig-
ure 6 shows a visual representation of the paths considered
through BM .

Figure 4 shows an example of a CSM, BM , and result-
ing Smith Waterman for a true cover song pair. Several
long diagonals are visible, indicating large chunks of the
two songs are in correspondence, and this gives rise to a
large score of 93.1 between the two songs. Figure 5 shows
the CSM,B, and Smith Waterman for two songs which are
not versions of each other. By contrast, there are no long
diagonals, and this pair only receives a score of 8.

5. RESULTS

To benchmark our algorithm, we apply it to the standard
“Covers 80” dataset [7], which consists of 80 sets of two
versions of the same song, most of which are pop songs
from the past three decades. There are designated two sets
of songs A and B, each with exactly one version of every
pair. To benchmark our algorithm on this dataset, we fol-
low the scheme in [5] and [8]. That is, given a song from
set A, compute the Smith Waterman score from all songs

from set B and declare the cover song to be the one with
the maximum score. Note that a random classifier would
only get 1/80 in this scheme. The best scores reported on
this dataset are 72/80 [20], using a support vector machine
on several different chroma-derived features.

Table 1 shows the correctly identified songs based on
the maximum score, given variations of the parameters we
have in our algorithm. We achieve a maximum score of
42/80 for a variety of parameter combinations. The near-
est neighbor fraction κ and the dimension of the SSM im-
age have very little effect, but increasing the number of
beats per block has a positive effect on the performance.
The stability of κ and d are encouraging from a robustness
standpoint, and the positive effect increasing the number
of beats per block suggests that the shape of medium scale
musical expressions are more discriminative than smaller
ones.

Table 1. The number of songs that are correctly ranked
as the most similar in the Covers 80 dataset, varying
paramters. κ is the nearest neighbor fraction,B is the num-
ber of beats per block, and d is the resized dimension of the
Euclidean Self-Similarity images.

Kappa = 0.05 B = 8 B = 10 B = 12 B = 14
d = 100 30 33 36 40
d = 200 31 33 36 39
d = 300 31 34 36 40
Kappa = 0.1 B = 8 B = 10 B = 12 B = 14
d = 100 35 39 41 42
d = 200 36 38 42 42
d = 300 36 38 41 41
Kappa = 0.15 B = 8 B = 10 B = 12 B = 14
d = 100 36 42 41 42
d = 200 36 41 41 42
d = 300 38 42 42 41

In addition to the Covers 80 benchmark, we apply our
cover songs score to a recent popular music controversy,
the “Blurred Lines” controversy [16]. Marvin Gaye’s es-
tate argues that Robin Thicke’s recent pop song “Blurred
Lines” is a copyright infringement of Gaye’s “Got To Give
It Up.” Though the note sequences differ between the two
songs, ruling out any chance of a high chroma-based score,
Robin Thicke has said that his song was meant to “evoke an
era” (Marvin Gaye’s era) and that he derived significant in-
spiration from “Got To Give It Up” specifically [16]. With-
out making a statement about any legal implications, we
note that our timbral shape-based score between “Blurred
Lines” and “Got To Give It Up” is in the 99.9th percentile
of all scores between songs in group A and group B in the
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(a) Shape-based timbre (b) Chroma delay embedding

Figure 7. Corresponding portions of the binary cross-
similarity matrix between Marvin Gaye’s “Got To Give It
Up” and Robin Thicke’s “Blurred Lines” for both shape-
based timbre (our technique) and chroma delay embedding

Covers 80 dataset, for κ = 0.1, B = 14, and d = 200.
Unsurprisingly, when comparing “Blurred Lines” with all
other songs in the Covers 80 database plus “Got To Give It
Up,” “Got To Give It Up” was the highest ranked. For ref-
erence, binary cross similarity matrices are shown in Fig-
ure 7, both for our timbre shape based technique and the
delay embedding chroma technique in [25]. The timbre-
based cross-similarity matrix is densely populated with di-
agonals, while the pitch-based one is not.

6. CONCLUSIONS AND FUTURE WORK

We show that timbral information in the form of MFCC
can indeed be used for cover song identification. Most
prior approaches have used Chroma-based features aver-
aged over intervals. By contrast, we show that an analysis
of the fine relative shape of MFCC features over intervals
is another way to achieve good performance. This opens
up the possibility for MFCC to be used in much more flex-
ible music information retrieval scenarios than traditional
audio fingerprinting.

On the more technical side, we should note that for
comparing shape, L2 of SSMs for cross-similarity is fairly
simple and not robust to local re-parameterizations in time
between versions, though we tried many other isometry
invariant shape descriptors that were significantly slower
and yielded inferior performance in initial implementation.
In particular, we tried curvature descriptors (ratio of arc
length to chord length), Gromov-Hausdorff distance af-
ter fractional iterative closest points aligning MFCC block
curves [19], and Earth Mover’s distance between SSMs
[26]. If we are able to find another shape descriptor which
performs better than our current scheme but is slower, we
may still be able to make it computationally feasible by
using the “Generalized Patch Match” algorithm [1] to re-
duce the number of pairwise block comparisons needed
by exploiting coherence in time. This is similar in spirit
to the approximate nearest neighbors schemes proposed
in [28] for large scale cover song identification, and we
could adapt their sparse Smith Waterman algorithm to our
problem. In an initial implementation of generalized patch
match for our current scheme, we found we only needed to
query about 15% of the block pairs.

7. SUPPLEMENTARY MATERIAL

We have documented our code and uploaded directions for
performing all experiments run in this paper. We also cre-
ated an open source graphical user interface which can be
used to interactively view cross-similarity matrices and to
examine the shape of blocks of audio after 3D PCA using
OpenGL. All code can be found in the ISMIR2015 direc-
tory at

github.com/ctralie/PublicationsCode.
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[11] Rémi Foucard, J-L Durrieu, Mathieu Lagrange, and
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Sánchez-Cuadrado. Melodic similarity through shape
similarity. In Exploring music contents, pages 338–
355. Springer, 2011.

44 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



ON THE IMPACT OF KEY DETECTION PERFORMANCE
FOR IDENTIFYING CLASSICAL MUSIC STYLES

Christof Weiß
Fraunhofer Institute for Digital Media Technology Ilmenau

christof.weiss@idmt.fraunhofer.de

Maximilian Schaab
Fraunhofer Institute for Digital Media Technology Ilmenau

ABSTRACT

We study the automatic identification of Western classi-
cal music styles by directly using chroma histograms as
classification features. Thereby, we evaluate the benefits
of knowing a piece’s global key for estimating key-related
pitch classes. First, we present four automatic key detec-
tion systems. We compare their performance on suitable
datasets of classical music and optimize the algorithms’
free parameters. Using a second dataset, we evaluate au-
tomatic classification into the four style periods Baroque,
Classical, Romantic, and Modern. To that end, we calcu-
late global chroma statistics of each audio track. We then
split up the tracks according to major and minor keys and
circularly shift the chroma histograms with respect to the
tonic note. Based on these features, we train two individ-
ual classifier models for major and minor keys. We test the
efficiency of four chroma extraction algorithms for clas-
sification. Furthermore, we evaluate the impact of key de-
tection performance on the classification results. Addition-
ally, we compare the key-related chroma features to other
chroma-based features. We obtain improved performance
when using an efficient key detection method for shifting
the chroma histograms.

1. INTRODUCTION

In the field of Music Information Retrieval (MIR), a con-
siderable amount of research has been performed to clas-
sify music audio recordings according to different cate-
gories [3,29]. Beyond top-level genres such as Rock, Jazz,
or Classical, several attempts towards resolving subgenres
have been made. We dedicate ourselves to the subgenre
classification of Western classical music which has been
addressed sparsely in previous work.

There are plenty of possibilities to organize classical
music archives. Apart from the specific artists—soloists
or ensembles—, timbral properties such as the predomi-
nant instrument(s) may serve as categories [26]. We think
that the rather abstract concept pf musical style provides a

c© Christof Weiß, Maximilian Schaab.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Christof Weiß, Maximilian Schaab.
“On the Impact of Key Detection Performance
for Identifying Classical Music Styles”, 16th International Society for
Music Information Retrieval Conference, 2015.

more appropriate subgenre taxonomy. The specific appli-
cation of this idea leads to the task of composer identifica-
tion [4, 11, 15, 22]. Beyond such a detailed taxonomy, we
restrict ourselves to more general categories—the histori-
cal periods Baroque, Classical, Romantic, and Modern. 1

This naturally constitutes a simplification but may provide
a convenient starting point for finer analyses [6].

Several researchers have published studies on the ba-
sis of symbolic data such as score or MIDI representa-
tions [1, 8, 10, 11, 15, 22, 25]. However, we find some ben-
efits when directly dealing with audio recordings. First,
the audio incorporates more information than the score by
representing the “sounding reality” of the music to a higher
degree. 2 Second, audio-based methods enable nice appli-
cations for organizing and browsing today’s large archives
of classical music. Morevoer, such archives provide pre-
cious possibilities for data-driven musicological research
in a new quantitative dimension.

Studies based on symbolic data often make use of mu-
sical properties such as the use of specific intervals [1] or
chords [22]. Sometimes, characteristics of polyphony and
voice leading are considered as well [1,11]. Other methods
rely on more fundamental properties of harmony such as
the occurrence of pitch classes [10] and pitch class sets [8].
Usually, researchers statistically analyze these character-
istics to obtain classification features. These features are
then used as input for machine learning (ML) classifiers.

There are several limitations for harmonic analysis of
audio based on state-of-the-art signal processing algo-
rithms. Due to the restricted perfomance of automatic mu-
sic transcription 3 , we build our method upon chroma fea-
tures that have been shown to suitably represent the pitch
class content of audio [7, 19]. Using chroma features, sev-
eral musical characteristics such as voice leading proper-
ties or interval and chord inversions cannot be resolved.
Furthermore, acoustic phenomena such as overtones and
timbre show considerable effect on the chroma features.
Scholars proposed several attempts to approach these prob-
lems by enhancing the robustness of chroma [7,13,14,17].

Researches have proposed several chroma-based fea-

1 Here, the Modern class refers to 20th century art music with some
stylistic distance from romantic music.

2 This observation particularly matters for older music such as the
Baroque style, where numerous conventions for practical performance
were known by the interpreters without notating them in the scores.

3 In particular, these algorithms highly depend on the orchestration.
On that account, automatic transcription is not reliable when dealing with
mixed music for piano, orchestra, and voices.
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ture types for classifying musical genres and styles. Tzane-
takis uses the predominant pitch class, its relative ampli-
tude, and the size of the predominant interval as features
[29]. Others extract chords from audio and classify based
on the chord types and progressions [24]. In [32], inter-
val and chord types are estimated from different chroma
resolutions. Furthermore, measures for quantifying tonal
complexity have been tested as classification features [33].

In this paper, we want to test a simpler approach that
directly uses chroma histograms as input for a classifier
(Section 2). For tonal music, the chroma distribution of
a piece is mainly influenced by the musical key. Usually,
the notes of the underlying scale and the most prominent
chords obtain high values—such as the tonic note or the
dominant note. We therefore test the benefits of knowing
the global key for classifying with chroma features. To that
end, we first compare four key detection methods (Sec-
tion 2.2) on suitable datasets of classical music and opti-
mize the algorithms’ parameters (Section 3.2). Second, we
perform classification experiments on a separate dataset of
1600 classical pieces (Section 3.3). As classification fea-
tures, we use chroma histograms that are shifted on the
basis of different key algorithms or ground truth key anno-
tations. We test the influence of considering the key as well
as the effect of training separate models for major and mi-
nor keys. Finally, we compare these features’ perfomance
against other chroma-based features introduced in earlier
work [32, 33].

2. PROPOSED METHOD

In Western classical music, tonality and harmony play a
central part for establishing musical form, expression, and
style. The use of specific pitches, intervals, and chords—as
well as their progressions—constitute typical style mark-
ers. They hierarchically depend on each other and con-
tribute to the chroma distribution of a piece. Beyond the
high importance of the global key, modulations to other
keys entail the use of different chords and pitches. That
way, sections in foreign keys considerably contribute to
the global chroma histogram—depending on their length.
Apart from such harmonic characteristics, instrumentation
and timbre may affect the shape of the chroma distribution.
Let us consider a simple major triad: Depending on the in-
strumentation, the root, third, or fifth note may be more
pronounced leading to different chroma vectors.

Some of these differences may serve to resolve subtler
stylistic differences. In Figure 1, we show two chroma
histograms of symphony movements by Schumann and
Brahms, both in a major key and centered to their respec-
tive tonic note (C and F). Though these composers have
much in common—a part of their lifetime, the cultural
background, and several inspiring persons—the pieces
considerably differ in their pitch class histograms. One
reason may be the more complex harmony in Brahms’
music—the chromatic pitch classes such as F], C], and
A[ are enhanced compared to Schumann’s equivalents.
Moreover, Brahms’ instrumentation often emphasizes the
chords’ third notes. This could explain the increased val-

Schumann, 2nd symphony, 1st mvmt. (C major)

Eb Bb F C G D A E B F# C# G#
0

0.2

0.4

0.6

Brahms, 3rd symphony, 1st mvmt. (F major)

Ab Eb Bb F C G D A E B F# C#
0

0.2

0.4

0.6

Figure 1. Chroma histograms for Schumann’s 2nd sym-
phony, 1st movement in C major (upper plot) and Brahms
3rd symphony, 1st movement in F major (lower plot). The
histograms are arranged according to the circle of fifths and
centered to the respective tonic note. We normalize the dis-
tributions to the `2 norm in order to ensure comparability.

ues for D, A, and E—the triad thirds of the main chords
B[M (subdominant), FM (tonic), and CM (dominant), re-
spectively. Another explanation for this observation could
be a modulation to the local key A major for a consid-
erable amount of time. Such modulations to third-related
mediant keys are common in late romantic music.

To describe such characteristics, the relative pitch
classes are important. Therefore, we need information
about the global key. Sometimes, this metadata is provided
in musical archives. However, such annotations are often
incomplete. For work cycles and multi-movement works,
we usually find only one key (“Symphony in F major”)
which single movements may differ from. For those rea-
sons, we test automatic methods for audio key detection
and evaluate the influence of their performance on the over-
all classification results. We also compare automatic key
detection to the use of ground truth key annotations.

Apart from the tonic note, the mode (major / minor) is
of high importance, since the harmonic structure of minor
pieces fundamentally differs from the one in major. To
that end, we split up our data and train a separate model
for each mode. Section 2.3 outlines the details of this idea.

2.1 Chroma Features

In audio signal processing, chroma features have been
shown to suitably represent tonal characteristics [7, 19].
For a chromagram, the spectrogram bins are mapped
into a series of 12-dimensional chroma vectors c =
(c0, c1, . . . , c11)T ∈ R12. These vectors represent the en-
ergy of the pitch classes that are independent from the oc-
tave. To reduce the influence of overtones and timbral
characteristics, several chroma extraction methods have
been proposed. We consider six different approaches:
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(i) CP. This algorithm [21] is based on a multirate filter
bank and published in the Chroma Toolbox [18]. We
use the Chroma Pitch as our baseline feature.

(ii) CLP. Jiang et al. found improvement of chord recog-
nition when using logarithmic compression before
octave summarization. We use the Chroma Loga-
rithmic Pitch with compression parameter η = 1000
which performed best in [9].

(iii) CRP. Müller and Ewert proposed a method to elim-
inate timbral information using the Discrete Cosine
Transform—Chroma-DCT-Reduced Log Pitch [17].

(iv) HPCP. These Harmonic Pitch Class Profiles con-
sider the overtones for the chroma computation [7].

(v) EPCP. In [27], Enhanced Pitch Class Profiles [13]
performed best in a chord matching experiment. This
algorithm makes use of an iterative procedure (har-
monic product spectrum). We use three iterations.

(vi) NNLS. Mauch introduced an approximate transcrip-
tion step based on a Non-Negative Least Squares
algorithm [14]. The resulting chroma features led
to a considerable boost of chord recognition perfor-
mance. The code is published as a “Vamp” plugin. 4

We compute the initial chroma features with a resolution
of 10 Hz. In order to eliminate the influence of dynamics,
we normalize to the `1 norm so that

||c||1 =
∑N−1

n=0 |cn| = 1. (1)

2.2 Key Detection Algorithms

For automatic key detection, we compare four approaches
that have been tested successfully on classical music data.

(1) Template matching. For this standard method, the
distance between a chroma histogram and a key pro-
file is computed for each of the 24 keys. The profile
minimizing the distance gives the global key [28].

(2) Profile learning. Van de Par et al. improved the pro-
file matching algorithm by using a learning procedure
for the key profiles [30]. Furthermore, they emphasize
the beginning and ending section of the pieces. We ex-
tend this idea by separately weighting beginning and
ending section. Therefore, we introduce new parame-
ters β and γ to emphasize the beginning and ending,
respectively—along with the parameter α from [30].

(3) Symmetry model. Another class of key finding algo-
rithms makes use of geometrical pitch models [2, 5].
We use the symmetry model by Gatzsche and Mehnert
that was evaluated for key detection in [16].

(4) Final chord. The algorithm proposed in [31] consid-
ers the final chord to estimate the tonic note of the
global key—combined with a profile matching for es-
timating the mode. This algorithm was tested on three
datasets of classical music.

4 http://isophonics.net/nnls-chroma

2.3 Classification Features

The basic idea of this paper is to directly use chroma his-
tograms for classification of music styles. We therefore
sum up the M chroma vectors c1, . . . , cM of a piece in
order to obtain a `1 normalized chroma histogram h:

ĥ =
∑M

i=1 ci , h = ĥ / ||ĥ||1 (2)

In order to compare the impact of the chroma compu-
tation method, we use four different chroma algorithms
from the ones presented in Section 2.1: CP, CLP, EPCP,
and NNLS.

As the main contribution of our work, we want to eval-
uate the relevance of key information for classification.
To this end, we test different combinations of key esti-
mation and classification algorithms. Using 3-fold cross-
validation, we randomly split our dataset into a training
fold (2/3) and a test fold (1/3). For the training stage, the
ground truth key annotations are used to split up the data
into pieces in major and minor modes. With the same key
information, we circularly rotate the chroma histograms so
that the tonic note is on the first position:

hrotatedk = h(k−k∗)mod 12, (3)

with k ∈ [0 : 11] and k∗ denoting the chroma index of the
tonic note (k∗ = 0 for C, etc.). For testing, we use one of
the four automatic key detection algorithms presented in
Section 2.2. With this key information, we split up the test
data according to the mode and again rotate each chroma
histogram with respect to the tonic note. The full process-
ing chain of our approach is shown in Figure 2.

To compare against existing methods, we use other
types of chroma-based classification features. In [32], a set
of template-based features for estimating the occurence of
interval and chord types has been proposed. To this end,
chroma features are smoothed to different temporal reso-
lutions followed by a multiplication of chroma values ac-
cording to interval and chord templates. Another group—
tonal complexity features—makes use of statistical mea-
sures on the chroma distribution in order to estimate the
tonal complexity of the music on different time scales [33].

3. EVALUATION

In order to estimate the classification performance on un-
seen data, we apply a two-step evaluation strategy. First,
we test the key detection performance of the four meth-
ods presented in Section 2.2 and optimize the algorithms’
free parameters (Section 3.2). Second, we perform classi-
fication experiments on a different dataset using a Random
Forest classifier with chroma histograms as input features.
We train separate models for major and minor pieces, re-
spectively. For estimating the importance of the algo-
rithm’s elements, we conduct several baseline experiments.

3.1 Datasets

In our studies, we make use of different datasets. To
evaluate key detection performance and optimize param-
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Figure 2. Flow diagram for the classification procedure. For performing cross-validation, the data is split up into training
and test set. Each set is sorted with respect to the mode by using different key algorithms or ground truth key annotations
(key 1 / key 2), respectively. The trained models for major and minor keys are then used to classify the respective test data.

eters, we use three datasets of classical music record-
ings with corresponding key annotations. This data has
been used for evaluating key detection in published work
[23, 30, 31]. The first set (Symph) comprises classical and
romantic symphonies—each with all movements—from
11 composers containing 115 tracks in total. The sec-
ond one—a selection from Saarland Music Data Western
Music (SMD) [20]—includes music for solo instruments,
orchestra, and chamber music. The key annotations for
126 selected tracks that show clear tonality are available
on the corresponding website. 5 Third, we recompiled a
dataset of piano music recordings (Pno) used for key de-
tection in [23, 30]. This data comprises 237 piano pieces
(Bach, Brahms, Chopin and Shostakovich). We consider
these datasets as training data for the key detection step,
thus justifying the overfitting procedure for the parameters.

For the classification experiments, we make use of an-
other dataset (Cross-Era) containing 1600 audio record-
ings of classical music as used in [32, 33]. The data is
balanced with respect to the historical periods (each 400
tracks for the Baroque, Classical, Romantic, and Mod-
ern period) and instrumentation (200 piano pieces and 200
orchestral pieces per class). We collected expert annota-
tions for the key of 1200 tracks. The modern class has
not been considered due to a high amount of atonal pieces.
For atonal pieces, we assume little influence of key detec-
tion on classification with chroma histograms. 6 The data
is not balanced with respect to the key or the mode (ma-
jor/minor). We show the key distribution in Figure 3.

3.2 Key Detection Experiments

For estimating the optimal parameters, we run each algo-
rithm with different parameter settings in a stepwise fash-
ion. To that end, we optimize each parameter by maximiz-
ing the weighted total performance Λt

Λt = (115 ΛSymph + 126 ΛSMD + 237 ΛPno) /478 (4)

5 http://www.mpi-inf.mpg.de/resources/SMD
6 For example, a dodecaphonic piece of music shows nearly equal

pitch class distribution. Thus, its chroma distribution is practically in-
variant to cyclic shifts.
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Figure 3. Key distribution (annotations) of the periods
Baroque, Classical, and Romantic (1200 pieces) in the
dataset Cross-Era. Major keys are shown in black and up-
ward direction, minor keys are in grey downwards. The
tonic notes are arranged according to the circle of fifths.

and fix the remaining parameters to default or best fit val-
ues. For the basic chroma features, we test the six types
presented in Section 2.1. We obtain the following results
for the different algorithms:

(1) Template matching. We test three pairs (maj / min) of
profiles proposed by Krumhansl [12], Temperley [28],
and Gomez [7]. In our study, the latter ones performed
best. Though these profiles have been developed in
combination with HPCP features, NNLS features out-
performed these features (84.7 %) followed by CLP.

(2) Profile learning. For the profile training, we per-
formed a cross-validation with 98 % training data, 2 %
test data, and 5000 repetions following [30]. We found
best performance for CLP chroma features (92.3 %)—
closely followed by NNLS—together with parameters
α = 2, β = 1, and γ = 0.25. We could not reach the
result presented in [30] (98 % on the Pno dataset). As
a reason for this, we assume that the specific chroma
features presented in that work (including a masking
model) provide additional benefits.
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Figure 4. Evaluation of different key detection algorithms. Here, we show the individual key recognition accuracies for
the three datasets of classical music. As the basic feature, we compare six types of chroma features.

(3) Symmetry model. This algorithm worked best in con-
junction with NNLS chroma. The optimal pitch set en-
ergy threshold was found at fTR = 0.12. The angular
vector value came out best at wsym = 0.53 leading to
a total performance of 82.6 %.

(4) Final chord. The final chord algorithm obtained opti-
mal results on the basis of CP chroma features. For
the parameters, N = 19 final frames, a root-scale
weight exponent of s = 0.9, an energy threshold of
fe = 0.19 %, and the weight exponents template m(2)

have come out best (93.7 % accuracy).

The overall results for the key detection evaluation are
shown in Figure 4 for the individual datasets. All al-
gorithms considerably depend on the chroma extraction
method—especially when the data includes piano music
(Pno, SMD). NNLS features often obtained the best re-
sults and seem to be the most stable basis for key detec-
tion methods. EPCP features are not a good choice for
this purpose. The profile learning and the final chord algo-
rithms performed similarly. Hereby, the first one is rather
data-dependent whereas the final chord algorithms requires
a fine parameter tuning. In the following, we use the fi-
nal chord algorithm that showed a slightly better total rate
(93.7 %) compared to the profile training method (92.3 %).

Finally, we test the four key detection methods on a
subset of the Cross-Era dataset (Section 3.1) using 1200
tracks with key annotations. For each method, we use the
feature and parameter setting performing best in the previ-
ous experiments. 7 We obtain a performance of 83.9 % for
the template matching algorithm (1), 87.1 % for the pro-
file learning (2), 80.4 % for the symmetry model (3), and
85.4 % for the final chord based method (4). Compared
to the optimization datasets, the performance is worse and
the differences between the methods are smaller. Profile
learning and final chord stay with best results. However,
the learning strategy (2) seems to be more robust than the
parameter-dependent final chord algorithm (4).

3.3 Classification Experiments

By using the method and parameters performing best in
Section 3.2, we now test the influence of key detection
on automatic style classification based on the Cross-Era
dataset. We use a Random Forest (RF) classifier. In or-
der to avoid problems due to the curse of dimensionality,

7 For the profile learning approach, the profiles are also trained on the
previously used datasets Symph, SMD, and Pno.

Figure 5. Classification accuracies for different types
of chroma features for classification, four classes, key 1
= key 2 = final chord. Bars and error marks indicate
mean and standard deviation over 100 initializations of the
cross-validation. Here, we do not use LDA (only twelve-
dimensional features).

we transform the feature space using Linear Discriminant
Analysis (LDA) with three output dimensions. For eval-
uation, we conduct a 3-fold cross-validation. We use the
chroma histograms over the full piece as classification fea-
tures. As our basic idea, we rotate the chroma histograms
to the tonic note (Section 2.3). In the ideal setting, we use
the ground truth key annotations for the training data (key
1). For the test data (key 2), we use the automatically de-
tected key from the final chord algorithm (see Section 3.2).

Major and minor keys exhibit very different tonal struc-
tures resulting in distinct typical chroma distributions. The
mode-related properties in the chroma distribution may
heavily overlay the more subtle differences originating
from style. We therefore split up the data into major and
minor pieces by using key annotations (training set, key 1)
or automatic key detection (test set, key 2), respectively.
On the resulting training data sets, we train separate classi-
fication models for major and minor keys. The test data is
then classified into style periods using the appropriate clas-
sifier model. This procedure is visualized in Figure 2. We
then repeat the classification by using the next fold as test
data. The whole cross-validation is performed 100 times
with new random initialization of the folds.

First, we test the influence of the specific chroma fea-
ture implementation on the classification performance. In
this experiment, we use the automatic key (final chord al-
gorithm) for both training and test. The results are shown
in Figure 5. Classification performance considerably de-
pends on the chroma type. Here, logarithmic compression
(CLP)—enhancing weak components—does not improve
classification performance. CP and EPCP features perform
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Figure 7. Classification accuracies for different combinations of chroma-based features, four classes, NNLS features. The
varying dimensionality of the feature collections is reduced to three dimensions by using LDA.

Figure 6. Classification accuracies based on different key
detection methods (for key 1 and key 2), three classes,
NNLS features. Here, we do not use LDA transformation.

Table 1. Classification results for different key method
combinations, three classes, NNLS features.

Key 1 Key 2 Major Minor

Ground truth Final chord 70.1 % 66.7 %
Final chord Final chord 69.4 % 71.5 %

similar whereas NNLS features outperform the others by
several percentage points. We therefore use NNLS chroma
features for the remaining experiments.

Next, we evaluate the dependence of the key-related
chroma features on the performance of the automatic key
detection. To this end, we once use each of the four meth-
ods from Section 3.2 both for training and test data. Since
we have no ground truth key annotations for the modern
era, we just perform classification of the remaining three
classes (1200 pieces). Classification results are similar
with all key methods (Figure 6). For profile learning and
final chord key detection, the results partly outperform the
classification based on ground truth key annotations. We
conclude that some of the errors in key detection may have
beneficial effects on classification performance. Compar-
ing the classification results with the key detection per-
fomance on Cross-Era, we find similar behaviour. Thus,
a good key detection leads to better classification, some-
times outperforming the use of ground truth key annota-
tions. When using ground truth key for training (key 1)
and an automatic method for testing (key 2), performance
values change but do not generally increase (Table 3.3).

In the last study, we compare different types of clas-
sification features (Figure 7). For the baseline chroma

experiment, we do not use any key information but use
the original (absolute) NNLS histograms as classifica-
tion features—without Major / Minor discrimination (one
model for all). Baseline Maj / Min makes use of ground
truth key annotations for mode selection. This does not
lead to increased classification results. For the key-related
chroma method, we use NNLS rotated with respect to the
final chord key, for training and test. 8 The use of key de-
tection boosts classification results by almost 10 %. Next,
we combine the key-related chroma histograms with other
chroma-based features such as tonal complexity or tem-
plate-based features (Section 2.3) leading to improvements
of almost 20 %. Combining all three types of features does
not further increase classification accuracies.

When comparing our results with the outcome of [32,
33], we do not obtain a general performance boost through
adding key-related chroma features. Both complexity [33]
and template features [32] alone performed similar in
the respective experiments—compared to combining them
with our features. However, we already obtain remarkable
results with key-related features only. These features can
be computed with a high computational effiency. 9 As the
main difference, complexity and template features capture
local properties whereas global chroma histograms do not.

4. CONCLUSION

We evaluated four automatic key detection methods and
optimized their parameters using three datasets of classical
music. On a separate dataset, we performed style classi-
fication experiments using key-related chroma histograms
as classification features. With such features, the use of
an efficient key detection algorithm improves classification
accuracy. Thus, automatic key detection constitutes a use-
ful step for such music classification systems. However,
involving local chroma-based features leads to a better per-
formance than only using global chroma histograms.

Acknowledgments: C. W. has been supported by the
Foundation of German Business (Stiftung der Deutschen
Wirtschaft). He thanks Daniel Gärtner for fruitful discus-
sions and Judith Wolff for contributing to key annotations.

8 The difference between this result and the NNLS performance in Fig-
ure 5 is due to using LDA transformation here.

9 Since we only use global chroma, a very coarse time resolution for
the time-frequency transform could be applied.
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ABSTRACT

In this paper, we utilize deep learning to learn high-level
features for audio chord detection. The learned features,
obtained by a deep network in bottleneck architecture, give
promising results and outperform state-of-the-art systems.
We present and evaluate the results for various methods and
configurations, including input pre-processing, a bottleneck
architecture, and SVMs vs. HMMs for chord classification.

1. INTRODUCTION

The goal of automatic chord detection is the automatic
recognition of the chord progression in a music recording.
It is an important task in the analysis of western music
and music transcription in general, and it can contribute
to applications such as key detection, structural segmenta-
tion, music similarity measures, and other semantic anal-
ysis tasks. Despite early successes in chord detection by
using pitch chroma features [6] and Hidden Markov Models
(HMMs) [26], recent attempts at further increasing the de-
tection accuracy are only met with moderate success [4,28].

In recent years, deep learning approaches have gained
significant interest in the machine learning community as
a way of building hierarchical representations from large
amounts of data. Deep learning has been applied success-
fully in various fields; for instance, a system for speech
recognition utilizing deep learning was able to outperform
state-of-the-art systems not using deep learning [10]. Sev-
eral studies indicate that deep learning methods can be
very successful when applied to Music Information Re-
trieval (MIR) tasks, especially when used for feature learn-
ing [1,9,13,16]. Deep learning, with its potential to untangle
complicated patterns in a large amount of data, should be
well suited for the task of chord detection.

In this work, we investigate Deep Networks (DNs) for
learning high-level and more representative features in the
context of chord detection, effectively replacing the widely
used pitch chroma intermediate representation. We present
individual results for different pre-processing options such
as time splicing and filtering (see Sect. 3.2), architectures
(see Sect. 3.4), and output classifiers (see Sect. 4).

c© Xinquan Zhou, Alexander Lerch.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Xinquan Zhou, Alexander Lerch. “Chord
Detection Using Deep Learning”, 16th International Society for Music
Information Retrieval Conference, 2015.

2. RELATED WORK

During the past decade, deep learning has been considered
by the machine learning community to be one of the most
interesting and intriguing research topics. Deep architec-
tures promise to remove the necessity of custom-designed
and manually selected features as neural networks should
be more powerful in disentangling interacting factors and
thus be able to create meaningful high-level representa-
tions of the input data. Generally speaking, deep learning
combines deep neural networks with an unsupervised learn-
ing model. Two major learning models are widely used
for unsupervised learning: Restricted Boltzmann Machines
(RBMs) [11] and Sparse Auto Encoders [24]. A deep archi-
tecture comprises multiple stacked layers based on one of
these two models. These layers can be trained one by one,
a process that is referred to as “pre-training” the network.
In this work, we employ RBMs to pre-train the deep archi-
tecture in an unsupervised fashion; this is called a Deep
Belief Network (DBN) [11]. DBNs, composed of a stack
of RBMs, essentially share the same topology with general
neural networks: DBNs are generative probabilistic models
with one visible layer and several hidden layers.

Since Hinton et al. proposed a fast learning algorithm
for DBNs [11], it has been widely used for initializing
deep neural networks. In deep structures, each layer learns
relationships between units in lower layers. The complexity
of the system increases with an increasing number of RBM
layers, making the structure —in theory— more powerful.
An extra softmax output layer can be added to the top of
the network (see Eqn (6)) [18]; its output can be interpreted
as the likelihood of each class.

LeCun and Bengio introduced the idea of applying Con-
volutional Neural Networks (CNNs) to images, speech, and
other time-series signals [15]. This approach allows to deal
with the variability in time and space to a certain degree,
as CNNs can be seen as a special type of neural network
in which the weights are shared across the input within a
certain spatial or temporal area. The weights thus act as a
kernel filter applied to the input. CNNs have been particu-
larly successful in image analysis. For example, Norouzi
et al. used Convolutional RBMs to learn shift-invariant fea-
tures [22].

The results of a network depend largely on the network
architecture. For example, Grezl et al. used a so-called
bottleneck architecture neural network to obtain features
for speech recognition and showed that these features im-
prove the accuracy of the task [8]. The principle behind
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Figure 1. Visualization of a bottleneck architecture

the bottleneck-shaped architecture is that the number of
neurons in the middle layer is lower than in the other lay-
ers as shown in Fig. 1. A network with bottleneck can
be structured in two sections: (i) Section 1 from the first
layer to the bottleneck layer, with a gradual decrease of the
number of neurons per layer, functions as an encoding or
compression process which compacts relevant information
and discards redundant information, and (ii) Section 2 from
the bottleneck layer to the last layer with a gradual increase
in the number of neurons per layer. The function of this
part can be interpreted as a decoding process. An additional
benefit of bottleneck architectures is that they can reduce
overfitting by decreasing the system complexity.

Recently, more researchers investigated deep learning in
the context of MIR. Lee et al. pioneered the application of
convolutional deep learning for audio feature learning [16].
Hamel et al. used the features learned from music with a
DBN for both music genre classification and music auto-
tagging [9]; their system was successful in MIREX 2011
with top-ranked results. Battenberg employed a conditional
DBN to analyze drum patterns [1]. The use of deep archi-
tectures for chord detections, however, has not yet been
explored, although modern neural networks have been em-
ployed in this field. For instance, Boulanger et al. inves-
tigated recurrent neural networks [2] and Humphrey has
explored CNNs [12, 14]. While they also used the concept
of pre-training, their architectures have only two or 3 layers
and thus cannot be called “deep”.

The basic buildings blocks of most modern approaches
to chord detection can be traced back to two seminal pub-
lications: Fujishima introduced pitch chroma vectors ex-
tracted from the audio as input feature for chord detec-
tion [6] and Sheh et al. proposed to use HMMs for repre-
senting chords as hidden states and to model the transition
probability of chords [26]. Since then, there have been a
lot of studies using chroma features and HMMs for chord
detection [5, 23]. Examples for recent systems are Ni et al.,
using a genre-independent chord estimation method based
on HMM and chroma features [21] and Cho and Bello,
who used multi-band features and a multi-stream HMM for
chord recognition [4]. Training HMMs with pitch chroma
features arguably is the standard approach for this task and
the progress is less marked by major innovations but by

Figure 2. The overview of our system

optimizing and tuning specific components.

3. SYSTEM OVERVIEW

Figure 2 gives an overview of all components and process-
ing steps of the presented system. The following section
will discuss all of these steps in detail.

3.1 Input Representation

The input audio is converted to a sample rate of 11.025 kHz.
Then, a Constant Q transform (CQT) is applied. The
CQT [3] is a perceptually inspired time-frequency transfor-
mation for audio. The resulting frequency bins are equally
spaced on a logarithmic (“pitch”) scale. It has the advan-
tage of providing a more musically and perceptually mean-
ingful spectral representation than the DFT. We used an
implementation of the CQT as a filterbank of Gabor filters,
spaced at 36 bins per octave, i.e., 3 bins per semitone, yield-
ing 180 bins representing a frequency range spanning from
110 Hz to 3.520 kHz. Finally, we used Principal Compo-
nent Analysis (PCA) for decorrelation, and applied Z-Score
normalization [27].

3.2 Pre-processing

Neighboring frames of the input representation can be ex-
pected to contain similar content, as chords will not change
on a frame-by-frame basis. In order to take into account
the relationship between the current frame and previous
and future frames, we investigate the application of several
pre-processing approaches.

3.2.1 Time Splicing

Time splicing is a simple way to extend the current frame
with the data of neighboring frames by concatenating the
frames into one larger superframe. In first order time splic-
ing, we concatenate the current frame, the previous frame,
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and the following frame. Thus, each superframe consists
of three neighboring frames. Since the same operation will
be applied to all frames, there will be overlap introduced
between neighboring superframes.

3.2.2 Convolution

CNNs are extensively used in tasks with highly correlated
inputs (e.g., the recognition of hand-written digits). Many
time series show similar properties so that CNNs seem
to be an appropriate choice in the context of audio, too.
Essentially, CNNs have one or more convolutional layers
between the input and lower layers of the neural network.
The function of a convolutional layer can be interpreted as
the application of a linear filter plus a non-linear transfor-
mation, sometimes also combined with a pooling operation:

Y = pool(sigm(K ∗X +B)), (1)

in which Y is the output of a convolutional layer, K is the
linear kernel filter (i.e., the impulse response), X is the
input, B is the bias, sigm() is a non-linear transform, and
pool() is a down-sampling operation. The uniqueness of
convolutional networks stems from the convolution opera-
tion applied to the input X . Since, unfortunately, we had no
access to a deep learning toolbox with support for the con-
volution operation in the time domain, we opted to employ
an optional pre-processing step inspired by CNNs, namely
by applying filters to the input of the network. However,
instead of learning the filters, we evaluate several manu-
ally designed filters: a single-pole low pass filter and two
FIR low pass filters with exponentially shaped impulse re-
sponses. The single pole low pass filter produces the output
y for an input x, given the parameter α:

yn = (1− α)yn−1 + αxn (2)

We apply anti-causal filtering and filter the signal in both
directions so that the resulting overall filter has a zero-phase
response.

The other two low pass filters have exponential decay
shaped impulse response. The difference equations are
given in Eqn (3) and Eqn (4).

y1(n) =
N∑

k=1

a−k+1x(n−N + k) (3)

y2(n) =
N∑

k=1

a−k+1x(n+N − k) (4)

The filter length is N and a is the exponential base. These
two filters are not centered around the current frame any-
more but shifted by N frames. Their impulse responses are
symmetric to each other. One could interpret these filters
as focusing on past and future frames, respectively. The
presented filters will be referred to as “extension filters”.

The ideas of splicing and convolution can be combined,
as exemplified in Fig. 3.

Furthermore, similar to the process in CNNs, a maxi-
mum pooling operation on the output of the spliced filters
is optionally applied. The operation takes the maximum
value among different filters per “bin”.

Figure 3. Splicing output of different filters

3.3 Training

It is impractical to train DNNs directly with back propaga-
tion using gradient decent due to their deep structure and
the limited amount of training samples. Therefore, the net-
work is usually initialized by an unsupervised pre-training
step. As our network consists of RBMs, Gibbs sampling
can be used for training [11]. The objective is to retain as
much information as possible between input and output.

The computation for layer l can be represented as:

Yl = sigm(WlXl +Bl), (5)

which is identical to many traditional neural networks. Thus,
a standard back propagation can be applied after pre-training
to fine-tune the network in a supervised manner. The loss
criterion we use in this work is cross-entropy.

3.4 Architecture

We investigate a deep network with 6 layers in two different
architectures. The common architecture features the same
amount of neurons in every layer, in our case 1024. The
bottleneck architecture has 256 neurons in the middle layer
and 512 neurons in the layers neighboring the middle layer.
The remaining layers consist 1024 neurons each (compare
[8]). A softmax output layer is stacked on top of both
architectures as described by Eqn (6).

softmax(Yl) =
exp(Yl)∑N

k=1 exp(Yk)
(6)

The network is implemented using the Kaldi package devel-
oped by John Hopkins University [25].

4. CLASSIFICATION

The output of the softmax layer can be interpreted as the
likelihood of each chord class; simply taking the maximum
will provide a class decision (this method will be referred
to as Argmax). Alternatively, the output can be treated as
intermediate feature vector that can be used as an input to
other classifiers for computing the final decision.

4.1 Support Vector Machine

Support Vector Machines (SVMs) are, as widely used classi-
fiers with generally good performance. The SVM is trained
using the output of the network as features, and the classifi-
cation is carried out frame by frame. The classification is
followed by a simple prediction smoothing.
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4.2 Hidden Markov Model

HMMs are, as pointed out above, the standard classifier
for automatic chord detection because the characteristics
of the task fit the HMM approach well: Chords are hid-
den states that can be estimated from observations (feature
vectors extracted from the audio signal), and the likelihood
of chord transitions can be modeled with transition prob-
abilities. Modified HMMs such as ergodic HMMs and
key-independent HMMs have been also explored for this
task [17, 23]. In this work we are mostly interested in the
performance comparison between high-level features, so
a simple first-order HMM is used. Given the probabilistic
characteristic of the softmax output layer, it can be directly
as emission probabilities for the HMM. Therefore, there is
no need to train the HMM using, e.g., the commonly used
Baum-Welch algorithm. Instead, the histogram of each
class in our training is used as initial probabilities, and the
bigram of chord transitions is used to compute the transi-
tion probabilities. Finally, we employ the Viterbi decoding
algorithm to find the globally optimal chord sequence.

5. EVALUATION PROCEDURE

5.1 Dataset

Our dataset is a combination of several different datasets,
yielding a 317-piece collection. The data is composed of
• 180 songs from the Beatles dataset [19],
• 100 songs from the RWC Pop dataset [7],
• 18 songs from the Zweieck dataset [19], and
• 19 songs from Queen dataset [19].

The pre-processing as described in Sect. 3.2 ensures identi-
cal input audio formats.

5.2 Methodology

The dataset is divided randomly into two parts: 80% for the
training set and 20% for the test set. On the training scale,
we use a frame-based strategy, which means we divide each
song into frames, and treat each frame as an independent
training sample. On average each song is divided into
about 1200 frames resulting in approximately 300k training
samples and approximately 76k test samples.

Within the training set, 10% of the data is used as a vali-
dation set. For the post-processing, all data in the training
set will be used to train the post-classifier.

Time constraints and the workload requirements for train-
ing deep networks made a cross validation for evaluation
impractical.

The chosen ground truth for classification are major and
minor triads for every root note, resulting in a dictionary
of 24 + 1 chord labels. Ground truth time-aligned chord
symbols are mapped to this major/minor dictionary:

Chordmajmin ⊂ {N} ∪ {S ×maj,min} (7)

with S representing the 12 pitch classes (root notes) and
N being the label for unknown chords. In the calculation
of the detection accuracy, the following chord types are
mapped to the corresponding major/minor in the dictionary:

Figure 4. Chords histogram

triad major/minor and seventh major/minor. Other chord
types are treated as unknown chords. For instance, G:maj
and G:maj7 are mapped to ‘G:maj’; G:dim and G:6 are all
mapped to ‘N’. The histogram of chords in our dataset after
such mapping is shown in Fig. 4.

5.3 Evaluation Metric

The used evaluation metric is the same as proposed in the
audio chord detection task for MIREX 2013: the Weighted
Chord Symbol Recall (WCSR). WCSR is defined as the
total duration of segments with correct prediction as formu-
lated in Eqn (8):

WCSR =
1

N

n∑

k=1

Ck, (8)

in which n is the number of test samples (songs), N is
the total number of frames in all test samples, and Ck is
the number of frames that are correctly detected in the kth
sample.

6. EXPERIMENTS

6.1 Post-classifiers

In this experiment, the network is initialized with pre-
training, followed by fine tuning using back propagation.
This configuration will be referred to as DNDBN−DNN .
No pre-processing is applied to the data; the input is sim-
ply the input representation (CQT followed by PCA) as
described in Sect. 3.1. The chosen architecture is the bottle-
neck architecture. Three different classifiers are compared:
the maximum of the softmax output (Argmax), an SVM,
and an HMM.

The results listed in Table 1 are unambiguous and un-
surprising: the HMM with Viterbi decoding outperforms
the SVM; using HMMs with a model for transition prob-
abilities is an appropriate approach to chord detection as
it models the dynamic properties of chord progressions,
which cannot be done with non-dynamic classifiers such
as SVMs. One noteworthy result is that the SVM does not
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Training Scenario Classifier WCSR
DNDBN−DNN Argmax() 0.648
DNDBN−DNN SVM 0.645
DNDBN−DNN HMM 0.755

Table 1. Chord detection performance using different post-
classifiers

α Pre-processing WCSR

0.25 Filtering 0.758
0.25 Spliced Filters 0.912
0.5 Filtering 0.787
0.5 Spliced Filters 0.857
0.75 Filtering 0.798
0.75 Spliced Filters 0.919

Table 2. Chord detection performance using different filter
parameters

improve the WCSR compared to the direct (Argmax) output
of the network. Apparently, the SVM is not able to improve
separability of the learned output features.

6.2 Pre-processing

As stated in Sect. 3.2, we are interested in the applica-
tion of different filters in the pre-processing stage. In the
first experiment (Filtering), an anti-causal single pole fil-
ter (see Eqn (2)) is evaluated with the parameter α set to
0.25, 0.5, and 0.75, respectively. The second experiment
(Spliced Filters), splices these filter outputs with the outputs
of the extension filters as introduced in Sect. 3.2. These
experiments are carried out with theDNDBN−DNN training
scenario, a bottleneck architecture, and an HMM classifier.
Table 2 lists the results of these pre-processing variants. It
can be observed that the network trained with filtered inputs
slightly outperforms the network without pre-processing;
splicing the filtered input with the extension filter outputs
increases the results drastically.

6.3 Architecture

6.3.1 Common vs. Bottleneck

The results of Grezl et al. indicate that a bottleneck architec-
ture should be more suitable to learn high-level features than
a common architecture and reduce overfitting [8]. In order
to verify these characteristics for our task, the performance
of both architectures is evaluated in comparison. The re-
sults are listed in Table 3 for three pre-processing scenarios:
no additional pre-processing (None), Spliced Filters and
spliced filters followed by a max pooling (Pooling). In or-
der to allow conclusions about overfitting, both the WCSR
of the test set and the training set are reported. All results
are computed for the DNDBN−DNN training scenario with
HMM classifiers.

The results show that the bottleneck architecture gives
significantly better results (p = 0.023) on the test set

Architecture Pre-processing Training
WCSR WCSR

Common None 0.843 0.703
Bottleneck None 0.855 0.755
Common Spliced Filters 0.985 0.876
Bottleneck Spliced Filters 0.936 0.919
Common Pooling 0.965 0.875
Bottleneck Pooling 0.960 0.916

Table 3. Chord detection performance for different archi-
tectures and pre-processing steps

Learning Targets WCSR

Single-Label — 25 Chord Classes 0.919
Multi-Label — 12 Pitch Classes 0.78

Table 4. Chord detection performance for single-label vs.
multi-label learning

(WSCR). Note that this is not true for the training set (Train-
ing WSCR), for which the common architecture achieves
results in the same range or better than the bottleneck archi-
tecture. The difference between the results on the training
set and the test set are thus much larger for the common
architecture than for the bottleneck architecture. The bot-
tleneck architecture is clearly advantageous to use in this
task: it reduces complexity and thus the training workload
and increases the classification performance significantly.
Furthermore, the comparison of classifier performance be-
tween training and test set in Table 3 clearly indicates that
the common architecture tends to fit more to the training
data, and is thus more prone to overfitting.

6.3.2 Single-Label vs. Multi-Label

As mentioned above, the pitch chroma is the standard fea-
ture representation for audio chord detection. Since we
use the output of our deep network as feature, it seems an
intuitive choice to learn pitch class information (and thus, a
pitch chroma) instead of the chord classes. By doing so, the
number of outputs is reduced by a factor of two (or higher
in the case of more chords), and there would also be a closer
relation between the output and the input representation,
the CQT. Therefore, the abstraction and complexity of the
task might be decreased. It will, however, lead to another
issue: the single-label output (one chord per output) will
be changed into a multi-label output (multiple pitches per
output). Therefore, the learning has to be modified to allow
multiple simultaneous (pitch class) labels. The experiment
is carried out with both Splicing and Filtering in the pre-
processing, the DNDBN−DNN training scenario, and HMM
classifiers. Table 4 lists the results.

Boulanger-Lewandowski et al. report combining chroma
features with chord labels for their recurrent neural network
and report a slightly improved result [2]. They do not, how-
ever, provide a detailed description of this combination. As
can be seen from the table, the result for multi-label train-
ing is clearly lower than the result for single-label training.
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Method WCSR

Chordino 0.625
Best Configuration 0.919
Best Configuration with Max Pooling 0.916

Table 5. Comparison of the performance of the best config-
uration with Chordino

Possible reasons for bad performance include (i) difficulties
with multi-target learning, since it increases the difficulty to
train; furthermore, our implementation of multi-label train-
ing might be sub-optimal as the same posterior is assigned
to each target without any information on the pitch class
energy, and (ii) the issue that not all pitches always sound
simultaneously in a chord (or might be missing altogether)
might have larger impact on the multi-label training than
on the single-label training.

6.4 Results & Discussion

It is challenging to compare the results to previously pub-
lished results due to varying evaluation methodologies, met-
rics, and datasets. It seems that the results of Cho and
Bello [4], who reported a performance of about 76%, were
computed with a comparable dataset. The recent MIREX re-
sults on Chord Detection generally show lower accuracy but
use a different evaluation vocabulary. In order to provide
a baseline result to put results into perspective, we present
the results of Chordino [20] with the default settings, com-
puted on our dataset. It should be pointed out that this
comparison is unfair as Chordino is able to detect as many
as 120 chords, compared to our 24. The label mapping
strategies are another significant issue for Chordino. Our
label mapping results in nearly sixth of the total label being
“N”, which might have negative impact on the Chordino
results. The Chordino results are mapped to major/minor
the same way as the ground truth annotations. The results
are shown in Table 5. In the table, the Best Configuration
is using Bottleneck architecture, spliced filters (α = 0.75)
as preprocessing, single label learning targets, and Viterbi
decoding as post-classifier. The Best Configuration with
Max Pooling is the same as the best configuration except
applying another max pooling layer after the spliced filters.
The latter configuration has a much reduced computational
workload. The presented results are clearly competitive
with existing state-of-the-art systems.

7. CONCLUSION & FUTURE WORK

In this work, we presented a system which applies deep
learning to the MIR task of automatic chord detection. Our
model is able to learn high-level probabilistic representa-
tions for chords across various configurations. We have
shown that the use of a bottleneck architecture is advanta-
geous as it reduces overfitting and increases classifier perfor-
mance, and that the choice of appropriate input filtering and
splicing can significantly increase classifier performance.

Learning a pitch class vector instead of chord likelihood

by incorporating multi-label learning proved to be less suc-
cessful. The idea has, however, a certain appeal and would
allow the number of output nodes to be independent of the
number of chords to be detected. It is also conceivable to
investigate a different option for the network output: in-
stead of training chords or pitch classes we could — under
the assumption that we are only after chords comprised
of stacked third intervals — train the output with octave-
independent third intervals in a multi-label scenario with
24 output nodes.
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ABSTRACT

The times when music is played can indicate context for
listeners. From the peaceful song for waking up each
morning to the traditional song for celebrating a holiday to
an up-beat song for enjoying the summer, the relationship
between the music and the temporal context is clearly im-
portant. For music search and recommendation systems,
an understanding of these relationships provides a richer
environment to discover and listen. But with the large
number of tracks available in music catalogues today, man-
ually labeling track-temporal context associations is diffi-
cult, time consuming, and costly.

This paper examines track-day contexts with the pur-
pose of identifying relationships with specific music
tracks. Improvements are made to an existing method
for classifying Christmas tracks and a generalization to
the approach is shown that allows automated discovery
of music for any day of the year. Analyzing the top 50
tracks obtained from this method for three well-known hol-
idays, Halloween, Saint Patrick’s Day, and July 4th, preci-
sion@50 was 95%, 99%, and 73%, respectively.

1. INTRODUCTION

With the ever increasing amount of recorded music, struc-
tured metadata is important to organize it. For holiday mu-
sic, there is some metadata that indicates an association
with a music track, often Christmas [1], but comprehensive
labeling for other holidays is still lacking. One reason for
this is the varying nature of holiday music. Across geogra-
phies, cultures, and time, what music is used to celebrate
holidays changes dramatically. There is a bit of a para-
dox as to whether a holiday track is so because the artist
recorded it for that purpose or the listeners use it to cele-
brate 1 . Given this complex landscape of holiday music,
manual labeling of a large number of music tracks is diffi-
cult, time consuming, and costly. Methods for automated
labeling are desirable for large scale organization, further

1 The interpretation of the authors of what is truly holiday music is the
latter.
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improving the capabilities of music search and recommen-
dation systems.

One automated approach is using text search of track
names or album names for keywords also associated with
the target holiday [2]. For example, tracks with the key-
words ”winter” or ”spooky” may be likely associated with
Christmas or Halloween, respectively. This approach has
drawbacks, however. First, it requires experts to create
keywords lists, which can be costly or difficult, particularly
for music in different languages. Second, the keywords
do not guarantee correct track-holiday association, particu-
larly for ambiguous words like ”whiskey”, which could be
linked contextually to Saint Patrick’s Day or simply drink-
ing beverages. This problem is compounded when using
multiple keywords, as is required for a comprehensive set
of tracks.

Another automated approach for labeling holiday music
is through user crowdsourcing. LastFM (last.fm), for ex-
ample, allows users to add their own tags to music tracks,
which include tags for some holidays like Halloween [3].
This has the advantages of outsourcing the work of label-
ing and getting a better representation of the holiday music
preferences of a larger number of listeners. But this too
has drawbacks. Users tend to only label popular tracks
and artists, leading to imbalanced coverage. The quality
of these tags can suffer to due misspellings, synonyms, bi-
ases, or dishonest labeling. And the users providing tags
are still typically a small subset of the total users of a ser-
vice [4].

Alternatively, leveraging user listening data avoids the
quality issues associated with user tagging and keyword as-
sociation, can utilize the entire user base, and is language
agnostic. Researchers have studied temporal dynamics of
user data previously to understand context. [5] examined
temporal context to improve biosurveillance. [6] and [7]
classified web search queries using features in the pop-
ularity signal over time and in music, [8], [9], and [10]
show the usefulness of temporal analysis in recommenda-
tions systems. An approach proposed by [11] exploits user
listening data to automatically label tracks as associated
with Christmas. However, the approach performs poorly
for other holidays in our experiments. In this paper we
show that the methodology in [11] can be improved and
generalized to discover tracks associated with other holi-
days throughout the year.
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Figure 1. Mean listen rates R for tracks above 1,500 total
listen threshold with ”Christmas” in track or album name
(solid line) and tracks without (dotted line) for December
18, 2012 - January 1, 2013.

2. METHODOLOGY

[11] hypothesized that the listening signals of two tracks,
one associated with a holiday and one not, will have dif-
fering and detectable patterns on and around that holiday.
This can readily be seen for Christmas tracks and non-
Christmas tracks in Figure 1. In this section we show the
methodology in [11] for detecting Christmas tracks and
propose improvements.

2.1 Listening Rates

The form of the raw data is listening events in which a
known user has listened to a known track at a date and
time. If a track is associated with a day, we expect users
to engage more relative to other time periods. The signal
used in [11] can be described as user engagement,

Eij =
U∑

k=1

cijk (1)

which is the total number of listens for all users for track
i in time period j.

In Eqn (1), cijk is an element of C, and C ∈ RT×W×U

where T is the number of tracks, W is the number of time
periods, and U is the number of users. To account for dif-
ferences between popularity of tracks, the E was normal-
ized across the periods of time as described by

Rij =
Eij∑W
l=1Eil

(2)

which were the listen rates used to train the Christmas
model.

We propose a new signal based on absolute user engage-
ment, Ê. Given the function

f(x) =

{
1, if x > 0

0, otherwise
(3)

Êij is the number of users who listened to a track i in
time period j and is calculated by

Êij =

U∑

k=1

f(cijk) . (4)

Number of Records 4,819,992,847
Number of Users 1,648,796
Number of Tracks 13,227,376
Date Range January 2012 - February 2013

Table 1. Dataset of listening records.

This is similarly normalized across time periods to get
new listen rates

R̂ij =
Êij∑W
l=1 Êil

. (5)

The intuition is to limit the effect of repeat plays among
individual users. In estimating cultural preferences, there
is likely more information gained when 100 users listen
to a track once than when one user listens to a track 100
times.

2.2 Detection

For detection, [11] fit a multi-variate Gaussian with listen
rates of only Christmas tracks with parameters θChristmas

composed of mean, µRj , and covariance matrix, ΣRj .
Given a new track with listen rates for the same time peri-
ods, x = [R1, R2, ..., RW ], the metric for detection was

P (x|θChristmas) =

W∏

j=1

N (x|µRj ,ΣRj ) . (6)

We propose another metric using the posterior probabil-
ity from a direct application of Bayes’ Rule in

P (θc|x) =
P (x|θc) ∗ P (c)

P (x|θc) ∗ P (c) + P (x|θn) ∗ P (n)
(7)

where c subscript represents Christmas and n subscript
represents non-Christmas. This includes a model for non-
Christmas tracks and prior probabilities P (c) and P (n),
which represent the proportion of Christmas and non-
Christmas tracks in matrix C, respectively. The priors in
particular are important because of the small number of
Christmas tracks in the dataset. P (x|θn) is calculated from
Eqn (6) where µRj

and ΣRj
are calculated using all non-

Christmas tracks.

2.3 Dataset

This study uses the same internal Gracenote dataset of
online radio listening records in North America as [11].
Some basic information is shown in Table 1. Each record
in the dataset represents one listen of a track by one user
and provides User ID, Date, Time, and Track ID. Track
metadata is also available such as track name, album name,
and artist name.
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Min. Listens All Tracks Christmas Tracks
1,500 338,406 4,732
500 767,116 10,647
200 1,397,032 18,170
100 2,087,863 26,134
10 5,906,307 68,582
1 10,207,335 118,515

Table 2. Track distribution at each threshold of minimum
listens.

3. CHRISTMAS

3.1 Experiments

In these experiments, we compared the performance of the
signals and prediction metrics in Section 2. As in [11], we
generated a ground truth of Christmas tracks by searching
for keyword ”Christmas” in track names and album names.
We defined the window radius, rw, as the number of con-
secutive days before and after the target holiday, December
25, 2012, such that the window length W = 2 ∗ rw + 1.
Since [11] showed an increase in performance with in-
creasing popularity of tracks, we use the same thresholds
of minimum listens in the dataset (1,500, 500, 200, 100,
10, 1) for direct comparison. Table 2 shows the distribu-
tion of tracks for each threshold.

For each listen rate in Section 2.1, a matrix was con-
structed from the dataset using tracks above the specified
threshold, all users, and W days. We varied W by choos-
ing rw ranging 1 to 30 to capture the signal up to one month
before and a month after December 25. The matrix was
randomized and split into train (60%) and test (40%) sets
on the first dimension. Two single component Gaussian
Mixture Models, for Christmas and non-Christmas, were
trained with the training set in a supervised manner with
each training example a track and features the listen rates
for each day in the signal window. Classification was per-
formed with each metric in Section 2.2 on the test set and
the area under the Receiver Operating Characteristic (AU-
ROC) was calculated for evaluation.

3.2 Results

Figure 2 and Figure 3 show the AUROC against the win-
dow radius for the proposed listen rate, R̂, and each predic-
tion metric. Observing the difference in y-axis scale, the
most notable difference between the figures is an increase
in performance across all thresholds and signal lengths
for the posterior probability. In particular, the lowest two
thresholds have quite large increases of about 0.15 at each
signal length.

Among tracks with the strongest listening signals, there
is a small decay with increased window length. In contrast,
the weakest listening signals show a large boost in perfor-
mance with increased signal length. Similar plots for listen
rates R are not shown because they track very closely and
mostly just below the trends for R̂. Lastly, Table 3 shows
the maximum AUROC value for each threshold across sig-
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Figure 2. AUROC for each listen threshold for listen rate
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Figure 3. AUROC for each listen threshold for listen rate
R̂ and prediction metric P (θc|x)

nal lengths as a measure of overall performance. The pro-
posed signal and prediction metric give the highest AU-
ROC for the top four thresholds, and the signal from [11]
with the proposed prediction metric have slightly higher
AUROC for the bottom two thresholds.

3.3 Analysis

The posterior probability performs better than the likeli-
hood because the inclusion of a non-Christmas model pro-
vides additional discriminative information. There is a lot
of complexity in the non-Christmas tracks that is not mod-
eled well by a single Gaussian with a mostly uniform dis-
tribution as shown in Figure 1. This suggests that incor-
porating models for other common signal shapes such as
those of newly released tracks might further improve per-
formance.

The signal length effects the performance in different
ways. Tracks with the strongest listening signals perform
best more with localized time window. We believe this is
due primarily to higher variability of listening rates lead-
ing up to Christmas. The Christmas holiday is celebrated
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P (x|θc) P (θc|x)

Threshold R R̂ R R̂

1,500 0.987 0.991 0.989 0.992
500 0.975 0.981 0.978 0.983
200 0.964 0.969 0.969 0.973
100 0.950 0.956 0.958 0.963
10 0.851 0.850 0.892 0.888
1 0.680 0.682 0.784 0.783

Table 3. Best AUROC for any signal window.

for many days before, and the signals during this time may
be less stable than nearby December 25th. Tracks with the
weakest listening signals perform best with a larger time
window performs. This is likely because there is more in-
formation available with a longer signal, even if a small
amount. Tracks with 50 plays in the dataset average only
one play in ten days so capturing enough discriminatory
information for detection requires a longer signal window.

The proposed signal of user counts, R̂, has a smoothing
effect over the signal of play counts, R, boosting perfor-
mance. With tracks of stronger signals this appears to be
more discriminating as shown in Table 3. But tracks with
weaker signals, this seems to remove some useful infor-
mation, which would explain why the play counts, R, per-
form slightly better at the two lowest thresholds. No single
configuration appears to give optimal performance for this
task.

4. HOLIDAY GENERALIZATION

We are interested in detecting track-temporal context as-
sociations for many days other than Christmas. Directly
repeating the procedure in Section 3 for other holidays pro-
duced poor results on the dataset in Section 1. We believe
this is because the ground truth generated from keywords is
much less clean. Since many other holidays have a smaller
music repertoire than Christmas, discriminative keywords
like the holiday names generate too few tracks with strong
listening signals for model training. And less discrimina-
tive keywords inadvertently include tracks not associated
with the holiday, similarly compromising training.

Instead, the Christmas model in Section 2 can be rein-
terpreted as a holiday model with parameters θholiday com-
posed of the same mean, µRj

, and covariance matrix, ΣRj

as Eqn (6). Now a new track with listen rate signal of
the same length, W , centered on a different target holi-
day, x = [R1, R2, ..., RW ], can be detected with Eqn (6)
or Eqn (7).

4.1 Experiments

In these experiments, we show the performance of detec-
tion on three other holidays. Since the dataset in Section 1
is from users in North America, we chose Halloween, Saint
Patrick’s Day, and U.S. Independence Day as they are well-
known holidays in North America and likely to have music
associations. For the best results, we use only tracks with

Saint Patrick’s U.S. Independence Halloween
95% 73% 99%

Table 4. Average precision@50 for holiday track detec-
tion.

strong listening signals - above 1,500 total listens in the
dataset - and the best performing listen rate and prediction
metric from Section 3, R̂ and Eqn (7).

We constructed the training set feature matrix using
W = 15, implying rw = 7 and R̂i8 is the listen rate
for track i on December 25, 2012. Again, we trained two
single component Gaussian Mixture Models, holiday and
non-holiday, in a supervised manner. We constructed the
test set feature matrix similarly with W = 15, meaning
R̂i8 is the listen rate for track i on the target holiday.

We calculated the probability of each track in the test
set with Eqn (7) and ranked the tracks from highest proba-
bility to lowest for analysis. We chose precision@k to pro-
vide a general measure of relevance of tracks. We set k=50
with the assumption that there are at least 50 tracks truly
associated with each holiday in order to better attribute er-
rors in detection to the methodology. Three music content
experts examined each list and labeled tracks as relevant to
the holiday or not. We averaged the results to get a single
value of precision@50 for each holiday.

4.2 Results

Table 4 shows the average precision@50 of holiday track
detection as indicated by three music experts. Halloween
and Saint Patrick’s Day had high values at 99% and 95%,
respectively, and U.S. Independence Day was lower at
73%. The mean probability of the all tracks according to
the holiday model was 99.9%. The distribution of incor-
rect tracks for U.S. Independence Day is skewed toward
the bottom of the list.

The top 10 tracks for each holiday are shown in
Section 4.2.1 - Section 4.2.3 to further characterize the re-
sults. All of these tracks had a probability of 1.0 according
to the holiday model. The ordering for each track is track
name, artist name.

4.2.1 Top 10 Saint Patrick’s Tracks

1. When Irish Eyes Are Smiling, Bing Crosby
2. Maloney Wants A Drink, The Clancy Brothers
3. Sally MacLennane, The Pogues
4. When Irish Eyes Are Smiling, The Irish Folk
5. Danny Boy, Irish Drinking Songs
6. Water Is Alright In Tay, The Clancy Brothers
7. Whiskey In The Jar, The Clancy Brothers
8. A Pair of Brown Eyes, The Pogues
9. The Black Velvet Band, Irish Drinking Songs

10. Grace, Jim McCann

4.2.2 Top 10 U.S. Independence Tracks

1. America, Barry White
2. Independence Day, Elliott Smith
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3. Proud to be an American, Tiki
4. Stars And Stripes Forever, John Philip Sousa
5. Justice And Independence ’85, John Mellencamp
6. 4th of July, X
7. Our Country (Rock Version), John Mellencamp
8. America the Beautiful, Blake Shelton and Miranda

Lambert
9. This Is My Country, The Impressions

10. God Bless The U.S.A., Lee Greenwood

4.2.3 Top 10 Halloween Tracks

1. Purple People Eater, Halloween Hit Factory
2. ”Dr. Who” Theme Song, Mannheim Steamroller
3. Graveyard Of The Living Dead, Halloween Sound

Effects
4. Werewolves - Scary Halloween Sound Effects, Hal-

loween Sound Effects
5. Dracula’s Organ - Scary Halloween Sound Effects,

Halloween Sound Effects
6. Creatures Of The Night (Original Mix), Mannheim

Steamroller
7. This Is Halloween, The Countdown Kids
8. Hall of Screams - Scary Halloween Sound Effects,

Halloween Sound Effects
9. Scary Halloween Haunted House, Sound Fx

10. Grimly Fiendish (Album Edit Version), The Damned

5. ANALYSIS - HOLIDAY

The high values for precision@50, particularly those of
Halloween and Saint Patrick’s, show that a model trained
with user data around Christmas is effective in identify-
ing daily music-temporal context associations. The lower
precision@50 of U.S. Independence Day and the incorrect
tracks being skewed towards the bottom of the list suggests
that our assumption of at least 50 associated tracks for the
holiday may be incorrect. Flaws in the methodology could
also be the cause.

In particular, the assumption that Christmas listening
signals have a distribution that matches those other holi-
days closely is likely flawed. Looking at Christmas signal
in Figure 1 and the Saint Patrick’s signal in Figure 4, they
are similar but do not match exactly. The Christmas tracks
have two peaks, December 24 and December 25, and the
Saint Patrick’s tracks have a single peak on March 17. With
shorter signal lengths, this difference is pronounced and
gives poor results for detecting other holiday tracks. This
is why the experiments in Section 4.1 used rw = 7, and
not the optimal from Section 3, rw = 3.

Among the incorrect U.S. Independence tracks, nearly
one-third were from a single album by electro-punk band
Frittenbude. This highlights other possible reasons for in-
creased engagement such as marketing pushes. This album
appears to have been released in the summer of 2012 and
the synchronized rise and fall of the album’s initial listen-
ing could be one explanation. In this case and other one-
time events, album releases happen just once and could
be separated from the more cyclical holiday listening with
multiple years of data.
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Figure 4. Mean listen rates R for top 100 predicted Saint
Patrick’s Day tracks from March 10, 2012 to March 24,
2012.

The effectiveness of general holiday detection im-
plies one obvious commercial application: an automated,
”always-on” seasonal radio station. With multiple years of
data, the results likely could be improved and characterized
by their change over time. Also, the addition of location
data could highlight geographical differences for improved
recommendations. For example, since our dataset is pri-
marily North America, the tracks in Section 4.2.1 may be
poor recommendations to users celebrating Saint Patrick’s
in Ireland or other parts of the world.

6. FUTURE WORK

The issues with matching the signal shapes of Christmas
tracks to other holidays suggest room for improvement.
Artificial templates or hand labeling a holiday ground truth
could estimate the target distributions more accurately. Al-
though labeling track-temporal context associations with
user data has advantages over the other automated methods
as outlined in Section 1, combining these methods could
produce superior results. Lastly, applying this method-
ology at additional time resolutions (e.g hours, weeks,
months) or exploring how these contexts interact with user
data (e.g. age, geography, personality) could further enrich
the user listening experience.

7. CONCLUSION

This study showed improvements to previous method for
detecting Christmas tracks from user listening data and
generalized the method to detect tracks for other holidays.
The proposed improvements showed small increases of
about 0.01 maximum AUROC for the most popular tracks
but larger improvements of about 0.1 maximum AUROC
for less popular tracks. Detection of Halloween, Saint
Patrick’s Day, and July 4th tracks was promising with pre-
cision@50 at 95%, 99%, and 73%, respectively.
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ABSTRACT

Collaborative filtering systems for music recommendations
are often based on implicit feedback derived from listening
activity. Hybrid approaches further incorporate additional
sources of information in order to improve the quality of
the recommendations. In the context of a music streaming
service, we present a hybrid model based on matrix fac-
torization techniques that fuses the implicit feedback de-
rived from the users’ listening activity with the tags that
users have given to musical items. In contrast to exist-
ing work, we introduce a novel approach to exploit tags
by performing a weighted factorization of the tagging ac-
tivity. We evaluate the model for the task of artist recom-
mendation, using the expected percentile rank as metric,
extended with confidence intervals to enable the compar-
ison between models. Thus, our contribution is twofold:
(1) we introduce a novel model that uses tags to improve
music recommendations and (2) we extend the evaluation
methodology to compare the performance of different rec-
ommender systems.

1. INTRODUCTION AND RELATED WORK

We provide the motivation of our work together with a re-
view of the relevant related work, divided into three parts.
First, we introduce the types of user feedback under con-
sideration. Then, we present the family of models we use
to build recommender systems. Finally, we review the
evaluation methodology.

1.1 Explicit, Implicit and One-Class Feedback

The interactions between users and items provide a use-
ful source of data to produce recommendations [16]. It is
commonly accepted to distinguish between explicit feed-
back and implicit feedback, depending on whether the user
actively provides feedback about an item or this is tracked
from the user’s interaction with the system [1]. Examples
of explicit feedback are rating a movie, giving a ”like” to
a blog post, or tagging an artist, because the user actively

c© Andreu Vall, Marcin Skowron, Peter Knees, Markus
Schedl. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Andreu Vall, Marcin
Skowron, Peter Knees, Markus Schedl. “Improving music recommen-
dations with a weighted factorization of the tagging activity”, 16th Inter-
national Society for Music Information Retrieval Conference, 2015.

provides an opinion. In contrast, the listening histories of
users in a music streaming service are an example of im-
plicit feedback.

The standard approach to make use of implicit feed-
back is to count or aggregate all the interactions for each
user-item pair [5, 7, 8], yielding a user-item-count table.
In structure, this is identical to an explicit feedback user-
item-rating table. We henceforth refer to such data struc-
ture as user-item interactions matrix, regardless of the type
of feedback (implicit or explicit).

In some cases a user-item interaction can express both
positive and negative opinions, in other cases it only re-
flects positive (or active) examples. Ratings in a 1 to 5
scale conventionally range from strongly disliking an item
to strongly liking it. However, tracking whether a user vis-
ited or not a website, only provides a binary feedback de-
scribing action or inaction. Binary feedback is often re-
ferred to as one-class feedback [12, 15, 17], and examples
of it can be found both in explicit and in implicit feed-
back. For example, a user-item interactions matrix (be it
from explicit or implicit feedback) contains intrinsically a
source of one-class feedback, revealing which user-item
pairs were observed and which not.

Inaction must not be confused with a negative opinion,
because a user may not have interacted with an item for a
variety of reasons, not necessarily because of lack of inter-
est. Social tags also exhibit this property, and treating this
correctly will be a key point of the presented model.

1.2 Matrix Factorization for Collaborative Filtering

Collaborative filtering is a widely used recommendation
method which aims at recommending the most relevant
items to a user based on relations learned from previous in-
teractions between users and items [16]. The factorization
of the user-item interactions matrix into latent factors ma-
trices is a well established technique to implement collab-
orative recommender systems, both for explicit feedback
and implicit feedback datasets [7, 10, 15]. Compared to
other methods, it has the advantage of uncovering latent
data structures by solving an optimization problem, instead
of using problem-specific and manually-designed features.

Specific collaborative systems for implicit feedback data
based on matrix factorization techniques are presented in
[7, 15]. The key technique is to use appropriate weights in
the low-rank approximation of the user-item interactions
matrix. More specifically, even if the weighting schemes
are different, both [7, 15] assign higher confidence to the
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observed user-item pairs and lower (but still positive) con-
fidence to the unobserved user-item pairs. This is impor-
tant to handle the uncertainty derived from the one-class
property described before. We will insist on this point later,
because our improved treatment of the tagging activity will
rest on the same principle.

1.3 Hybrid Recommender Systems

In collaborative filtering implementations based on matrix
factorization techniques, hybrid models can be based on
the simultaneous factorization of the user-item interactions
matrix, together with other data for users and items [5,13].
The motivation for that is that latent factors summarizing
user and item properties should be reinforced, or better de-
scribed, if other data sources related to the same users and
items are involved in the optimization problem.

The tags that users assign to musical items –or other
forms of textual data, like user profiles or genre annota-
tions for the items– are an obvious example of potentially
useful additional information. In this line, the research pre-
sented in [5] is a valid starting point, dealing with implicit
feedback data and hybridized with user and item profiles,
built on the basis of tf-idf weights calculated for each user,
each item and each considered word in a dictionary.

Tagging information is an explicit source of feedback
(because users actively provide it) that exhibits, at the same
time, the one-class property described before; the tags as-
signed to musical items are only positive examples (even
if the meaning of a tag is semantically negative). A par-
ticular tag may not have been applied to a musical item,
but this does not imply that the tag is not suited to describe
that musical item. This property of social tags is also re-
ferred to as weak labeling [18]. It is reasonable to assume
though, that the more often a tag has been applied to a mu-
sical item, the more it should be trusted. Similarly, if a user
applies a tag very often, it may be assumed that the tag is
to some extent relevant for her to describe musical items.
To address the uncertainty that arises from this wide range
of possibilities, we propose to exploit the tagging activity
with a weighted matrix factorization scheme similar to the
one applied for collaborative filtering in implicit feedback
datasets. Observed tags can be given higher confidence.
Unobserved tags can be given lower confidence, but still
positive, so that they are not ignored in the recommenda-
tion system.

1.4 Evaluation of Recommender Systems

The Netflix Prize [3] has motivated an important progress
in the domain of collaborative filtering, but probably due to
the specific approach considered in the challenge, research
has centered on attaining maximum levels of accuracy in
the prediction of ratings. However, improvements in pre-
dictive accuracy do not always translate to improved user
satisfaction [14].

To make the evaluation task more similar to a real use
case (although still in an off-line experiment), [9] evalu-
ates different recommender systems on the basis of issued
ranked lists of recommendations. A recommender able to

rank first the relevant items should be considered better
than a recommender that is not able to do so. An exten-
sion of this evaluation methodology to deal with implicit
feedback datasets is proposed in [7] and applied in [8, 12].
It consists in a central tendency measure, called expected
percentile rank, assessing how good is the recommender at
identifying relevant items.

The expected percentile rank is a valid metric to mea-
sure the average behavior of a single recommender system,
but in order to compare the performance of different rec-
ommender systems, considering only mean values can be
inaccurate. We propose to use bootstrapping techniques
to examine the distribution of the expected percentile rank
and test for significant differences between models.

2. METHODOLOGY

This work is framed in the context of music streaming ser-
vices in which users interact with musical items, mainly
listening to music, but also through the free input of text
describing them. We focus on the task of artist recom-
mendations. The listening data is aggregated at the artist
level, obtaining a user-artist-count matrix of implicit feed-
back. The tagging activity yields a user-artist-tag matrix of
one-class feedback, processed to obtain: a user-tag-count
matrix, describing how many times a user applied a tag,
and an artist-tag-count matrix, describing how many times
a tag was applied to an artist. The proposed model is
actually flexible regarding the tagging activity data. In
our experiments, we successfully use a collection of top
used tags (not a complete list of all the used tags) together
with weights describing the tag relevance (instead of actual
counts).

2.1 Recommender System Models

We compare three recommender systems. The first is a
standard collaborative filtering model for implicit feedback
data. The second is a hybrid model incorporating textual
data, that we modify for the specific task of using tags.
Finally, we introduce a novel model, able to improve the
quality of the recommendations through a weighted fac-
torization of the tagging activity.

2.1.1 Implicit Feedback Matrix Factorization (MF )

We use the approach described in [7] to perform collabo-
rative filtering on implicit feedback data. It consists in a
weighted low-rank approximation of the user-artist-count
matrix, adjusting the confidence of each user-artist pair as a
function of the count. Given a system with N users and M
artists, the counts for each user-artist pair are tabulated in a
matrix R ∈ NN×M , where users are stored row-wise and
artists column-wise. A binary matrix R̃ is defined, such
that for each user u and each artist a

R̃ua =

{
1 if Rua > 0

0 if Rua = 0
, (1)

and the following weight function is defined as

w(η, x) = 1 + η log(1 + x). (2)
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Other weight functions can be defined and may better suit
each specific problem and distribution of the data. We
choose a logarithmic relation (instead of the also common
linear relation used in [5, 7, 8]) to counteract the long-tail
distribution of the data, where a majority of users have a
small percentage of the total observed interactions. How-
ever, the detailed optimization of this function is not within
the scope of this work.

Finally, the matrix factorization consists in finding two
D-rank matrices P ∈ RN×D and Q ∈ RM×D (rows are
latent features for users and artists respectively) minimiz-
ing the following cost function:

JMF (P,Q) =
∑

ua∈R
w(α,Rua)

(
R̃ua − PuQ

T
a

)2

+ λ
(
‖P‖2F + ‖Q‖2F

)
.

(3)

Matrix R̃ is reconstructed using P and Q. R̃ua is the en-
try of R̃ corresponding to user u and artist a. Pu is the
row of P corresponding to user u, and Qa is the row of
Q corresponding to artist a. The squared reconstruction
error is weighted using a function of the actual counts in
Rua according to equation (2) and it is summed over all
the user-artist pairs. 1 The parameter α contributes to the
weight function and is determined by grid search. A reg-
ularization term involving the Frobenius norm of P and Q
is added to prevent the model from over-fitting. The regu-
larization parameter λ is also determined by grid search.

2.1.2 Implicit Feedback Matrix Factorization with
Tagging Activity (TMF )

Equation (3) is extended in [5] to incorporate textual infor-
mation. We present a modification of this model to specif-
ically deal with tags. Given a system where T tags have
been used, the counts for each user-tag pair are stored in a
matrix TU ∈ NN×T , where rows correspond to users and
columns correspond to tags. The counts for each artist-tag
pair are stored in a matrix TA ∈ NM×T , where rows corre-
spond to artists and columns correspond to tags. The mod-
ified model factorizes together R̃, TU and TA into three
D-rank matrices P ∈ RN×D, Q ∈ RM×D, X ∈ RT×D

(rows are latent features for users, artists and tags respec-
tively) minimizing the following cost function:

JTMF (P,Q,X) =
∑

ua∈R
w(α,Rua)

(
R̃ua − PuQ

T
a

)2

+ µ1

∑

ut∈TU

(
TU
ut − PuX

T
t

)2

+ µ2

∑

at∈TA

(
TA
at −QaX

T
t

)2

+ λ
(
‖P‖2F + ‖Q‖2F + ‖X‖2F

)
.

(4)

The first term is identical as in (3). The second and third
terms account for the contribution of tags. Xt is the row

1 As described in [7], this includes the zero entries of R as well.

of X corresponding to tag t. Matrices TU and TA are re-
constructed using P,Q andX , and the squared reconstruc-
tion errors are summed over all user-tag pairs and artist-tag
pairs. The parameters µ1, µ2 account for the contribution
of each term to the cost function, and are determined by
grid search. The regularization term is analogous as in (3).

This formulation modifies the one described in [5], in
that it factorizes TU and TA using a single shared tags’
factor matrix X , instead of two dedicated factor matri-
ces. The tagging activity consists of user-artist-tag obser-
vations. Even if we use separated user-tag-count and artist-
tag-count matrices as inputs for the model, the tags must be
factorized in the same space of latent features.

This model factorizes the user-tag and artist-tag raw
counts. If, for example, an artist-tag pair has never been
observed, the model will try to fit a value of 0 counts for it.
This seems an unsuited model, because we know that a tag
that has not been applied may still be relevant.

2.1.3 Implicit Feedback Matrix Factorization with
Weighted Tagging Activity (WTMF )

We introduce a novel approach to improve the hybridiza-
tion with tagging activity, by using a weighted factoriza-
tion scheme similar to the one used for implicit feedback
data. The observed user-tag and artist-tag pairs are given
high confidence and therefore have a higher contribution
to the cost function. The unobserved user-tag and artist-
tag pairs are given low confidence. They become less rel-
evant in the cost function, and at the same time the model
has more freedom to fit them. As the results in Section 3.3
demonstrate, this is a better approach to model the weak
labeling property of social tags.

We define binary matrices T̃U and T̃A, such that for
each user u, each artist a and each tag t

T̃U
ut =

{
1 if TU

ut > 0

0 if TU
ut = 0

T̃A
at =

{
1 if TA

at > 0

0 if TA
at = 0

.

(5)

We factorize together R̃, T̃U and T̃A into three D-rank
matrices P ∈ RN×D, Q ∈ RM×D and X ∈ RT×D (rows
are latent features for users, artists and tags respectively)
minimizing the following cost function:

JWTMF (P,Q,X) =
∑

ua∈R
w(α,Rua)

(
R̃ua − PuQ

T
a

)2

+ µ1

∑

ut∈TU

w(β, TU
ut)
(
T̃U
ut − PuX

T
t

)2

+ µ2

∑

at∈TA

w(γ, TA
at)
(
T̃A
at −QaX

T
t

)2

+ λ
(
‖P‖2F + ‖Q‖2F + ‖X‖2F

)
.

(6)

The equation is similar to (4), but now all the terms in-
volve a weighted factorization. Note that the second and
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third terms have specific weight coefficients β and γ, de-
termined by grid search.

2.2 Parameter Estimation

Alternating Least Squares (ALS) is usually the preferred
method to minimize the objective functions of models based
on matrix factorization [2, 5–8, 15, 19]. ALS is an iterative
method, where subsequently all but one of the factor ma-
trices are kept fixed. This results in quadratic functions
that approximate the original one. At each step, the cost
value is expected to move closer to a local minimum and
the process is repeated until convergence. Since the ap-
proximated functions are quadratic, the exact solution for
the factors can be computed in closed form.

For each of the presented models, we provide the exact
solution for the factors of each user u stored in Pu, each
artist a stored in Qa and each tag t stored in Xt. We in-
troduce some additional notation. Rru , Rca , TU

ra , TU
ct , TA

ra ,
TA
ct refer to the uth, ath, tth row or column (r, c) of the cor-

responding matrix (R, TU , TA). 2 We also need to define
the following matrices:

• W ru
R ∈ RM×M is a diagonal matrix with the weights

computed for the uth row of R in the diagonal

• W ca
R ∈ RN×N is a diagonal matrix with the weights

computed for the ath column of R in the diagonal

• W ru
TU ∈ RT×T is a diagonal matrix with the weights

computed for the uth row of TU in the diagonal

• W ct
TU ∈ RN×N is a diagonal matrix with the weights

computed for the tth column of TU in the diagonal

• W ra
TA ∈ RT×T is a diagonal matrix with the weights

computed for the ath row of TA in the diagonal

• W ct
TA ∈ RM×M is a diagonal matrix with the weights

computed for the tth column of TA in the diagonal

2.2.1 Solution for JMF

For each user u and artist a, the latent factors are given by
{
Pu =

(
QTW ru

R Q+ λI
)−1(

QTW ru
R RT

ru

)

Qa =
(
PTW ca

R P + λI
)−1(

PTW ca
R RT

ca

) (7)

2.2.2 Solution for JTMF

For each user u, artist a and tag t, the latent factors are
given by





Pu =
(
QTW ru

R Q+µ1X
TX + λI

)−1
(
QTW ru

R RT
ru + µ1X

TTUT
ra

)

Qa =
(
PTW ca

R P+µ2X
TX + λI

)−1
(
PTW ca

R RT
ca + µ2X

TTAT
ra

)

Xt =
(
µ1P

TP+µ2Q
TQ+ λ

)−1
(
µ1P

TTUT
ct + µ2Q

TTAT
ct

)

(8)

2 TU and TA may be further transposed, reading TUT and TAT .

2.2.3 Solution for JWTMF

For each user u, artist a and tag t, the latent factors are
given by





Pu =
(
QTW ru

R Q+µ1X
TW ru

TUX + λI
)−1

(
QTW ru

R RT
ru + µ1X

TW ru
TUT

UT
ra

)

Qa =
(
PTW ca

R P+µ2X
TW ra

TAX + λI
)−1

(
PTW ca

R RT
ca + µ2X

TW ra
TAT

AT
ra

)

Xt =
(
µ1P

TW ct
TUP + µ2Q

TW ct
TAQ+ λ

)−1
(
µ1P

TW ct
TUT

UT
ct + µ2Q

TW ct
TAT

AT
ct

)

(9)

2.3 Producing Recommendations

The technique employed to produce recommendations is
the same for all the models. Once the factor matrices P,Q
and X are learned, the user-artist preferences are predicted
as Z = PQT . Note that the tags’ factor matrix X is not
directly involved in the prediction, although it contributed
to a better estimation of P and Q. The new matrix Z is
expected to be a reconstruction of R̃ for the observed user-
artist pairs. For unobserved entries, Z is expected to reveal
potential preferences on the basis of the learned user and
artist factors. The closer a predicted user-artist preference
is to 1, the more confidence we have that it corresponds to
an interesting artist for the user. For each user u, a recom-
mendation list is prepared showing the artists with higher
predicted preference values in Zu.

3. EXPERIMENTAL STUDY

3.1 Dataset

We compare the different models on a dataset of Last.fm
listening histories, top tags used by users and top tags ap-
plied to artists, collected through the Last.fm API. 3 The
combination of the standard Taste Profile Subset 4 with the
Last.fm tags dataset 5 would seem a preferable choice, but
the absence of users’ tagging activity makes it unsuited.

The dataset is built as a stable subset of a running crawl
of Last.fm listening events. The original crawl includes
only users with non-empty country information, non-empty
gender information and a value in the age field between 10
and 80 years, although such filtering is actually not needed.
There is no constraint on the minimum or maximum num-
ber of artists a user has listened to. However, we only in-
clude users such that at least 95% of their listened artists
have a valid MusicBrainz 6 identifier, which is required to
accurately crawl the artists’ tagging activity. This does not
bias the dataset towards popular artists, because the Mu-
sicBrainz is an open and collaborative platform, includ-
ing a wide variety of artists. The users’ tagging activity
is fetched with the Last.fm user names.

3 http://www.last.fm/api
4 http://labrosa.ee.columbia.edu/millionsong/tasteprofile
5 http://labrosa.ee.columbia.edu/millionsong/lastfm
6 https://musicbrainz.org/
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# listened artists # users

1− 10 64

11− 20 84

21− 30 122

31− 40 77

41− 50 96

50− 100 466

101− 2, 332 1, 993

total 2, 902

Table 1: Distribution of users per number
of listened artists.

The dataset includes 21, 852, 559 listening events, re-
lating to 2, 902 users and 71, 223 artists, yielding 687, 833
non-zero user-artist-count entries. This corresponds to a
matrix density of roughly 0.3%. Table 1 shows the distri-
bution of users as a function of the number of artists they
listened to.

The top tags for each user (if any) are provided together
with a count variable describing how many times the user
applied it. The top tags applied to an artist (if any) are pro-
vided together with a percentage relative to the most fre-
quently applied tag [11]. Because the API functions only
return the top tags, we only observe a partial set of the tag-
ging activity. In addition, although the user is presented
with previously used tags, she can always input free text.
To overcome these limitations, we perform regularization
and simplification operations to the tag strings, namely: re-
placements of genre abbreviations with their extended ver-
sion, spelling corrections, removal of non-alphanumeric
characters and mapping of different spelling variants to a
unique tag string, resulting in a unified set of tokens. After
this process is applied to the fetched tags, we are left with
630 unique tags for 600 users and 12, 902 unique tags for
67, 332 artists, among which 494 unique tags are identified
as identical between the user and the artist list. Note that
tags were found for most of the artists, but only for 20% of
the users. Probably, only a small subset of active users use
the tagging functionality.

The whole matrix of user-artist counts is used, although
not all users or artists have related tagging activity. Tags
are a complement whenever they are available.

3.2 Evaluation Methodology

The most reliable evaluation method for a recommender
system is an actual large-scale on-line experiment, where
real users interact with the system [16]. This requires a
complex infrastructure which, unfortunately, is not within
the scope of this work. Since we only have access to his-
torical data, we can not measure how new recommenda-
tions would be perceived by the users. Furthermore, in
contrast to explicit feedback applications, accuracy met-
rics for predicted ratings are not meaningful for implicit
feedback. Therefore, we adopt the evaluation approach
proposed in [9] and adapted in [7] to deal with implicit

feedback datasets in a recall-oriented setting and we addi-
tionally propose an extension to it.

The observed user-artist pairs are split into training and
test sets to perform 5-fold cross validation, letting each
user have approximately 80% of the listened artists in the
training set and 20% in the test set. For each user-artist
pair u, a assigned to the test set, a random list of artists
(not including a) is drawn. The list is then ranked accord-
ing to the preferences of user u, learned from the training
set as explained in Section 2. Finally, a is inserted in the
sorted list, and its percentile rank within the list is stored
as rankua. 7 If a is ranked among the top positions of the
list, then its percentile rank is close to 0%. If it is ranked
in last positions, then its percentile rank is close to 100%.

After this process is done over all the splits, rankua is
known for all the observed user-artist pairs in the dataset.
Then, following [5, 7, 8], the expected percentile rank is
defined as the weighted average of rankua with weights
given by the user-artist counts:

rank =

∑

ua∈R
Ruarankua

∑

ua∈R
Rua

. (10)

Correctly ranking a highly relevant artist is more impor-
tant than correctly ranking a less relevant artist. Likewise,
failing to recommend a highly relevant artist is worse than
failing to recommend a less relevant one. Values of rank
close to 0% indicate that the recommender is able to cor-
rectly rank the relevant artists. Producing ranked lists uni-
formly at random results in an expected percentile rank of
50%. Ranking all the relevant items in the last position of
the list results in an expected percentile rank of 100%.

We extend the evaluation methodology by building con-
fidence intervals of rank. This allow us to test for signif-
icant differences in the performance of models. We use
basic bootstrap confidence intervals, based on the boot-
strap distribution of the expected percentile rank (see [4]).
For all the observed user-artist pairs in the dataset, random
samples with replacement and with the same size as the
dataset are drawn. For each sample of user-artist pairs, the
expected percentile rank is computed. We repeat this step
1, 000 times to obtain the bootstrap distribution of rank.
We then build 95% confidence intervals of rank using the
basic bootstrap scheme described in [4].

3.3 Model Comparison

The models are evaluated and compared for a varying num-
ber of latent factors D, and for a varying number of train-
ing iterations. On the one hand, we fix the number of itera-
tions to 10 and evaluate the models with 5, 10, 20, 50, 100
latent factors. On the other hand, we fix the number of
factors to 10 and evaluate the models for 5, 10, 20, 50, 100
training iterations. We choose 10 factors and 10 training

7 Lists of any length may be prepared, and the percentile rank provides
a unified scale. We use lists of 100 artists in our experiments. According
to our experience, longer lists do not yield significant differences.
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Figure 1: Model comparison for different number of latent
factors. The dots correspond to rank and the error bars
display 95% basic bootstrap confidence intervals. The dif-
ferent models are dodged to avoid overlapping. The top
and center lines correspond to the baseline models. The
lowest corresponds to the presented model.

iterations as a basic setting, because they balance well per-
formance and computational requirements.

For each model and each combination of factors and it-
erations, we tune the parameters α, β, γ, µ1, µ2 and λ by
grid search. We choose the set of values that provides low-
est expected percentile rank, computed by 5-fold cross val-
idation as described in Section 3.2. Figures 1 and 2 show
the results for different number of factors and iterations re-
spectively.

Note that all models, including the plain matrix factor-
ization model, provide very good results, with values of
expected percentile rank under 4%. This implies that, on
average, the models are able to rank relevant artists among
the top 4 positions of a list of 100 random artists.

The performance of TMF and WTMF improves signif-
icantly when more latent factors are used (see Figure 1).
The presented model outperforms the baselines, although
for 100 factors the difference between TMF and WTMF
is small. We examine this case. We compute a 95% ba-
sic bootstrap confidence interval for the difference of rank
and it does not include 0. We conclude that the difference
in performance is still significant. For lower number of
factors the differences between the presented model and
the baselines are remarkable. Good performance at inex-
pensive computational requirements is a crucial property,
especially for large-scale implementations.

Increasing the number of training iterations results in
smaller improvements (see Figure 2). Our model clearly
outperforms the baselines in this set of experiments too,
with a difference of nearly 1% in expected percentile rank.
With the basic setting of 10 factors, TMF can not fully ex-
ploit the tagging activity and performs comparably to MF.
For experiments with 20 or more training iterations they
perform exactly as well, because the grid search process
finds that discarding the tagging activity yields best results.
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Figure 2: Model comparison for different number of train-
ing iterations. The dots correspond to rank and the error
bars display 95% basic bootstrap confidence intervals. The
different models are dodged to avoid overlapping. The top
lines correspond to the baseline models. The lowest corre-
sponds to the presented model.

TMF performs slightly better than MF with 5 training iter-
ations. The performance of TMF does not improve mono-
tonically with more training iterations, although the model
is not over-fitting. This is because after 5 iterations the
cost function of TMF reaches a flat region close to a local
minimum, resulting in small performance variations.

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper we presented a novel model to incorporate
tagging activity into implicit feedback recommender sys-
tems. Our approach proves to work better than previous
hybrid models, based on experiments conducted with real
data from Last.fm, a well-known music streaming service.
We extended the common evaluation methodology com-
puting basic bootstrap confidence intervals for the expected
percentile rank. This allows us to test for significant differ-
ences in the performance of models.

As future work, we will evaluate the robustness of the
presented model for different recommendation tasks. We
are particularly interested in the task of song recommenda-
tions, but we will also experiment in fields other than mu-
sic, like movies or websites. Another interesting question
is the effect of the size and connectedness of the tagging
data on the final quality of the recommendations. We will
investigate how rich and linked together needs to be the
tagging activity in order to enhance the recommendations.
This could provide indications of when can the model be
successfully utilized, or which kind of processing of the
tag strings is required to make the tagging activity helpful.
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ABSTRACT

Dynamic Bayesian networks (e.g., Hidden Markov Mod-
els) are popular frameworks for meter tracking in music
because they are able to incorporate prior knowledge about
the dynamics of rhythmic parameters (tempo, meter, rhyth-
mic patterns, etc.). One popular example is the bar pointer
model, which enables joint inference of these rhythmic pa-
rameters from a piece of music. While this allows the
mutual dependencies between these parameters to be ex-
ploited, it also increases the computational complexity of
the models. In this paper, we propose a new state-space
discretisation and tempo transition model for this class of
models that can act as a drop-in replacement and not only
increases the beat and downbeat tracking accuracy, but also
reduces time and memory complexity drastically. We in-
corporate the new model into two state-of-the-art beat and
meter tracking systems, and demonstrate its superiority to
the original models on six datasets.

1. INTRODUCTION

Building machines that mimic the human understanding
of music is vital for a variety of tasks, such as organising
and managing today’s huge music collections. In this con-
text, automatic inference of metrical structure from a mu-
sical audio signal plays an important role. Generally, the
metrical structure of music builds upon a hierarchy of ap-
proximately regular pulses with different frequencies. In
the centre of this hierarchy is the beat, a pulse to which
humans choose to tap their feet. These beats are again
grouped into bars, with the downbeat denoting the first beat
of each bar.

Several approaches have been proposed for tackling the
problem of automatic inference of meter (or subcompo-
nents such as beats and downbeats) from an audio sig-
nal, with approaches based on machine learning currently
being the most successful [1, 5, 12, 13, 22]. All of these
approaches incorporate probabilistic models, but with dif-
ferent model structures: the systems introduced in [5, 13,
22] decouple tempo detection from the detection of the

c© Florian Krebs, Sebastian Böck, and Gerhard Widmer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Florian Krebs, Sebastian Böck, and
Gerhard Widmer. “An Efficient State-Space Model for Joint Tempo and
Meter Tracking”, 16th International Society for Music Information Re-
trieval Conference, 2015.

beat/downbeat phase, which has the advantage of reducing
the search space of the algorithms but can be problematic
if the tempo detection is erroneous. Others [1, 12] model
tempo and beat/downbeat jointly, taking into account their
mutual dependency, which leads to increased model com-
plexity.

One popular model that jointly models tempo and bar
position is the bar pointer model, first proposed in [20].
In addition to tempo and bar position, the model also inte-
grates various rhythmic pattern states. It has been extended
by various authors: in [12,14] the benefit of using rhythmic
pattern states to analyse rhythmically diverse music was
demonstrated, in [18] a simplification for models with mul-
tiple rhythmic pattern states was proposed, in [17] the la-
bel of an acoustic event was additionally modelled in order
to enable a drum robot to distinguish different instruments,
and in [6] it was applied to a drum transcription task. These
algorithms share the problem of a high space and time
complexity because of the huge state-space in which they
perform inference. In order to make inference tractable,
the state-space is usually divided into discrete cells, with
either fixed [1, 6, 12, 14, 17, 20] or dynamic [15, 18, 21] lo-
cations in the state-space. While the former approach can
be formulated as a hidden Markov model (HMM), which
performs best but is prohibitively complex, the latter uses
particle filtering (PF), which is fast but performs slightly
worse in sub-tasks such as downbeat tracking [15].

In this paper, we propose a modified bar pointer model
which not only increases beat and downbeat tracking ac-
curacy, but also reduces drastically time and memory com-
plexity. In particular, we propose (a) a new (fixed grid)
discretisation of the joint tempo and beat/bar state-space
and (b) a new tempo transition model. We incorporated the
new model into two state-of-the-art beat and meter tracking
systems, and demonstrate its superiority on six datasets.

2. METHOD

In this section, we describe how we tackle the problem of
metrical structure analysis using a probabilistic state-space
model. In these models, a sequence of hidden variables,
which in our case represent the meter of an audio piece,
is inferred from a sequence of observed variables, which
are extracted from the audio signal. For ease of presenta-
tion, we now consider a state-space of two hidden vari-
ables, the position within a bar and the tempo. Includ-
ing additional hidden variables, e.g., a rhythmical pattern

72



state [12, 14, 18, 20, 21] or an acoustic event label [6, 17] is
straightforward. In the following, we describe the original
bar pointer model [20], its shortcomings, and the proposed
improvements.

2.1 The original bar pointer model

The bar pointer model [20] describes the dynamics of a
hypothetical pointer which moves through the space of the
hidden variables throughout a piece of music. At each time
frame k, we refer to the (hidden) state of the bar pointer as
xk = [Φk, Φ̇k], with Φk ∈ {1, 2, ...,M} denoting the po-
sition within a bar, and Φ̇k ∈ {Φ̇min, Φ̇min +1, ..., Φ̇max}
the tempo in bar positions per time frame. M is the total
number of discrete positions per bar,N = Φ̇max−Φ̇min+
1 is the total number of distinct tempi, Φ̇min and Φ̇max are
respectively the lowest and the highest tempo. See Fig. 1a
for an illustration of such a state space. Finally, we denote
the observation features as yk.

Overall, we want to compute the most likely hidden
state sequence x∗

1:K = {x∗
1,x

∗
2, ...,x

∗
K} given a sequence

of observations {y1,y2, ...,yK} for each audio piece as

x∗
1:K = arg max

x1:K

P (x1:K | y1:K). (1)

with

P (y1:K |x1:K) ∝ P (x1)

K∏

k=2

P (xk|xk−1)P (yk|xk). (2)

Here, P (x1) is the initial state distribution, P (xk|xk−1)
is the transition model, and P (yk|xk) is the observation
model, which we further describe in the bottom of this sec-
tion. Eq. 1 can be solved using the well-known Viterbi
algorithm [16]. Finally, the set of downbeat frames D can
be extracted from the sequence of bar positions as

D = {k : Φ∗
k = 1}, (3)

and the set of beat frames can be obtained analogously by
selecting the time frames which correspond to a bar posi-
tion that matches a beat position.

2.1.1 Initial distribution

Here, any prior knowledge (e.g., about tempo distributions)
can be incorporated into the model. Like most systems, we
use a uniform distribution in this work.

2.1.2 Transition model

The transition model P (xk | xk−1) can be further decom-
posed into a distribution for each of the two hidden vari-
ables Φk, and Φ̇k by:

P (xk | xk−1) = P (Φk | Φk−1, Φ̇k−1)·
· P (Φ̇k | Φ̇k−1). (4)

The first factor is

P (Φk | Φk−1, Φ̇k−1) = 1x, (5)

where 1x is an indicator function that equals one if Φk =
(Φk−1 + Φ̇k−1 − 1) mod M + 1, and zero otherwise. The
modulo operator makes the bar position cyclic (the last,
light grey column in Fig. 1a is identical to the first column).

The second factor P (Φ̇k | Φ̇k−1) is implemented by
If Φ̇min ≤ Φ̇k ≤ Φ̇max,

P (Φ̇k | Φ̇k−1) =





1− pΦ̇, Φ̇k = Φ̇k−1;
pΦ̇

2 , Φ̇k = Φ̇k−1 + 1;
pΦ̇

2 , Φ̇k = Φ̇k−1 − 1,

(6)

otherwise P (Φ̇k|Φ̇k−1) = 0.
pΦ̇ is the probability of a tempo change. From Eq. 6 it can
be seen that the pointer can perform three tempo transitions
from each state (indicated by arrows in Fig. 1a).

2.1.3 Observation model

In this paper, we use two different observation models:
The first one uses recurrent neural networks to derive a
probability of a frame being a beat or not [1]. The sec-
ond one models the observation probabilities with Gaus-
sian mixture models from a two-dimensional onset fea-
ture [12, 14]. As the focus of this paper lies on the state
discretisation and the tempo transition model, the reader is
referred to [1, 12, 14] for further details.

2.2 Shortcomings of the original model

Previous implementations of the bar pointer model [1, 2,
6, 12, 14, 17] followed [20] in dividing the tempo-position
state space into equidistant points, with each point aligned
to an integer-valued bar position and tempo (see Fig. 1a).
This discretisation has a number of drawbacks, which are
further explained in the following.

2.2.1 Time resolution

As shown in Fig. 1a, the number of position grid points per
bar is constant across the tempi. This means that the grid
of a bar played at a low tempo has a lower time resolu-
tion than of a bar played at high tempo, because both are
divided into the same number of cells. In contrast, there
are more observations available for a bar at a low tempo
than for a bar at a high tempo, since the observations are
extracted at a constant frame rate. This causes a mismatch
between the time resolution of the feature extraction and
the time resolution of the discretised bar position.

2.2.2 Tempo resolution

As shown in Fig. 1a, the distance between two adjacent
tempo grid points is constant across the grid. This is in-
consistent with tempo sensitivity experiments on humans,
which have shown that the human ability to notice tempo
changes is proportional to the tempo, with the JND (just
noticeable difference) being around 2-5% of the inter beat
interval [4]. Therefore, in order to get a sufficiently high
tempo resolution at lower tempi, a huge number of tempo
states has to be chosen.
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Figure 1: Toy example with M = 16 and N = 6: Each dot corresponds to a (hidden) state in the tempo-bar-position
state-space. The arrows indicate examples of possible state transitions.

2.2.3 Tempo stability

As the tempo model (see Eq. 6) forms a first-order Markov
chain, the current tempo state is independent of all tempo
states given the past tempo state. This means that the tempo
model is not able to reflect any long term dependencies be-
tween tempo states, which may result in unstable tempo
trajectories.

2.3 Proposed model

This section introduces a solution to the problems described
above. To simplify notation we assume a bar has four
beats. Extending to other time signatures [20] or modelling
beats instead of bars [1] is straightforward.

2.3.1 Time resolution

We propose making the number of discrete bar positions
M dependent on the tempo by using exactly one bar posi-
tion state per audio frame (and thus per observation feature
value). The number of observations per bar (four beats) at
a tempo T in beats per minute (BPM) is

M(T ) = round(
4× 60

T ∗∆
) (7)

with ∆ being the audio frame length. Using Eq. 7, we
compute the number of bar positions of the tempo limits
M(Tmin) and M(Tmax).

2.3.2 Tempo resolution

We can now either model all Nmax tempi that correspond
to integer valued bar positions in the interval [M(Tmax),
M(Tmin)], with

Nmax = M(Tmin)−M(Tmax) + 1, (8)

or select only a subset of N tempo states. In Section 3, we
evaluate the performance of the transition model for vari-
ous numbers of tempo states. For N < Nmax, we choose
the tempo states by distributing N states logarithmically
across the range of beat intervals, trying to mimic the JNDs
of the human auditory system [4].

2.3.3 Tempo stability

To increase the stability of the tempo trajectories we only
allow transitions at beat positions within a bar. This is il-
lustrated in Fig. 1b with the arrows showing examples of
possible state transitions. In contrast to the original model
which allows three tempo transitions at every time step, we
allow transitions to each tempo, but only at beat times. The
new tempo transition model then becomes:
If Φk ∈ B,

P (Φ̇k|Φ̇k−1) = f(Φ̇k, Φ̇k−1)
else

P (Φ̇k|Φ̇k−1) =

{
1, Φ̇k = Φ̇k−1;
0, otherwise

(9)

B is the set of bar positions that corresponds to beats, and
f(·) is a function that models the tempo change probabil-
ities. We experimented with various functions (Gaussian,
Log-Gaussian, Gaussian mixtures), but found this expo-
nential distribution to be performing best:

f(Φ̇k, Φ̇k−1) = exp(−λ× | Φ̇k

Φ̇k−1

− 1|) (10)

where the rate parameter λ ∈ Z≥0 determines the steep-
ness of the distribution. A value of λ = 0 means that tran-
sitions to all tempi are equally probable. In practice, for
music with roughly constant tempo, we set λ ∈ [1, 300].
Fig. 2 shows the tempo transition probabilities for various
values of λ.

2.4 Complexity of the inference algorithm

In this section, we investigate time and memory complex-
ity of the bar pointer model, considering only the com-
plexity of the (Viterbi) inference and ignoring the contribu-
tion of computing the observation features and observation
probabilities.

Both time and space complexity depend on the number
of states of the model. The number of states, in turn, de-
pends on the number of bar positions, the tempo ranges,
the audio frame length, and the tempo resolution that we
chose to model. Let us assume that we have a model with
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Figure 2: Tempo change probability density (Eq. 10) for
various values of λ.

S hidden states, T possible state transitions per frame, and
an audio excerpt withK frames. The memory requirement
of the algorithm is then simply S ×K, as we have to store
the best predecessor state for each of the S states for each
time frame during Viterbi decoding. The time complexity,
on the other hand, is T ×K, as we have to compute T tran-
sitions at each time step. In Table 1 we show the values of
S and T of the models used in this paper.

3. EXPERIMENTAL SETUP

In this section, we evaluate the proposed model with real-
world music data in two experiments 1 . In the first exper-
iment, we investigated the effect of the number of tempo
states N and the rate parameter λ of the tempo transi-
tion function on the meter tracking performance on a train-
ing set. We evaluated only the beat tracking performance,
as this is the most fundamental task that we wanted to
solve. In the second experiment, we integrated the pro-
posed model with the parameters determined in Experi-
ment 1 into two state-of-the-art systems and compared the
meter tracking performance in terms of accuracy and com-
plexity with the original models. Below, we describe the
datasets, the evaluation metrics, and the meter tracking
models.

3.1 Datasets

In this work, we used seven test datasets, one for Experi-
ment 1 and the remaining six for Experiment 2. For more
details about each datasets, see the corresponding refer-
ences:

Experimental dataset: This dataset is a subset of the
1360-songs dataset [8] excluding the Hainsworth dataset,
because it was used in Experiment 2. In total, it includes
1139 excerpts (total length 662 minutes).

Ballroom dataset [9]: A dataset of 698 30-second ex-
cerpts of ballroom dance music (total length 364 minutes).

1 Additional information as well as the code to reproduce the results
of this paper are available at http://www.cp.jku.at/people/
krebs/ismir2015/

It was annotated with beat and downbeat times in [14].
Hainsworth dataset [10]: A dataset with 222 pieces (to-

tal length 199 minutes), covering a wide spectrum of gen-
res.

SMC dataset [11]: A dataset with 217 pieces which are
considered difficult for meter inference (total length 145
minutes). This set is also part of the MIREX evaluation.

Greek dataset [12]: 42 full songs of Cretan leaping
dances in 2/4 meter (total length 140 minutes).

Turkish dataset [12]: 82 one-minute excerpts of Turkish
Makam music (total length 82 minutes).

Indian dataset [19]: The same subset of 118 two-minute
long pieces (total length 235 minutes) as used in [12].

3.2 Evaluation metrics

To assess the ability of an algorithm to infer metrical struc-
ture, we used five evaluation metrics - four for beat track-
ing and one for downbeat tracking.

F-Measure (F): computed from the number of true pos-
itives (correctly detected beats within a window of ±70ms
around an annotation), the false positives, and the false
negatives.

CMLt: quantifies the percentage of correctly tracked
beats at the correct metrical level. In order to count a beat
as correct, both previous and next beats have to match an
annotation within a tolerance window of ±17.5% of the
annotated beat interval.

AMLt: the same as CMLt, but the detected beats are
also considered to be correct if they occur on the off-beat
or at double or half of the ground-truth tempo.

Cemgil (Cem): places a Gaussian function with stan-
dard deviation of 40 ms around the annotations and com-
putes the average likelihood of the corresponding beat clos-
est to each annotation. In contrast to the other measures
with hard decision boundaries (due to rectangular tolerance
windows), this measure is also sensitive to small timing
differences between annotated and detected beats.

Information Gain (D): measures the deviation of the
beat error distribution from a uniform distribution by com-
puting the Kullback-Leibler divergence.

Downbeat F-Measure (DB-F): is the same F-measure
as used for beats, but considers only downbeats.

We implemented the evaluation metrics according to [3]
with standard settings. To make them comparable with
other work, we excluded the first five seconds in Experi-
ment 2 when comparing with the model from [12] but did
not exclude them when comparing with the results from [1].

3.3 Meter tracking models

To compare the proposed to the original model, we tested
its performance with two state-of-the-art meter tracking
systems:

RNN-BeatTracker [1]: This model uses a recurrent neu-
ral network to compute the probability of a frame being a
beat. This probability is used as an observation probability
for an HMM which jointly models tempo and the position
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within a beat period. We used the same MultiModelBeat-
Tracker model as described in [1]. The model uses a frame
length of 10 ms. Only beats are detected with this model.

GMM-BarTracker [12, 14]: Gaussian Mixture Models
(GMMs) are used to compute the observation probabilities
for an HMM that jointly models tempo, position within a
bar and a set of rhythmic bar-patterns. For Experiment 1,
the GMMs were trained on the Ballroom, the Beatles [3],
the Hainsworth and the RWC Popular [7] datasets, using
three rhythmic patterns that correspond to the time signa-
tures 2/4, 3/4 and 4/4. Pieces with other time signatures
were excluded. For Experiment 2, we used an updated 2

version of the model described in [12]. The model uses a
frame length of 20 ms and integrates eight rhythmic pat-
tern states, one for each of the rhythmic classes. It outputs
beats and downbeats.

Note that the difference between original and proposed
lies only in the definition of the hidden states and the tran-
sition model; both use the same observation model, initial
distribution, and tempo ranges.

4. RESULTS AND DISCUSSION

4.1 Experiment 1

In this experiment, we evaluated the influence of two pa-
rameters of the proposed transition model on the meter
tracking performance. These parameters are the width of
the tempo change distribution parametrised by the rate λ
(Section. 2.3.3, Fig. 3) and the number of tempo states N
(Section 2.3.1, Fig. 4). We chose to display the Cemgil
accuracy in Figs. 3 and 4, because it is the only measure
that makes a soft decision to count a beat as correct by us-
ing a Gaussian window and thus also takes into account
small timing variations. Generally, the plots for the other
measures were similar.

Fig. 3 shows the effect of the parameter λ on the Cemgil
beat tracking accuracy for both the RNN-BeatTracker and
the GMM-BarTracker on the experimental dataset, using
the maximum number of tempo states Nmax. The max-
imum Cemgil values were obtained with λ = 125, and
λ = 95 respectively.

Using these settings for λ, we investigated the effect of
the number of tempo states N on the beat tracking per-
formance, which is shown in Fig. 4. As the two systems
use a different audio frame rate, the maximum number of
tempo states Nmax is different too (see Section 2.3.1). Us-
ing a tempo range of [55, 215] BPM as in [1], the RNN-
BeatTracker has at most Nmax = 82 tempo states, while
for the GMM-BarTracker Nmax = 41. As can be seen
from Fig. 4, the Cemgil accuracy converges at ≈ 75 tempo
states for the RNN-BeatTracker and at ≈ 40 for the GMM-
BarTracker. This finding suggests that the BarTracker might
also benefit from a higher audio frame rate and therefore a
higher number of tempo states. In addition, the number
of tempo states is a suitable parameter to select a trade-off
between speed and accuracy.

2 http://www.cp.jku.at/people/krebs/ismir2014/
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Figure 3: Effect of parameter λ on beat tracking Cemgil
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Figure 4: Effect of the number of tempo states on beat
tracking Cemgil metric on the experimental dataset.

4.2 Experiment 2

In this experiment, we integrated the proposed model into
two state-of-the-art meter tracking systems (Section 3.3)
and compared them to the original models. The beat and
downbeat accuracy scores of the original [1, 12] and pro-
posed models, together with the number of states and tran-
sitions, are shown in Table 1. The proposed model used
the parameters λ and N obtained in Experiment 1.

As can be seen, the proposed transition model outper-
forms the original model with respect to all performance
metrics on all datasets (except AMLt (-0.2%) on the Ball-
room dataset), with the added advantage of drastically re-
duced complexity. The CMLt metric in particular seems to
benefit from the proposed model, with up to 20% relative
improvement on the Greek dataset. Apparently, the restric-
tion to change tempo only at beat times results in higher
stability and therefore better performance in measures that
are sensitive to continuity, such as CMLt and AMLt.

A comparison of the state-space sizes of the original and
proposed models shows that the latter uses far fewer states
and transitions. This is particularly apparent for the GMM-
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F Cem CMLt AMLt D DB-F States Transitions
RNN-BeatTracker

Ballroom
Original [1] (20 tempo states) 0.910 0.845 0.830 0.924 3.469 - 11 520 33 280
Proposed (82 tempo states) 0.919 0.880+ 0.854 0.922 3.552 - 5 617 8 343
Proposed (55 tempo states) 0.917 0.878 0.848 0.921 3.536 - 3 369 4 496

Hainsworth
Original [1] (20 tempo states) 0.840 0.707 0.803 0.881 2.268 - 11 520 33 280
Proposed (82 tempo states) 0.851 0.730 0.805 0.885 2.337 - 5 617 8 343
Proposed (55 tempo states) 0.851 0.729 0.791 0.886 2.332 - 3 369 4 496

SMC
Original [1] (20 tempo states) 0.529 0.415 0.428 0.567 1.460 - 11 520 33 280
Proposed (82 tempo states) 0.540 0.430 0.460 0.613 1.579 - 5 617 8 343
Proposed (55 tempo states) 0.543 0.431 0.458 0.613 1.578 - 3 369 4 496

GMM-BarTracker
Greek
Original [12] (18 tempo states) 0.916 0.810 0.778 0.952 2.420 0.777 133 200 376 800
Proposed (35 tempo states) 0.956 0.850 0.935+ 0.965 2.625 0.812 26 716 41 708

Indian
Original [12] (18 tempo states) 0.799 0.684 0.613 0.845 1.988 0.476 133 200 376 800
Proposed (35 tempo states) 0.850+ 0.737+ 0.703 0.942+ 2.415+ 0.515 26 716 41 708

Turkish
Original [12] (18 tempo states) 0.861 0.679 0.694 0.840 1.431 0.617 133 200 376 800
Proposed (35 tempo states) 0.877 0.689 0.732 0.877 1.575 0.632 26 716 41 708

Table 1: Performance of the original and proposed transition model on the Ballroom, Hainsworth, SMC, Greek, Indian,
and Turkish dataset. The + symbol denotes significant (p < 0.05) improvement over the result in the row above, using a
one-way analysis of variance (ANOVA) test of significance.

BarTracker, which has a priori a larger state space because
it models (a) bars instead of beats and (b) eight rhythmic
patterns. With the original GMM-BarTracker, processing
a four-minute piece (12 000 frames at 50 fps), required re-
membering 1.60 × 109 state ids in the Viterbi algorithm,
which needs 6.39 GB stored as 32-bit integers. In con-
trast, using the proposed model, only 0.32 × 109 states
must be stored - a demand that can be met using 16-bit
integers in only 0.64 GB of memory. With a MATLAB
implementation on an Intel Core i5-2400 CPU with 3.1
GHz, we can therefore reduce the computation time for
the Turkish dataset from 45.8 minutes to 4.2 minutes, in-
cluding the computation of the audio features (which takes
only 18 seconds). Additionally, as already shown in Exper-
iment 1, we can further reduce the number of tempo states
from 82 (the maximum number of tempo states as com-
puted in Section 2.3.1) to 55 with the RNN-BeatTracker,
with only marginal performance decrease. Compared to
the original model, this implies a reduction of the num-
bers of states and transitions by factors of three and seven,
respectively. Since in the proposed model most position
states are needed to model lower tempi, the lower tempo
limits mainly determine the size of the state space.

5. CONCLUSIONS

In this paper, we have proposed a new discretisation and
tempo transition model that can be used as a drop-in re-
placement for variants of the bar pointer model. We have
shown that our model outperformed the original one in 32
of 33 test cases, while substantially reducing space and
time complexity. We believe that this is an important step
towards lightweight, real-time capable, high-performance
meter inference systems.

As part of future work, we plan to investigate whether
changing tempo only at beat positions also stabilises the
particle filter versions of the bar pointer model [15, 18],
which would further facilitate reducing computational com-
plexity.
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tracking. IEEE/ACM Transactions on Audio, Speech
and Language Processing, 22(4):816–825, 2014.

78 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



AUTOMATIC HANDWRITTEN MENSURAL NOTATION INTERPRETER:
FROM MANUSCRIPT TO MIDI PERFORMANCE

Yu-Hui Huang�?, Xuanli Chen�?, Serafina Beck†, David Burn†, and Luc Van Gool�∓
�ESAT-PSI, iMinds, KU Leuven †Department of Musicology, KU Leuven ∓D-ITET, ETH Zürich
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ABSTRACT

This paper presents a novel automatic recognition frame-
work for hand-written mensural music. It takes a scanned
manuscript as input and yields as output modern music
scores. Compared to the previous mensural Optical Music
Recognition (OMR) systems, ours shows not only promis-
ing performance in music recognition, but also works as
a complete pipeline which integrates both recognition and
transcription.

There are three main parts in this pipeline: i) region-of-
interest detection, ii) music symbol detection and classifi-
cation, and iii) transcription to modern music. In addition
to the output in modern notation, our system can gener-
ate a MIDI file as well. It provides an easy platform for
the musicologists to analyze old manuscripts. Moreover,
it renders these valuable cultural heritage resources avail-
able to non-specialists as well, as they can now access such
ancient music in a better understandable form.

1. INTRODUCTION

Cultural heritage has become an important issue nowadays.
In the recent decades, old manuscripts and books have been
digitalized around the world. As more and more libraries
are carrying out digitalization projects, the number of manu-
scripts increases exponentially every day. The texts in these
manuscripts can be further processed using Optical Char-
acter Recognition (OCR) techniques while the music notes
can be processed by Optical Music Recognition (OMR)
techniques. However, due to the nature of the manuscript,
the challenges of OMR and OCR have to be addressed
differently. For example, OMR has to deal with differ-
ent types of notations from different time periods, such
as Chant notation used throughout the medieval and the
Renaissance periods while white mensural notation used
during the Renaissance. Even within the same period, mu-
sic symbols vary in different geographical areas [13]. In

c© Yu-Hui Huang�?, Xuanli Chen�?, Serafina Beck†,
David Burn†, and Luc Van Gool�∓.
Licensed under a Creative Commons Attribution 4.0 International Li-
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formance”, 16th International Society for Music Information Retrieval
Conference, 2015.

Figure 1: The overview of our framework. (a) Original
image after ROI selection. (b) After preprocessing. (c)
Symbol segmentation. (d) Transcription results.

addition to the semantic characteristic, OMR has the addi-
tional problem as OCR of having to cope with the physical
condition of historical documents [15].

While several OMR systems exist for ancient music
scores in white mensural notation, most of them target
at printed scores. To name a few, Aruspix [3] is an
open source OMR software targeting those ancient printed
scores; Pugin et al. utilized the Hidden Markov Models to
recognize the music symbols and to incorporate the pitch
information simultaneously. A comparative study made by
Pugin et al. [13] shows that Aruspix has better performance
on selected printed books than Gamut [11], which is an-
other OMR software based on the Gamera [9] open-source
document analysis framework. Gamut first segments the
symbols based on the result after staff lines removal, and
classifies it using kNN classifier.

Calvo-Zaragoza et al. [5] proposed an OMR system
without removing the staff lines. They utilized histogram
analysis to segment the staves as well as different mu-
sic symbols, and classified by cross-correlating templates.
Their method achieves averagely an extraction rate of 96%
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Figure 2: A regular case happens at the end of each voice:
due to a lack of space, the writer extends the staff lines
a little bit (red dashed box) and squeezes the remaining
symbols on.

on the Archivo de la Catedral de Malaga collection which
has a certain printing style.

In addition to the physical condition of the manuscripts,
the substantial difference in style between writers ren-
ders OMR challenge. One and the same symbol can ap-
pear quite differently, depending on the writer. More-
over, the symbols sometimes are written too close to each
other which increases the difficulty of symbol segmenta-
tion. This usually happens at the end of each voice as the
writer wants to finish on the same line instead of adding
a new one. In such cases, they usually elongate the staff
lines manually in order to add more symbols, see e.g. Fig-
ure 2. Such cases increase the difficulty to apply OMR on
these handwritten manuscripts in a systematic and consis-
tent manner.

Similar to Gamut, we remove staff lines to detect the
symbols, but differently, we employ the Fisher Vector [12]
representation to describe images and Support Vector Ma-
chines (SVM) to classify them. With relatively less train-
ing data compared to others, our OMR system is able to
recognize the symbols from different writers with high ac-
curacy.

In contrast to the modern music (the music from the
so-called Common practice period), the music notation up
to the Renaissance is much different in appearance. There-
fore, transcription from an expert is required to further pro-
cess the data. Our goal therefore was to design and im-
plement a system that automatically transcribes such mu-
sic for users who lack the expert knowledge about these
early manuscripts. In particular, our system is able to au-
tomatically transcribe most of contents in mensural mu-
sic pieces as shown in Figure 1. We propose a new OMR
system which not only recognizes the handwritten music
scores but also transcribes it from white mensural notation
to the modern notation. The modern notation is then en-
coded into MIDI files. The overall pipeline is described
in Figure 3. In addition to provide a user friendly plat-
form for the musicologists to analyze the music from old
manuscripts, our system renders these valuable cultural
heritage resources to non-specialists as well. Compared to
most OMR system, the playable MIDI files in our system
help people without any music knowledge access those an-
cient music.

The remaining of this paper is structured as the follow-
ings. Section 2 describes the image preprocessing steps. In
Section 3, we introduce the core part of the OMR system,
music symbol recognition. The transcription to modern
notation is explained in Section 4. Experimental settings

Figure 3: The overall scheme of our framework.

and results are shown in Section 5. Section 6 concludes
the paper.

2. PREPROCESSING

Following typical OMR pipelines, we start from a prepro-
cessing step. In consists of two parts, namely binarization
and stave detection.

2.1 Binarization

In some collections of manuscripts, each scanned im-
age comes up with a color check and a ruler aside the
main manuscript. In order to achieve a good quality, the
non-music parts need to be removed during the binariza-
tion. Given a high resolution scanned image of a music
manuscript, the boundaries of the page are first detected
by histogram analysis of pixel intensity in gray-scaled im-
age. Thresholds are set to the horizontal and vertical his-
tograms to segment the x- or y-axis into two parts: the
page part containing the staves and the background parts
together with the color check and the ruler. Because the
Region of Interest (ROI) refers to the page part here, which
contains much higher intensity of grey values compared to
the black background. Based on this fact, with properly
chosen threshold, ROI could be well selected. The result is
shown in Figure 1a.

For those manuscripts containing colored initials or
decorations, we apply K-means clustering under the Lab
color space in order to filter out some colored non-music
elements after cropping out the color check and the ruler.
In the experiments we put K to the value 2, and success-
fully cluster the manuscript into two groups, the elements
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with red color and the others containing the stave. We se-
lect the red group to build a mask to remove those non-
music regions from the manuscript. After that, we then
apply Otsu threshold to do the binarization. For simplicity,
we will focus on a specific style, generating to other styles
of manuscripts will be considered in the future work. Fig-
ure 1b shows an example result after these preprocessing
steps applied.

2.2 Stave detection and staff lines removal

The stave in mensural notation are mostly composed of five
lines. Based on this assumption, we use the stave detection
program from [16]. Timofte et al. utilized dynamic pro-
gramming to retrieve the patterns of five lines in order to
detect the stave. While detecting the staff lines, the param-
eters of staff line thickness and space between two staff
lines are optimized at the same time. Figure 1b shows the
result after staff removal.

3. SEGMENTATION AND CLASSIFICATION

With the preprocessing steps of the previous section hav-
ing been completed, we obtain binarized images without
staff lines. In this section, we first describe how the sym-
bols are segmented and then how the classification of the
individual, segmented symbols works.

3.1 Segmentation

Given a binarized image without staff lines (Figure 4a), we
employ the connected component analysis to separate dif-
ferent symbols. However, the symbols touching the staff
line in the original manuscript may become separate after
staff removal. As the Figure 4b shows, a semibreve or a
minim may be separated into two parts.To solve this prob-
lem, we set up several heuristic rules to combine the parts
of such broken symbols. For example, we observe that
some overlapping or close neighbouring boxes detected
with similar width could be merged into one individual
symbol. Therefore we merge neighbouring boxes in this
case. Yet, this procedure might be risky in that two close
parts coming from different symbols may get erroneously
merged as well. To tackle that, we set up a width threshold
for merging boxes, i.e. if the box width is more than two
times of the space between two staff lines, the two boxes
will not be merged. The final result is shown in Figure 4c.

Moreover, in order to distinguish the lyrics from the mu-
sic symbols, we use the stave region detected from the pre-
vious section as a mask to filter out those non-music sym-
bols.

3.2 Classification

In order to train the classifier, we manually annotate the
image of each music symbol by drawing the bounding box
around it using the image annotation tool [4] from the orig-
inal manuscript. Because the bounding boxes may differ
from each other in size, for each cropped symbol I , we

(a)

(b)

(c)

Figure 4: (a) After staff removal, some symbols become
separated because some strokes touching the staff line are
removed as well. (b) The result of applying connected
component analysis on Figure 4a. (c) The result after ap-
plying heuristic rules to combine the broken symbols from
Figure 4b.

first normalize the image to the same height, which is de-
termined by ensuring enough SIFT [10] features could be
extracted to form the Fisher Vector representation [12].

For training, we use a Gaussian Mixture Model (GMM)
with K = 128 components as the generative model for
the patch descriptors. To estimate the parameters of the
GMM, we obtain 10000 sample descriptors by applying
dense SIFT in all the images from the training data, and
reduce them from D = 128-d to D = 64-d using PCA.
Then, the mean, variance and weight of each Gaussian
component are estimated using the Expectation Maximiza-
tion algorithm. The final fisher vector for an image I has
dimension of 2KD = 16384. This vector is then signed-
squared-rooted and l2 normalized. We follow the proce-
dures in [7] to obtain the improved fisher vector, that is
after pooling all the vectors of the training data, we apply
the square rooting again to normalize. With bunch of vec-
tors from training data, we train the classifier using linear
SVM. We train the multi-class classifier with one versus
one strategy and select the class with the highest probabil-
ity.

During testing, we already obtained the bounding box
information of each music symbol following the previous
steps. To avoid the effect caused by binarization and staff
removal, we extract the symbol again directly from the
original colored image using the same coordinates given
by the bounding box. Hereby, we would like to remind
that the preprocessing steps are for symbol segmentation,
while both training and testing patches are extracted from
the original manuscript. Each segmented symbol is de-
scribed in Fisher Vector representation in a similar way as
we did for the training data. Then we use the trained multi-
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class classifier to predict its class.
In our implementation, we used the VLFeat library [17]

for the Fisher Vector and SIFT implementations, and lib-
svm [6] with linear kernel and default settings for the Sup-
port Vector Machine.

3.3 Pitch detection and channel separation

The pitch information is essential for transcription, and the
pitch level is determined by the relative position of the note
and the clef to the stave. After the music symbol is ex-
tracted and classified, we follow the post-processing steps
described in [14] to retrieve the pitch level.

We divide the group of notes into two groups accord-
ing to their stems. For the group of notes with stems, we
perform histogram analysis to extract the y position of the
stem, so that this can be used to localize the center of the
note head. The detail of the histogram analysis is as fol-
lowing: we first project all the horizontal pixels onto the
y-axis and then set up a threshold to separate the stem and
the note head, by employing the fact that note head part has
higher intensity of pixels than the stem. For the group of
none-stem notes, we simply compute the middle point, de-
parting from the highest and the lowest points of the sym-
bol.

For clefs, the point of relevance is much easier to locate,
since they can only be situated on staff lines. We simply
determine the middle point of two squares from clef c and
of the two dots or blobs from the right part of clef f, while
we locate the center of the blob for clef g. For key sig-
natures, we only encounter the case of flat, as the sharp is
rare in the dataset we use. We adopt a similar strategy to
that of the notes to locate the center of the blob for the flat
symbol. With the relative position of the extracted sym-
bol calculated, we connect this information to the staff line
position in order to determine the pitch level of the corre-
sponding symbol.

In the case of choirbooks, there are always several
voices within one page of a manuscript in our dataset.
Thus, in order to transcribe the music correctly, we need
to recognize these different voices. As each voice ends
with barlines, we use this as a criterion to separate differ-
ent voices. After a barline is detected, we switch the notes
detected afterwards to another channel.

4. TRANSCRIPTION

We aim at transcribing mensural music scores into mod-
ern notations. This will render the music accessible to a
far larger group of people, also because much of this mu-
sic has not even been published. The tool is also valuable
for musicologists, because it takes over the time consum-
ing manual transcription work. Instead, they can spend
their time on the actual music analysis. With the vast dig-
ital manuscript collections of libraries that are being made
available daily, the transcription tool makes it a lot eas-
ier to establish concordances. Also, printed and often not
published transcriptions are sometimes hard to get by, so
this tool means generally a big improvement of accessi-

bility of transcriptions. Moreover, with all the available
software libraries nowadays, such as music21 [8] which is
also used in our work, MIDI files could be generated di-
rectly from modern notation scores. Therefore the mensu-
ral script could be more easily accessed by general public.

4.1 Transcription rules

There are several difficulties in transcribing mensural mu-
sic. Apart from notational challenges like ligatures and
coloration, which are not supported yet, the main chal-
lenge of mensural music transcription is how to translate
the mensuration, or time signature. In contrast to modern
music, the time signature defines not only how long one
measure is, but also defines how to divide a certain note.

There are four kinds of notes that can be divided in dif-
ferent ways. The division of maxima into longa is called
modus maximarum or modus maior. From longa into
breves, it is called modus. From breves into semibreves,
it is called tempus. And from semibreves into minims, it
is called prolatio. For all of these four divisions, depend-
ing on whether they are perfect or not, either a ternary or
binary division is possible. If a note is divided in a per-
fect, i.e. ternary way, it will be divided into three sub-
class notes. If one note however is divided in an imperfect,
i.e. binary way, it will be divided into two sub-class notes.
For example, in a case of perfectum, a longa will be di-
vided into three breves, while in a case of imperfectum, the
modus specifies that one longa has to consist of two breves.
This rule also applies to the other three transcription pairs.

The temporal length of one breve in mensural music
defines the length of one measure in modern music. In
the normal case (i.e. without scaling of temporal length),
the length of a semiminim equals that of a modern quarter
note. Because a semiminim cannot be affected by the rules
of perfect / imperfect for its division into its sub-class fusa
(i.e. a quaver in modern notation), we are able to calcu-
late the actual length of a breve, by treating semiminims
as a unit. For instance, if tempus and prolatio (which refer
to the semibreve-minim division and breve-semibreve, re-
spectively), are both perfect, then one breve will be divided
into three semibreves, and each semibreve will in turn be
divided into three minims. As a result, one breve is divided
into nine semiminims. If we treat one semiminim as a beat,
then the corresponding time signature would be 9/4.

In addition, there is a variant version of mensuration
symbols, these are the time signatures with a vertical line
through the original symbol, usually called cut-signs. They
imply a reduction of all the temporal values, of notes and
rests, by a factor of two. In other words, with cut-sign, the
playing speed of the music will be twice as faster. Note
that most mensural music is rather slow compared to con-
temporary music. Beside the cut-signs, we also provide a
parameter to artificially scale the speed of playing. In order
to achieve that, we only need to change the mapping rela-
tionship between the mensural notes and the modern ones.
For instance, in no-scaling cases, a semiminim is mapped
to a quarter. If we speed up the music by two times, we
just need to map semiminim to a quaver, which is half the
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length of a quarter. In this case, one should adapt the time
signature accordingly.

4.2 Implementation details

Given the aforementioned observations,the analysed men-
sural music can be encoded into modern music. In our
pipeline, we first check the mensuration of the music
piece. Taking into consideration that the mensuration
might change at any time during the piece, this step should
be repeated any time during the process. If there have
been any changes, we apply the reduction ratio to the mu-
sic afterwards. After this, we can determine the map-
ping relation between the semiminim and modern music
notes and calculate the modern time signature according
to the duration of one breve in the transcription. With de-
termined time signatures and basic mapping relationships
established, we can transcribe each element into modern
musical notation, note by note and rest by rest. If the di-
vision is only binary or imperfect, we can directly tran-
scribe the mensural music to modern music. We are still
working on the transcription techniques for the perfect di-
visions, which include a lot more exceptions that can still
present challenges. Once musical symbol recognition are
ready, all we need to do is to carefully encode these sym-
bols. One should be especially aware of the possibility
that clefs and/or time signatures change in the middle of
a piece. For this step, we chose the framework offered by
music21 [8] to encode the music information, because it
offers an automatic parsing library and APIs towards vi-
sualization and MIDI output. The different voices in the
original music sheet are encoded into different ’part ob-
jects’ in this framework, while the whole piece is treated
as a ’stream’ object. Another thing that needs to be taken
care of is the punctus divisionis sometimes appearing in
a perfect division, which looks exactly like a normal dot
with the function of prolonging note values, but instead of
prolonging, the punctus divisionis functions as a kind of
barline. Whether or not we are dealing with this kind of
dot, should be established from the note durations directly
preceding and following it.

5. EXPERIMENTAL RESULTS

5.1 Dataset and evaluation

We evaluate our pipeline on the Alamire collection which
includes manuscripts of various writers in several books.
Depending on the sources, those manuscripts are in high
resolution from 7200x5400 to 10500x7400 pixels. For
training, we randomly select the manuscripts from the
following books: Vienna, Österreichische Nationalbiblio-
thek (VienNB), MS Mus. 15495, 15497, 15941, 18746;
Brussels, Koninklijke Bibliotheek (BrusBR) Ms. 228, and
IV.922 [1]. We use the image annotation tool made by
Kläser [4] to manually draw the bounding box around each
symbol and to annotate the corresponding information. In
total we have about 2800 samples for training over 33
classes. The classes include the notes, rests, key signature

Book MunBS F LonBLR MS 72A
N 839 1313 1636
Rext 85.73% 94.36% 90.25%

Table 1: Symbol extraction result on three books.

(flat), most of the frequent time signatures and other sym-
bols such as barlines and custos. The testing data comes
from different books, without any overlap with the training
data: Munich, Bayerische Staatsbibliothek, Mus. MS. F
(MunBS F) [2]; London, British Library MS Royal 8G.vii
(LonBLR), and ’s-Hertogenbosch, Archief van de Illustre
Lieve Vrouwe Broederschap, MS. 72A (MS 72A) [1]. In to-
tal, there are about 3700 samples for testing. In our evalua-
tion, we report the result of classification and segmentation
separately.

5.2 Symbol segmentation

We follow the evaluation process in [5]. The extraction rate
is defined as Rext =

Me

T , where Me is the number of mu-
sic symbols extracted and T is the total number of music
symbols within the manuscript. Table 1 shows the symbol
segmentation results on three collections where N is the
total number of symbols per book. Most false negatives of
detection come from custodies, as they are often over seg-
mented into several parts after staff removal. Some of the
other false negatives come from the symbols on the sixth
staff line, below or above the stave, causing the symbols
above or below the stave not correctly extracted. More-
over, the ornate capitals in front of the piece may distract
the detection especially on the MunBS F collection. Un-
like the colored initials in LonBLR, the black initial makes
the separation of symbols more difficult. These issues are
being solved and will be addressed in the future work.

5.3 Symbol classification

To evaluate the classification step, we first correct the seg-
mentation errors from the last step as Figure 1c shows, and
then use prediction accuracy to evaluate the classification.
Table 2 presents the classification result on the same col-
lections. The accuracy reaches 98 % on the LonBLR and
the MS 72A collections, and 95 % on the MunBS F col-
lection. After analysis, we found the typical error for the
MS 72A collection is the misclassification of a breve rest
as a colored breve. In MunBS F, most of the classification
errors are from the semibreve notes which are mistakenly
classified as points. Some incidents are caused by similar
symbols, such as the note fusa recognized as semiminim
and the note maxima classified as longa. The reason might
be found in the imbalanced training samples in our train-
ing set. As some symbols do not happen appear so often
such as the note maxima and time signatures, they are less
present in the set. It makes the training collection more
challenging if one wants to avoid this issue.

With limited training data, the use of the Fisher Vec-
tors and SVMs yields a promising classification perfor-
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Book MunBS F LonBLR MS 72A
Accuracy 95.52% 98.83% 98.94%

Table 2: Classification result on three books.

mance on handwritten symbols from different writers. As
the manually annotated training data is hard to obtain, our
method shows an obvious advantage compared to earlier
alternatives.

6. CONCLUSION

In this paper, we presented a framework to automati-
cally analyse and transcribe handwritten mensural music
manuscripts. The inclusion of the transcription part not
only provides the musicologists with a simple platform
to more efficiently study those manuscripts, but also as-
sists music amateurs to explore and enjoy this ancient mu-
sic. Moreover, the MIDI-output feature offers the public
at large easy and convenient access to these musical trea-
sures.

We have collected a dataset of handwritten mensural no-
tation symbols from different books for evaluation. We be-
lieve it is fair to claim that our symbol segmentation attains
good performance. The classification based on the Fisher
Vector representation and SVMs achieves very high clas-
sification rate on handwritten symbols. Furthermore, we
implemented an accurate transcription mechanism which
embeds musicological information.

We plan to extend this work by enabling counterpoint
checking so that mistakes in original music manuscripts
can be pointed out to the musicologists easily. In addition,
we intend to implement scribe identification in our system
(an early module for that is ready) to assist authorship iden-
tification.

7. ACKNOWLEDGMENTS

We are grateful to Alamire Foundation for their support
and we would like to thank Lieselotte Bijnens, Lonne
Maris, Karen Schets and Tim Van Thuyne for their help
on symbol annotations. The work is funded by the Flem-
ish IWT/SBO project: New Perspectives on Polyphony,
Alamire’s musical legacy through high-technology re-
search tools.

8. REFERENCES

[1] IDEM. http://elise.arts.kuleuven.be/alamire/. Ac-
cessed: 2015-04-23.

[2] Munich, Bayerische Staatsbibliothek,
Handschriften-Inkunabelsammlung, Musica MS
F. http://www.digitale-sammlungen.de/. Accessed:
2015-04-23.

[3] Aruspix project. http://www.aruspix.net/, 2008. Ac-
cessed: 2015-04-23.

[4] Image annotation tool with bounding boxes.
http://lear.inrialpes.fr/people/klaeser/software, 2010.
Accessed: 2015-04-23.

[5] J. Calvo-Zaragoza, I. Barbancho, L. J. Tardn, and
A. M. Barbancho. Avoiding staff removal stage in opti-
cal music recognition: application to scores written in
white mensural notation. Pattern Analysis and Appli-
cations, pages 1433–7541, 2014.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A li-
brary for support vector machines. ACM Trans-
actions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[7] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisser-
man. The devil is in the details: an evaluation of recent
feature encoding methods. In British Machine Vision
Conference, 2011.

[8] M. S. Cuthbert and C. Ariza. music21: A toolkit for
computer-aided musicology andsymbolic music data.
In Proceedings of the ISMIR 2010 Conference, 2010.

[9] M. Droettboom, G. S. Chouhury, and T. Anderson. Us-
ing the gamera framework for the recognition of cul-
tural heritage materials. In Joint Conference on Digi-
tal Libraries : Association for Computing Machinery,
2002.

[10] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 2004.

[11] K. MacMillan, M. Droettboom, and I. Fujinaga. Gam-
era: Optical music recognition in a new shell. In Pro-
ceedings of the International Computer Music Confer-
ence, 2002.

[12] F. Perronnin, J. Sánchez, and T. Mensink. Improving
the fisher kernel for large-scale image classification. In
Proceedings of the 11th European Conference on Com-
puter Vision, 2010.

[13] L. Pugin and T. Crawford. Evaluating omr on the early
music online collection. In Proceedings of the ISMIR
2013 Conference, 2013.

[14] L. Pugin, J. Hockman, J. A. Burgoyne, and I. Fujinaga.
Gamera versus aruspix – two optical music recognition
approaches. In Proceedings of the ISMIR 2008 Confer-
ence, 2008.

[15] C. Ramirez and J. Ohya. Symbol classfication ap-
proach for omr of square notation manuscripts. In Pro-
ceedings of the ISMIR 2010 Conference, 2010.

[16] R. Timofte and L. Van Gool. Automatic stave discov-
ery for musical facsimiles. In Asian Conference on
Computer Vision, 2012.

84 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



[17] A. Vedaldi and B. Fulkerson. VLFeat: An open
and portable library of computer vision algorithms.
http://www.vlfeat.org/, 2008.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 85



INFINITE SUPERIMPOSED DISCRETE ALL-POLE MODELING
FOR MULTIPITCH ANALYSIS OF WAVELET SPECTROGRAMS

Kazuyoshi Yoshii1 Katsutoshi Itoyama1 Masataka Goto2

1Graduate School of Informatics, Kyoto University, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Japan
{yoshii,itoyama}@kuis.kyoto-u.ac.jp m.goto@aist.go.jp

ABSTRACT

This paper presents a statistical multipich analyzer based
on a source-filter model that decomposes a target music
audio signal in terms of three major kinds of sound quan-
tities: pitch (fundamental frequency: F0), timbre (spectral
envelope), and intensity (amplitude). If the spectral enve-
lope of an isolated sound is represented by an all-pole filter,
linear predictive coding (LPC) can be used for filter esti-
mation in the linear-frequency domain. The main problem
of LPC is that although only the amplitudes of harmonic
partials are reliable samples drawn from the spectral enve-
lope, the whole spectrum is used for filter estimation. To
solve this problem, we propose an infinite superimposed
discrete all-pole (iSDAP) model that, given a music signal,
can estimate an appropriate number of superimposed har-
monic structures whose harmonic partials are drawn from
a limited number of spectral envelopes. Our nonparamet-
ric Bayesian source-filter model is formulated in the log-
frequency domain that better suits the frequency character-
istics of human audition. Experimental results showed that
the proposed model outperformed the counterpart model
formulated in the linear frequency domain.

1. INTRODUCTION

Statistical modeling of music audio signals based on ma-
chine learning techniques is a hot topic in the field of music
signal analysis. In particular, nonnegative matrix factoriza-
tion (NMF) has often been used for multiple fundamental
frequency (F0) estimation (multipitch analysis) and source
separation [1–4, 7, 14, 15, 17, 21–26]. The standard NMF
approximates a nonnegative spectrogram (matrix) as the
product of two nonnegative matrices: a set of basis spec-
tra and a set of the corresponding activations. An efficient
multiplicative-updating (MU) algorithm was proposed for
minimizing a cost function that measures the approxima-
tion error [18]. This was later found to be maximum like-
lihood estimation of a particular probabilistic model [5].

Statistical source-filter models, which were inspired by
the simplified model of the speech production mechanism,

c© Kazuyoshi Yoshii, Katsutoshi Itoyama, Masataka Goto.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Kazuyoshi Yoshii, Katsutoshi Itoyama,
Masataka Goto. “Infinite Superimposed Discrete All-pole Modeling for
Multipitch Analysis of Wavelet Spectrograms”, 16th International Soci-
ety for Music Information Retrieval Conference, 2015.
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Figure 1. Overview of infinite superimposed discrete all-
pole (iSDAP) modeling: We take the infinite limit as both
the numbers of sources and filters, I and J , go to infinity.

have often been proposed for representing musical instru-
ment sounds [7,14,25]. The pitches and timbres of musical
instrument sounds are well characterized by fine structures
(sources) and spectral envelopes (filters) in the frequency
domain. Since the human auditory system is sensitive to
spectral peaks and formants, the spectral envelope of each
frame is usually modeled by an all-pole frequency transfer
function (frequency response of an autoregressive (AR) fil-
ter) [14]. A classical method of all-pole spectral envelope
estimation called linear predictive coding (LPC) [16] cor-
responds to maximum likelihood estimation of a particular
probabilistic model under a strong assumption that source
signals have the flat spectrum (white noise).

The composite autoregressive (CAR) modeling [17] is
a promising statistical approach that overcomes the limi-
tation of classical source-filter modeling in the framework
of NMF. A given audio spectrogram is decomposed into
specified numbers of fine structures (sources) and spectral
envelopes (filters). A key feature of this approach is that
source spectra themselves can be estimated (not limited
to white noise) at the same time as all-pole spectral enve-
lope estimation. The probabilistic interpretation of source-
filter NMF makes it possible to formulate a nonparamet-
ric Bayesian extension called infinite CAR (iCAR) model-
ing that can automatically choose the appropriate numbers
of sources and filters according to a given audio spectro-
gram [26]. Another useful extension is to restrict source
spectra to harmonic structures by using parametric func-
tions [26]. The F0s of source spectra can be estimated in a
principled maximum-likelihood framework.

Conventional methods of source-filter NMF including
CAR [7,14,17,25,26] have two major problems as follows:
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1. All the frequency bins are taken into account for
spectral envelope estimation although only the am-
plitudes of harmonic partials can be regarded as re-
liable samples from spectral envelopes.

2. Linear-frequency spectrograms given by short-time
Fourier transform (STFT) are used for all-pole mod-
eling although log-frequency spectrograms given by
wavelet or constant-Q transform better suit the fre-
quency characteristics of human audition.

To solve these problems, we propose a new statistical
approach to source-filter NMF called infinite superimposed
discrete-all pole (iSDAP) modeling. Our approach is based
on a well-known technique called discrete all-pole (DAP)
modeling [8] that takes into account only the peaks of har-
monic partials for spectral envelope estimation. To deal
with polyphonic music audio signals, however, we need to
separate individual harmonic structures and estimate their
F0s (positions of discrete harmonic partials). A major con-
tribution of this study is to extend the DAP modeling for
dealing with an arbitrary number of superimposed harmonic
structures in a similar way to the iCAR modeling. This en-
ables us to decompose a log-frequency spectrogram into
appropriate numbers of pitches (F0s), timbres (spectral en-
velopes), and their volumes by leveraging the frequency-
scale-free characteristics of the DAP modeling.

2. RELATED WORK

This section reviews probabilistic models of source-filter
decomposition, NMF, and source-filter NMF as a basis of
formulating the iSDAP model. Most conventional models
are formulated in the linear frequency (STFT) domain.

2.1 Linear Predictive Coding (All-pole Modeling)

The linear predictive coding (LPC) [16] is a signal model-
ing method that can be used for estimating the spectral en-
velope of an observed spectrum. The underlying assump-
tion is that the corresponding audio signal x = {xm}∞m=−∞
(a local signal {xm}Mm=1 is infinitely repeated) follows a
P -order autoregressive (AR) process as follows:

xm = −
P∑

p=1

apxm−p + sm i.e.,
P∑

p=0

apxm−p = sm, (1)

where a = [a0, · · · , aP ]
T is a vector of AR coefficients

(a0 = 1) and {sm}Mm=1 is a set of prediction errors. Eq. (1)
can be interpreted in terms of source-filter modeling, i.e.,
when x is a speech signal, s is an excitation signal gener-
ated by the vocal cords (source) and a represents the reso-
nance characteristics of the vocal tract (filter).

Eq. (1) can be regarded as a linear system (governed by
a) that takes s as input and then gives x as output. Since
Eq. (1) is a convolution of a with x, we can say

A(z)X(z) = S(z) i.e., X(z) = S(z)F (z), (2)

where X(z) and S(z) are the z-transforms of x and s, re-
spectively, which are given by

X(z) =
∞∑

m=−∞
xmz−m and S(z) =

∞∑

m=−∞
smz−m, (3)
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Figure 2. Spectral envelopes estimated by LPC and DAP.

and F (z)
def
= 1

A(Z) is an all-pole transfer function given by

F (z) =
1

A(z)
=

1
∑P

p=0 apz−p
. (4)

Letting 2π m
M = ωm and substituting z = eiωm into Eq. (2),

we get the Fourier-transform representation as follows:

X(eiωm) = S(eiωm)F (eiωm), (5)

where {X(eiωm)}Mm=1 is the complex spectrum of the ob-
served signal x, {S(eiωm)}Mm=1 is that of the source signal
s, and {F (eiωm)}Mm=1 is the frequency characteristics of
the all-pole transfer function.

The goal of LPC is to estimate a set of AR coefficients
a under a strong unrealistic assumption that the source sig-
nal s is Gaussian white noise. This means that S(eiωm) is
complex Gaussian-distributed as follows:

S(eiωm) ∼ Nc(0, σ
2), (6)

where σ2 is the power of the white spectrum of the source
signal s. Using Eq. (5) and Eq. (6), we get

X(eiωm) ∼ Nc(0, σ
2|F (eiωm)|2). (7)

Letting Xm = |X(eiωm)|2 and Fm = |F (eiωm)|2, we
briefly rewrite Eq. (7) as follows:

Xm ∼ Exponential(σ2Fm), (8)

where {Xm}Mm=1 is the power spectrum of the observed
signal x and {Fm}Mm=1 is the spectral envelope of {Xm}Mm=1,
as shown in Figure 2. Eq. (8) defines the probabilistic model
of LPC. {Fm}Mm=1 (i.e., a) and σ2 can be estimated in a
maximum-likelihood manner [16].

The main problem of LPC is that if we analyze a pitched
sound derived from a periodic source signal (e.g., vibration
of strings), the estimated envelope {Fm}Mm=1 loosely fits
the observed spectrum {Xm}Mm=1 and its peaks (formants)
tend to be biased to the positions of harmonic partials. This
is because all M frequency bins are used for all-pole mod-
eling although in reality only the amplitudes of harmonic
partials can be considered to be reliable samples from the
spectral envelope.

2.2 Discrete All-pole Modeling
The discrete all-pole (DAP) modeling [8] is a well-known
spectral envelope estimation method that was proposed for
solving the problem of LPC. Since DAP is an extension of
LPC, the probabilistic model of DAP has the same form
as Eq. (8). A key feature of DAP is that Eq. (8) is defined
over only a partial set of frequency bins, Ω, as follows:

Xm ∼ Exponential(σ2Fm) m ∈ Ω, (9)
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where if Ω = {1, · · · , M}, DAP reduces to LPC. To esti-
mate the spectral envelope of a harmonic spectrum, we can
take into account only the discrete frequencies of harmonic
partials. The estimated envelope passes close to the peaks
of harmonic partials (Figure 2). To maximize the likeli-
hood given by Eq. (9), an efficient algorithm was proposed
for alternately optimizing a and σ2 [8]. It was later found
as a multiplicative updating algorithm [1, 14].

The main limitation of DAP is that the F0 and its over-
tones of an observed spectrum {Xm}Mm=1 should be given
in advance for defining a set of discrete frequencies to be
considered, Ω. To analyze polyphonic music audio signals
consisting of superimposed harmonic structures, we need
to separate harmonic structures and estimate their F0s.

2.3 Composite Autoregressive Modeling

The composite autoregressive (CAR) modeling [17] is a
variant of source-filter NMF that is used for decomposing a
linear-frequency mixture spectrogram into I fine structures
(sources) and J spectral envelopes (filters), as shown in
Figure 3. Let X be an M ×N power spectrogram, where
M is the number of frequency bins and N is the number of
frames. The nonnegative matrix X is factorized into three
kinds of “factors” S, F , and H as follows:

Xmn ≈
I∑

i=1

J∑

j=1

SimFjmHnij
def
= Ymn, (10)

where {Sim}Mm=1 is the linear-frequency power spectrum
of source i, {Fjm}Mm=1 is that of filter j, and Hnij is the
gain of a pair of source i and filter j at frame n. All these
variables should be estimated from X .

2.3.1 Original Formulation

The probabilistic model of CAR can be formulated by pre-
cisely modeling source signals in a statistical manner. To
avoid the unrealistic assumption of LPC that each source
signal is Gaussian white noise (Eq. (6)), we assume

Si(e
iωm) ∼ Nc (0, Sim) , (11)

where {Si(e
iωm)}Mm=1 is the complex spectrum of source

i. Using Eq. (5) and Eq. (11), we get

Xijmn(e
iωm) ∼ Nc (0, SimFjmHnij) , (12)

where {Xijmn(e
iωm)}Mm=1 is a latent complex spectrum

generated from source i and filter j at frame n. Using the
reproducing property of the Gaussian and Eq. (10), we get

Xmn(e
iωm) ∼ Nc (0, Ymn) , (13)

where {Xmn(e
iωm)}Mm=1 is the observed complex spec-

trum at frame n. Eq. (13) is equivalent to

Xmn ∼ Exponential (Ymn) , (14)

where E[Xmn] = Ymn is satisfied and {Xmn}Mm=1 and
{Ymn}Mm=1 are the power spectra of frame n.

This means that the Itakura-Saito (IS) divergence is the-
oretically justified as a cost function that evaluates the error
between Xm and Ym in Eq. (10) [17]. In general, however,
optimization algorithms tend to get stuck in bad local min-
ima because the IS divergence is not convex w.r.t. Ymn.

Harmonic structures

⊗

… …

All-pole transfer functions

Linear frequency [Hz] Linear frequency [Hz]

sources (pitches) filters (timbres)

The whole harmonic structure is scaled according to a filter
LPC

gains

bases

⊕

⊗

Observed spectrum of each frame

Figure 3. Overview of composite autoregressive (CAR)
modeling defined in the linear frequency domain.

2.3.2 Several Extensions

Another probabilistic model of CAR was proposed by us-
ing the Kullback-Leibler (KL) divergence instead of the IS
divergence as a cost function for a practical reason [26].
Instead of Eq. (14), we assume

Xmn ∼ Poisson (Ymn) , (15)

where E[Xmn]=Ymn holds. {Xmn}Mm=1 and {Ymn}Mm=1

are the amplitude spectra of frame n because KL-NMF
models are usually formulated in the amplitude domain by
assuming the amplitude additivity [10, 18].

A nonparametric Bayesian extension called infinite CAR
enables us to automatically estimate appropriate numbers
of sources and filters according to the observation X [26].
This technique is based on gamma process NMF [15].

Another extension of CAR is to force the amplitude
spectrum of each source {Sim}Mm=1 to have a harmonic
structure [26]. If the source signal is a train of periodic im-
pulses (an idealized model of the vocal chords), {Sim}Mm=1

has a harmonic structure consisting of equally-spaced har-
monic partials with the same weight. The optimal value
of the F0 can be estimated such that the likelihood given
by Eq. (15) is maximized. This technique of F0 estimation
has a potential to solve the limitation of DAP.

3. PROPOSED MODEL

This section presents a nonparametric Bayesian approach
called infinite superimposed discrete all-pole (iSDAP) mod-
eling for source-filter decomposition of wavelet spectro-
grams. Our model can estimate multiple F0s at each frame
and discover several kinds of instrument timbres (all-pole
spectral envelopes) from polyphonic music audio signals.
To achieve this, we integrate the technique of discrete all-
pole (DAP) modeling [8] into the framework of composite
autoregressive (CAR) modeling [17, 26] in a probabilistic
manner. The iSDAP model can be regarded as a Bayesian
extension of log-frequency source-filter NMF based on a
single filter [19], and has all of the following features:

1. Superimposed DAP modeling: Our model can esti-
mate the spectral envelope of each of harmonic struc-
ture contained in mixed sounds. The original DAP
model can deal with only isolated sounds [8].

2. Precise F0 modeling: Each frame is allowed to con-
tain a unique set of F0s (sources) for capturing fine
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fluctuations of F0s (e.g., vibrato). The original CAR
models [17,26] assume that a common set of source
spectra (semitone-level F0s) is shared over all frames.

3. Log-frequency modeling: Our source-filter model
can deal with wavelet spectrograms that suit the char-
acteristics of human audition by leveraging an ad-
vantage of DAP modeling that only discrete frequen-
cies are required for spectral envelope estimation.

4. Bayesian nonparametrics: Our model can estimate
effective numbers of sources and filters according to
a given spectrogram by allowing unbounded (infinite
in theory) numbers of sources and filters to be used.

3.1 Model Formulation

We explain a probabilistic model of iSDAP. Let X be an
M ×N log-frequency amplitude spectrogram with M fre-
quency bins and N frames. The nonnegative matrix X is
factorized in a similar way to Eq. (10) as follows:

Xmn ∼ Poisson

⎛
⎝

I→∞∑

i=1

J→∞∑

j=1

θniφjWnijmHnij

⎞
⎠, (16)

where θni is the local weight of source i at frame n, φj

is the global weight of filter j, and Hnij is the gain of a
pair of source i and filter j at frame n. {Wnijm}Mm=1 is
the amplitude spectrum derived from the source-filter pair
at frame n. Note that θni and Wnijm are allowed to vary
over time to represent the F0 fluctuation unlike Eq. (10).
We aim to perform sparse learning of weight vectors θn =
[θn1, · · · , θnI ]

T and φ = [φ1, · · · , φJ ]
T when the number

of sources I and the number of filters J go to infinity.

3.1.1 Parametric Functions

As shown in Figure 4, we force the amplitude spectrum
{Wnijm}Mm=1 to have a harmonic structure as follows:

Wnijm =

R∑

r=1

SmnirFnijr, (17)

where R is the number of harmonic partials and {Smnir}Mm=1

is the monomodal spectrum of the r-th harmonic partial of
source i at frame n given by

Smnir = exp

(
− 1

2σ2
(fm − (μni + 1200 log2 r))2

)
, (18)

where μni is the F0 [cents] of source i at frame n, fm is the
log-frequency [cents] corresponding to the m-th bin, and
σ2 indicates energy diffusion around harmonic partials.

We then represent the weights of discrete harmonic par-
tials, {Fnijr}Rr=1, by using an all-pole transfer function in
the log frequency domain as follows:

Fnijr =
1∣∣∣

∑P
p=0 ajpe−ωnirpi

∣∣∣
=

(
aT

j U(ωnir)aj

)− 1
2, (19)

where aj ≡ [aj0, · · · , ajP ]
T , ωnir is a normalized fre-

quency [rad] corresponding to the r-th harmonic partial of
source i at frame n, and U(ω) is a (P+1)×(P+1) matrix
with [U(ω)]pq = cos(ω(p− q)). Note that Fnijr indicates
the value of amplitude (not power). The Poisson likelihood

Log-frequency [cents]

Am
pl
itu
de

・・・ ・・・

The all-pole spectral envelope determines the weights of harmonic partials

Figure 4. Composition of source i and filter j at frame n
in the log-frequency domain.

(KL-NMF) is considered to fit the amplitude domain rather
than the power domain [19].

3.1.2 Prior Distributions

We put gamma process (GaP) priors on infinite-dimensional
vectors θn and φ as in [15, 26]. Specifically, we put inde-
pendent gamma priors on elements of θn and φ as follows:

θni ∼ Gamma
(αθ

I
, αθ

)
, φj ∼ Gamma

(αφ

J
, αφ

)
, (20)

where αθ and αφ are hyperparameters called concentration
parameters. As J diverges to infinity, the vector φ approx-
imates an infinite vector drawn from a GaP with αφ. It is
proven that the effective number of filters, J+, such that
φj > ε for some number ε > 0 is almost surely finite [15].
If J is sufficiently larger than αφ (J is often called a trun-
cation level in weak-limit approximation to infinite model-
ing), the GaP can be well approximated. The same reason-
ing can be applied to the GaP on θn. On the other hand,
we put a standard Gamma prior on Hnij as follows:

Hnij ∼ Gamma(aH , bH), (21)

where aH and bH are shape and rate hyperparameters.

3.2 Variational Inference

The posterior over random variables p(θ, φ, H |X;μ,a)
and parameters μ and a are determined such that a lower
bound L of the log-evidence log p(X;μ,a) is maximized.
Since this cannot be analytically computed, we use an ap-
proximate method called variational Bayes (VB), which re-
stricts the posterior to a factorized form given by

q(θ, φ, H) =
∏

ni

q(θni)
∏

j

q(φj)
∏

nij

q(Hnij). (22)

Iteratively updating this posterior, we can monotonically
increase a lower bound of the log-evidence given by

log p(X;μ, a) ≥ E[log p(X|θ, φ, H;μ, a)]

+ E[log p(θ)] + E[log p(φ)] + E[log p(H)]

− E[log q(θ)]− E[log q(φ)]− E[log q(H)] ≡ L0, (23)

where the first term can be further lower bounded by Jensen’s
inequality on the concave logarithmic function as follows:

E[log p(X|θ, φ, H;μ, a)]

=
∑

mn XmnE
[
log

∑
ijr θniφjSmnirFnijrHnij

]

−∑
mnijr E

[
θniφjSmnirFnijrHnij

]
+ const.

≥∑
mnijr λmnijrXmnE

[
log

θniφjSmnirFnijrHnij

λmnijr

]

−∑
mnijr E

[
θniφjSmnirFnijrHnij

]
+ const. (24)
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where λmnijr is a normalized auxiliary variable such that∑
ijr λmnijr = 1. The equality holds (i.e., the lower bound

of L0 is maximized) if and only if

λmnijr ∝ exp(E[log(θniφjSmnirFnijrHnij)]). (25)

Using Eq. (24), the objective function of our model to be
maximized, L, is obtained as the lower bound of L0. For
convenience, we define Xmnijr and Ymnijr as

Xmnijr = λmnijrXmn, (26)

Ymnijr =E[θniφjSmnirFnijrHnij ]. (27)

3.3 Variational Bayesian Updating of θ, φ, and H

The VB updating rules are given by

q(θ) ∝ exp(Eq(φ,H)[log p(X, θ, φ, H ;μ, a)]),

q(φ) ∝ exp(Eq(θ,H)[log p(X, θ, φ, H ;μ, a)]), (28)

q(H) ∝ exp(Eq(θ,φ)[log p(X, θ, φ, H ;μ, a)]).

The variational posterior of each random variable is set to
be the same family as its prior distribution as follows:

q(θni) = Gamma(aθ
ni, b

θ
ni), q(φj) = Gamma(aφ

j , bφ
j ),

q(Hnij) = Gamma(aH
nij , b

H
nij). (29)

The variational parameters are given by

aθ
ni =

αθ

I
+

∑

mjr

Xmnijr, bθ
ni = αθ +

∑

mjr

E[φjHnij ]Wnijm,

aφ
j =

αφ

J
+

∑

mnir

Xmnijr, bφ
j = αφ +

∑

mnir

E[θniHnij ]Wnijm,

aH
nij = aH +

∑

mr

Xmnijr, bH
nij = bH +

∑

mr

E[θniφj ]Wnijm.

To estimate the effective number of filters J+, we per-
form sparse learning. If E[φj ] becomes sufficiently small
for some filter j, we degenerate it and J ← J − 1. A simi-
lar treatment is applied to E[θni]. The proposed variational
algorithm is gradually accelerated per iteration.

3.4 Multiplicative Updating of μ and a

To estimate parameters μ and a, we use the multiplicative
update (MU) algorithm as in [1,14]. In general, to optimize
x, we represent the partial derivative of a “cost” function
C with respect to x as the difference of two positive terms,
i.e., ∂C

∂x = R − R′. An updating rule of x is then given by
x← R′

R x. Note that x becomes constant if the derivative is
zero, and is updated in the opposite direction of the deriva-
tive. In this study the cost function is the negative lower
bound of the log-evidence, −L.

First, we represent the partial derivative of −L with re-
spect to μmi as −∂L

∂μni
= Rni−R′

ni, where Rni and R′
ni are

positive terms given by

Rni =
∑

mjr

(μni + 1200 log2 r)Xmnijr + fmYmnijr, (30)

R′
ni =

∑

mjr

fmXmnijr + (μni + 1200 log2 r)Ymnijr,(31)

The updating rule of μni is given by

μni ← R−1
ni R′

niμni. (32)

As in [1, 14], we then represent the partial derivative of
−L with respect to aj as −∂L

∂aj
= (Rj −R′

j)aj , where Rj

and R′
j are positive definite matrices given by

Rj =
∑

mnir

XmnijrF
2
nijrU(ωnir), (33)

R′
j =

∑

mnir

YmnijrF
2
nijrU(ωnir). (34)

The updating rule of aj is given by

aj ← R−1
j R′

jaj . (35)

Finally, we forcibly adjust the scale of the filter Fnijr such
that αj0 = 1 for normalizing the filter. Although this step
violates the convergence of the optimization algorithm, it
was empirically found to work well.

3.5 Binary Piano-roll Estimation

To perform multipitch analysis, i.e., make a binary piano-
roll representation, we need to judge the existence of each
semitone-level pitch at each frame. Using a trained model,
we calculate an activation matrix V = {Vkn}88,N

k=1,n=1 over
pitch k and frame n (continuous-valued piano-roll repre-
sentation e.g., the middle figure of Figure 5) by accumu-
lating the expected amplitude of the first partial of source
i,

∑
j E[θniφjFnij1Hnij ], into Vkn indicated by μni. Fi-

nally, the activation matrix V is normalized such that all
the elements sum to unity, i.e.,

∑
kn Vkn = 1.

There are several approaches to binary piano-roll esti-
mation. The common approach is to make a binary deci-
sion based on a threshold η. Another approach is to define
a hidden Markov model (HMM) and use the Viterbi-search
algorithm for estimating a sequence of hidden binary states
{Zkn}Nn=1 from a sequence of pitch-existence likelihoods
{V p

kn}Nn=1 for each pitch k, where p controls the dynamic
range. In our implementation, p = 0.2 and the transition
matrix is [0.8, 0.2; 0.01, 0.99] in the Matlab notation.

4. EVALUATION

We report comparative experiments that were conducted
for evaluating the performance of the iSDAP model in mul-
tipitch analysis of piano music. Since the proposed model
assumes that input mixture signals contain only harmonic
sounds, we also tested the use of harmonic and percussive
source separation (HPSS) [12] as a preprocessor.

4.1 Experimental Conditions

We used 30 pieces (labeled as ”ENSTDkCl”) selected from
the MAPS database [9] that contain stereo signals sam-
pled at 44.1 [kHz]. The audio signals were converted to
monaural signals and truncated to 30 [s] from the begin-
ning as in [2, 4, 21, 22, 24]. The amplitude spectrogram of
each piece over the frequency bins ranging from 0 [cents]
(16.325 [Hz]) to 12000 [cents] (16717 [Hz]) was obtained
by performing the wavelet transform with a Gabor wavelet,
a frequency interval of 10 [cents], and a shifting interval
of 10 [ms], i.e., M = 1200 and N = 3000. The other
quantities were I = 88, J = 3, R = 20, P = 13, and
σ = 25. The priors were set to be less informative, i.e.,
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Figure 5. Analysis of MUS-mz 333 3 ENSTDkCl.

αθ = αφ = aH = 1, and bH = Eemp[Xmn]
−1. Since X

contained only piano sounds, the truncation level J = 3
worked well (two filters were degenerated in this experi-
ment, i.e., J+ = 1). The values of {μni}Ii=1 were initial-
ized as the frequencies corresponding to the 88 keys rang-
ing from 900 [cents] to 9600 [cents]. The value of each
αjp (1 ≤ p ≤ P ) was drawn from a Gaussian with a zero
mean and a small variance of 0.01. The variational poste-
riors were initialized as the corresponding priors.

The proposed model was tested under possible combi-
nations of preprocessing (with or without HPSS) and post-
processing (thresholding or Viterbi decoding). HPSS was
performed in the log-frequency domain. The model with a
single filter (J = J+ = 1) was also tested in a supervised
setting. A set of filter coefficients a1 was pretrained from
264 isolated sounds of the same or different piano (ENST-
DkCl in a closed test or SptkBGCl in an open test) by using
LPC, and kept constant during multipitch analysis.

The estimation results were evaluated in terms of the
frame-level recall/precision rates and F-measure as in [24]:

R =

∑
n cn∑
n rn

, P =

∑
n cn∑
n en

, F =
2RP
R+ P , (36)

where rn, en, and cn are the numbers of ground truth, es-
timated and correct pitches on frame n, respectively. The
threshold η was determined as η = 10−1.3 without HPSS
and η = 10−1.5 with HPSS.

4.2 Experimental Results

The experimental results shown in Figure 5 and Table 1 in-
dicate the great potential of the iSDAP model. The model
supervised in the open condition (67.3%) significantly out-
performed the iCAR model formulated in the linear fre-
quency domain (48.4%) [26] and tied with the state-of-
the-art methods, e.g., harmonic NMF (67.7%) [24], NMF
with group sparsity (71.3%) [21], and NMF with Hellinger

Filter learning HPSS HMM R P F
Unsupervised 55.3 57.9 56.6

� 62.2 60.2 61.2
� 62.4 64.3 63.4
� � 67.4 64.2 65.8

Supervised � 62.4 67.0 64.4
(open test) � � 69.9 64.5 67.3
Supervised � 59.4 69.1 63.9
(close test) � � 67.4 67.8 67.6

Table 1. Experimental results of multipitch analysis for 30
piano pieces labeled as ENSTDkCl.
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Figure 6. All-pole filters learned from isolated sounds or a
piano piece (mixed sounds) in the log-frequency domain.

sparse coding (66.5%) [22]). While many recent methods
need to pretrain a dictionary of basis spectra for reasonable
decomposition [2,4,21,24], our model works well (65.8%)
even in the completely unsupervised condition. As shown
in Figure 6, a filter learned from a music signal dropped
faster than the pretrained filters because the model failed to
capture higher-order overtones even in the log-frequency
domain due to the strong inharmonicity of piano sounds.
Nonetheless, the learned filter acted as an effective con-
straint on the relative weights of harmonic partials.

There would be much room for improving the perfor-
mance. KL-NMF [18] and IS-NMF [10] are special cases
of β-divergence NMF [11, 20] with β = 1, 0, respectively.
It was reported that the use of an intermediate divergence
with β = 0.5 significantly improves the performance by
about 5% [24]. Similar findings were reported in the con-
text of source separation [13]. This calls for the use of the
Tweedie likelihood instead of the Poisson likelihood [6].

5. CONCLUSION

We presented a new nonparametric Bayesian approach to
source-filter NMF called infinite superimposed discrete all-
pole (iSDAP) modeling that can decompose a wavelet spec-
trogram into three kinds of factors, i.e., harmonic sources,
all-pole filters, and time-varying gains of source-filter pairs.
Our model clearly outperformed its counterpart called the
iCAR model formulated in the linear frequency domain.
One important research direction is to build a unified model
of harmonic and percussive sounds. To bridge the gap be-
tween multipitch analysis and music transcription, we plan
to incorporate a prior distribution on the time-frequency
positions of musical notes into a Bayesian framework.
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ABSTRACT

Commercial recordings of French-Canadian instrumental
dance tunes represent a varied and complex corpus of
study. This was a primarily aural tradition, transmitted
from performer to performer with few notated sources
until the late 20th century. Practitioners routinely
combined tune segments to create new tunes and
personalized settings of existing tunes. This has resulted
in a corpus that exhibits an extreme amount of variation,
even among tunes with the same name. In addition, the
same tune or tune segment may appear under several
different names.

Previous attempts at building systems for automated
retrieval and ranking of instrumental dance tunes
perform well for near-exact matching of tunes, but do
not work as well in retrieving and ranking, in order of
most to least similar, variants of a tune; especially those
with variations as extreme as this particular corpus. In
this paper we will describe a new approach capable of
ranked retrieval of variant tunes, and demonstrate its
effectiveness on a transcribed corpus of incipits.

1. INTRODUCTION

Commercial recordings of French-Canadian instrumental
dance tunes from the 1920s through the 1980s document
a working-class repertoire now celebrated as the
traditional instrumental music of Québec [19]. However,
the musical contents of these recordings remain largely
unexamined. The only detailed musicological study is
limited to a subset of metrically irregular tunes [8]. In
this paper we outline the challenges associated with
studying this repertoire and describe a new system
developed to aid in finding and ranking similarity
between tunes in this repertoire. This system was built in
response to two musicological challenges: to determine
the degree of shared repertoire among early commercial
recording artists in Montréal, and to identify how a
single tune is varied in different renditions. Using our
system we have identified a number of concordant tunes 
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(versions of the same tune) previously unrecognized as
being musically related.

Broadly speaking, the traditional instrumental music
of Québec is similar to the instrumental traditions of
Ireland, Scotland and the United States. The repertoire
consists primarily of short, fast-paced dance tunes
usually performed on the violin, accordion, or
harmonica. With very few exceptions, each tune has at
least two strains (sections), commonly labeled “A” and
“B.” Many of the tunes have their roots in British Isles
and American fiddling traditions, though others are
derived from popular French songs or early twentieth-
century marching-band repertoire [8; 13; 23].

2. THE CHALLENGE

The French-Canadian tradition has developed almost
exclusively as an aural and recorded tradition. With few
notated sources, musicians would often learn tunes “on
the fly,” constructing their own versions from memory
and iǌecting their own personal style. From the 1930s
through the 1960s radio broadcasts played a significant
role in aural transmission of this repertoire. One
musician recalled, “I would listen to the radio with my
brother, and afterwards we would sing the melodies in
our room. We spent our time constantly asking ourselves
if it was really correct” [9]. As a result of this mode of
transmission, and in the absence of a culture of
“correctness” [7], many tunes performed and recorded in
Québec exist in multiple, equally valid settings. Tunes
would be modified by transposing all or part of the tune,
reworking melodic figurations, adding and subtracting
beats, composing new strains, or combining strains from
several tunes to form new tunes. This diversity of
interpretation is clearly documented on commercial
recordings from the era.

Tune titles were often lost or altered in transmission.
Fiddler Yvon Mimeault, for instance, assigned his own
titles to most of the tunes that he learned from the radio
in the 1950s [14]. Other musicians renamed tunes quite
intentionally. In the 1920s and 30s, fiddler Isidore Soucy
sometimes recorded a tune for one record label under
one title, and within months recorded the same tune for a
different record label under a different title. The tune
“Money Musk” is an exception. Between 1920 and 1980
it was recorded over twenty times, frequently with
significant melodic and rhythmic variation and
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additional strains, but almost always under the same
title. 

To illustrate with one example, fiddlers Isidore
Soucy, Joseph Ovila LaMadeleine, and Joseph Allard all
released settings of the same melody in 1928. Their
recordings were titled, respectively, “Reel du bon vieux
temps,” “Reel princesse,” and “Reel de Mme. Renault”
(note that Soucy reverses the order of the A and B
strains with respect to LaMadeleine and Allard).
Although these are recognizably the same melody, they
have a significant degree of melodic and metrical
variation (figure 1). Audio files for all three are available
through the Virtual Gramophone website of Library and
Archives Canada [20].

Figure 1: Incipits for three variants of a strain recorded
in 1928.

The earliest recording sessions of traditional
instrumental music in Québec were quick and largely
unrehearsed. A pianist or guitarist would usually
accompany a soloist with minimal rehearsal time prior to
recording. Some of the recordings also include
accompaniment on jaw harp (guimbarde) or spoons. The
performances are unedited and were usually completed
on either the first or second take. Some contain obvious
musical errors, such as missed entries or wrong notes.

These performances were pressed to 78 RPM
records, with one three-minute rendition of a tune per
side [25]. These recordings contain a significant amount
of background noise introduced in the recording chain,
along with the standard problems of the 78 RPM format
such as hiss, pops, and clicks.

The noisy recording environment and the relatively
poor quality of the recordings result in recordings that
are difficult to follow, even for human listeners. Due to
these difficulties we decided not to explore signal–based
approaches to analyzing this repertoire. Instead, our
approach was to: 1) transcribe the A and B strains of a
recording into MusicXML using a notation editor
(Finale), and 2) devise a system for analyzing and
computing the distance between two variants of the same
tune.

Duval [8] estimates that the traditional instrumental
music of Québec contains at least 5000 distinct tunes,
not including variants. This gives a potential corpus of
well over 10,000 strains. We are currently using our
system to parse a database containing 710 strains. Of
these, 667 were recorded between 1923 and 1929 and 59
strains are from renditions of “Money Musk” (16 strains
of “Money Musk” were recorded between 1923 and
1929). This collection contains approximately 85% of all
French-Canadian recordings of traditional instrumental

music on the violin prior to 1930, and approximately
50% of those recorded on any instrument prior to 1930.
This selection of repertoire is clearly not random, but
rather reflects the imperatives of several musicological
questions, as discussed below.

3. PREVIOUS WORK

Scholars of aural traditions have long been fascinated by
repertoire variation, and comparative studies abound.
Bayard [2] proposed an influential theory of “tune
families” by which the bulk of British Isles and North
American folk song melodies could be categorized as
variants of a small number of distinct prototypical
melodies. Cowdery [4], drawing examples from Irish
traditional music, pointed out that musicians do not think
in terms of abstract prototypes but rather create new
tunes or variants by reworking and combining segments
of known repertoire. He argued that tune families were
more appropriately defined by the presence of recurring
melodic motives, and not by their degree of deviation
from a “standard” or “ideal” version of the tune.

Our query and ranking system is intended to help
scholars study the diversity of melodic variants within a
given corpus. Musically, our approach is similar to the
approach described in three previous studies. Ó
Súilleabháin [22] analyzed the melodic variations of
Irish fiddler Tommie Potts according to a framework of
“set accented tones.” Goertzen [10] argued that
seemingly disparate variants of Texas contest-style
fiddle tunes are linked to a shared sense of each tune’s
“essence,” itself composed of tune-specific musical
markers. Duval [8] analyzed temporal variation as an
innovative element of performance practice in French-
Canadian tunes. However, none of these studies were
performed using computational tools.

Several existing online resources allow users to
search fiddle tunes by musical incipit. Both the Scottish
Music Index [12] and the Traditional Tune Archive [18]
classify tunes according to numerical theme codes that
contain the scale degrees of the strong beats of the first
two bars. Users may search on these sites for theme
codes that exactly match a given string and that begin
with that string, but may not search for tune variants.

TunePal [6] is a tool that translates audio into
symbolic notation (ABC) and then compares that
notation to a crowd-sourced database of traditional Irish
tunes using an edit-distance function. TunePal looks for
exact or similar strings of ABC regardless of metrical
placement and is effective at identifying tunes and tune
settings with a small amount of melodic variation
(provided there has been no transposition). However,
variants with significant melodic variation may not be
considered a match.

Van Kranenburg [26] presents a comprehensive
survey of computational modelling of similarity to
Dutch folk songs. He concludes that identifying
characteristic motifs is the most important factor when
determining similarity between two melodies. As well,
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Figure 2: Interval matrix for the B strain of “Reel de Mme. Renault” (Joseph Allard, 1928; see figure 1). The column
headings (1 to 17) indicate the strong beats. The row headings (0.0 to 16.0) indicate the metric offset from a given strong
beat. The first row (w) gives the weak beats for each strong beat as intervals from that strong beat. Interval values
indicate number of whole steps.

he demonstrates that the frequency of global features
(interval features and other pitch-based features,
duration-ratio features, and other rhythmic features) is
not sufficient to identify similar melodies, but that
searching for ordered sequences of certain features at a
local level may help locate similar song melodies. The
system described in this paper builds on these findings.

4. METHODOLOGY

The design of our system exploits some general
characteristics of French-Canadian instrumental dance
tunes. We determine an optimal alignment between two
four-measure incipits and then compare certain features
at corresponding locations in the incipits. Transposition
is common in this repertoire and tonal center is
sometimes ambiguous, so all tunes are internally
represented as a melodic contour. Each tune has two or
more strains that function more or less independently
and must therefore be treated separately. Most strains
may be uniquely identified by a four-bar incipit. Since
most tunes repeat after four measures, a transcribed
incipit contains the primary motivic material for that
strain. As in related British Isles and North American
fiddle repertoires, metrical placement matters: the notes
that fall on the strong beats are more essential to the
identity of a strain than those on the weak beats [11].

Our system requires a set of strains in symbolic
format and operates in two phases. A construction phase
is used to build matrix representations of each strain’s
incipit, after which a comparison phase computes the
pairwise similarity between matrices. The construction
phase first scans and truncates the prepared strains to a
four-measure incipit by using the music21 toolkit [5].
Melodic, or horizontal, intervals between the first note
on the first strong beat and the notes on all other strong
beats are then identified using the VIS analysis
framework [1]. Horizontal intervals between each note
on a weak beat and the note on its preceding strong beat
are also indexed and stored. The resulting feature vectors
of these pair-wise indexed intervals create an interval
matrix. Each jth column of the matrix represents the
horizontal intervals of the melody between the jth strong

beat and all subsequent strong beats. Figure 2 shows the
interval matrix for the first strain shown in figure 1.

The comparison phase aligns the strong beats of two
interval matrices before computing feature similarity.
For matrices of the same length, we follow earlier
musicological studies of related British Isles traditions
[11; 22] and align the strong beats of the incipits
bĳectively (beat-to-beat). In other words, the idiomatic
alignment for two equal-length incipits A and B is the ith
beat in A to the ith beat in B. For matrices of different
lengths, a standard longest-common-subsequence (LCS)
dynamic programming algorithm [17; 21] is used to find
the best alignment between two incipits considering the
note on each strong beat.

After alignment this phase iteratively matches the
notes of each aligned strong and weak beat in the two
matrices. Non-matching notes are checked for three
possible musical variation techniques: displacement,
reversal and contour similarity. The aligned pair of
strong beats (i, j) is non-matching when the note on beat
i in A is not the same as the note on beat j in B. Thus,
given two incipits A and B and each kth pair (i, j) of
aligned but non-matching strong beats, displacement of
notes on strong beats to a corresponding weak beat
occurs when the note on the ith beat is amongst the notes
in the weak beats after the jth beat, or vice versa. A
reversal of notes on strong beats occurs when the note
on the ith beat is the same as that on beat j + 1, and vice
versa. Finally, contour similarity is detected when the
horizontal interval between the notes on beats i and i + 1
are the same as the interval between beats j and j + 1.

To account for cases where the incipits may
otherwise match but have different notes on the first
aligned strong beat, the algorithm moves to the next
column of both interval matrices and repeats the
comparison phase. This recursive strategy is only used
on up to half the interval columns of the incipits. For
each repetition of the comparison phase, a similarity
matrix is constructed from the results of analyzing the
matching, displacement, reversal, and contour similarity
of the aligned strong beats in the corresponding interval
columns between incipit pairs.

Each row of a similarity matrix corresponds to the 
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Figure 3: The similarity matrix comparing the B strain of “Reel de Mme. Renault” (Joseph Allard, 1928) and the B
strain of “Reel princesse” (Joseph Ovila LaMadeleine, 1928). See figure 1 for incipits. This figure shows the feature
values for the first six matched strong beats in the two incipits.

result of a particular feature analysis, and the columns
represent the kth pair of aligned strong beats from each
incipit’s interval matrix. Each cell in the similarity
matrix is thus the result of a feature analysis for a given
strong beat pair between incipits A and B. Entries in each
similarity matrix are then combined with a weighting
factor to yield a single similarity measure for each
similarity matrix (figure 3). The “Strong Beat
Comparison” matrices indicate the value of matching
strong beats and identify aligned strong beats. The
“Weak Beats Comparison” matrices indicate the
fraction, and relative order, of matching weak beats.

Our weighting scheme is determined by trial and
error. Up to 85% of the weight value is assigned to
matching strong beats, displaced or reversed strong
beats, and matching contour, with the remainder used for
weighting matching weak beats. This weighting scheme
has the effect of selecting incipits with a high percentage
of matching strong beats and then ranking those selected
according to the number of matching weak beats.

5. RESULTS

Two outputs from this system may be useful to
musicians, musicologists, and other researchers: the
similarity matrices, which allow users to directly
compare two incipits, and a ranked list of similarity
measures between one strain and all other strains in the
database.

We attempted a traditional precision and recall
analysis but found it to be an unsuitable measure of
effectiveness. It returned unnaturally high results
because the weighting was determined to maximize
precision and recall for known concordant strains. As
noted in the discussion below, precision and recall for 25
variants of the A strain of “Money Musk” were either
100% (n=10) or 96% (n=15), given 24 relevant items, 24
retrieved items, and a database of 59 items.

Figure 4 gives incipits for the top 5 strains in the
ranked list for the B strain of Joseph Allard’s “Reel de
Mme. Renault,” as compared to 666 other strains
recorded between 1923 and 1929. A human-provided
musical analysis identified strains 1 and 3 (“Reel du bon
vieux temps,” “Reel princesse”) as the only
concordances in the database.

Figure 4: Similarity results for a query of the B strain of
“Reel de Mme. Renault” (Joseph Allard, 1928)

To test our system, we randomly selected a test set of
100 strains from the full database of 710 strains. We
then selected query strains at random from within this
test set. We confirmed via a human-supplied musical
analysis that each query strain had at least one
concordance in the test set. Those that did not were
discarded and new strains were randomly selected, until
we reached a total of 10. Approximately 50% of the
strains in the full database are not concordant with any
other strains in the database.

We compared each of these query strains to the test
set using four different ranking approaches (figure 5).
The Levenshtein and Geometric Distance measures were
drawn from the similarity evaluation system described in
[16]. The MATT2 system [6] is designed for a repertoire
of Irish tunes and is the search algorithm underlying the
TunePal app described earlier. It presumes that
transcriptions of tunes on “unusually pitched”
instruments (instruments with repertoire-specific and
non-standard tunings) have been normalized to a single
fundamental pitch (“transposition invariance”).
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Figure 5: Query results for 10 strains out of a test set of
100 strains. 

As expected, all of these analytical systems
performed well when identifying exact or near-exact
matches. However, our system was able to identify more
extreme melodic and metrical variants and to supply a
ranking of those variants. Our system also identified
concordances in transposed keys.

6. DISCUSSION

We built this system in response to two musicological
challenges. First, we wanted to identify concordances in
the earliest commercial recordings of French-Canadian
tunes in order to determine the degree of shared
repertoire among these recording artists. Second, we
wanted to analyze variation technique in a single tune,
“Money Musk,” due to its popularity in recordings of the
era.

By applying our approach to a database of 667
strains recorded between 1923 and 1929, we were able
to identify nearly 150 concordant strains. Most of these
concordances were previously unrecognized as related
tunes.

Using these results in combination with archival
research, we have been able to identify patterns of
musical borrowing for certain musicians. Of the 16 sides
that fiddler Isidore Soucy recorded for Columbia
Records in New York City in 1927–1929 [24], for
instance, eight were tunes that he had recorded for the
Starr label in Montréal only a few months earlier, most

under different titles. In contrast, when Soucy borrowed
from his Starr releases for other Starr recordings, he
usually re-recorded only single strains (combined with
new material or with strains borrowed from other tunes).

We have been able to document the musical links
between a small group of fiddlers living and working in
the Montréal region in the late 1920s. These musicians
often re-recorded the same tunes and strains within
weeks of each other. Joseph Allard and Isidore Soucy,
for example, recorded the same tune in late 1928 under
the titles “Quadrille Acadien” and “Gigue Indienne,”
respectively (Victor 263543–A, Starr 15517–A). In the
summer of 1927, Willie Ringuette and Isidore Soucy
added the same C strain to two different tunes (Starr
15347–A, Starr 15363–B). 

Finally, we were able to identify French-Canadian
variants of many common North American tunes such as
“Soldier’s Joy,” “Haste to the Wedding,” “Fisher’s
Hornpipe,” “Bristol Hornpipe,” “Rickett’s Hornpipe,”
“Chicken Reel,” “Irish Washerwoman,” “Keel Row,”
“Lord McDonald” and “Home Sweet Home.”

We applied our system to a database of 59 strains
drawn from 13 renditions of “Money Musk.” All
“Money Musk” settings include some version of two
particular strains, usually labeled A and B, though not all
performers play the A strain first and the B strain
second. These strains may be easily recognized: both
begin with a down-and-back motion that outlines a tonic
chord, though the A strain begins on the fifth scale
degree and the B on the first scale degree. (For three
early and quite varied renditions of “Money Musk,”
listen to recordings on the Virtual Gramophone by
Isidore Soucy [Starr 15302–B, 1927], Joseph Allard
[Victor 263527–B, 1928] and Alfred Montmarquette
[Starr 15475–A, 1928]).

A human-supplied musical analysis of these 59
strains identified 25 variants of the A strain, 15 variants
of the B strain, 10 strains that were neither A nor B
variants, and 9 strains that could be conceived of as
distant variants of A (4 strains) or B (5 strains). In
addition, this analysis revealed two types of B strains:
those with an ascending melodic contour in the second
bar (7 strains), and those with a descending figure (8
strains). We used our system to generate ranked lists for
each of the 59 strains. For the 25 A strains, the top 24
results in the ranked list contained either 24 (n=10) or 23
(n=15) of the remaining A strains. The B-strain results
were more complex and are summarized in figure 6.

These results suggest that the A-strain variants of
“Money Musk” are more similar to each other than are
the B-strain variants, and that B-ascending variants are
more diverse than B-descending. This analysis also
allows us to identify certain variants as musical outliers.
As noted above, 15 of the A strains recalled 23 of 24
other A strains. In 12 of these instances, the missing
strain was the same. This suggests that this strain would
be a good candidate for further study.

The results in figure 6 also point to a split in the B-
ascending strains, between those that are most similar to
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the other B-ascending strains and those that are equally
similar to B-ascending and B-descending strains. In
particular, the strain recorded by Arthur-Joseph Boulay
stands out for its dissimilarity to other B-ascending
strains. These B-strain results suggests that the original
musicological analysis that classified the B strains as
either ascending or descending may need to be refined
with reference to additional significant features.

Figure 6: Results for 15 B strains of “Money Musk” out
of a database of 59 strains.

Examples such as these suggest that our approach
may help scholars of instrumental dance music achieve a
more nuanced study of musical similarity. Specifically,
our system may help to identify concordances, parse
degrees of melodic variation, and pinpoint instances that
require further examination. The system also provides
tools—the similarity matrices and the ranked lists—to
facilitate such examination.

Certain instances of comparison remain problematic,
however. The system does not currently recognize
changes in meter, occasionally resulting in incipits that
are slightly shorter or longer than four measures. This is
the case for both “Reel princesse” and “Reel du bon
vieux temps” (figure 1). The ranked list results for such
cases are still reasonably accurate (figure 4). Note also
that the placement of the barlines in metrically irregular
renditions of tunes is at the discretion of the transcriber. 

In addition, the French-Canadian repertoire contains
some tunes with variants in both compound meter (9/8
or 6/8) and simple meter (3/2, 4/4, 2/2, or 2/4). In such
cases, the system does not always find a satisfactory
alignment between strong beats. 

The system may also generate incorrect results when
the two incipits are of different lengths. This is largely
because variations in length of musically similar strains
are due to an expansion of the shorter to the longer.
While a naïve dynamic programming approach to
alignment is insensitive to expansion, this issue may be
solved by reducing the weighting on alignments that
compress the shorter incipit.

7. FUTURE WORK

Although our system is currently designed for the
specific attributes of French-Canadian fiddle tunes, the
comparison functions and weighting calculation may be
adapted for other repertoires. Our system may be
particularly useful for repertoires in which new melodies
are constructed using modified segments of extant
melodies. Such repertoires are primarily aural, but may
also include notated repertoires such as Renaissance
Masses based on pre-existent material. This would
require modifying the system for polyphonic sources.
More immediately, we would like to investigate the
application of our system to British Isles and North
America fiddling traditions. We do not anticipate
needing to revise the comparison functions and
weighting calculation for this repertoire, and thousands
of these tunes are already available in symbolic notation
via online databases [3; 15; 18].

Our system identifies nuances between two strains
and is particularly useful for identifying strains with a
high degree of variation. However, we recognize that our
approach may be less versatile than a more generalized
comparison function such as an edit distance or Earth
Mover’s Distance function. Eventually we may seek to
combine our system with a “first pass” edit distance or
Earth Mover’s Distance function.

8. CONCLUSION

Musical repertoires that circulate primarily in aural
tradition often contain significant variance between
different instances of the same tune. Analyzing variation
and transformation in such repertoires has been an
important part of ethnomusicology, musicology and
folklore scholarship for decades. This paper has
presented a novel tool to aid researchers in variance
analysis in instrumental dance tunes.

The source code for our system has been published
under an open source license, available on GitHub at
http://github.com/ELVIS-Project/fiddle-tunes.

We believe that our system may be of practical use
for musicologists and musicians specializing in the
traditional instrumental musics of the British Isles and
North America. It may also prove a useful model when
building analytical tools for other repertoires containing
a large number of variants.
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ABSTRACT

This paper describes and evaluates a method for comput-
ing artist similarity from a set of artist biographies. The
proposed method aims at leveraging semantic information
present in these biographies, and can be divided in three
main steps, namely: (1) entity linking, i.e. detecting men-
tions to named entities in the text and linking them to an
external knowledge base; (2) deriving a knowledge rep-
resentation from these mentions in the form of a seman-
tic graph or a mapping to a vector-space model; and (3)
computing semantic similarity between documents. We
test this approach on a corpus of 188 artist biographies
and a slightly larger dataset of 2,336 artists, both gathered
from Last.fm. The former is mapped to the MIREX Audio
and Music Similarity evaluation dataset, so that its similar-
ity judgments can be used as ground truth. For the latter
dataset we use the similarity between artists as provided
by the Last.fm API. Our evaluation results show that an
approach that computes similarity over a graph of entities
and semantic categories clearly outperforms a baseline that
exploits word co-occurrences and latent factors.

1. INTRODUCTION

Artist biographies are a big source of musical context in-
formation and have been previously used for computing
artist similarity. However, only shallow approaches have
been applied by computing word co–occurrences and thus
the semantics implicit in text have been barely exploited.
To do so, semantic technologies, and more specifically En-
tity Linking tools may play a key role to annotate unstruc-
tured texts. These are able to identify named entities in text
and disambiguate them with their corresponding entry in a
knowledge base (e.g. Wikipedia, DBpedia or BabelNet).

This paper describes a method for computing semantic
similarity at document-level, and presents evaluation re-
sults in the task of artist similarity. The cornerstone of
this work is the intuition that semantifying and formaliz-
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ing relations between entity mentions in documents (both
at in-document and cross-document levels) can represent
the relatedness of two documents. Specifically, in the task
of artist similarity, this derives in a measure to quantify
the degree of relatedness between two artists by looking at
their biographies.

Our experiments start with a preprocessing step which
involve Entity Linking over artist biographical texts. Then,
a knowledge representation is derived from the detected
entities in the form of a semantic graph or a mapping to a
vector-space model. Finally, different similarity measures
are applied to a benchmarking dataset. The evaluation re-
sults indicate that some approaches presented in this paper
clearly outperform a baseline based on shallow word co-
occurrence metrics. Source code and datasets are available
online 1 .

The remainder of this article is structured as follows:
Section 2 reviews prominent work in the fields and topic
relevant to this paper; Section 3 details the different mod-
ules that integrate our approach; Section 4 describes the
settings in which experiments were carried out together
with the evaluation metrics used; Section 5 presents the
evaluation results and discusses the performance of our
method; and finally Section 6 summarizes the main top-
ics covered in this article and suggests potential avenues
for future work.

2. RELATED WORK

Music artist similarity has been studied from the score level,
the acoustic level, and the cultural level [9]. This work is
focused on the latter approach, and more specifically in
text-based approaches. Literature on document similarity,
and more specifically on the application of text-based ap-
proaches for artist similarity is discussed next.

The task of identifying similar text instances, either at
sentence or document level, has applications in many ar-
eas of Artificial Intelligence and Natural Language Pro-
cessing [17]. In general, document similarity can be com-
puted according to the following approaches: surface-level
representation like keywords or n-grams [6]; corpus rep-
resentation using counts [28], e.g. word-level correlation,
jaccard or cosine models; Latent factor models, such as La-
tent Semantic Analysis [8]; or methods exploiting external

1 http://mtg.upf.edu/downloads/datasets/
semantic-similarity

100



knowledge bases like ontologies or encyclopedias [12].
The use of text–based approaches for artist and mu-

sic similarity was first applied in [7], by computing co–
occurrences of artist names in web page texts and build-
ing term vector representations. By contrast, in [30] term
weights are extracted from search engine’s result counts.
In [33] n–grams, part–of–speech tagging and noun phrases
are used to build a term profile for artists, weighted by em-
ploying tf-idf. Term profiles are then compared and the
sum of common terms weights gives the similarity mea-
sure. More approaches using term weight vectors have
been developed over different text sources, such as music
reviews [11], blog posts [4], or microblogs [29]. In [18]
Latent Semantic Analysis is used to measure artist simi-
larity from song lyrics. Domain specific ontologies have
also been applied to the problem of music recommenda-
tion and similarity, such as in [5]. In [16], paths on an on-
tological graph extracted from DBpedia are exploited for
recommending music web pages. However, to the best of
our knowledge, there are scant approaches in the music
domain that exploit implicit semantics and enhance term
profiles with external knowledge bases.

3. METHODOLOGY

The method proposed in this paper can be divided in three
main steps, as depicted in Fig 1. The first step performs en-
tity linking, that is the detection of mentions to named en-
tities in the text and their linking to an external knowledge
base. The second step derives a semantically motivated
knowledge representation from the named entity mentions.
This can be achieved by exploiting natural language text as
anchor between entities, or by incorporating semantic in-
formation from an external knowledge base. In the latter
case, a document is represented either as a semantic graph
or as a set of vectors projected on a vector space, which
allows the use of well known vector similarity metrics. Fi-
nally, the third step computes semantic similarity between
documents (artist biographies in our case). This step can
take into consideration semantic similarity among entity
mentions in document pairs, or only the structure and con-
tent of the semantic graph.

The following sections provide a more detailed descrip-
tion of each one of these steps, along with all the approaches
we have considered in each step.

Figure 1. Workflow of the proposed method.

3.1 Entity Linking

Entity linking is the task to associate, for a given candi-
date textual fragment, the most suitable entry in a refer-
ence Knowledge Base (KB) [23]. It encompasses similar
subtasks such as Named Entity Disambiguation [2], which

is precisely linking mentions to entities to a KB, or Wikifi-
cation [21], specifically using Wikipedia as KB.

We considered several state-of-the-art entity linking tools,
including Babelfy [23], TagMe [10], Agdistis [32] and DB-
Pedia Spotlight [20]. However we opted to use the first
one for consistency purposes, as in a later step we exploit
SensEmbed [13], a vector space representation of concepts
based on BabelNet [24]. Moreover, the use of a single tool
across approaches guarantees that the evaluation will only
reflect the appropriateness of each one of them, and in case
of error propagation all the approaches will be affected the
same.

Babelfy [23] is a state-of-the-art system for entity link-
ing and word sense disambiguation based on non-strict iden-
tification of candidate meanings (i.e. not necessarily exact
string matching), together with a graph based algorithm
that traverses the BabelNet graph and selects the most ap-
propriate semantic interpretation for each candidate.

3.2 Knowledge representation

3.2.1 Relation graph

Relation extraction has been defined as the process of iden-
tifying and annotating relevant semantic relations between
entities in text [15]. In order to exploit the semantic re-
lations between entities present in artist biographies, we
applied the method defined in [25] for relation extraction
in the music domain. The method basically consists of
three steps. First, entities are identified in the text by ap-
plying entity linking. Second, relations between pairs of
entities occurring in the same sentence are identified and
filtered by analyzing the structure of the sentence, which
is obtained by running a syntactic parser based on the for-
malism of dependency grammar [1]. Finally, the identified
entities and relations are modeled as a knowledge graph.
This kind of extracted knowledge graphs may be useful for
music recommendation [31], as recommendations can be
conveyed to users by means of natural language. We ap-
ply this methodology to the problem of artist similarity, by
creating a graph that connects the entities detected in ev-
ery artist biography. We call this approach RG (relation
graph). Figure 2 shows the output of this process for a sin-
gle sentence.

Figure 2. Relation graph of a single sentence
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3.2.2 Semantically enriched graph

A second approach is proposed using the same set of linked
entities. However, instead of exploiting natural language
text, we use semantic information from the referenced knowl-
edge base to enrich the semantics of the linked entities. We
follow a semantic enrichment process similar to the one
described in [27]. We use semantic information coming
from DBpedia 2 . DBpedia resources are generally clas-
sified using the DBpedia Ontology, which is a shallow,
cross-domain ontology based on the most common info-
boxes of Wikipedia. DBpedia resources are categorized
using this ontology among others (e.g. Yago, schema.org)
through the rdfs:type property. In addition, each Wiki-
pedia page may be associated with a set of Wikipedia cat-
egories, which link articles under a common topic. DBpe-
dia resources are related to Wikipedia categories through
the property dcterms:subject.

We take advantage of these two properties to build our
semantically enriched graph. We consider three types of
nodes for this graph: 1) artist entities obtained by match-
ing the artist names to their corresponding DBPedia entry;
2) named entities detected by the entity linking step; and
3) Wikipedia categories associated to all the previous enti-
ties. Edges are then added between artist entities and the
named entities detected in their biographies, and between
entities and their corresponding Wikipedia categories. For
the construction of the graph, we can select all the detected
named entities, or we can filter them out according to the
information related to their rdfs:type property. A set
of six types was selected, including artist, band, work, al-
bum, musicgenre, and person, which we consider more ap-
propriate to semantically define a musical artist.

From the previous description, we define five variants
of this approach. The first variant, which we call AEC
(Artists-Entities-Categories), considers all 3 types of nodes
along with their relations (as depicted in Figure 3). The
second variant, named AE (Artists-Entities) ignores the
categories of the entities. The third and fourth variant,
named AEC-FT and AE-FT, are similar to the first and sec-
ond variant, respectively, except that the named entities are
filtered using the above mentioned list of 6 entity types.
Finally, the fifth variant, EC, ignores the artist entities of
node type 1.

3.2.3 Sense embeddings

The semantic representation used in this approach is based
on SensEmbed [13]. SensEmbed is a vector space seman-
tic representation of words similar to word2vec [22], where
each vector represents a BabelNet synset and its lexicaliza-
tion. Let A be the set of artist biographies in our dataset.
Each artist biography a ∈ A is converted to a set of disam-
biguated concepts Bfya after running Babelfy over it.

2 http://dbpedia.org

Figure 3. Semantically enriched subgraph of the same sen-
tence from Figure 2, variant AEC with h=1

3.3 Similarity approaches

3.3.1 SimRank

SimRank is a similarity measure based on an simple graph-
theoretic model [14]. The intuition is that two nodes are
similar if they are referenced by similar nodes. In partic-
ular we use the definition of bipartite SimRank [14]. We
build a bipartite graph with named entities and their corre-
sponding Wikipedia categories (the EC variant from Sec-
tion 3.2.2). The similarity between two named entities (say
p and q) is computed with the following recursive equation:

s(p, q) =
C

|O(p)||O(q)|

|O(p)|∑

i=1

|O(q)|∑

j=1

s(Oi(p), Oj(q)) (1)

where O denotes the out-neighboring nodes of a given
node and C is a constant between 0 and 1. For p = q,
s(p, q) is automatically set up to 1. Once the similarity
between all pairs of entities is obtained, we proceed to cal-
culate the similarity between pairs of artists (say a and b)
by aggregating the similarities between the named entities
identified in their biographies, as shown in the following
formula:

sim(a, b) = Q(a, b)
1

N

∑

ea∈a

∑

eb∈b

s(ea, eb) if s(ea, eb) ≥ 0.1 (2)

where s denotes the SimRank of entities ea and eb and
N is the number of (ea, eb) pairs with s(ea, eb) ≥ 0.1.
This is done to filter out less similar pairs. Finally, Q(a, b)
is a normalizing factor that accounts for the pairs of artists
with more similar entity pairs than others.

3.3.2 Maximal common subgraph

Maximal common subgraph (MCS) is a common distance
measure on graphs. It is based on the maximal common
subgraph of two graphs. MCS is a symmetric distance met-
ric, thus d(A,B) = d(B,A). It takes structure as well as
content into account. According to [3], the distance be-
tween two non empty graphs G1 and G2 is defined as
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d(G1, G2) = 1− |mcs(G1, G2)|
max(|G1|, |G2|)

(3)

It can also be seen as a similarity measure s, assum-
ing that s = 1 − d, as applied in [19]. To compute this
similarity measure we need to have a graph for each artist.
This can be achieved by finding subgraphs in the graph
approaches defined in Section 3.2. A subgraph will in-
clude an artist entity node and its neighboring nodes. Fur-
thermore, we apply the notion of h-hop item neighborhood
graph defined in [26] to a semantic graph. Let G = (E,P )
be an undirected graph where E represent the nodes (en-
tities), and P the set of edges with P ⊆ E × E. For
an artist item a in G, its h-hop neighborhood subgraph
Gh(a) = (Eh(a), Ph(a)) is the subgraph of G formed
by the set of entities that are reachable from a in at most
h hops, according to the shortest path. Following this ap-
proach, we obtain an h-hop item neighborhood graph for
each artist node of the semantic graph. Then, maximal
common subgraph is computed between each pair of h-
hop item neighborhood graphs. For each artist, the list of
all similar artists ordered from the most similar to the less
one is finally obtained.

3.3.3 Cumulative cosine similarity

For each pair of concepts c ∈ Bfya and c′ ∈ Bfy′
a (as

defined in Section 3.2.3), we are interested in obtaining the
similarity of their closest senses. This is achieved by first
deriving the set of associated vectors Vc and V ′

c′ for each
pair of concepts c, c′, and then optimizing

maxvc∈Vc,v′
c′∈V ′

c′

(
vc × v′c′
||vc|| ||v′c′ ||

)
(4)

i.e. computing cosine similarity between all possible
senses (each sense represented as a vector) in an all-against-
all fashion and keeping the highest scoring similarity score
for each pair. Finally, the semantic similarity between two
artist biographies is simply the average among all the co-
sine similarities between each concept pair.

4. EXPERIMENTAL SETUP

To evaluate the accuracy of the proposed approaches we
designed an experimental evaluation over two datasets. The
first dataset contains 2,336 artists and it is evaluated using
the list of similar artists provided by the Last.fm API as a
ground truth. The second dataset contains 188 artists, and
it is evaluated against user similarity judgements from the
MIREX Audio Music Similarity and Retrieval task. Apart
from the defined approaches, a pure text-based approach
for document similarity is added to act as a reference for
the obtained results.

4.1 Datasets

4.1.1 Last.fm dataset

A dataset of 2,336 artist biographies was gathered from
Last.fm. The artists in this dataset share a set of restric-
tions. Their biography has at least 500 characters and is

written in English. All of the artists have a correspon-
dent Wikipedia page, and we have been able to mapped it
automatically, obtaining the DBpedia URI of every artist.
For every artist, we queried the getSimilar method of the
Last.fm API and obtained an ordered list of similar artists.
Every artist in the dataset fulfills the requirement of having
at least 10 similar artists within the dataset. We used these
lists of similar artists as the ground truth for our evaluation.

4.1.2 MIREX dataset

To build this dataset, the gathered artists from Last.fm were
mapped to the MIREX Audio Music Similarity task dataset.
The AMS dataset (7,000 songs from 602 unique artists)
contains human judgments of song similarity. According
to [29], the similarity between two artists can be roughly
estimated as the average similarity between their songs.
We used the same approach in [29], that is, two artists were
considered similar if the average similarity score between
their songs was at least 25 (on a fine scale between 0 and
100).

After the mapping, we obtained an overlap of 268 artists.
As we want to evaluate Top-10 similarity, every artist in
the ground truth dataset should have information of at least
10 similar artists. However, not every artist in the MIREX
evaluation dataset fulfills this requirement. Therefore, after
removing the artists with less than 10 similars, we obtained
a final dataset of 188 artists, and used it for the evaluation.

4.2 Baseline

In order to assess the goodness of our approaches, we need
to define a baseline approach with which to compare to.
The baseline used in this paper is a classic vector-based
model approach used in many Information Retrieval sys-
tems. A text document is represented as a vector of word
frequencies (after removing English stopwords and words
with less than 2 characters), and a matrix is formed by ag-
gregating all the vectors. The word frequencies in the ma-
trix are then re-weighted using TF-IDF, and finally latent
semantic analysis (LSA) [8] is used to produce a vector
of concepts for each document. The similarity between
two documents can be obtained by using a cosine similar-
ity over their corresponding vectors.

4.3 Evaluated approaches

From all possible combinations of knowledge representa-
tions, similarity measures and parameters, we selected a
set of 10 different approach variants. The prefixes AEC,
RG and AE refer to the graph representations (see Sec-
tions 3.2.1 and 3.2.2). SE refers to the sense embeddings
approach, and LSA to the latent semantic analysis base-
line approach. When these prefixes are followed by FT, it
means that the entities in the graph have been filtered by
type. The second term in the name refers to the similarity
measure. MCS refers to maximal common subgraph, and
SimRank and Cosine to SimRank and cumulative cosine
similarity measures. MCS approaches are further followed
by a number indicating the number of h-hops of the neigh-
borhood subgraph.
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Genres

Approach variants Blues Country Edance Jazz Metal Rap Rocknroll Overall

Ground Truth 5.78 5.46 6.88 7.04 7.10 8.68 5.17 6.53

LSA 4.43 4.12 3.80 4.64 5.79 5.08 4.74 4.69
RG MCS 1-hop 2.63 3.50 1.50 2.95 4.00 2.54 1.70 2.68
RG MCS 2-hop 4.14 4.92 1.69 2.80 3.78 3.06 2.77 3.27
AE MCS 5.52 5.15 4.36 7.00 4.34 5.36 4.46 5.11
AE-FT MCS 5.43 6.12 4.16 6.20 6.32 5.36 3.77 5.26
AEC MCS 1-hop 7.22 5.92 5.24 7.12 5.48 6.92 4.86 6.02
AEC MCS 2-hop 4.22 3.69 4.56 6.20 4.55 4.64 4.09 4.54
AEC-FT MCS 1-hop 6.91 6.80 6.04 7.60 6.79 7.12 5.37 6.59
AEC-FT MCS 2-hop 4.09 4.36 5.56 6.72 4.39 4.16 3.77 4.67
EC SimRank 6.74 5.38 3.16 6.40 4.59 4.44 3.80 4.85
SE Cosine 3.39 5.50 5.32 5.16 4.31 5.36 4.31 4.75

Table 3. Average genre distribution of the top-10 similar artists using the MIREX dataset. In other words, on average, how
many of the top-10 similar artists are from the same genre as the query artist. LSA stands for Latent Semantic Analysis,
RG for Relation Graph, SE for Sense Embeddings, and AE, AEC and EC represent the semantically enriched graphs with
Artists-Entities, Artist-Entities-Categories, and Entities-Categories nodes, respectively. As for the similarity approaches,
MCS stands for Maximum Common Subgraph.

Precision@N nDCG@N

Approach variants N=5 N=10 N=5 N=10

LSA 0.100 0.169 0.496 0.526
RG MCS 1-hop 0.059 0.087 0.465 0.476
RG MCS 2-hop 0.056 0.101 0.433 0.468
AE MCS 0.106 0.178 0.503 0.517
AE-FT MCS 0.123 0.183 0.552 0.562
AEC MCS 1-hop 0.120 0.209 0.573 0.562
AEC MCS 2-hop 0.086 0.160 0.550 0.539
AEC-FT MCS 1-hop 0.140 0.218 0.588 0.578
AEC-FT MCS 2-hop 0.100 0.160 0.527 0.534
EC SimRank 0.097 0.171 0.509 0.534
SE Cosine 0.095 0.163 0.454 0.484

Table 1. Precision and normalized discounted cumulative
gain for Top-N artist similarity using the MIREX dataset
(N={5, 10})

4.4 Evaluation measures

To measure the accuracy of the artist similarity we adopt
two standard performance metrics such as Precision@N,
and nDCG@N (normalized discounted cumulative gain).
Precision@N is computed as the number of relevant items
(i.e., true positives) among the top-N items divided by N ,
when compared to a ground truth. Precision considers only
the relevance of items, whilst nDCG takes into account
both relevance and rank position. Denoting with sak the
relevance of the item in position k in the Top-N list for the
artist a, then nDCG@N for a can be defined as:

nDCG@N =
1

IDCG@N

N∑

k=1

2sak − 1

log2(1 + k)
(5)

where IDCG@N indicates the score obtained by an ideal or
perfect Top-N ranking and acts as a normalization factor.
We run our experiments for N = 5 and N = 10.

Precision@N nDCG@N

Approach variants N=5 N=10 N=5 N=10

LSA 0.090 0.088 0.233 0.269
RG MCS 1-hop 0.055 0.083 0.126 0.149
AE MCS 0.124 0.200 0.184 0.216
AE-FT MCS 0.136 0.201 0.224 0.260
AEC MCS 1-hop 0.152 0.224 0.277 0.297
AEC-FT MCS 1-hop 0.160 0.242 0.288 0.317

Table 2. Precision and normalized discounted cumulative
gain for Top-N artist similarity using the Last.fm dataset
(N={5, 10})

5. RESULTS AND DISCUSSION

We evaluated all the approach variants described in Sec-
tion 4.3 on the MIREX dataset, but only a subset of them
on the Last.fm dataset, due to the high computational cost
of some of the approaches.

Table 1 shows the Precision@N and nDCG@N results
of the evaluated approaches using the MIREX dataset, while
Table 2 shows the same results for the Last.fm dataset.
We obtained very similar results in both datasets. The ap-
proach that gets best performance for every metric, dataset
and value of N is the combination of the Artists-Entities-
Categories graph filtered by types, with the maximal com-
mon subgraph similarity measure using a value of h = 1
for obtaining the h-hop item neighborhood graphs.

Furthermore, given that the MIREX AMS dataset also
provides genre data, we analyzed the distribution of gen-
res in the top-10 similar artists for each artist, and aver-
aged them by genres. The idea is that an artist’s most
similar artists should be from the same genre as the seed
artist. Table 3 presents the results. Again, the best results
are obtained with the approach that combines the Artists-
Entities-Categories graph filtered by types, with the maxi-
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mal common subgraph similarity measure using a value of
h = 1 for the h-hop item neighborhood graphs.

We extract some insights from these results. First, se-
mantic approaches are able to improve pure text-based ap-
proaches. Second, using knowledge from an external knowl-
edge base provides better results than exploiting the rela-
tions inside the text. Third, using a similarity measure that
exploits the structure and content of a graph, such as max-
imal common subgraph, overcomes other similarity mea-
sures based on semantic similarity among entity mentions
in document pairs.

6. CONCLUSION

In this paper we presented a methodology that exploits se-
mantic technologies for computing artist similarity, which
can be divided in three main steps: First, named entity
mentions are identified in the text and linked to a knowl-
edge base. Then, these entity mentions are used to con-
struct a semantically motivated knowledge representation.
Finally a similarity function is defined on top of the knowl-
edge representation to compute the similarity between artists.
For each one of these steps we explored several approaches,
and evaluated them against a small dataset of 188 artist bi-
ographies, and a larger dataset of 2,336 artists, both ob-
tained from Last.fm.

Results showed that a combination of the Artists-Entity-
Categories graph filtered by types, and a maximal com-
mon subgraph similarity measure using a value of h = 1
for obtaining the h-hop item neighborhood graphs, clearly
outperforms a baseline approach that exploits word co–
occurrences and latent factors. In the light of these results,
the following conclusions can be drawn: First, semantic
approaches may outperform pure text-based approaches.
Second, we observe that knowledge leveraged from exter-
nal ontologies may improve the accuracy of the similarity
measure. Third, reducing noise by filtering linked entities
by type is a rewarding step that contributes to an improved
performance. Finally, we show that similarity measures
that take into consideration the structure and content of
a graph representation may achieve much higher perfor-
mance.

There are still many avenues for future work. We would
like to compare our semantic-based approach with acous-
tic and collaborative filtering approaches. In addition, the
use of text sources different from artist biographies can be
studied. Finally, in order to improve the results obtained
by our semantic approach, different state-of-the-art entity
linking tools can be applied, or a specific entity linking tool
for the music domain could be created for this purpose.
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ABSTRACT 

The similarity between linguistic tones and melodic pitch 
contours in Beijing Opera can be captured either by the 
contour shape of single syllable units, or by the pairwise 
pitch height relations in adjacent syllable units. In this 
paper, we investigate the latter problem with a novel ma-
chine learning approach, using techniques from time se-
ries data mining. Approximately 1300 pairwise contour 
segments are extracted from a selection of 20 arias. We 
then formulate the problem as a supervised machine-
learning task of predicting types of pairwise melodic rela-
tions based on linguistic tone information. The results 
give a comparative view of fixed and mixed-effects mod-
els that achieved around 70% of maximum accuracy. We 
discuss the superiority of the current method to that of the 
unsupervised learning in single-syllable-unit contour 
analysis of similarity in Beijing Opera. 

1. INTRODUCTION 

One of the most salient aspects of Chinese operas is the 
role of various dialects and their distinct tone contours. In 
the musicological study of Beijing opera, the similarity 
between linguistic tone contours of the lyrics and the vo-
cal melodic contours is a classic problem that arises from 
the nature of Chinese tone languages. In a tone language, 
as opposed to an intonation language, the pitch contour of 
a speech sound (often a syllable) can be used to distin-
guish lexical meaning. In singing, however, such pitch 
contour can be overridden by the melody of the music, 
making the lyrics difficult to decode by listeners [1]. In 
order for lyrics to be more intelligible, Beijing opera’s 
melody is traditionally arranged with considerations of 
lyrics tone information. The degree and manner of this 
incorporation, however, is only partly known through 
scholarly work [1-4]. The difficulty of this problem is 
further complicated by the fact that there are two dialects 
with distinct tone contours within Beijing opera (Beijing 
and HuGuang dialects, or BJ and HG in this paper) [3].  

Previous works cited above indicate that the similar-
ity between linguistic tones and melodic pitch contours in 
Beijing Opera can be captured either by the contour shape 
of single syllable units, or by the pairwise pitch height 

relations in adjacent syllable units. [1] considered the sin-
gle-syllable unit contour analysis with a time-series data 
mining approach. This study concluded that while the 
Smoothing Spline model’s R-squared values are consis-
tent with the expected variance relations between the first 
tone and other tones, overall there exists a large amount 
of un-explained variance in melodic contours that cannot 
be attributed to grouping of tone categories from a single 
tone system (BJ or HG).  

In this paper we investigate the second type of simi-
larity of linguistic tones and melodic contours. Following 
musical literature [12], we postulate that the perceived 
similarity of the melody to a tone category is realized by 
the similar pitch height relations in a pair of adjacent syl-
lable units in singing (to that of the tone in speech). We 
then formulate this problem as a supervised machine 
learning problem of predicting the type of pairwise pitch 
height relations based on features derived from linguistic 
attributes. First we perform experimentation on the most 
efficient and cognitively accurate time-series representa-
tions for pitch contour vectors and extract the class labels. 
Following feature extraction and data preprocessing, a 
series of multinomial, binary and mixed effects regres-
sion models are trained. These allow us to progressively 
achieve our two main goals:  First, using linguistic infor-
mation to predict (with improved accuracy) the melodic 
pairwise pitch height relations; second, as a consequence, 
we also obtain a better understanding of the effect of 
various linguistic and other attributes on the types of 
pitch height relations observed in Beijing opera.  

The remainder of the paper is organized as follows. 
Section 2 gives the formulation of the pairwise tone-
melody similarity as a supervised machine learning prob-
lem, followed by the description of data collection and 
preprocessing in Section 3. The core methodologies of 
time-series data representation experimentation and 
model training are described in Section 4. Section 5 and 6 
discuss the results, including the comparison of models 
and interpretation of model parameters.   
 

2. PROBLEM FORMULATION  

Recent research revealed that tone identification by hu-
mans does not necessarily depend on the availability of 
full tone contour information [5]. In the light of this find-
ing, pairwise tone-melody similarity is therefore a cogni-
tively plausible way for the melody to convey underlying 
tone information without being fully similar to the con-
tour of the linguistic tone. For example, a high-level tone 
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(5-5)1 followed by a low-rise tone (2-4) can be reflected 
in melody as long as the perceived starting pitch of the 
second syllable is lower than the first. Perceptually, the 
beginning position of a syllable is the most salient, being 
a prominent position that carries much phonetic informa-
tion such as formant transitions [6].  Alternatively, one 
may propose that this relation can be reflected by the end-
ing pitch of the first syllable and the beginning pitch of 
the second syllable, being the closest pair in time. Less 
plausible is the case where this similarity is reflected in 
the ending region pitch of both syllables.  

We therefore formulate this problem of pairwise 
similarity as a supervised machine learning problem. 
First, we define three types of relations between the two 
syllables in proximity (mostly adjacent, but can be sepa-
rated by a short instrumental interlude), based on the rela-
tive pitch height: ascending (A), descending (D), and 
level (L). These are our target class labels. Second, we 
define three subtypes of pairwise similarity based on the 
location of the similarity: Onset-Onset (BB), Offset-
Onset (EB), and Offset-Offset (EE). We will train a sepa-
rate model for each type of similarity. Third, we formu-
late the research objective: given linguistic tone and other 
attributes of a pair of syllables in the lyrics, can we cor-
rectly predict the type of relations of relative pitch height 
in vocal melody (A, D, or L as class label)? 

  

3. DATA COLLECTION 

3.1 Data Collection 

The current study uses about 1300 syllable-sized con-
tours extracted from a selection of 20 arias in a pre-
segmented and annotated Beijing opera audio collection 
corpus [7]. Each syllable in this data set is annotated 
with linguistic tone, word, artist, role type, melodic type 
(shengqiang), rhythmic type (banshi), and relevant 
metadata information. This set is selected according to a 
number of criteria: (1) we selected only yuanban, a 
rhythmic type in which the duration of a syllable sized 
unit bears the most similarity to that of speech; (2) we 
selected both types of shengqiang, namely xipi and er-
huang; (3) we selected five role types: D(dan), J(jing), 
LD(laodan), LS(laosheng), and XS(xiaosheng). For each 
combination of shengqiang and role types, we selected 
two arias, yielding a total of 20 arias for analysis. This 
set of arias is selected by a music scholar with expertise 
in Beijing opera music (who is the second author), and is 
therefore a representative set that is both comprehensive 
and selective for the task of studying the tone-melody 
relationship. 

3.2 Pitch Contour Extraction 

The fundamental frequency of vocal melodic con-
tours is computed using the MELODIA [10] package 

                                                 
1 The numbering here follows the relative pitch height from low to high: 
1<2<3<4<5. 

within the Essentia audio signal-processing library in Py-
thon [11], in order to minimize the interference of back-
ground instrumental ensemble to the computation of F0 
of the primary vocal signal. All rows of F0 values asso-
ciated with a specific pitch contour are automatically as-
signed a unique pitch contour id that encodes the aria, 
tone, and temporal order information of the syllable. For 
the sake of analysis, we produce down-sampled 30-point 
F0 vectors by using equidistant sampling across each 
pitch contour. A 5-point weighted averaging sliding win-
dow is applied to smooth the signal. The single-syllable 
contour data is then converted into a pairwise-syllable 
contour data file where each row has 60 pitch points of 
the two adjacent syllable contours, plus other attributes. 

 

4. METHODOLOGY 

4.1 Time-series representation 
First we perform automatic extraction of our target class 
labels (A, D, or L). In order to capture the accurate per-
ceived pitch heights in the beginning and ending regions 
of each syllable-sized melodic contour, we first convert 
the 30-point pitch contour into a lower dimension repre-
sentation using the Symbolic Aggregate approXimation 
(SAX) [8]. SAX transforms the pitch contour into a sym-
bolic representation using Piecewise Aggregate Ap-
proximation with a user-designated length (nseg, or 
sometimes referred to as word size, is the desired length 
of the feature vector) and alphabet size (alpha), the latter 
being used to divide the pitch space of the contour into 
alpha parts assuming a Gaussian distribution of F0 values.  

Using this technique, we experiment with the pa-
rameter settings of SAX with the goal of yielding the 
most similar relation types as a human listener would 
judge it. To perform this experiment, we first have a hu-
man listener annotate a selection of 260 sample tone con-
tours extracted from our audio collection2. For each con-
tour, the listener would rate the type of pairwise relation 
(A, D or L) by listening through the contour pairs. The 
experiment is proctored automatically by a Praat Script 
program and the presentation of each pair is separated by 
a white noise of 5 seconds. The listener rates all 260 con-
tours consecutively.  

Next, we permute the single syllable contour unit pa-
rameter values3 within intervals nseg ([3,8]) and alpha 
([3,6]). Each combination of the parameters yields a SAX 
representation for all contours and then three pairwise 
relation types (BB, EB, EE) based on the representation is 
extracted. We then compute the similarity / accuracy of 
each representation to the human judgments. Here, it is 
                                                 
2 Human rater is used only to train the parameters on a smaller sample 
so that we can perform automatic label extraction on larger scales of 
data. 
3 To ensure the consistency of pitch space division with the Gaussian 
breakpoints, we convert a pair of syllables at a time, making the nseg 
parameter twice as big. 
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noteworthy that the perceived beginning pitch height of a 
syllable-sized melodic contour does not necessarily cor-
respond to a predetermined meaningful musical unit such 
as a note. This is due to the nature of the Beijing opera 
that has many fine melisma across the melody.  In this 
case, we do not attempt to define a perceptually or musi-
cally grounded unit of ‘beginning pitch’, but rather we 
will let the experiment results decide which parameter 
configuration would be the closest to the human judg-
ment. Since SAX is already a dimensionality reduction 
algorithm, we thereby define the beginning pitch of a syl-
lable as the first symbol in the symbolic time-series rep-
resentation. After the parameters are chosen, we use the 
SAX representations to extract pairwise relation types for 
the entire training set. 
 

 
4.2 Regression modeling 

4.2.1 Feature Extraction and Data Preprocessing 
The basic set of features includes the attributes extracted 
from the corpus annotations: ToneFirst, ToneSecond, (of 
the first and second syllable in a pairwise contour),word, 
artist, role_type, shengqiang, banshi, as well as the dura-
tion of both syllables. All except the last one are nominal 
attributes. 

We additionally extracted three sets of compound 
features based on linguistic tones: first, a toneCombina-
tion feature that encodes the particular tone combinations 
(e.g., tone1_tone2) of this pairwise contour; second, six 
other features that encodes the types of linguistic tone 
pitch height relations of this tone combination (BB, EB, 
and EE) as well as the two dialectal tone systems (BJ and 
HG). These features are therefore (BB_BJ, BB_HG,  
EB_BJ, EB_HG, EE_BJ, EE_HG). These are the only 
features that directly encode the types of pairwise linguis-
tic tone relations into the feature vectors, using numbered 
pitch height system from linguistic literature (e.g., tone 3 
in BJ is 214 and in HG is 42, 1<2<3<4). Theoretically 
these features should not be used all at once, since each 
one of our regression models would only account for one 
type of output relations (BB, EB, or EE). However, since 
the previous studies suggest that the BJ and HG tone sys-
tems are likely intermixed in affecting the output melodic 
contour[1], we include both of these two types of features 

in each model. A third feature encodes the temporal dis-
tance/ number of interval segments between the pair of 
syllable: it is hypothesized that a closer pair of syllable 
would contribute to the manifestation of linguistic infor-
mation. We have eliminated those pairs whose distance is 
greater than 10 intervals (the intervals in between a pair 
could be due to various reasons, but mostly likely instru-
mental interlude). Figure 1 shows the distribution of dis-
tance in units of time intervals in the entire data set 
(where an interval is a syllable unit in our data segmenta-
tion). From this distribution we can see that most pairs 
are sung consecutively. 
 

 
 
We perform several measures of data preprocessing 

on the training data. First, we eliminate all contours 
whose syllable duration is longer than a threshold of 
5s(based on the distribution of durations). This is based 
on the observation that if the syllable is too long, the 
temporal relations are sparser and it has more chance to 
musically embellish its contours, further obscuring the 
linguistic information. Second, we observe that there is 
an extreme imbalance between tone categories 1-4 and 
tone 5. Linguistically, tone 5 is a ‘neutral’ tone that car-
ries different contours according to their context. Figure 2 
shows this imbalance in the toneCombination feature. We 
eliminated all examples with tone 5 in order to avoid sin-
gularity problems with generalized linear modeling.  

Lastly, the output class label distribution is also 
highly skewed (Figure 3). This is an interesting property 
of this musical data set especially when compared with its 
expected counterpart in language (i.e., the set of six tone 
features that encodes pairwise tone pitch relations).  Fig-
ure 3 plots the set of pairwise musical pitch relation la-
bels (BB, EB, EE) alongside its expected counter part 
(BB_BJ, EB_BJ, etc.) linguistic tone feature distribu-
tions. It is noteworthy that not coincidentally, the linguis-
tic pairwise types have a quite uniform distribution 
whereas the musical pairwise types have a very skewed 
distribution, with the “L(evel)” label being the rare class. 
This is probably a product of music: music, being a play 
largely about the manipulation of pitch, is intentionally 
avoiding many of the adjacent syllables (or notes) starting 
or ending with the same pitch height. Therefore in these 
cases we may hypothesize that the music is overriding 
linguistic configurations, thus obscuring our model. For 
this reason as well as motivations from the machine 
learning perspective, we created a second data set where 
all “L” labels are removed from the training data (which 
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is a small portion, ref. Figure 3). Therefore we use this 
second data set for binary logistic and mixed-effects re-
gression modeling in the latter part of the study. 

4.2.2 Multinomial Regression 

Our first model approximates this problem with a multi-
nomial logistic regression using the original data set with 
three output class labels (A, D, L). The multinomial lo-
gistic regression is an extension to the binary logistic re-
gression modelling, where we train one-versus-other 
models for each of the class labels. The model outputs the 
probability of assigning each label and selects the label 
with the highest probability as the predicted label.  

For all of the algorithms used in this study, as previ-
ously discussed, we build three models assuming three 
different types of relations (BB, EB, EE). We first build 
baseline multinomial logistic regression models with all 
available basic features. Then we incrementally drop fea-
tures whose coefficients are insignificant and having low 
predicting powers and end up with the best model for this 
setting. This set of features is used throughout the rest of 
the models in conjunction with compound features. 

4.2.3 Binary (Fixed Effects) Logistic Regression 

We then perform all subsequent regression modeling on 
the binary data set. As a baseline for this data set, we per-
form classic fixed effects binary logistic regression and 
compare the result with a number of well known machine 
learning algorithms such as Support Vector Machine 
(SVM), decision tress (J48 in Weka), Neural Networks, 
and Naïve Bayes. 

 

 
 

 

4.2.4 Mixed Effects Logistic Regression 

A mixed-effects regression model performs prediction by 
combining the contributions from fixed effects and ran-
dom effects. Parameters associated (coefficients) with the 
particular levels of a covariate are known as the “effects” 
of the levels. Essentially, if the set of possible levels of 
the covariate is fixed and reproducible we model the co-
variate using fixed-effects parameters. If the levels that 
we observed represent a random sample from the set of 
all possible levels we incorporate random effects in the 
model [9]. 

We extend from generalized linear models (GLMs) 
to multilevel GLMs by adding a stochastic component Z 
to the linear predictor (see (1)), where the random effects 
vector b is normally distributed with mean 0 and vari-
ance-covariance matrix Σ. In a mixed-effects logistic re-
gression model, we plug the stochastic linear predictor 
into the binomial (logistic) linking function. 

η=α+β1X1 +…+βnXn +b0 +b1Z1 +…+bmZm+ε (1)  

 
In the current setting, the random effects of our fea-

ture correspond to the variable words. Any general model 
would usually exclude the particular words of the two 
syllables as a fixed-effect feature; however, the problem 
with the fixed effects model (like the one described 
above) is that it is not capturing the variances in the out-
put label caused by being different words. The mixed ef-
fects model corrects this by estimating the conditional 
mode of the random effect term coefficients B. Strictly 
speaking, we don’t estimate the random effects in the 
same sense that we estimate model parameters. Instead, 
we consider the conditional distribution of B given the 
observed data, (B|Y =y), where Y is the output class label 
[9]. 

All modeling in this study are done with 10-fold 
cross validation in the training phase. 
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5. RESULT  

5.1 Time-series Representation Experiment Results 

Overall the time-series representation experiments using 
SAX technique yielded informative results. First, as 
shown in Figure 4, the differences in the accuracy are 
mostly the effect of varying nseg, whereas the effect of 
alpha parameter is not apparent (except for the EE type).  
Second, somewhat surprisingly, the average type predic-
tion accuracy vary significantly across the three types: 
BB>>EB>EE, with Onset-to-Onset relation types per-
forming almost perfectly at peak accuracy of 93%. This 
contrast is surprising considering that the human listener 
(who is a skilled musician) did not rate these three types 
directly; instead, the listener only had to rate the begin-
ning and end of a single syllable on a numbered fixed 
scale1 and the values for the three types of relations were 
extracted using that reference scale automatically. This 
systematic difference in the accuracy of these three types 
of relations indicates that the Offset annotation / judg-
ment has a much lower correlation with the acoustic sig-
nal than the Onset annotation. One possible explanation 
for this could be that the ending of a syllable is embel-
lished with more melismas than the beginning portion of 
the syllable, making the correlation lower. However, that 
would not predict the systematic lower performance of 
SAX EB and EE, which is at a lower resolution than the 
original acoustic signal. An alternative explanation is that 
the offset position is not as salient as the onset position, 
making it less appropriate for the location of carrying lin-
guistic tone information.  

Due to the differences in performance, we choose the 
SAX parameter settings for each of the three types: 
{BB:6_7, EB: 4_3, BB: 6_3}, where the parameter com-
binations stand for alpha_nseg. 

 

5.2 Regression Modeling Results2 
 Coef1(D) p-value Coef2 (L) p-value 

Intercept(A) -0.0761 6e-01 -1.2447 *2e-05 
Duration1 0.2149 0.0437 0.2594 0.1048 

T_1_2 -0.8454 *6e-06 -0.8159 *7e-03 
T_1_3 -0.6952 *0.0004 -0.4844 0.1148 
T_1_4 -1.2471 *6e-12 -0.9295 *1e-03 
T_2_2 0.5765 *0.0018 -0.1137 0.6986 
T_2_3 0.6709 *0.0007 0.2909 0.3265 
T_2_4 1.1505 *2e-10 0.2175 4e-01 

Table 1. Significant (basic) predictors overview from multino-
mial regression for BB type, with asterisks indicating coeffici-
ents significant at 0.05 level. Coef1 and coef2 represent the re-
gression coefficient associated with features. T_i_j is the co-
efficient associated with a i-th tone being a tone j. 

                                                 
1 Here, all the contours are extracted sequentially from the same aria so 
the judgment and extraction of consecutive relations are accurate. 
2 In this table, class A is treated as base/default level, and the Intercepts 
represent the base probabilities of D and L with regard to A without any 
knowledge about features.  

First, results (Table 1) of multinomial logistic regression 
reveal that tone information and the duration of the first 
syllable are among the most significant predictors of the 
probability of a pairwise contour being one of the three 
output classes (A, D or L). Concretely, for example, be-
ing a Tone 2 in the first syllable would significantly 
lower the probability of being a “D” by log-odds -0.8454 
or odds exp(-0.8434), and being a tone 4 for the second 
syllable would significantly increase the probability of 
being a “L” by log-odds 0.2175 or odds of exp(0.2175), 
where the exp() is the exponentiation function. Overall 
the multinomial regression has a mean classification ac-
curacy of 56.7% for all types of models on the 10-fold 
cross validation on the entire data set. This is a lower 
baseline for the subsequent models. Due to the skewed 
output distribution of class labels, the model consistently 
assigns the lowest probability to “L” in all predictions. 

Despite this finding, further analysis shows that the 
basic tone features (ToneFirst and ToneSecond) have lim-
ited predictive power compared to other compound tone 
features. Therefore in the subsequent analysis we drop 
these two basic features and keep the other 1+6 types of 
compound features.     

Our binary logistic model on the binary class data set 
(class label A and D) improves the accuracy by about 9%. 
This result is comparable across different classification 
algorithms (Table 2).  

 
Algorithm mean Accuracy 
Binary Logistic Regression 65.12% 
Decision Tree (J48) 61.57% 
SVM 62.44% 
NaiveBayes 61.56% 
NeuralNetwork 60.07% 

Table 2. Average performance of different algorithms on the 
binary classification data set with a 10-fold cross validation 

The mixed-effect model further improves the predic-
tion accuracy to around and above 70%. This set of mod-
els has two variations. The first set is built with 
ToneCombination and the six other compound features 
(two per model) as well as the duration of the first and 
second syllable as fixed effects features, and the Word as 
a simple scalar random effect feature (1|Word). The sec-
ond set includes more complex random effects features 
(1+duration1|Word), which takes into account the interac-
tion between the duration of the first syllable (fixed ef-
fect) and the Word (random effect) feature. The perform-
ance of these two sets varies between the three types of 
models. Table 3 gives a comprehensive overview of the 
evaluation of the models. 

Overall, all models have shown that the prediction 
accuracy decreases from BB to EB to EE. This is in ac-
cordance with our initial SAX representation accuracy 
rank, therefore is expected. However, the underlying rea-
son for this is unclear, as discussed previously.  
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Figure 5 gives an overview of the model perform-
ances based on average accuracy. 

 
 AIC BIC LogLik Sc.Residual Accuracy 
BB1 1059.3 1153.1 -509.7 -0.438 70.77% 
BB2 1063.1 1166.3 -509.5 -0.437 69.99% 
EB1 1086.8 1180.6 -523.4 0.526 65.30% 
EB2 1096.4 1193.6 -523.2 0.512 65.8% 
EE1 1104.3 1198.1 -532.2 0.685 60.95% 
EE2 1107.2 1210.4 -531.6 0.649 64.80% 

Table 3 Model comparison for mixed effect models, where AIC 
and BIC are commonly used Akaike Information Criterion and 
Bayesian Information Criterion 

6. DISCUSSION AND CONCLUTION 

The current study has considered the problem of the simi-
larity between linguistic tones and melodic contours in 
Beijing opera in the form of pairwise pitch height rela-
tions. We formulate this similarity problem as a super-
vised machine learning problem of predicting the type of 
relations based on linguistic tone information. We have 
shown that using a set of linguistic features alone (tone 
and duration information), the model is able to achieve 
the best average accuracy of around 65% to 71% based 
on the types of hypothesized relations, after we have re-
duced the output class labels to binary (for reasons dis-
cussed above). Here we discuss several aspects of the in-
terpretation and evaluation of the current results. 

 First, the performance of the models has shown con-
sistently that Onset-Onset is a more robust pairwise rela-
tion type compared to Offset-Onset and Offset-Offset. 
However, this result may be dependent upon the initial 
performance rank of SAX representation accuracy for 
these three types. To better understand this phenomenon, 
we performed a post-hoc re-analysis of the SAX conver-
sion using the original fundamental frequency data with-
out down-sampling and evaluate its accuracy.  The result 
showed a more balanced yet overall lower accuracy on 
extracted class labels as compared to human annotation 
(75%, 72%, and 78% peak accuracy values for BB, EB, 
and EE). When using this set of class labels, we obtained 
generally lower performance on the best mixed effects 
models in the classification task (57%, 68%, and 58% for 
BB, EB, and EE). Noticeably, the BB type model has a 
lower prediction accuracy than the EB type, making the 
Offset-to-onset relation more robust. Meanwhile, there is 
less confidence in this result due to the general lower ac-
curacy in the representation of the class labels.  

Second, we should also bear in mind that in the cur-
rent problem, the class labels of pitch height relations are 
dependent upon the musical considerations on top of the 
linguistic considerations. For all practical and theoretical 
reasons we believe that Beijing opera music has its own 
rules that at many times take precedence over linguistic 
rules, and that should give us a large proportion of unex-
plained variances when predicting pairwise pitch rela-
tions. Considering this factor, it is fair to conclude that 
the current models have shown effectively the high de-
gree of pairwise similarity between linguistic tones and 

melodic contours in Beijing opera. For the same reason 
discussed above, we have justified our decision to take 
the “L” class out from our model because of its likely ir-
relevance to linguistic information (and should be ex-
plained by musical considerations). 

Third, comparing the current study with previous 
works on the single-syllable contour similarity [1], we 
observe that the current approach yields higher explana-
tory power than the previous approach, while requiring 
significantly less computing resources. 1 Specifically, it is 
worth noting that while the contour-shape-based 
SSANOVA models in [1] suffers from the lack of knowl-
edge on the exact weights of the two dialects (BJ and 
HG), the current approach is able to encode expected 
pairwise pitch relations from both dialects into the fea-
tures, thus making it more effective in a supervised learn-
ing task. 
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ABSTRACT

We present Song2Quartet, a system for generating string
quartet versions of popular songs by combining probabilis-
tic models estimated from a corpus of symbolic classical
music with the target audio file of any song. Song2Quartet
allows users to add novelty to listening experience of their
favorite songs and gain familiarity with string quartets. Pre-
vious work in automatic arrangement of music only used
symbolic scores to achieve a particular musical style; our
challenge is to also consider audio features of the target
popular song. In addition to typical audio music content
analysis such as beat and chord estimation, we also use time-
frequency spectral analysis in order to better reflect partial
phrases of the song in its cover version. Song2Quartet pro-
duces a probabilistic network of possible musical notes at
every sixteenth note for each accompanying instrument of
the quartet by combining beats, chords, and spectrogram
from the target song with Markov chains estimated from
our corpora of quartet music. As a result, the musical score
of the cover version can be generated by finding the optimal
paths through these networks. We show that the generated
results follow the conventions of classical string quartet mu-
sic while retaining some partial phrases and chord voicings
from the target audio.

1. INTRODUCTION

Cover songs are arrangements of an original song with cer-
tain variations which add novelty. Changing the instruments
used is one such variation, but a complete switch of instru-
mentation may result in very unusual parts. For example,
completely replacing a chord-heavy guitar part with a violin
may result in unplayable (or very difficult) chords. Arrang-
ing music for different instruments requires consideration
about the music those instruments normally perform.

Previous approaches in automated arrangement are mostly
performed in the symbolic domain of music. Melody har-
monization and re-harmonization of chord sequences take
symbols of chords or pitches as inputs [1, 7, 10, 16]. Gui-
tar arrangements of piano music can be generated from a

c© Graham Percival, Satoru Fukayama, Masataka Goto.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Graham Percival, Satoru Fukayama, Masa-
taka Goto. “ Song2Quartet: A System for Generating String Quartet Cover
Songs from Polyphonic Audio of Popular Music ”, 16th International
Society for Music Information Retrieval Conference, 2015.

Target audio file
Pop song

Corpus of symbolic music
Mozart string quartets

Audio analysis
Spectral magnitude,
onsets, chords, etc.

Score analysis
Probabilistic models
of pitch and rhythm

Probabilistic
generation

Paths through
networks

Score
Mozart quartet-style
cover of pop song

Figure 1: Generating a cover song with a specific style.
Sample results are available at:
https://staff.aist.go.jp/m.goto/Song2Quartet/

MusicXML score [14]. Statistical modelling of a corpus
has also been used to generate electronic dance music [6].
Furthermore, automatically generating music in a specific
instrumental style is not well explored. In a great deal
of work on computer-assisted composition [8], some auto-
matic composition systems attempted to generate results
with a particular composer’s musical style [4] or the user’s
musical style [15]. However, those systems cannot be used
to generate cover songs in a particular instrument style by
preserving the recognizable parts of the original songs.

We present Song2Quartet to address this issue. An
overview of our system is shown in Figure 1. Two novel
aspects of this work, the audio analysis for generating cover
songs and generating music in a specific instrumental style,
are addressed in the audio analysis and score analysis mod-
ules, respectively.

To ensure that the generated cover songs include features
that are also recognizable in the original audio, the audio
analysis module estimates notable rhythms, chord voicings,
and contrary motions between melody and bass by extract-
ing the audio spectrum. In parallel, to generate music to
be playable and recognizably following the classical string
quartet style, the score analysis module captures charac-
teristics of the string quartet from the corpus of symbolic
music such as the typical note onsets in a measure and the
pitch transitions of each instrument in the quartet.

These two aspects are balanced by means of a probabilis-
tic formulation, where the corpus style and audio analysis
are combined by weighted multiplication. The audio analy-
sis provides probabilities for observing note events at every
16th note, and the score analysis mainly provides the tran-
sition probabilities of notes. We formalize our generation
of cover songs as finding the sequence of notes which max-
imizes the probabilities obtained from the modules using
dynamic programming, with techniques to compress the
search space to make our problem tractable.
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Figure 2: Audio analysis (4 measures shown in examples).

2. ANALYSIS

2.1 Features needed from audio

Knowing which pitches are in the polyphonic music is
useful in creating cover songs. Since multi-pitch analysis
methods often suffer from pitch and onset detection errors
when handling polyphonic music with a drum track, we
cannot simply apply the analysis beforehand and use the
analysis results as constraints. However, we can use the
audio feature extraction portions of multi-pitch analysis to
aid in generating cover songs. Concretely, after performing
Harmonic/Percussive source separation, the magnitudes and
onsets of each note are obtained by applying a variable-Q
spectral transform and calculating the salience function of
the onset events.

The melody, chords, bass, and beats of a song provide
musical facets which should be observed in the cover ver-
sion of a song. These facets are extracted from the audio us-
ing Songle, a music understanding engine [13]. The melody
and bass pitches, as well as the chord labels, are segmented
according to the time grid provided by the analyzed beats.
Later, these will be combined with the beat-aligned audio
spectral analysis to form probabilistic constraints.

2.2 Audio analysis

Figure 2 shows an overview of the audio analysis. We per-
form Harmonic/Percussive source separation with median
filtering [9], then use a variable-Q transform (VQT) [18]
with a Blackman-Harris window and the variable-Q pa-
rameter γ set to use a constant fraction of the equivalent
rectangular bandwidths [11], giving us spectral analysis
S. The frequency range was set to 65 Hz–2500 Hz (MIDI
pitches 36–99).

We then perform beat estimation on the original audio
with Songle and divide each beat into 4, giving 16th notes.
The means (over time) of VQT bins that fall within the
range of each 16th note are calculated, producing the sliced
spectrogram AM . AM is normalized to the range [0, 1].

To estimate onset probabilities in the target song, we
use two methods: flux of AM and first-derivative Savitzky-
Golay filtering [17] on S. The flux of AM is simply the
half-wave rectified difference between successive 16th notes
of AM . For the latter method, we calculate the smoothed
first derivative of S along the time axis using Savitzky-
Golay filtering with a window size of 21 samples to find
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Figure 3: Score analysis (Mozart cello in examples).
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Figure 4: Rhythmic events detected in the score.

the peaks of S. To quantize the onset estimation to the
16th-note level, we find the maximum peak within a time
window equal to a 16th note duration, but shifted backwards
in time by 25% to accommodate slight inaccuracies in the
beat detection. Both methods operate on each MIDI pitch
independently. We setAO to be the sum of the two methods,
and normalize it to the range [0, 1].

Finally, we extract two more pieces of information using
[13]: the melody M , and the chords in each song, including
both the overall chord name C and the bass pitch CB .

2.3 Features needed from the score

Features obtained from the score analysis contribute to
maintaining the musical style. Classical string quartet mu-
sic rarely includes complex rhythms and very large pitch
intervals, so we obtain these tendencies as probabilities of
rhythm and pitch intervals from the corpus of scores.

2.4 Score analysis

Figure 3 shows an overview of the score analysis. We
used the Music21 [5] toolkit and corpus to analyze string
quartets by Haydn, Mozart, and Beethoven. Our analysis
comprised of pitches and rhythms, and only used music in
4/4 time which fit into a 16th-note grid. If the time signature
changed in the middle of a movement, we only considered
the portion(s) in 4/4.

We calculated the probabilities of rhythmic events in
a 16th note grid. Rhythmic events were defined as one of
four possible values: 0 indicated a new note, 1 indicated
a new rest, 2 indicated a continued note, and 3 indicated
a continued rest; an example is shown in Figure 4. This
resulted in a 4x16 matrix of probabilities GR, with each
probability being the number of occurrences divided by the
number of measures.

We extracted 1st-order Markovian [2] rhythm transitions.
This is simply the probability of each [previous event, next
event] pair occurring, and produced a 4x4 matrix TR.

We calculated 1st-order Markovian pitch transitions for
both absolute pitches and relative pitches. We considered a
chord-note or pair of chords to include every pitch transi-
tion between the notes in successive chords. For simplicity,
we recorded these transitions in two 100x100 matrices TA
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and TE , even though a classical string quartet will not have
any notes below MIDI pitch 36. For the absolute pitches,
we added a 10−3 chance of any transition between valid
pitches; this is necessary to allow some modern pop songs
with non-classical chord progressions to be generated, par-
ticularly in the cello which is limited to the bass notes CB .

3. PROBABILISTIC GENERATION

Figure 5 gives an overview of generating the quartet parts.
First, the violin 1 part is set to the melody. Second, the
cello part is generated with a probabilistic method and dy-
namic programming. Third, the violin 2 and viola parts are
generated together via the same probabilistic method and
dynamic programming.

To prepare for the dynamic programming, we need to
define the emission and transition matrices, denoted by E
and T , respectively. Our time unit is 16th notes, and we
consider 200 possible events for each time-slice: 0 is a rest,
1–99 are note onsets of the same MIDI pitches, 100 is a
held rest, and 101–199 are held notes (of MIDI pitch +100).
We define N as the number of 16th notes in the target song.
An overview of calculating E and T is shown in Figure 6.

3.1 Constructing probability matrices

3.1.1 Construction emission probabilities E

The emission probabilities E is a matrix of size N × 200,
representing every possible event at every 16th note. They
are generated by calculating EO (onsets) and EH (held
notes), each of size N × 100,

EO = A′O ⊗ C ′ ⊗G′R ⊗ IR ⊗ V (1)

EH = A′M ⊗ C ′ ⊗G′R ⊗ IR ⊗ V (2)

where ⊗ is the element-wise product. The intuition behind
this multiplication is that we consider each variable to be
an independent probability distribution, so we are calcu-
lating the joint distribution. EO and EH are then stacked
vertically to form E. The variables are:
• A′O, A′M — Audio onsets and magnitudes: Audio onsets
AO and magnitudes AM for MIDI pitches 1–99 are
taken directly from the audio analysis. The “silence”
event (0) is set to a constant value of 10−5.
• C ′ — Chord tones: We construct a matrix of all MIDI

pitches for every 16th note in the song; each cell is 1 if
that pitch is in the given chord, 10−2 otherwise. For the
cello, we use the bass note of each chord CB ; for other
instruments, we use any chord tone included in C.
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Figure 6: Calculating emission and transition probabilities
E and T . ⊗ indicates element-wise multiplication.

• G′R — Rhythm grids: We take the overall probability
of a rhythmic event in the corpus at each 16th note GR,
and repeat it for every 16 time-slices in N .
• IR — Extreme instrument ranges: We specify maxi-

mum bounds for instrument ranges: MIDI pitches 36–69
for cello, 48–81 for viola, and 55–99 for violin. When
a corpus of symbolic music is used, the pitch transition
probabilities narrow these ranges; IR is only relevant if
the user chooses not to use any corpus.
• V — Avoid previously-used notes: We reduce the prob-

ability of using the same notes as other instruments by
setting them to 10−2 in V ; other events are set to 1. We
also reduce the probability of playing a note one octave
higher than an existing note (as those are likely octave
errors in the audio analysis) by likewise setting those
values to 10−2.
We eliminate any non-rest values less than 10−3 to re-

duce the computational load for music generation.

3.1.2 Construction transition probabilities T

The transition probabilities T are a matrix of size 200×200,
representing every possible event-to-event pair.

T = T ′R ⊗ T ′A ⊗ T ′E ⊗H (3)

The variables are:
• T ′R — Rhythm transitions: We use TR, the probability

of each rhythm event following a previous rhythm event.
The note onset and held note probabilities are copied to
vectors 1–99 and 101-199 respectively, while the rest
onset and held rest probabilities are copied into vectors
0 and 100.
• T ′A, T ′E — Pitch transitions: We use the probabilities

of each pitch following a previous pitch considering
absolute or relative pitches, TA and TE respectively.
These matrices are originally 100×100; we simply copy
the matrices four times to create 200×200 matrices (that
is to say, allowing these relative transitions to apply to
onset-onset, onset-held, held-onset, held-held pairs).
• H — Hold-events only after onset-events: Each “hold”

event (events 100 and up) can only occur after its re-
spective “onset” event. We formalize this constraint
as a matrix H where rows 0–99 are all 1, while rows
100–199 contain two identity matrices (in columns 0–99
and 100-199).

116 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



0 1,000 2,000
0

100

200

t

time (16th notes)

ev
en
ts

−ln(E)

E[t]

0 100 200
0

100

200

→

Extend −ln(E[t])

+

0 100 200
0

100

200

previous events

n
ew

ev
en
ts

−ln(T )

L

L[0, ·, ·]
L[t, ·, ·]

L[2400, ·, ·]
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3.2 Generation of a cover song under constraints

We combine E and T to form the log-probability L of the
arranged score given the observed audio and corpus data,
which has dimensions N × 200× 200. For each t ∈ N ,

L[t, ·, ·] = − ln(E[t,−, :])− ln(T ) (4)

whereE[t,−, :] indicates that the 1x200 column vectorE[t]
is extended to form a 200x200 matrix. This is illustrated in
Figure 7. Since E and T contain very small numbers, we
add their negative log-values instead of multiplying them.
L can be visualized by considering it to be a network

of time-events (Figure 8). The maximum probability of
a given score occurs when the negative log-probability is
minimized; i.e. by finding the shortest path through L with
a standard dynamic programming algorithm [3].

3.2.1 Local and Global Shortest Paths

As shown in Figure 5, we calculate the cello accompaniment
part first. After that, we could solve the viola and then
violin 2 parts separately, but we found that this occasionally
produced very high violin 2 music. Instead we solve the
violin 2 and viola parts together, with the constraint that
they cannot play the same pitch at the same time.

In order to find two shortest paths simultaneously, we
construct a large network with every possible combination
of nodes from each time-slice of the individual violin 2 and
viola networks. For example, if at time t the violin 2 could
have 4 possible events and the viola could have 5 possible
events, then the combined network will have 20 possible
events for time t. The edge weights are simply the sum of
the existing edges from the individual networks.

3.2.2 Compacting Matrices

To lower memory usage and improve processing time, we
reduce the size of the matrices. We construct a mapping
for each time-slice t between the non-infinite weights in L
and a smaller matrix. This takes approximately 1 second,
and results in a matrix which is roughly 1% of the original
size (e.g., 96 million entries reduced to 1.2 million entries).
Note that this compression is lossless and does not affect
the shortest-path calculation, as an edge with weight∞ will
not appear in the shortest path.

Figure 8: Network of possible pitches L; shortest path
colored red. Node labels are in the form “time-event”,
with event x being a MIDI pitch onset (x < 100) or hold
(x ≥ 100). For legibility, edges with a weight of infinity and
nodes with no non-infinite-weight edges are not displayed.

“Compacting” L in this way speeds up the computation
of the single cello part, but its true value is found when com-
bining the violin 2 and viola parts. Without any compacting,
a normal pop song (150 measures) produces a network for
a single part with 2400 × 200 × 200 = 9.6 · 107 entries.
However, naively combining the violin 2 and viola parts
produces a network with 2400× 2002 × 2002 = 3.8 · 1012
entries (15 TB of memory). We therefore perform two
rounds of compacting; before and after combining the parts.
After compacting the individual violin 2 and viola parts,
we are left with networks of size approximately 1.6 million
and 2.3 million. After performing the second round of com-
pacting (this time on the combined matrix), the memory
requirement is reduced from 5.8 GB to 0.25 GB.

3.2.3 Weighted probabilities

We found that the initial system produced music which was
too heavily biased towards one “prototypical” measure of
rhythms for each composer. We therefore multiplied each
matrix by its own weighting factor, and allowed the user to
specify and experiment with their own desired weights.

4. EXAMPLES AND DISCUSSION

To illustrate aspects of the generated music, we created a
few cover versions of “PROLOGUE” (RWC-MDB-P-2001
No.7) from the RWC Music Database [12], with a variety
of weights to the probability distributions. Short excerpts
of the beginning of “PROLOGUE” are shown in Figure 10
with four variations: no corpus analysis, no audio spectral
analysis, equal weights, and a set of custom weights.

Figures 10a and 10b clearly demonstrate the usefulness
of combining audio with score analysis. Figure 10a does
not use any corpus information (the weights of GR, TR,
TA, and TE are set to 0), and produces music which is
not idiomatic and is extremely difficult to perform. In the
other extreme, Figure 10b uses the full Haydn string quartet
corpus analysis, but does not use any spectral information
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(the weights of AO and AM are set to 0), and produces
music which is playable but very repetitive and “boring”:
Other than measure 10 (the transition from the introduction
to the melody), each instrument in the accompaniment plays
the same rhythm in every measure (with the exception of
the cello in measure 5), and 76% of measures contain a
single pitch while 24% of measures contains two pitches.

Figure 10c uses all available data with weights of 1,
and the music is both quite playable and more interesting
than Figure 10b. There is more variation in the rhythms,
and most notes are typical classical-style durations such
as whole notes, half notes, or quarter notes. There are
a few non-chord pitch changes (e.g., violin 2 measure 3,
viola measure 13), but not many. This version contains one
mistake: the viola in measure 13 begins with a C\ 16th note
which quickly changes to a C] chord-tone. This could be
avoided by decreasing the probability of non-chord tones,
but doing so would also decrease the chance of a non-chord
tone in the original song from being reproduced. This is an
illustration of the choices available to the user.

Figures 10d (Haydn), 10e (Mozart), and 10f (Beethoven)
demonstrate a custom set of weights. After some exper-
imentation, we (subjectively) chose to set the onset AO

weight to 0.9, the corpus rhythms GR and TR weights to
0.5, and the corpus pitch transition TA and TE weights to
0.25. These three cover versions produce noticeably distinct
music, arising solely due to the corpus used. The overall
distribution of rhythmic durations seems natural: the cello
has longer notes than the inner two voices. The distribution
of pitches is reasonable, with all instruments playing in a
comfortable range; the corpus clearly helps in avoiding the
extreme pitches that were present in Figure 10a.

A few parts of the cover versions are the same in all
compositions. Measure 10 always ends with a G]-C\ (alter-
natively “spelled” as B]) in the cello and violin 2, with the
viola filling in a transition from D] to C\ (or B]); this makes
a nice V–I chord sequence (G] major to C] major) leading
into measure 11. In addition, the V–I resolution in mea-
sures 10–11 always includes contrary motion in the cello
and violin 2. Our probabilistic generation does not take
relative motion of multiple voices into account, so this nice
voice leading must arise from the strength of its presence in
the audio spectral analysis.

A few problems exist in the voice leading. For example,
Figure 10d shows a number of parallel fifths (e.g., viola
and cello, measures 4→5→6, 8→9). These likely arise
due to the 2nd and 3rd harmonics of bass guitar notes in the
original recording. A similar problem occurs with sudden
jumps of an octave after one 16th or 8th note appears in a few
places (e.g., viola measure 4 and cello measure 12). These
also likely arise due to inaccuracies in the spectral analysis:
the energy in upper partials of a single note can vary, so
multiple onsets are detected in close succession. More
advanced signal processing in terms of onset estimation or
pitch salience calculation could mitigate this issue. Another
fix for the parallel fifths would be to use a more advanced
mathematical model; a first-order Markov model does not
track the inter-dependence between quartet parts.
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Figure 9: Objective analysis of weights; unless otherwise
specified, our custom weights are used.

4.1 Objective analysis

Figure 9 shows the effect of changing the rhythmic or
pitch corpus weights. The “pitch” plots show the cross-
correlation between the corpus relative pitch distribution
TE and the relative pitches calculated from the generated
scores. The “rhythm” plots show the cross-correlation be-
tween corpus and generated scores, based on the types of
measures appearing in the output. Concretely, we con-
struct a dictionary of full-measure rhythmic events (such
as 0222133002130011 from Figure 4) along with their fre-
quency of appearance, for both the corpus and the gener-
ated music. We then calculate the cross-correlation between
those dictionaries for the corpus and each cover version.

Increasing the weight generally increases the correla-
tion between corpus and generated music for both pitches
and rhythms. One counter-example is violin 2 and viola
in Mozart quartets. We theorize that this arises because in-
creasing the rhythmic weight reduces the number of “com-
pletely eighth note” measures in the generated music, how-
ever such measures are very common in the original corpus.

5. CONCLUSION AND FUTURE WORK

We presented Song2Quartet, a system for generating string
quartet cover versions of popular music using audio and
symbolic corpus analysis. Both the target pop song audio
file and the corpus of classical music contribute to the out-
put; using only one or the other produces clearly inferior
results. In order to avoid awkward second violin parts, we
performed a semi-global optimization whereby we created
the second violin and viola parts at the same time.

The current system makes a number of ad hoc assump-
tions, such as the melody always being played by the first
violin and all rhythms fitting into 16th-note rhythms. Our
evaluation was primarily based on informal listening, which
showed promise despite some voice leading errors.

We plan to extend the data-driven corpus analysis so that
users may generate cover versions for other groups of clas-
sical instruments. We also plan to add a GUI so that users
can place the melody in different instruments at any point
in the song. Finally, we would like to include evaluations
of the generated scores’ “playability” by musicians.

Acknowledgments: This work was supported in part by
CREST, JST.
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(a) “PROLOGUE” with audio analysis but no string quartet corpora.
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(b) “PROLOGUE” with Haydn string quartets but no audio spectral analysis.
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(c) “PROLOGUE” with Haydn string quartets and all weights set to 1.0.
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(d) “PROLOGUE” with Haydn string quartets and custom weights.
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(e) “PROLOGUE” with Mozart string quartets and custom weights.
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(f) “PROLOGUE” with Beethoven string quartets and custom weights.

Figure 10: Sample output; full versions and synthesized audio available at:
https://staff.aist.go.jp/m.goto/Song2Quartet/
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EXPLORING DATA AUGMENTATION FOR IMPROVED
SINGING VOICE DETECTION WITH NEURAL NETWORKS

Jan Schlüter and Thomas Grill
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ABSTRACT

In computer vision, state-of-the-art object recognition sys-
tems rely on label-preserving image transformations such
as scaling and rotation to augment the training datasets.
The additional training examples help the system to learn
invariances that are difficult to build into the model, and
improve generalization to unseen data. To the best of our
knowledge, this approach has not been systematically ex-
plored for music signals. Using the problem of singing
voice detection with neural networks as an example, we ap-
ply a range of label-preserving audio transformations to as-
sess their utility for music data augmentation. In line with
recent research in speech recognition, we find pitch shift-
ing to be the most helpful augmentation method. Com-
bined with time stretching and random frequency filtering,
we achieve a reduction in classification error between 10
and 30%, reaching the state of the art on two public data-
sets. We expect that audio data augmentation would yield
significant gains for several other sequence labelling and
event detection tasks in music information retrieval.

1. INTRODUCTION

Modern approaches for object recognition in images are
closing the gap to human performance [5]. Besides us-
ing an architecture tailored towards images (Convolutional
Neural Networks, CNNs), large datasets and a lot of com-
puting power, a key ingredient in building these systems is
data augmentation, the technique of training and/or testing
on systematically transformed examples. The transforma-
tions are typically chosen to be label-preserving, such that
they can be trivially used to extend the training set and en-
courage the system to become invariant to these transfor-
mations. As a complementary measure, at test time, aggre-
gating predictions of a system over transformed inputs in-
creases robustness against transformations the system has
not learned to (or not been trained to) be fully invariant to.

While even earliest work on CNNs [13] successfully
employs data augmentation, and research on speech recog-
nition – an inspiration for many of the techniques used in

c© Jan Schlüter and Thomas Grill.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jan Schlüter and Thomas Grill. “Ex-
ploring Data Augmentation for Improved Singing Voice Detection with
Neural Networks”, 16th International Society for Music Information Re-
trieval Conference, 2015.

music information retrieval (MIR) – has picked it up as
well [9], we could only find anecdotal references to it in
the MIR literature [8, 18], but no systematic treatment.

In this work, we devise a range of label-preserving au-
dio transformations and compare their utility for music sig-
nals on a benchmark problem. Specifically, we chose the
sequence labelling task of singing voice detection: It is
well-covered, but best reported accuracies on public data-
sets are around 90%, suggesting some leeway. Further-
more, it does not require profound musical knowledge to
solve, making it an ideal candidate for training a classifier
on low-level inputs. This allows observing the effect of
data augmentation unaffected by engineered features, and
unhindered by doubtable ground truth. For the classifier,
we chose CNNs, proven powerful enough to pick up in-
variances taught by data augmentation in other fields.

The following section will review related work on data
augmentation in computer vision, speech recognition and
music information retrieval, as well as the state of the art
in singing voice detection. Section 3 describes the method
we used as our starting point, Section 4 details the aug-
mentation methods we applied on top of it, and Section
5 presents our findings. Finally, Section 6 rounds up and
discusses implications of our work.

2. RELATED WORK

For computer vision, a wealth of transformations has been
tried and tested: As an early example (1998), Le et al. [13]
applied translation, scaling (proportional and dispropor-
tional) and horizontal shearing to training images of hand-
written digits, improving test error from 0.95% to 0.8%.
Krizhevsky et al. [12], in an influential work on large-scale
object recognition from natural images, employed trans-
lation, horizontal reflection, and color variation. They do
not provide a detailed comparison, but note that it allowed
to train larger networks and the color variations alone im-
prove accuracy by 1 percent point. Crucially, most meth-
ods also apply specific transformations at test time [5].

In 2013, Jaitly and Hinton [9] pioneered the use of label-
preserving audio transformations for speech recognition.
They find pitch shifting of spectrograms prior to mel filter-
ing at training and test time to reduce phone error rate from
21.6% to 20.5%, and report that scaling mel spectra either
in time or frequency dimensions or constructing examples
from perturbated LPC coefficients did not help. Concur-
rently, Kanda et al. [10] showed that combining pitch shift-
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ing with time stretching and random frequency distortions
reduces word errors by 10%, with pitch shifting proving
most beneficial and effects of the three distortion meth-
ods adding up almost linearly. Cui et al. [3] combined
pitch shifting with a method transforming speech to an-
other speaker’s voice in feature space and Ragni et al. [20]
combined it with unsupervised training, both targetting un-
common languages with small datasets. To the best of our
knowledge, this comprises the full body of work on data
augmentation in speech recognition.

In MIR, literature is even more scarce. Li and Chan [18]
observed that Mel-Frequency Cepstral Coefficients are sen-
sitive to changes in tempo and key, and show that augment-
ing the training and/or test data with pitch and tempo trans-
forms slightly improves genre recognition accuracy on the
GTZAN dataset. While this is a promising first step, genre
classification is a highly ambiguous task with no clear up-
per bound to compare results to. Humphrey et al. [8] ap-
plied pitch shifting to generate additional training exam-
ples for chord recognition learned by a CNN. For this task,
pitch shifting is not label-preserving, but changes the label
in a known way. While test accuracy slightly drops when
trained with augmented data, they do observe increased ro-
bustness against transposed input.

Current state-of-the-art approaches for singing voice de-
tection build on Recurrent Neural Networks (RNNs). Le-
glaive et al. [15] trained a bidirectional RNN on mel spec-
tra preprocessed with a highly tuned harmonic/percussive
separation stage. They set the state of the art on the public
Jamendo dataset [21], albeit using a “shotgun approach”
of training 20 variants and picking the one performing best
on the test set. Lehner et al. [16] trained an RNN on a set
of five high-level features, some of which were designed
specifically for the task. They achieve the second best re-
sult on Jamendo and also report results on RWC [4, 19], a
second public dataset. For perspective, we will compare
our results to both of these approaches.

3. BASE METHOD

As a starting point for our experiments, we design a straight-
forward system applying CNNs on mel spectrograms.

3.1 Feature Extraction

We subsample and downmix the input signal to 22.05 kHz
mono and perform a Short-Time Fourier Transform (STFT)
with Hann windows, a frame length of 1024 and hop size of
315 samples (yielding 70 frames per second). We discard
the phases and apply a mel filterbank with 80 triangular
filters from 27.5 Hz to 8 kHz, then logarithmize the magni-
tudes (after clipping values below 10−7). Finally, we nor-
malize each mel band to zero mean and unit variance over
the training set.

3.2 Network architecture

As is customary, our CNN employs three types of feedfor-
ward neural network layers: Convolutional layers convolv-
ing a stack of 2D inputs with a set of learned 2D kernels,

pooling layers subsampling a stack of 2D inputs by taking
the maximum over small groups of neighboring pixels, and
dense layers flattening the input to a vector and applying a
dot product with a learned weight matrix.

Specifically, we apply two 3×3 convolutions of 64 and
32 kernels, respectively, followed by 3×3 non-overlapping
max-pooling, two more 3×3 convolutions of 128 and 64
kernels, respectively, another 3×3 pooling stage, two dense
layers of 256 and 64 units, respectively, and a final dense
layer of a single sigmoidal output unit. Each hidden layer
is followed by a y(x) = max(x/100, x) nonlinearity [1].

The architecture is loosely copied from [11], but scaled
down as our datasets are orders of magnitude smaller. It
was fixed in advance and not optimized further, as the fo-
cus of this work lies on data augmentation.

3.3 Training

Our networks are trained on mel spectrogram excerpts of
115 frames (~1.6 sec) paired with a label denoting the pres-
ence of voice in the central frame.

Excerpts are formed with a hop size of 1 frame, result-
ing in a huge number of training examples. However, these
are highly redundant: Many excerpts overlap, and excerpts
from different positions in the same music piece often fea-
ture the same instruments and vocalists in the same key.
Thus, instead of iterating over a full dataset, we train the
networks for a fixed number of 40,000 weight updates.
While some excerpts are only seen once, this visits each
song often enough to learn the variation present in the data.
Updates are computed with stochastic gradient descent on
cross-entropy error using mini-batches of 32 randomly cho-
sen examples, Nesterov momentum of 0.95, and a learning
rate of 0.01 scaled by 0.85 every 2000 updates. Weights
are initialized from random orthogonal matrices [22].

For regularization, we set the target values to 0.02 and
0.98 instead of 0 and 1. This avoids driving the output layer
weights to larger and larger magnitudes while the network
attempts to have the sigmoid output reach its asymptotes
for training examples it already got correct [14]. We found
this to be a more effective measure against overfitting than
L2 weight regularization. As a complementary measure,
we apply 50% dropout [7] to the inputs of all dense layers.

All parameters were determined in initial experiments
by monitoring classification accuracy at optimal threshold
on validation data, which proved much more reliable than
cross-entropy loss or accuracy at a fixed threshold of 0.5.

4. DATA AUGMENTATION

We devised a range of augmentation methods that can be
efficiently implemented to work on spectrograms or mel
spectrograms: Two are data-independent, four are specific
to audio data and one is specific to binary sequence la-
belling. All of them can be cheaply applied on-the-fly
during training (some before, some after the mel-scaling
stage) while collecting excerpts for the next mini-batch,
and all of them have a single parameter modifying the ef-
fect strength we will vary in our experiments.
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(a) Linear-frequency spectrogram ex-
cerpt of 4 sec. The framed part will be
mel-scaled and serve as network input.

(b) Corresponding mel spectrogram.

(c) Dropout and Gaussian noise.

(d) Pitch shift of +/-20%.

(e) Time stretch of +/-20%.

(f) Loudness of +/-10 dB.

(g) Random frequency filters.
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(h) Random filter responses of up to 10 dB.
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(i) Same filter responses mapped to mel scale.

Figure 1: Illustration of data augmentation methods on spectrograms (0:23–0:27 of “Bucle Paranoideal” by LaBarcaDeSua)

4.1 Data-independent Methods

An obvious way to increase a model’s robustness is to cor-
rupt training examples with random noise. We consider
dropout – setting inputs to zero with a given probability –
and additive Gaussian noise with a given standard devia-
tion. This is fully independent of the kind of data we have,
and we apply it directly to the mel spectrograms fed into
the network. Figure 1c shows an example spectrogram ex-
cerpt corrupted with 20% dropout and Gaussian noise of
σ = 0.2, respectively.

4.2 Audio-specific Methods

Just like in speech recognition, pitch shifting and time
stretching the audio data by moderate amounts does not
change the label for a lot of MIR tasks. We implemented
this by scaling linear-frequency spectrogram excerpts ver-
tically (for pitch shifting) or horizontally (for time stretch-
ing), then retaining the (fixed-size) bottom central part,
so the bottom is always aligned with 0 Hz, and the cen-
ter is always aligned with the label. Finally, the warped
and cropped spectrogram excerpt is mel-scaled, normal-
ized and fed to the network. Figure 1a shows a linear
spectrogram excerpt along with the cropping borders, and
Figures 1d–e show the resulting mel spectrogram excerpt
with different amounts of shifting or stretching. During
training, the factor for each example is chosen uniformly
at random 1 in a given range such as 80% to 120%, and the
width of the range defines the effect strength we can vary.

1 Choosing factors on a logarithmic scale did not improve results.

A much simpler idea focuses on invariance to loudness:
We scale linear spectrograms by a random factor in a given
decibel range, or, equivalently, add a random offset to log-
magnitude mel spectrograms (Figure 1f). Effect strength is
controlled by the allowed factor (or offset) range.

As a fourth method, we apply random frequency filters
to the linear spectrogram. Specifically, we create a filter re-
sponse as a Gaussian function f(x) = s · exp(0.5 · (x −
µ)2/σ2), with µ randomly chosen on a logarithmic scale
from 150 Hz to 8 kHz, σ randomly chosen between 5 and 7
semitones, and s randomly chosen in a given range such as
−10 dB to 10 dB, the width of the range being varied in our
experiments. Figure 1h displays 50 of such filter responses,
Figure 1g shows two resulting excerpts. When using this
method alone, we map responses to the mel scale, loga-
rithmize them (Figure 1i) and add them to the mel spectro-
grams to avoid the need for mel-scaling on the fly.

4.3 Task-specific Method

For the detection task considered here, we can easily create
additional training examples with known labels by mixing
two music excerpts together. For simplicity, we only re-
gard the case of blending a given training example A with
a randomly chosen negative example B, such that the re-
sulting mix will inherit A’s label. Mixes are created from
linear spectrograms as C = (1 − f) · A + f · B, with
f chosen uniformly at random between 0 and 0.5, prior to
mel-scaling and normalization, but after any other augmen-
tations. We control the effect strength via the probability
of the augmentation being applied to any given example.
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Figure 2: Classification error for different augmentation methods on internal datasets (left: In-House A, right: In-House B)
Bars and whiskers indicate the mean and its 95% confidence interval computed from five repetitions of each experiment.

5. EXPERIMENTAL RESULTS

We first compare the different augmentation methods in
isolation at different augmentation strengths on two inter-
nal development datasets, to determine how helpful they
are and how to parameterize them, and then combine the
best methods. In a second set of experiments, we assess the
use of augmentation at test time, both for networks trained
without and with data augmentation. Finally, we evaluate
the best system on two public datasets, comparing against
our base system and the state of the art.

5.1 Datasets

In total, we work with four datasets, two of them public:
– In-House A: 188 30-second preview snippets from an on-
line music store, covering a very wide range of genres and
origins. We use 100 files for training, the remaining ones
for evaluation.
– In-House B: 149 full-length rock songs. While being far
less diverse, this dataset features a lot of electric guitars
that share characteristics with singing voice. We use 65
files for training, 10 for validation and 74 for testing.
– Jamendo: 93 full-length Creative Commons songs col-
lected and annotated by Ramona et al. [21]. For compar-
ison to existing results, we follow the official split of 61
files for training and only 16 files each for validation and
testing.
– RWC: The RWC-Pop collection by Goto et al. [4] con-
tains 100 pop songs, with singing voice annotations by
Mauch et al. [19]. To compare results to Lehner et al.
[16], we use the same 5-fold cross-validation split (per-
sonal communication).

Each dataset includes annotations indicating the pres-
ence of vocals with sub-second granularity. Except for
RWC, datasets do not contain duplicate artists.

5.2 Evaluation

At test time, for each spectrogram excerpt, the network
outputs a value between 0 and 1 indicating the probability

of voice being present at the center of the excerpt. Feeding
maximally overlapping excerpts, we obtain a sequence of
70 predictions per second. Following Lehner et al. [17],
we apply a sliding median filter of 800 ms to smoothen the
output, then apply a threshold to obtain binary predictions.
We compare these predictions to the ground truth labels to
obtain the number of true and false positives and negatives,
accumulated over all songs in the test set.

While several authors use the F-Score to summarize re-
sults, we follow Mauch et al.’s [19] argument that a task
with over 50% positive examples is not well-suited for a
document retrieval evaluation measure. Instead, we focus
on classification error, and also report recall and specifity
(recall of the negative class).

5.3 Results on Internal Datasets

In our first set of experiments, we train our network with
each of the seven different augmentation methods on each
of our two internal datasets, and evaluate it on the (unmod-
ified) test sets. We compare classification errors at the op-
timal binarization threshold to enable a fair comparison of
augmentation methods unaffected by threshold estimation.

Figure 2 depicts our results. The first line gives the re-
sult of the base system without any data augmentation. All
other lines except for the last three show results with a sin-
gle data augmentation method at a particular strength.

Corrupting the inputs even with small amounts of noise
clearly just diminishes accuracy. Possibly, its regularizing
effects [2] only apply to simpler models, as it is not used in
recent object recognition systems either [5, 11, 12]. Pitch
shifting in a range of ±20% or ±30% gives a significant
reduction in classification error of up to 25% relative. It
seems to appropriately fill in some gaps in vocal range un-
covered by our small training sets. Time stretching does
not have a strong effect, indicating that the cues the net-
work picked up are not sensitive to tempo. Similarly, ran-
dom loudness change does not affect performance. Ran-
dom frequency filters give a modest improvement, with the

124 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Method Error Recall Spec.
Lehner et al. [16] 10.6% 90.6% –
Leglaive et al. [15] 8.5% 92.6% –
Ours w/o augmentation 9.4% 90.8% 90.5%

train augmentation 8.0% 91.4% 92.5%
test augmentation 9.0% 92.0% 90.1%

train/test augmentation 7.7% 90.3% 94.1%

Table 1: Results on Jamendo

Method Error Recall Spec.
Lehner et al. [16] 7.7% 93.4% –
Ours w/o augmentation 8.2% 92.4% 90.8%

train augmentation 7.4% 93.6% 91.0%
test augmentation 8.2% 93.4% 89.4%

train/test augmentation 7.3% 93.5% 91.6%

Table 2: Results on RWC

best setting at a maximum strength of 10 dB. Mixing in
negative examples clearly hurts, but a lot less severely on
the second dataset. Presumably this is because the second
dataset is a lot more homogeneous, and two rock songs
mixed together still form a somewhat realistic example,
while excerpts randomly mixed from the first dataset are
far from anything in the test set. We hoped this would drive
the network to recognize voice irrespectively of the back-
ground, but apparently this is too hard or besides the task.

The third from last row in Figure 2 shows performance
for combining pitch shifting of ±30%, time stretching of
±30% and filtering of ±10 dB. While error reductions do
not add up linearly as in [10], we do observe an additional
~6% relative improvement over pitch shifting alone.

5.4 Test-time Augmentation

In object recognition systems, it is customary to also apply
a set of augmentations at test time and aggregate predic-
tions over the different variants [5, 11, 12]. Here, we av-
erage network predictions (before temporal smoothing and
thresholding) over the original input and pitch-shifted in-
put of −20%, −10%, +10% and +20%. Unsurprisingly,
other augmentations were not helpful at test time: Tempo
and loudness changes hardly affected training either, and
all remaining methods corrupt data.

The last two rows in Figure 2 show results with this
measure when training without data augmentation and our
chosen combination, respectively. Test-time augmentation
is beneficial independently of train-time augmentation, but
increases computational costs of doing predictions.

5.5 Final Results on Public Datasets

To set our results in perspective, we evaluate the base sys-
tem on the two public datasets, adding our combined train-
time augmentation, test-time pitch-shifting, or both. For
Jamendo, we optimize the classification threshold on the
validation set. For RWC, we simply use the optimal thresh-
old determined on the first internal dataset.

As can be seen in Tables 1–2, on both datasets we slight-
ly improve upon the state of the art. This shows that aug-
mentation did not only help because our base system was a
weak starting point, but actually managed to raise the bar.
We assume that the methods we compared to would also
benefit from data augmentation, possibly surpassing ours.

6. DISCUSSION

We evaluated seven label-preserving audio transformations
for their utility as data augmentation methods on music
data, using singing voice detection as the benchmark task.
Results were mixed: Pitch shifting and random frequency
filters brought a considerable improvement, time stretching
did not change a lot, but did not seem harmful either, loud-
ness changes were ineffective and the remaining methods
even reduced accuracy.

The strong influence of augmentation by pitch shifting,
both in training and at test-time, indicates that it would be
worthwhile to design the classifier to be more robust to
pitch shifting in the first place. For example, this could be
achieved by using log-frequency spectrograms and insert-
ing a convolutional layer in the end that spans most of the
frequency dimension, but still allows filters to be shifted in
a limited range.

Frequency filtering as the second best method deserves
closer attention. The scheme we devised is just one of
many possibilities, and probably far from optimal. A closer
investigation of why it helped might lead to more effective
schemes. An open question relating to this is whether aug-
mentation methods should generate (a) realistic examples
akin to the test data, (b) variations that are missing from the
training and test set, but easy to classify by humans, or (c)
corrupted versions that rule out inrobust solutions. For ex-
ample, it is imaginable that narrow-band filters removing
frequency components at random would force a classifier
to always take all harmonics into account.

Regarding the task of singing voice detection, better so-
lutions would be reached by training larger CNNs or bag-
ging multiple networks, and faster solutions by extract-
ing the knowledge into smaller models [6]. In addition,
adding recurrent connections to the hidden layers might
help the network to take into account more context in a
light-weight way, allowing to reduce the input (and thus,
the dense layer) size by a large margin.

Finally, we expect that data augmentation would prove
beneficial for a range of other MIR tasks, especially those
operating on a low level.
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ABSTRACT

In this paper, we present a novel architecture for audio
chord estimation using a hybrid recurrent neural network.
The architecture replaces hidden Markov models (HMMs)
with recurrent neural network (RNN) based language mod-
els for modelling temporal dependencies between chords.
We demonstrate the ability of feed forward deep neural
networks (DNNs) to learn discriminative features directly
from a time-frequency representation of the acoustic sig-
nal, eliminating the need for a complex feature extraction
stage. For the hybrid RNN architecture, inference over
the output variables of interest is performed using beam
search. In addition to the hybrid model, we propose a mod-
ification to beam search using a hash table which yields im-
proved results while reducing memory requirements by an
order of magnitude, thus making the proposed model suit-
able for real-time applications. We evaluate our model's
performance on a dataset with publicly available annota-
tions and demonstrate that the performance is comparable
to existing state of the art approaches for chord recogni-
tion.

1. INTRODUCTION

The ideas presented in this paper are motivated by the re-
cent progress in end-to-end machine learning and neural
networks. In the last decade, it has been shown that given
a large dataset, deep neural networks (DNNs) are capable
of learning useful features for discriminative tasks. This
has led complex feature extraction methods to be replaced
with neural nets that act directly on raw data or low level
features. Current state-of-the-art methods in speech recog-
nition and computer vision employ DNNs for feature ex-
traction [12]. In addition to feature learning, recurrent neu-
ral networks (RNNs) have been shown to be very power-
ful models for temporal sequences [9, 12]. In the field of
Music Information Retrieval (MIR), various studies have
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applied neural network based models to different tasks [3,
11, 15]. These experiments have been motivated by the
fact that hand-crafting features to extract musically rele-
vant information from audio is a difficult task. Existing
approaches in MIR would benefit greatly if feature extrac-
tion could be automated.

Audio chord recognition is a fundamental problem in
MIR (see [13] for a review). At a high level, popular chord
recognition algorithms follow a pipeline similar to the one
followed in speech. Most systems are comprised of an
acoustic model which is used to process the acoustic in-
formation present in the audio signal. The estimates of the
acoustic model are further refined by a language model that
models the temporal relationships and structure present in
sequences of chord symbols. Our proposed approach de-
viates from existing approaches in two fundamental ways.
We use DNNs to learn discriminative features from a time-
frequency representation of the audio. This is contrary to
the common approach of extracting chroma features (and
their many variants) as a preprocessing step. Secondly, we
generalise the popular method of using a Hidden Markov
Model (HMM) language model with a more powerful RNN
based language model. Finally, we combine the acoustic
and language models using a hybrid RNN architecture pre-
viously used for phoneme recognition and music transcrip-
tion [5, 14].

In the past, RNNs have been applied to chord recog-
nition and music transcription in a sequence transduction
framework [3, 4]. However, these models suffer from an
issue known as teacher forcing, which occurs due to the
discrepancy between the training objective and the way
the RNN is used at test time. During training, RNNs are
trained to predict the output at any time step, given the cor-
rect outputs at all preceding steps. This is in contrast to
how they are used at test time, where the RNN is fed pre-
dictions from previous time steps as inputs to the model.
This can lead to an unsuitable weighting of the acoustic
and symbolic information, which can quickly cause errors
to accumulate at test time. The hybrid RNN architecture
resolves this issue by offering a principled way for explic-
itly combining acoustic and symbolic predictions [14].

The hybrid RNN model outputs a sequence of condi-
tional probability distributions over the output variables
(Section 3). The structure of the graphical model makes
the problem of exactly estimating the most likely sequence
of outputs intractable. Beam search is a popular heuris-
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tic graph search algorithm which is used to decode condi-
tional distributions of this form. Beam search when used
for decoding temporal sequences is fundamentally limited
by the fact that sequences that are quasi-identical (differ
at only few time steps) can occupy most of the positions
within the beam, thus narrowing the range of possibilities
explored by the search algorithm. We propose a modifi-
cation to the beam search algorithm which we call hashed
beam search in order to encourage diversity in the explored
solutions and reduce computational cost.

The rest of the paper is organised as follows: Section 2
describes the feature learning pipeline. Section 3 briefly in-
troduces the hybrid RNN architecture. Section 4 describes
the proposed modification to the beam search algorithm.
Experimental details are provided in Section 5, results are
outlined in Section 6 and the paper is concluded in Section
7.

2. FEATURE LEARNING

We follow a pipeline similar to the one adopted in [3, 15]
for feature extraction. We transform the raw audio signal
into a time-frequency representation with the constant-Q
transform [6]. We first down-sample the audio to 11.025
kHz and compute the CQT with a hop-size of 1024 sam-
ples. The CQT is computed over 7 octaves with 24 bins per
octave yielding a 168 dimensional vector of real values.
One of the advantages of using the CQT is that the rep-
resentation is low dimensional and linear in pitch. Com-
puting the short-time Fourier transform over long analysis
windows would lead to a much higher dimensional rep-
resentation. Lower dimensional representations are useful
when using DNNs since we can train models with fewer
parameters, which makes the parameter estimation prob-
lem easier.

After extracting CQT frames for each track, we use a
DNN to classify each frame to its corresponding chord la-
bel. As mentioned earlier, DNNs have been shown to be
very powerful classifiers. DNNs learn complex non-linear
transformations of the input data through their hidden lay-
ers. In our experiments we used DNNs with 3 hidden lay-
ers. We constrained all the layers to have the same number
of hidden units to simplify the task of searching for good
DNN architectures. The DNNs have a softmax output layer
and the model parameters are obtained using maximum
likelihood estimation.

Once the DNNs are trained, we use the activations of the
final hidden layer of the DNN as features. In our experi-
ments we observed that the acoustic model performance
was improved (∼ 3% absolute improvement in frame-level
accuracy) if we provided each frame of features with con-
text information. Context information was provided by
performing mean and variance pooling over a context win-
dow around the central frame of interest [3]. A context
window of length 2k+ 1 is comprised of the central frame
of interest, along with k frames before and after the central
frame. In our experiments we found that a context window
of 7 frames provided the best results.

We trained the network with mini-batch stochastic gra-

Figure 1. Feature Extraction Pipeline

dient descent. Instead of using learning rate update sched-
ules, we use ADADELTA which adapts the learning rate
over iterations [18]. In our experiments we found Dropout
was essential to improve generalisation [16]. We found a
Dropout rate of 0.3 applied to all layers of the DNN to be
optimal for controlling overfitting. Once the models are
trained, we use the model that performs best on the vali-
dation set to extract features. In our experiments, the best
performing model had 100 hidden units in each layer. Fig-
ure 1 is a graphical representation of the feature extraction
pipeline. In section 6, we compare DNN acoustic models
with different feature inputs.

3. HYBRID RECURRENT NEURAL NETWORKS

Similar to language, chord sequences are highly correlated
in time. We propose exploiting this structure for audio
chord estimation using hybrid RNNs. The hybrid RNN
is a generative graphical model that combines the predic-
tions of an arbitrary frame level classifier with the predic-
tions of an RNN language model. For temporal problems,
the predictions of the system can be greatly improved by
modelling the relationships between outputs, analogous to
language modelling in speech. Typically, HMMs are em-
ployed in order to model and exploit this structure. Hybrid
RNNs generalise the HMM architecture by using powerful
RNN language models.

3.1 RNN Language Model

RNNs can be used to define a probability distribution over
a sequence z = {zτ |0 ≤ τ ≤ T} in the following manner:

P (z) =
T∏

t=1

P (zt|At) (1)

where At ≡ {zτ |τ < t} is the sequence history at time t.
The above factorisation is achieved by allowing the RNN
at time t − 1 to predict the outputs at the next time step,
yielding the conditional distribution P (zt|At).

The RNN is able to model temporal relationships via its
hidden state which at any time t has recurrent connections
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to the hidden state at t − 1. The hidden state is updated
according to the following equation:

ht = σ(Wzhzt−1 +Whhht−1 + bh) (2)

where Wzh are the weights from the inputs at t − 1 to the
hidden units at t, Whh are the recurrent weights between
hidden units at t − 1 and t and bh are the hidden biases.
The form of the hidden state (Equation 2) implies that the
predictions at time t are explicitly conditioned on the en-
tire sequence history At. This is contrary to HMMs which
are constrained by the Markov property. Therefore, the-
oretically RNNs can model complex and long-term tem-
poral dependencies between outputs. The parameters of
the RNN are estimated by using stochastic gradient based
methods. Although theoretically very powerful, RNNs are
limited by the effectiveness of the optimisation method [2].
The hidden units described above can be replaced by Long-
Short Term Memory (LSTM) units in order to improve the
parameter estimation and generalisation capabilities of the
RNN (see [10] for a review). In our model we use RNNs
with LSTM memory units to model the symbolic structure
of chord sequences.

3.2 Hybrid Architecture

Given a sequence of acoustic frames x and a sequence of
corresponding chord outputs z, the Hybrid RNN model
factorises the joint probability of x and z according to the
following equation:

P (z, x) = P (z1 . . . zT , x1 . . . xT ) (3)

= P (z1)P (x1|z1)

T∏

t=2

P (zt|At)P (xt|zt)

∝ P (z1)
P (z1|x1)

P (z1)

T∏

t=2

P (zt|At)
P (zt|xt)
P (zt)

.

By restricting the acoustic model to operate on an acous-
tic frame xt independent of previous inputs and outputs,
the distributions P (zt|At) and P (zt|xt) can be indepen-
dently modelled by an RNN and an arbitrary frame-level
classifier, respectively. The form of the joint probability
distribution makes maximum likelihood estimation of the
model parameters using gradient based optimisers easy.
The acoustic and language model terms separate out when
optimising the log-likelihood and the model parameters
can be trained using gradient based methods according to
the following equations where Θa,Θl are parameters of
the acoustic and language models, respectively:

∂ logP (z, x)

∂Θa
=

∂

∂Θa

T∑

t=1

logP (zt|xt) (4)

∂ logP (z, x)

∂Θl
=

∂

∂Θl

T∑

t=2

logP (zt|At). (5)

Although the hybrid RNN has a similar structure (seper-
ate acoustic and language models) to the sequence trans-
duction model in [9], the hybrid RNN explicitly combines

the acoustic and language model distributions. The trans-
duction model in [9], models unaligned sequences with an
implicit exponential duration.

The property that the acoustic and language models can
be trained independently has some useful implications. In
MIR, it is easier to obtain chord and note transcriptions
from the web as compared to audio data due to copyright
issues. We can use the abundance of transcribed data to
train powerful language models for various tasks, without
the need for annotated, aligned audio data.

4. INFERENCE

The hybrid RNN generalises the HMM graph by condi-
tioning zt on the entire sequence history At, as compared
to the HMM graph where zt is only conditioned on zt−1
(Equation 3). This conditioning allows musicological struc-
ture learnt by the language model to influence successive
predictions. One consequence of the more general graph-
ical structure is that at test time, inference over the output
variables at t requires knowledge of all predictions made
till time t. At any t, the history At is still uncertain. Mak-
ing estimates in a greedy chronological manner does not
necessary yield good solutions. Good solutions correspond
to sequences that maximise the likelihood globally.

Beam search is a standard search algorithm used to de-
code the outputs of an RNN [5, 9, 14]. Beam search is a
breadth-first graph search algorithm which maintains only
the top w solutions at any given time. At time t, the algo-
rithm generates candidate solutions and their likelihoods at
t + 1, for all the sub-sequences present in the beam. The
candidate solutions are then sorted by log-likelihood and
the top w solutions are kept for further search. A beam ca-
pacity of 1 is equivalent to greedy search and a beam width
of NT is equivalent to an exhaustive search, where N is
the number of output symbols and T is the total number of
time steps.

Beam search suffers from a pathological condition when
used for decoding sequences. Quasi-identical sequences
with high likelihoods can saturate the beam. This limits
the range of solutions evaluated by the algorithm. This is
especially true when decoding long sequences. The per-
formance of beam search can be improved by pruning so-
lutions that are unlikely. The dynamic programming (DP)
based pruned beam search algorithm makes better use of
the available beam capacity w [3, 5]. The strategy em-
ployed for pruning is that at any time t, the most likely
sequence with output symbol zt ∈ C is considered and
other sequences are discarded, where C is the set of output
symbols.

Although the DP beam search algorithm performs well
in practice [3,5], pruning based on the last emitted symbol
is a strict constraint. In the next section we propose a mod-
ification to the beam search algorithm that is more general
and allows flexible design to enforce diversity in the set
of solutions that are explored and to reduce computational
cost.
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4.1 Hashed Beam Search

As discussed before, beam search can lead to poor esti-
mates of the optimal solution due to saturation of the beam
with similar sequences. The efficiency of the search algo-
rithm can be improved by pruning solutions that are suf-
ficiently similar to a sequence with higher likelihood. We
propose a more general variant of the pruned beam search
algorithm where the metric for similarity of sequences can
be chosen according to the given problem. We encode the
similarity metric in the form of a hash function that deter-
mines the similarity of 2 sequences. Given 2 solutions with
the same hash value, the solution with the higher likelihood
is retained.

The proposed algorithm is more general and flexible
since it allows the similarity metric to be chosen based on
the particular instance of the decoding problem. We de-
scribe the algorithm for decoding chord sequences. We
let the hash function be the last n emitted symbols. With
this hash function, if there are two candidate solutions with
the same sequence of n symbols at the end, then the hash
function produces the same key and we retain the solu-
tion with the higher likelihood. When n = 1, the algo-
rithm is equivalent to the DP beam search algorithm. When
n = len(sequence), then the algorithm is equivalent to reg-
ular beam search. Therefore, by increasing the value of n,
we can linearly relax the constraint used for pruning in the
DP-like beam search algorithm.

Another generalisation that can be achieved with the
hash table is that for each hash key, we can maintain a list
of k solutions using a process called chaining [17]. This
is more general than the DP beam search algorithm where
only the top solution is kept for each output symbol. Algo-
rithm 1 describes the proposed hashed beam search algo-
rithm, while Algorithm 2 describes the beam objects. The
time complexity of Algorithm 1 is O(NTw logw). Even
though the time complexity of the proposed algorithm is
the same as regular beam search, the algorithm is able to
significantly improve performance by pruning unlikely so-
lutions (see Section 6). In Algorithms 1 and 2, s is a sub-
sequence, l is the log-likelihood of s and fh is the hash
function.

Algorithm 1 Hashed Beam Search
Find the most likely sequence z given x with a beam
width w.
beam← new beam object
beam.insert(0, {})
for t = 1 to T do

new beam← new beam object
for (l, s) in beam do

for z in C do
l′ = logPlm(z|s)Pam(z|xt)− logP (z)
new beam.insert(l + l′, {s, z})

beam← new beam
return beam.pop()

Although the description of the proposed algorithm has
been within the context of decoding chord sequences, var-

ious other measures of similarity can be constructed de-
pending upon the problem. For example, for chord and
speech recognition, we can use the last n unaligned sym-
bols as the hash function (results with chords were uninter-
esting). For problems where the predictions are obtained
from an RNN and frame-based similarity measures are in-
sufficient, we can use a vector quantised version of the final
hidden state as the key for the hash table entry.

Algorithm 2 Description of beam objects given w, k, fh
Initialise beam object
beam.hashQ = dictionary of priority queues∗

beam.queue = indexed priority queue of length w∗∗

Insert l, s into beam
key= fh(s)
queue = beam.queue
hashQ = beam.hashQ[key]
fits in queue = not queue.full() or l ≥queue.min()
fits in hashQ = not hashQ.full() or l ≥hashQ.min()
if fits in queue and fits in hashQ then

hashQ.insert(l, s)
if hashQ.overfull() then

item = hashQ.del min()
queue.remove(item)

queue.insert(l, s)
if queue.overfull() then

item = queue.del min()
beam.hashQ[fh(item.s)].remove(item)

∗ The dictionary maps hash keys to priority queues of
length k which maintain (at most) the top k entries at all
times.
∗∗ An indexed priority queue allows efficient random ac-
cess and deletion [1].

5. EXPERIMENTS

5.1 Dataset

Unlike other approaches to chord estimation, our proposed
approach aims to learn the audio features, the acoustic model
and the language model from the training data. Therefore,
maximum likelihood training of the acoustic and language
models requires sufficient training data, depending on the
complexity of the chosen models. Additionally, we require
the raw audio for all the examples in the dataset in order
to train the acoustic model which operates on CQTs ex-
tracted from the audio. In order to satisfy these constraints,
we use the dataset used for the MIREX Audio Chord Es-
timation Challenge. The MIREX data is comprised of two
datasets. The first dataset is the collected Beatles, Queen
and Zweieck datasets 1 . The second dataset is an abridged
version of the Billboard dataset [7].

The Beatles, Queen and Zweieck dataset contains anno-
tations for 217 tracks and the Billboard dataset contains an-
notations for 740 unique tracks. The corresponding audio
for the provided annotations are not publicly available and

1 http://www.isophonics.net/
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we had to acquire the audio independently. We were able
to collect all the audio for the Beatles, Queen and Zweieck
dataset and 650 out of the 740 unique tracks for the Bill-
board dataset (see footnote 2 for details), leading to a total
of 867 tracks for training and testing 3 . Although we are
not able to directly compare results with MIREX evalua-
tions due to the missing tracks, we show that the training
data is sufficient for estimating models of sufficient accu-
racy and the results are comparable to the top performing
entries submitted to MIREX 2014. Keeping in mind the
limited number of examples in the dataset, all the ground
truth chord annotations were mapped to the major/minor
chord dictionary which is comprises of 12 major chords,
12 minor chords and one no chord class. All results are re-
ported on 4-fold cross-validation experiments on the entire
dataset. For training the acoustic and language models, the
training data was further divided into a training (80%) and
validation split (20%).

5.2 Acoustic Model Training

The features obtained from the DNN feature extraction
stage (Section 2) are input to an acoustic model which pro-
vides a posterior probability over chord labels, P (zt|xt)
given an input feature vector. Similar to the feature extrac-
tion, we use DNNs with a softmax output layer to model
the probabilities of output chord classes. We train models
with 3 hidden layers with varying number of hidden units.
The acoustic models are trained on a frame-wise basis, in-
dependently of the language models. We use stochastic
mini-batch gradient descent with ADADELTA for estimat-
ing the DNN parameters. We use a constant Dropout rate
of 0.3 on all the DNN layers to reduce overfitting. Dropout
was found to be essential for good generalisation perfor-
mance, yielding an absolute performance improvement of
up to 4% on the test set. We used a mini-batch size of 100
and early stopping for training. Training was stopped if
the log-likelihood of the validation set did not increase for
20 iterations over the entire training set. Unlike the feature
extraction stage, we do not discard any of the trained mod-
els. Instead of using only the best performing model on the
validation set, we average the predictions of all the trained
models to form an ensemble of DNNs [8] as the acoustic
model. We found that simply averaging the predictions of
the acoustic classifiers led to an absolute improvement of
up to 3% on frame classification accuracies.

5.3 Language Model Training

As outlined in Section 3, we use RNNs with LSTM units
for language modelling. The training data for the language
models is obtained by sampling the ground truth chord
transcriptions at the same frame-rate at which CQTs are
extracted from the audio waveforms. We use RNNs with 2
layers of hidden recurrent units (100 LSTM units each) and
an output softmax layer. Each training sequence was fur-
ther divided into sub-sequences of length 100. The RNNs

2 www.eecs.qmul.ac.uk/∼sss31
3 AUDFPRINT was used to align the audio to the corresponding an-

notations: http://labrosa.ee.columbia.edu/matlab/audfprint/

Language Model
None LSTM RNN

Acoustic Model OR WAOR OR WAOR
DNN-CQT 57.0% 56.5% 62.8% 62.0%

DNN-DNN Feats 69.8% 69.1% 73.4% 73.0%

DNN-CW DNN Feats 72.9% 72.5% 75.5% 75.0%

Table 1. 4-fold cross-validation results on the MIREX
dataset for the major/minor prediction task. DNN-CQT
refers to CQT inputs to a DNN acoustic model. DNN-
DNN Feats refers to DNN feature inputs to the DNN
acoustic model. DNN-CW DNN Feats refers to DNN fea-
tures with a context window as input to the acoustic model.

were trained with stochastic gradient descent on individ-
ual sub-sequences, without any mini-batching. Unlike the
acoustic models, we observed that ADADELTA did not
perform very well for RNN training. Instead, we used an
initial learning rate of 0.001 that was linearly decreased
to 0 over 1000 training iterations. We also found that a
constant momentum rate of 0.9 helped training converge
faster and yielded better results on the test set. We used
early stopping and training was stopped if validation log-
likelihood did not increase after 20 epochs. We used gra-
dient clipping when the norm of the gradients was greater
than 50 to avoid gradient explosion in the early stages of
training.

6. RESULTS

In Table 1, we present 4-fold cross validation results on the
combined MIREX dataset at the major/minor chord level.
The metrics used for evaluation are the overlap ratio (OR)
and the weighted average overlap ratio (WAOR) which are
commonly used for evaluating chord recognition systems
(including MIREX). The test data is sampled every 10ms
similar to the MIREX evaluations. The outputs of the hy-
brid model were decoded with the proposed hashed beam
search algorithm. A grid search was performed over the
decoding parameters and the presented results correspond
to the parameters that were determined to be optimal over
the training set.

From Table 1, it is clear that the hybrid model improves
performance over the acoustic-only models. The results
show that the performance of the acoustic model is greatly
improved when the input features to the model are learnt by
a DNN as opposed to CQT inputs. The performance of the
acoustic model is further improved (3% absolute improve-
ment) when mean and variance pooling is performed over
a context window of DNN features. It is interesting to note
that the relative improvement in performance is highest for
the DNN-CQT and DNN-DNN Feats configurations. This
is due to the fact that the hybrid model is derived with the
explicit assumption that given a state zt, the acoustic frame
xt is conditionally independent of all state and acoustic
vectors occurring at all other times. Applying a context
window to the features violates this independence assump-
tion and therefore the relative improvement is diminished.
However, the improved performance of the acoustic model
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Figure 2. Effect of varying beam width on OR on MIREX
data. n = 2, k = 1

due to context windowing offsets this loss. Although for-
mal comparisons cannot be made, the accuracies achieved
with the hybrid model are similar to the best performing
model submitted to the 2014 MIREX evaluation 4 on the
Billboard dataset (OR = 75.57%).

To investigate the advantage of the proposed hashed beam
search algorithm, we plot the overlap ratio against the beam
width. Figure 2 illustrates that the proposed algorithm can
achieve marginally better decoding performance at a sig-
nificant reduction in beam size. As an example, the hashed
beam search yields an OR of 75.1% with a beam width of
5, while regular beam search yields 74.7% accuracy with a
beam width of 1000. The time taken to run the hash beam
search (w = 5) over the test set was 5 minutes, as com-
pared to the regular beam algorithm (w = 1000) which
took 17 hours to decode the test set. The algorithm’s abil-
ity to yield good performance at significantly smaller beam
widths indicates that it performs efficient pruning of simi-
lar paths, thus utilising the available beam width more ef-
ficiently. The run-times of the algorithm show that it can
be used for real-time applications without compromising
recognition accuracy.

In addition to the beam width, the hash beam search al-
gorithm allows the user to specify the similarity metric and
the number of solutions for each hash table entry. We in-
vestigate the effect of these parameters on the OR and plot
the results in Figure 3. We let the similarity metric be the
previous n frames and observe performance as n is linearly
increased for a fixed beam width of 25. From Figure 3 we
observe that the performance is quite robust to changes in
the number of past frames for small values of n. One pos-
sible explanation for the graph is that since the test data is
sampled at a frame rate of 10ms, all occurrences of chords
last for several frames. Therefore counting the previous n
frames, effectively leads to the same metric each time. We
experimented with using the previous n unique frames as
a metric but found that the results deteriorated quite dras-
tically as n was increased. This might reflect the limited

4 www.music-ir.org/mirex/wiki/2014:Audio Chord Estimation Results

Figure 3. Effect of varying hashed beam search parame-
ters fh, k on OR on MIREX dataset. w = 25.

memory of RNN language models and the issues caused
due to lack of explicit duration modelling. The blue line
in Figure 3 illustrates the effect of varying the number of
solutions per hash table entry. From this graph we see that
performance deteriorates significantly once the number of
entries per bin crosses a certain threshold (∼ 5). This is
due to the fact that maintaining many solutions of the same
kind saturates the beam capacity with very similar solu-
tions, limiting the breadth of search.

7. CONCLUSION AND FUTURE WORK

We present a chord estimation system based on a hybrid
recurrent neural network and the results are competitive
with existing state-of-the-art approaches. We show that
DNNs are powerful acoustic models. By learning features,
they eliminate the need for complex feature engineering.
The hybrid RNN model allows us to superimpose an RNN
language model on the acoustic model predictions. Ad-
ditionally, language models can be trained on chord data
from the web without the corresponding audio. The re-
sults clearly indicate that the language model helps im-
prove model performance by modelling the temporal re-
lationships between output chord symbols and refining the
predictions of the acoustic model. The proposed variant of
the beam search algorithm significantly reduces memory
usage and run times, making the model suitable for real-
time applications.

In the future, we would like to conduct chord recog-
nition experiments on larger datasets. This is because the
modelling and generalisation capabilities of neural networks
improve with more available data for training. An impor-
tant issue that remains with respect to RNN language mod-
els is the problem of duration modelling. Although RNNs
are very good at modelling the transition probabilities be-
tween events, durations of each event are not modeled ex-
plicitly. For musical applications like chord recognition
and music transcription, accurate estimates for durations
of note occurrences can further help improve the effective-
ness of RNN based language models.
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ABSTRACT

We describe the design and evaluation of a probabilistic
interface for music exploration and casual playlist gener-
ation. Predicted subjective features, such as mood and
genre, inferred from low-level audio features create a 34-
dimensional feature space. We use a nonlinear dimen-
sionality reduction algorithm to create 2D music maps of
tracks, and augment these with visualisations of probabilis-
tic mappings of selected features and their uncertainty.

We evaluated the system in a longitudinal trial in users’
homes over several weeks. Users said they had fun with the
interface and liked the casual nature of the playlist gener-
ation. Users preferred to generate playlists from a local
neighbourhood of the map, rather than from a trajectory,
using neighbourhood selection more than three times more
often than path selection. Probabilistic highlighting of sub-
jective features led to more focused exploration in mouse
activity logs, and 6 of 8 users said they preferred the prob-
abilistic highlighting mode.

1. INTRODUCTION

To perform information retrieval on music, we typically
rely on either meta data or on ‘intelligent’ signal process-
ing of the content. These approaches create huge feature
vectors and as the feature space expands it becomes harder
to interact with. A projection-based interface can provide
an overview over the collection as a whole, while show-
ing detailed information about individual items in context.
Our aim is to build an interactive music exploration tool,
which offers interaction at a range of levels of engagement,
which can foster directed exploration of music spaces, ca-
sual selection and serendipitous playback. It should pro-
vide a consistent, understandable and salient layout of mu-
sic in which users can learn music locations, select music
and generate playlists. It should promote (re-)discovery of
music and accommodate widely varying collections.

c© Beatrix Vad, Daniel Boland, John Williamson, Roderick
Murray-Smith, Peter Berg Steffensen. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Beatrix Vad, Daniel Boland, John Williamson, Roderick Murray-Smith,
Peter Berg Steffensen. “Design and evaluation of a probabilistic music
projection interface”, 16th International Society for Music Information
Retrieval Conference, 2015.

To address these goals we built and evaluated a system
to interact with 2D music maps, based on dimensionally-
reduced inferred subjective aspects such as mood and
genre. This is achieved using a flexible pipeline of acoustic
feature extraction, nonlinear dimensionality reduction and
probabilistic feature mapping. The features are generated
by the commercial Moodagent Profiling Service 1 for each
song, computed automatically from low-level acoustic fea-
tures, based on a machine-learning system which learns
feature ratings from a small training set of human subjec-
tive classifications. These inferred features are uncertain.
Subgenres of e.g. electronic music are hard for expert hu-
mans to distinguish, and even more so for an algorithm
using low-level features [24]. This motivates representing
the uncertainty of features in the interaction.

It is not straightforward to evaluate systems based on
interacting with such high-dimensional data. This is not
a pure visualisation task. Promoting understanding is sec-
ondary to offering a compelling user experience, where the
user has a sense of control. How do we evaluate projec-
tions, especially if the user’s success criterion is just to
play something ’good enough’ with minimal effort? We
evaluated our system to answer:

1. Can a single interface enable casual, implicit and fo-
cused interaction for music retrieval?

2. Which interface features better enable people to nav-
igate and explore large music collections?

3. Can users create viable mental models of a high-
dimensional music space via a 2D map?

2. BACKGROUND

2.1 Arranging music collections on fixed dimensions

A music retrieval interface based on a 2D scatter plot with
one axis ranging from slow to fast and the other from dark
to bright on the timbre dimension is presented in [10].
The authors show this visualisation reduces time to se-
lect suitable tracks compared to a traditional list view. [11]
presents a 2D display of music based on the established
arousal-valence (AV) diagram of emotions [20], with AV
judgements obtained from user ratings. An online explo-
ration tool musicovery.com [6] enables users to select
a mood in the AV space and starts a radio stream based

1 http://www.moodagent.com/
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Figure 1. (a) An audio collection, described by a large set of features automatically extracted from the content. (b)
visualisation of this high-dimensional dataset in two dimensions using dimensionality reduction (c) probabilistic models
showing the distribution of specific features in the low dimensional space (d) combining dimensionality reduction with
these models to build an interactive exploration interface.

on the input. These use two predefined dimensions that
are easy to interpret, however they do not allow a broader
interpretation of musical characteristics based on richer
feature sets. [13] finds that music listening is often based
upon mood. The investigation of musical preferences in [9]
shows most private collections consist of a wide range of
styles and approaches to categorisation.

2.2 Music visualisations via dimensionality reduction

“Islands of Music” [17] visualises music collections us-
ing a landscape metaphor. They use rhythmic patterns in
a set of frequency bands to create a Self-Organizing Map
(SOM), a map of music for users to explore. Similarly, [16]
introduce the SOM-based PlaySOM and PocketSOM in-
terfaces. Features are again based on rhythm and 2D em-
bedding. An interesting visualisation feature is the use of
“gradient fields” to illustrate the distribution of features
over the map. Playlist generation is enabled with a rect-
angular marquee and path selection. Elevations are based
on the density of songs in the locality, so clustered songs
form islands with mountains. A collection of 359 pieces
was used to evaluate the system and song similarities were
subjectively evaluated. An immersive 3D environment for
music exploration, again using a SOM is described in [14].
An addition to previous approaches is an integrated feed-
back loop that allows users to reposition songs, alter the
terrain and position landmarks. The users’ sense of simi-
larity is modelled and the map gradually adapted. Both the
SOM landscape and acoustic clues improved search times
per song.

SongWords [2] is an interactive tabletop application to
browse music based on lyrics. It combines a SOM with
a zoomable user interface. The app is evaluated in a user
study with personal music collections of ca. 1000 items.
One reported issue was that only the item positions de-
scribed the map’s distribution of characteristics. Users had
to infer the structure of the space from individual items.
“Rush 2” explores interaction styles from manual to auto-
matic [1]. They use similarity measures to create playlists
automatically by selecting a seed song.

A detailed overview of music visualisation approaches
and the MusicGalaxy system is contributed with [23]. This

work introduces adaptive methods for music visualisation,
allowing users to adjust weightings in the projection. It
also explores the use of a lens so that users could zoom into
parts of the music space. Most notably, it receives a signif-
icant amount of user evaluation. The lack of such evalua-
tions in the field of MIR has been noted in [21], which calls
for a user-centred approach to MIR. The work in this pa-
per thus includes an ‘in-the-wild’ longitudinal evaluation,
bringing HCI methodology to bear in MIR.

2.3 Interaction with music visualisations

Path drawings on a music visualisation, enabling high-
level control over songs and progression of created
playlists can be found in [26]. Casual interaction has re-
cently started receiving attention from the HCI commu-
nity [18], outlining how interactions can occur at varying
levels of engagement. A radio-like interface that adapts to
user engagement is introduced by [3, 4]. It allows users to
interact with a stream of music at varying levels of control,
from casual mood-setting to engaged interaction. Music
visualisations can also span engagement – from broad se-
lections in an overview to specific zoomed-in selections.

3. PROBABILISTIC MUSIC INTERFACE

As shown in Figure 1, the interface builds on features
derived from raw acoustic characteristics and transforms
these into a mood-based visualisation, where nearby songs
will have a similar subjective “feeling”. Our feature extrac-
tion service provides over thirty predicted subjective fea-
tures for each song including mood, genre, style, vocals,
instrument, beat, tempo, energy and other attributes. The
features associated with moods chosen for highlighting in
the visualisation include Happy, Angry, Sad and Tender.
These were identified as relevant moods from social tags
in [12]. Erotic, Fear and Tempo (not strictly a mood) were
also included. The features were investigated in [5].

Given our large number of features, we need dimension-
ality reduction to compress the data from |F | dimensions
to |D| dimensions. The goal of this step is to preserve sub-
jective similarities between songs and maintain coherent
structure in the dataset. For interaction, we reduce down

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 135



to 2D. We tried our system with a number of dimension-
ality reduction techniques including PCA and SOM. We
chose the t-distributed stochastic neighbour embedding (t-
SNE, [25]) model for non-linear dimensionality reduction
to generate a map entangling a global overview of clusters
of similar songs and yet locally minimise false positives.

To provide additional information about the composi-
tion of the low-dimensional space, we developed proba-
bilistic models to visualise high dimensional features in the
low-dimensional space. This probabilistic back-projection
gives users insight into the structure of the layout, but also
into the uncertainties associated with the classifications.
On top of the pipeline (Figure 1), we built an efficient, scal-
able web-based UI which can handle music collections up-
wards of 20000 songs. The tracks can be seen as random
variables drawn from a probabilistic distribution with re-
spect to a specific feature. The distribution parameters can
be estimated and used for prediction, allowing smoothed
interpolation of features as shown in Figure 2. We used
Gaussian Process (GP) priors [19], a powerful nonpara-
metric Bayesian regression method. We applied a squared
exponential covariance function on the 2D (x, y) coordi-
nates, predicting the mood features Pf over the map. The
GP can also infer the uncertainty σ2

f of the predicted fea-
ture relevance for each point [22].

Figure 2. Gaussian Process predictions of features. Or-
ange denotes the “happy” feature distribution and blue de-
notes “tender”. The greyscale surface shows the uncer-
tainty; lighter is more certain and darker is less certain.

3.1 Interface design

To present the inferred subjective results to the users,
the GP mean and standard deviation is evaluated over a
200 × 200 grid covering the 2D music space. A continu-
ously coloured background highlighting is created where
areas of high feature scores stand out above areas with
higher uncertainty or lower scores. To highlight areas
with high prediction scores and low uncertainty, a non-
linear transform is used: αf = P 2

f − σ2
f , for each mood

feature f , having a standard deviation σf and a predicted
feature value Pf . The clusters in the music space can be
emphasised as in the upper part of Figure 3 by colouring
areas with the colour associated with the highest score; i.e.
argmax(αf ) – a winner-takes-all view. This not only di-
vides the space into discrete mood areas but also shows
nuanced gradients of mood influences within those areas.
However, once a user starts to dynamically explore a spe-
cific area of the space, the system transitions to implicit

background highlighting such that the background distri-
bution of the mood with the highest value near the cursor
is blended in dynamically as in the lower plots of Figure 3,
giving the user more subtle insights into the nature of the
space.

Tracks are represented as circles in a scatter plot, where
size can convey information, e.g. the popularity of a song,
without disturbing the spatial layout. To support visual
clustering, colour highlights the highest scoring mood fea-
ture of each song, and transparency conveys the feature
score. However, the number of diverging, bright colours
for categorisation is limited. Murch [15] states that a “re-
focus” is needed to perceive different pure colours, so
matched pairs of bright and desaturated colours are cho-
sen for the correlated pairs tender/sad, happy/erotic and
angry/fear.

Figure 3. Top: The interactive web interface in its ‘win-
ner takes all’ overview colouring. A path playlist selection
as well as a neighbourhood selection is visible in the mood
space. Bottom: Background highlighting for the features
angry, tender and erotic. Compared with the overview
colouring, the subtle fluctuations of features are apparent.

3.2 Interaction with the interface

As the visualisation can handle very large numbers of
items, a semantic zoom was integrated, where the size of
each element is fixed. This coalesces items on zoom out
and disentangles items on zoom in.

Further insight into the nature of the space is given by
the adaptive area exploration tool which visualises the lo-
cal item density. In contrast to previous work we do not
use a fixed selection area but one based on the k-nearest-
neighbours to the mouse cursor. Points are highlighted
as the mouse is moved, creating a dynamically expanding
and collapsing highlight, responding to the structure of the
space. The k-nn visualisation adapts to zoom level; when
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zoomed out, k is large; when zoomed in, we support fo-
cused interaction, with a smaller k.

Focus and context: To make the music map exploration
more concrete, a hover box is displayed with information
about the nearest item to the cursor, including artist name,
title, and album art (see Figure 3). It shows a mini bar
chart of the song’s mood features. As this is fixed onscreen,
users can explore and observe changes in the mood chart,
giving them insight into the high-dimensional space.

3.3 Playlist generation

Neighbourhood selection is a quick and casual interaction
metaphor for creating a playlist from the k nearest neigh-
bours. Songs are ranked according to their query point dis-
tance. This enables the directed selection of clusters in
the space, even if the cluster is asymmetric. By adjusting
zoom level (and thus k), k-NN selection can include all in-
cluster items while omitting items separated from the per-
ceived cluster. This feature could be enhanced by adding
an ε-environment similar to the density-based clustering al-
gorithm DBSCAN [7]. Fast rendering and NN search was
implemented using quadtree spatial indexing [8].

Path selection enables space-spanning selections.
Drawing a path creates a playlist which ‘sticks’ to nearby
items along the way. The local density of items is con-
trolled by modulating velocity, so faster trajectory sections
stick to fewer songs than slow ones. This ‘dynamic attach-
ment’ offers control over the composition of playlists with-
out visual clutter. E.g. a user can create a playlist starting
in the happy area, then gradually migrating towards tender.

4. USER EVALUATION

The evaluation was based on the research questions:
1. How do users perceive the low-dimensional mood space
projection? 2. Is the mood-based visualisation useful in
music exploration and selection? 3. Which techniques do
users develop to create playlists?

A pilot study evaluated the viability of the system and
guided the design of the main longitudinal “in the wild”
user study, which was conducted to extract detailed us-
age behaviour over the course of several weeks. Adapting
to a new media interface involves understanding how per-
sonal preferences and personal media collections are rep-
resented. Longitudinal study is essential for capturing the
behaviour that develops over time, beyond superficial aes-
thetic reactions and can – in contrast to Lab-based study –
cover common use cases (choose tracks for a party, play
something in the background while studying).

Eight participants (1 female, 7 male, 5 from the UK and
3 from Germany, undergraduate and research students) –
each with their own Spotify account and personal music
collections – were recruited. The mood interface was used
to visualise the personal music collection of the partici-
pants. The participants used the interface at home as their
music player to whatever extent and in whatever way they
wanted. Two participants also used the system at work.
All subjects used a desktop to access the interface. As a

reward and to facilitate use together with the Spotify Web
Player, participants were given a voucher for a three month
premium subscription of Spotify.

The Shannon entropy H of the 6 mood features of each
user’s music collection gives an impression of the diver-
sity of content. Using the maximum mood feature for each
song, H = −∑i pi log2 pi, where pi = Nmoodi

/N .

1 2 3 4 5 6 7 8
H 2.51 2.36 2.49 2.42 1.84 2.38 1.93 2.5
N 3679 2623 4218 3656 2738 2205 1577 3781

Table 1. Entropy H , no. tracks N of users’ collections.

The study took place in two blocks, each with nomi-
nally four days of usage, although the actual duration var-
ied slightly. One of the key aims was to find out if the prob-
abilistic background highlighting provides an enhanced ex-
perience, so the study was comprised of two conditions in
a counterbalanced within-subjects arrangement:
A Music Map without background highlighting.
B Music Map with background highlighting: The proba-
bilistic models are included, with the composite view of
the mood distribution as well as dynamic mood highlight-
ing on cursor movements. Each participant was randomly
assigned either condition A in week 1 followed by B in
week 2 or vice versa. At the beginning of each condi-
tion and the end of the study, questionnaires were adminis-
tered to capture participants’ experience with the interface.
Interface events, including playlist generation, navigation
and all mouse events (incl. movements) were recorded.

5. RESULTS

Most participants used the software extensively, generat-
ing an average of 21 playlists per user per week, as shown
in Table 2. On average, users actively interacted with the
system for 77 minutes each week (roughly 20 minutes a
day) – time spent passively listening to playlists is not in-
cluded in this figure. Both groups generated more playlists
in week 1 than in week 2, as they explored the system.

User 1 2 3 4 5 6 7 8
Np,A 27 164 4 7 18 8 5 25
Np,B 46 39 3 7 5 17 18 53

Table 2. No. playlists generated per user for cond. A & B.
Users 1-5 had A in week 1, while 6-8 had A in week 2.

5.1 Mood perception

After each condition, users were asked to rate their satis-
faction with interacting via the mood space. The overall
opinion was encouraging. The majority of participants re-
ported that they felt their collection was ordered in a mean-
ingful way. Six stated that the mood-based categorisation
made sense. Initially, the distinction of different music
types was not rated as consistently over all conditions. This
might be due to the fact that people usually discuss music
in terms of genres rather than moods. However, the dif-
ficulty rating of mood changed over sessions. While six
users rated mood-based categorisation as difficult at the
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start, only three participants still rated mood as difficult
to categorise by the second week. This suggests that users
can quickly learn the unfamiliar mood-based model.

5.2 Interactions with the Mood Space

Browsing the Space: Analysis of mouse movements pro-
vided insight into how participants explored mood spaces.
Heatmaps were generated showing the accumulated mouse
positions in each condition (Figure 4). Participants ex-
plored the space more thoroughly in week one of the
study. Some participants concentrated exploration on
small pockets, while others explored the whole space rela-
tively evenly.

Figure 4. Heatmaps of interaction (mouse activity) of user
3 in week 1 (left) and week 2 (right). Interaction becomes
more focused in the second week.

The browse/select ratio dropped noticeably for the sec-
ond week for users with condition A first, as shown in Ta-
ble 3. This suggests that participants browsed much more
for each playlist in the first part of the study, and were more
targeted in the second part. The browsing could have been
either curiosity-driven exploration, or a frustrating experi-
ence, because the non-linear nature of the mapping made
the space difficult for the users to predict the response to
movements in the space. However, from Table 3 we can
see that users who had the highlights in the first week
seemed to have much more focused navigation from the
start, and did not decrease their browsing much in week 2
when they lost the highlighting mechanism.

Condition A Condition B
Week 1 1218.39 (483.49) 447.94 (176.85)
Week 2 319.25 (29.27) 576.5 (416.72)

Table 3. Browse select ratios (std. dev. in parentheses) for
week 1 and week 2 of the experiment, in cond. A and B.

Selections and Playlist Creation: Figure 5 shows playlists
from two different participants in condition B. User 1
(left) created playlists by neighbourhood selection, and
also drew a few trajectory playlists. User 7 (right) moved
in over a more diverse set with a number of trajectory
playlists. The paths partially follow the contours of the
background highlight, which suggests this user explored
contrasts in the mood space on these boundaries.

Neighbourhood selection was used more often (341
neighbourhood selections and 105 path selections). A rise

Figure 5. Created playlists under condition B for user 1
(H = 2.51) and user 7 (H = 1.93). Note the different
class layouts for the collections with high/low entropy H .

in the use of path selections, and a decline in neighbour-
hood selections can be seen in condition B versus A. In
condition A, five times more neighbourhood than path se-
lections were recorded, and only twice as many in condi-
tion B (see Table 4). This could be explained by the back-
ground distributions suggesting mood influence change
gradually over the space. This information may encourage
users to create trajectory playlists that gradually change
from one mood intensity to another.

Selection A B Total
Path 42 63 105

Neighbourhood 216 125 341
Neighbourhood/Path 5.1× 2.0× 3.3×

Table 4. Usage of the two different selection types in
each condition. The neighbourhood/path ratio shows the
increased use of the path tool in condition B.

5.3 Qualitative feedback

Background Highlighting: We asked whether background
highlighting was valuable to the users. The answer was
clearly in favour of background highlighting: 6/8 users
valued the highlighting, one user was indifferent and one
preferred the version without highlighting. The reasons
given in favour of the highlighting were that they could
more easily identify different regions and remember spe-
cific “locales” in the mood space. They recognised that
songs had different mood influences and enjoyed follow-
ing the colour highlights to areas of different intensity. One
user stated that he liked the vividness of the implicit high-
lighting. The user who preferred no highlighting found it a
cleaner look that was less confusing. 6 participants stated
that they did not find the highlighting confusing. 7 par-
ticipants answered that it did not distract from the playlist
creation task. Qualitative feedback also indicated a prefer-
ence for highlighting: ”[with highlighting] I could easier
identify how the mood was distributed over my library”,
”coloured areas provided some kind of ’map’ and ’land-
marks’ in the galaxy”.

Preference for neighbourhood versus path playlists: The
domination of neighbourhood versus path playlists in the
logged data is supported by feedback from questionnaires,
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which shows that users were generally happier with neigh-
bourhood selection than the more novel path selection
technique. The attitude towards the path selection differed
between conditions. Participants were more satisfied with
path selection in condition B, with interactive background
highlighting.In A, four participants agreed the path playlist
was effective, and three disagreed. After condition B, how-
ever, 5 users agreed and only one disagreed.

Advantages of the Interface: The subjective feedback re-
vealed that users had fun exploring the mood space and
enjoyed the casual creation of playlists. ”fun to explore
the galaxy”, ”easy generation of decent playlists” Users
also appreciated the casual nature of the interface: ”It
was very easy to take a hands-off approach”, ”I didn’t
have to think about specific songs”. Users made spe-
cific observations indicating that they were engaged in the
exploration task and learned the structure of the map, al-
though this varied among users. ”I discovered that most
older jazz pieces were clustered in the uppermost corner”,
”It was easy to memorize such findings [...] the galaxy
thus became a more and more personal space”. Satisfac-
tion with the quality of selections was high, although some
participants found stray tracks that did not fit with neigh-
bouring songs. ”The detected mood was a bit off for a
few songs”. Several users stated that they appreciated the
consistency of created playlists and the diversity of differ-
ent artists, in contrast to their usual artist-based listening.
There was concern that playlists did not offer enough di-
versity ”some songs that dominated the playlists”, ”too
much weight given to ’archive’ material”, ”some way to
reorder the playlists to keep them fresh”, while others en-
joyed this aspect: ”I rediscovered many songs I had not
listened to in a long time”.

Shared versus personal: Visualising a shared (i.e. inter-
user) mood space with personal collections embedded was
not rated very important by most users (only one user
thought this important). However, personalisation of the
space was rated of high importance by half of the users.
Ensuring that nearby songs are subjectively similar was ad-
ditionally rated as important by the majority of participants
(five users). These user priorities led to trade-offs between
very large music maps and maps reliably uncovering in-
trinsic clusters of similar items.

Improvement requests: The most requested missing feature
was a text search feature. The use of Spotify for playback
also led to a disjointed user experience which would be
easily improved on in a fully integrated mood-map music
player. Users also requested the integration of recommen-
dations and the ability to compare different mood spaces.

6. CONCLUSIONS AND FUTURE WORK

We presented an interactive tool for music exploration,
with musical mood and genre inferred directly from tracks.
It features probabilistic representations of multivariable
predictions of subjective characteristics of the music to
give users subtle, nuanced visualisations of the map. These
explicitly represent the vagueness and overlap among fea-

tures. The user-based, in-the-wild evaluation of this novel
highlighting technique provided answers to the initial re-
search questions:

Can users create viable mental models of the music space?
The feedback from the ‘in-the-wild’ evaluation indicates
that people enjoyed using these novel interfaces on their
own collections, at home, and that mood-based categorisa-
tion can usefully describe personal collections, even if ini-
tially unfamiliar. Analysis of logged data revealed distinct
strategies in experiencing the mood space. Some users
explored diverse parts of the mood space and switched
among them, while others quickly homed in on areas of
interest and then concentrated on those. The question-
naire responses suggest they learned the composition of the
space and used it more constructively in the later sessions.
Users make plausible mental models of the visualisation –
they know where the favourite songs are – and can use this
model to discover music and formulate playlists.

Which interface features enable people to navigate and ex-
plore the music space? Interactive background highlight-
ing seemed to reduce the need to browse intensively with
the mouse (Table 3). Subjective feedback confirmed that it
helped understand the music space with 6/8 users prefer-
ring it over no highlighting. Most users did not feel dis-
turbed by the implicitly changing background highlight-
ing. Both the neighbourhood and path playlist generators
were used by the participants, although neighbourhood se-
lections were subjectively preferred and were made three
times more often than path selections. Subjective feedback
highlights the contrast between interfaces which adapt to
an individual user taste or reflect a global model, in which
all users can collaborate, share and discuss music, trading
greater relevance versus greater communicability. Simi-
larly, how can we adapt individual user maps as the user’s
musical horizons are expanded via the exploratory inter-
face? Users’ preference of comparing visualisations over
interacting in one large music space hints that an alignment
of visualisations is a valid solution to this problem.

Can a single interface enable casual, implicit and focused
interaction? Users valued the ability to vary the level
of engagement. Their feedback also suggested that in-
corporating preview and control over the playing time of
playlists would be useful, e.g. move towards “happy” over
35 minutes. A recurring theme was that playlists tended
to be repetitive. One solution would be to allow the jitter-
ing of playlist trajectories and to do this jittering in high-
dimensional space. The low-dimensional path then speci-
fies a prior in the high-dimensional music space which can
be perturbed to explore alternative expressions of that path.

Post-evaluation:
An enhanced version with a text search function was dis-
tributed at the end of the study. The encouraging result was
that a month later, 3 of 8 participants still returned to the
interface on a regular basis – once every few days, with one
user generating 68 new playlists in the following weeks.
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ABSTRACT

Conceptual blending is a cognitive theory whereby ele-
ments from diverse, but structurally-related, mental spaces
are ‘blended’ giving rise to new conceptual spaces. This
study focuses on structural blending utilising an algorith-
mic formalisation for conceptual blending applied to har-
monic concepts. More specifically, it investigates the abil-
ity of the system to produce meaningful blends between
harmonic cadences, which arguably constitute the most fun-
damental harmonic concept. The system creates a variety
of blends combining elements of the penultimate chords of
two input cadences and it further estimates the expected re-
lationships between the produced blends. Then, a prelimi-
nary subjective evaluation of the proposed blending system
is presented. A pairwise dissimilarity listening test was
conducted using original and blended cadences as stimuli.
Subsequent multidimensional scaling analysis produced spa-
tial configurations for both behavioural data and dissimi-
larity estimations by the algorithm. Comparison of the two
configurations showed that the system is capable of mak-
ing fair predictions of the perceived dissimilarities between
the blended cadences. This implies that this conceptual
blending approach is able to create perceptually meaning-
ful blends based on self-evaluation of its outcome.

1. INTRODUCTION

Conceptual blending is a cognitive theory developed by
Fauconier and Turner [8] whereby elements from diverse,
but structurally-related, mental spaces are ‘blended’ giving
rise to new conceptual spaces that often possess new pow-
erful interpretative properties allowing better understand-
ing of known concepts or the emergence of novel concepts
altogether. The general framework within which the cur-
rent work is placed, comprises a formal model for concep-
tual blending [7] based on Goguen’s initial ideas of a Uni-
fied Concept Theory [9, 18]. This model incorporates im-

c© Asterios Zacharakis, Maximos Kaliakatsos-Papakostas,
Emilios Cambouropoulos.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Asterios Zacharakis, Maximos
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portant interdisciplinary research advances from cognitive
science, artificial intelligence, formal methods and com-
putational creativity. To substantiate its potential, a proof-
of-concept autonomous computational creative system that
performs melodic harmonisation is being developed.

Musical meaning is to a large extent self-referential;
themes, motives, rhythmic patterns, harmonic progressions
and so on emerge via self-reference rather than external
reference to non-musical concepts. Since musical mean-
ing largely relies on structure and since conceptual blend-
ing involves mapping between different conceptual struc-
tures, music seems to be an ideal domain for conceptual
blending (musical cross-domain blending is discussed by
Antović [1], Cook [6], Zbikowski [24]). Indeed, structural
conceptual blending is omnipresent in music making: from
individual pieces harmoniously combining music charac-
teristics of different pieces/styles, to entire musical styles
having emerged as a result of blending between diverse
music idioms.

Suppose we have a basic tonal ontology where only
diatonic notes are allowed and dissonances in chords are
mostly forbidden (except possibly using minor 7th inter-
vals as in the dominant seventh chord). We assume that
some basic cadences have been established as salient har-
monic functions around which the harmonic language of
the idiom(s) has been developed, such as the authentic/per-
fect cadence, the half cadence, the plagal cadence and,
even, older 15th century modal cadences such as the Phry-
gian cadence (Figure 1). The main question to be ad-
dressed is the following: Is it possible for a computational
system to enrich its learned tonal ontology by inventing
‘new’ meaningful cadences based on blending between
known cadences?

Figure 1: Conceptual blending between the basic perfect
and Phrygian cadences gives rise to the Tritone Substitu-
tion progression/cadence. The Backdoor progression can
also be derived as a weaker blend since less attributes of
the two input spaces are retained leading to a lower rating
by the system.
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Figure 1 presents a conceptual blending example where
the perfect and the 15th century modal Phrygian cadences
are used as input spaces. These have been chosen in this
example as they are both final cadences to the tonic and
at the same time, they are very different (i.e. the Phry-
gian mode does not have an upward leading note to the
tonic but rather a downward ‘leading note’ from the IIb
to the I). Initially, these cadences are formally described
as simply pitch classes with reference to a tonal centre (C
tonality was adopted in this case). Assuming that the fi-
nal chord is always a common tonic chord, blending takes
place by combining pitches of the penultimate chords be-
tween different cadences. Rather than mere combination
of pitches, other characteristic attributes of a cadence are
also taken into account. Weights/priorities that reflect rel-
ative prominence (e.g., root, upwards or downwards lead-
ing note, dissonant note that requires resolution – see Fig-
ure 1 where lines of variable thickness illustrate relative
strength of voice-leading connections in cadences) are as-
signed to each chord note according to a human expert.
The ‘blended’ penultimate chord is also constrained to
comply with a certain chord type such as the major or mi-
nor chord (in this instance the characteristic major chord
with minor seventh was preferred).

Let us examine the particular blending example be-
tween the perfect and the Phrygian cadences more closely.
Notes from the two input penultimate chords of the two
cadence types create a large number of possible combina-
tions. We start with combinations (at least 3 notes) of the
highest priority/salience notes (notes connected with bold
lines in Figure 1). Many of these combinations are not
triadic chords and may be filtered out using a set of con-
straints (in this instance our constraint is to have a chord
that is a standard characteristic tonal chord such as a dom-
inant seventh), while also a note completion step might
be required (adding notes to incomplete blending results)
if the examined combination incorporates too few notes;
more details regarding constraints will be given in sub-
section 2.1. Among the accepted blends, the most highly
rated one based on priorities values is the tritone substi-
tution progression (IIb7-I) of jazz harmony. This simple
blending mechanism ‘invents’ a chord progression that em-
bodies characteristics of the Phrygian cadence (root/bass
downward motion by semitone) and the dominant seventh
chord (resolution of tritone). Thus, it creates a new har-
monic ‘concept’ that was actually introduced in jazz, cen-
turies later than the original input cadences. The Backdoor
Progression also appears in the potential blends albeit with
much lower priority (i.e. a much weaker blend) – see Fig-
ure 1. A number of other applications and uses of harmonic
blending [11] and, more specifically, chord blending are
reported in [7].

Following the above, a challenging question that needs
to be addressed concerns the evaluation of the outcome
produced by such a creative system. The mere definition
of creativity is problematic and not commonly accepted as
many authors approach it from different perspectives (e.g.,
[3,5,17,21], for a comprehensive discussion see [10]). Ap-

plications of computational creativity to music pose the
extra issue of aesthetic quality judgement since creativ-
ity may not always be accompanied by aesthetic value and
vice versa. In terms of assessing a creative system, the
two usual approaches are to either directly evaluate the fi-
nal product or to evaluate the productive mechanism [16].
The present work is concluded by an empirical experiment
that attempts to address the former by shedding some light
on how the system’s output is perceived leaving -for the
moment- the issue of aesthetic value intact.

To this end, the output of the cadence blending system
described in the following section is used to set up a pre-
liminary subjective evaluation of the conceptual blending
algorithm applied to cadence invention. As stated previ-
ously, the computational system is capable of creating a va-
riety of blends combining elements of two input cadences
and it further estimates the expected relationships between
the produced blends. A number of blends between the per-
fect and the Phrygian cadence were produced in order to
test the ability of the cadence blending system to accu-
rately predict their perceived relations (i.e. the function-
ality of the blends) using an ‘objective’ distance metric
(see subsection 2.2). To achieve this, a pairwise dissim-
ilarity listening test for the nine cadences (two original,
four blends and three miscellaneous) was designed and
conducted. Subsequent multidimensional scaling (MDS)
analysis was utilised to obtain geometric configurations for
both behaviourally acquired pairwise distances and dissim-
ilarity estimations by the algorithm. Comparison of the
two configurations showed that the system can model the
perceptual space quite accurately.

2. FORMAL CONCEPTUAL BLENDING MODEL

This section begins with a description of the conceptual
blending mechanism utilised by the system for cadence
construction. It then proceeds with a consideration of a
naive distance metric for pairs of cadences based on repre-
sentation of cadences according to the system.

2.1 Cadence generation through chord blending

A cadence is described as a progression of (at least) two
chords that conclude a phrase, section or piece of mu-
sic [2]. In our case we have examined the simplest case
of two chords, a penultimate and a final chord. If the final
– destination – chord is considered fixed, then blending be-
tween two cadences can occur by blending the penultimate
chords of the cadences. The penultimate chords should
therefore be described in a way that reflects the ‘functional’
role of their constitutive components. To this end, ‘chord-
type’ properties of the penultimate chords (i.e. characteris-
tics of type such as major, minor etc.) should be considered
in combination with ‘key-related’ characteristics (i.e. their
relations to the final chord). For instance, a ‘chord-type’
and distinctive characteristic of the penultimate chord in
the perfect cadence (V7) is the fact that it includes a tri-
tone (between the third and the minor seventh), while two
‘key-related’ important characteristics are a) the fact that
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it includes the leading tone to the tonic (expressed as the
pitch class 11 relative to the local key) and b) that its root
moves by a perfect fifth to the tonic. Additionally, the spec-
ification of cadences (penultimate chords) should incorpo-
rate priority values, taking into account the fact that not all
characteristics (‘chord-type’ or ‘key-related’) are equally
salient.

The blending framework employed in this paper for
producing novel cadences through concept blending has
been presented in [7]. This framework follows Goguen’s
proposal to model conceptual spaces as algebraic spec-
ifications, while the utilised specifications defined in a
variant of Common Algebraic Specification Language
(CASL) [14] are extended with priority values associated
to axioms. These specifications incorporate symbols as
basic building blocks, over which more refined specifica-
tions are constructed, beginning from the sort ‘Note’ that
is utilised to built the sort ‘Chord’. The sort Chord rep-
resents the penultimate chord of the cadence which is in
fact the notion of the cadence as previously described. A
Note can receive values between 0 and 11, indicating the
12 pitch classes. In addition, a ‘+’ operator is considered
for arithmetics of addition in a modulo 12. For example,
7 + 9 = 4 denotes that a sixth plus a fifth is a major third.

A Chord specification incorporates two kinds of attribu-
tes that relate to the aforementioned ‘chord-type’ and ‘key-
related’ attributes, respectively ‘chordNote’ and ‘keyNote’.
The ‘chordNote’ property indicates semitone distances be-
tween the chord’s root and the notes comprising the chord,
e.g., a major chord with minor seventh has the follow-
ing relative notes: [0, 4, 7, 10]. On the other hand, the
‘keyNote’ property indicates semitone distance between
the scale’s root note and the notes comprising the chord,
e.g., a major chord with minor seventh and with chord root
on the fifth degree of the major scale (i.e. pitch class 7) has
the following key-related notes: [7, 11, 2, 5].

The salient characteristics of penultimate chords, and
in extension of cadences, are defined for the two input
spaces by employing human knowledge 1 . The salience
of a penultimate chord property is input to the system as a
priority value which is then directly linked to this property.
The output of conceptual blending, i.e. a conceptual blend,
should incorporate the most salient features of the two in-
put spaces – reflected by higher priority values. Additional
constraints that concern further knowledge about chords
are imposed. For the system employed in this paper, pre-
sented in more detail in [7], the additional constraints con-
cern the facts that a chord should not have a major and a
minor third (‘chordNote 3 and 4) at the same time, it should
not have a minor second (‘chordNote’ 1) and it should not
have both a perfect and a diminished fifth (‘chordNote’ 6
and 7) at the same time. When a new blendoid 2 emerges,
these constraints are enforced in the form of a consistency

1 In this study, for convenience, they are determined manually by a
music expert.

2 The term blendoid refers to a possible result of blending, which, how-
ever, is not necessarily consistent or optimal. Additional criteria either
validate or discard the consistency of a blendoid as well as evaluate it as
optimal (based on ‘blending optimality principles’ or on domain-specific
characteristics inherited to the blendoid).

check on the chord specification. Thereby, inconsistent
blends are discarded.

The input cadences that have been selected to demon-
strate blending of harmonic concepts were the perfect and
the Phrygian, with their attributes and priorities depicted
in Table 1. For both cadences, the highest priorities are
assigned in such a way that the most musically salient as-
pects of the penultimate chords are highlighted. For the
perfect cadence, the most highlighted features include the
leading note (keyNote: 11) to the tonic and the fact that its
type includes a tritone (chordNote: 4 and chordNote: 10).
For the Phrygian cadence, the musically salient feature is
the descending leading note (keyNote: 1) to the tonic.

perfect Phrygian
attribute priority attribute priority

keyNote: 7 p: 2 keyNote: 10 p: 1
keyNote: 11 p: 3 keyNote: 1 p: 3
keyNote: 2 p: 1 keyNote: 5 p: 2

keyNote: 5 p: 2
chordNote: 0 p: 1 chordNote: 0 p: 1
chordNote: 4 p: 3 chordNote: 3 p: 1

chordNote: 7 p: 1 chordNote: 7 p: 1
chordNote: 10 p: 3

Table 1: Attributes and priorities (higher values indicate
higher priority) considered in the blending system for the
input penultimate chords in the perfect and Phrygian ca-
dences. Common attributes of both cadences (the generic
space [7]) appear in boxes.

tritone backdoor
attribute priority attribute priority

keyNote: 1 p: 3 keyNote: 10 p: 1
keyNote: 11 p: 3 keyNote: 2 p: 1
keyNote: 5 p: 2 keyNote: 5 p: 2
keyNote: 8 p: 1 keyNote: 8 p: 1

chordNote: 0 p: 1 chordNote: 0 p: 1
chordNote: 4 p: 3 chordNote: 4 p: 3

chordNote: 7 p: 1 chordNote: 7 p: 1
chordNote: 10 p: 3 chordNote: 10 p: 3

Table 2: Attributes and priorities (higher values indicate
higher priority) in the tritone substitution and backdoor ca-
dences that result as blends from the perfect and Phrygian
cadences. The completion step adds the keyNote: 8.

The computational chord blending framework com-
bines the salience of chord features and core ideas of the
notion of Amalgams [15], resulting in a process that itera-
tively produces blendoids with descending salience in their
characteristics. However, the produced blendoids poten-
tially require completion, i.e. additional reasoning mech-
anisms that fill-in incomplete properties. Let us consider
the example of the tritone substitution cadence blend to
elucidate the completion step, as demonstrated in Table 2.
The tritone substitution cadence is acquired by preserv-
ing the most salient keyNote attributes (with priority 3)
from both input spaces: [1, 5, 11], and all the chordNote
attributes of the perfect cadence: [0, 4, 7, 10]. However,
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the utilisation of the pitch classes [1, 5, 11] does not sat-
isfy the requirements for a full dominant seventh chord of
type [0, 4, 7, 10]. The completions step for the pilot study
presented in [7] is performed manually, although it is pos-
sible to develop an automatic completion algorithm based
on the chord root provided by the utilisation of the Gen-
eral Chord Type (GCT) [4] algorithm. For instance, in
the tritone substitution, pitch class 1 is assigned as a root
note, a fact that leads to the completion of the pitch class
(keyNote:) 8 as a perfect fifth (to match the chordNote:
7). The backdoor cadence preserves the keyNote attributes
spaces: [2, 5, 10], which are not the ones with the highest
priorities, and again all the chordNote attributes of the per-
fect cadence: [0, 4, 7, 10]. Similarly, the completion step
assigns the pitch class 10 as a root note, while the require-
ment for a minor seventh (chordNote: 10) leads to im-
porting the pitch class (keyNote:) 8 into the blend. Since
no background knowledge about the role of the attribute
keyNote: 8 is given, the ‘default’ priority 1 is inserted,
which will also be the case for all the examples in this pa-
per: if attributes emerge through completion that have not
been modelled in the input spaces, the default priority 1 is
assigned.

2.2 Model-based distance metric

A naive method to compute the distances between pairs of
cadences is by comparing their common features with the
set of all their distinct features. In our case, since the final
chord is always the same minor tonic, the comparison boils
down to the features of their penultimate chords. Thereby,
the more features these chords have in common, the more
similar the cadences should be. For two cadences, Ci and
Cj two sets are considered: the intersection, ∩(Ci, Cj),
and the union, ∪(Ci, Cj) of their penultimate chord fea-
tures. The intersection is the set of their common features
and the union is the sum of all the features appearing in
both cadences without repetitions. For instance, for the ca-
dences indexed 1 and 3 in Table 3:

∩(C1, C3) = [[5, 11], [0, 4, 7, 10]],

∪(C1, C3) = [[1, 2, 5, 7, 8, 11], [0, 4, 7, 10]].

The considered distance based on the intersection and
union of the features of penultimate chords is computed by
dividing the number of elements in the intersection with
the number of elements in the union. If N(X) is the num-
ber of elements in a set X , then the distance between two
cadences is computed as

d(Ci, Cj) =
N(∩(Ci, Cj))

N(∪(Ci, Cj))
.

In the aforementioned example, d(C1, C3) = 6/10.

3. EMPIRICAL EVALUATION

In order to investigate the functionality of the blended ca-
dences (i.e. the perceived relationships between them) we

conducted a pairwise dissimilarity rating listening experi-
ment using as stimuli the nine selected cadences described
below. This approach is widely adopted in psychoacoustics
because it enables the construction of perceptual spaces
by employing multidimensional scaling (MDS) analysis on
the obtained dissimilarity matrices.

3.1 Stimuli

The stimulus set consisted of the two input cadences (per-
fect and Phrygian), four blends of the input spaces and
three miscellaneous cadences (Figure 2). More specifi-
cally, seven selected blends were as follows: blend 3 was
the tritone substitution progression, blends 4 and 5 were
the backdoor progression (the latter without seventh), ca-
dence 6 was a plagal cadence (it was input manually as a
cadence instance that was not a blend and was rather dif-
ferent to the two input cadences), cadence 7 contained a
minor dominant penultimate chord, cadence 8 was essen-
tially a French-sixth chord-type (similar in principle to the
tritone substitution) and cadence 9 was a manually con-
structed non-blend chromatic chord. Note that all the ca-
dences were assumed to be in C minor and each cadence
was preceeded by the notes C and F to reinforce perception
of tonal context – the only chord that changed in each stim-
ulus was the penultimate chord. Table 3 illustrates the ca-
dences used in the subjective experiment with the keyNote
and chordNote features grouped in two arrays. Therefore,
since the system is able to produce blended cadences ac-
cording to these features (keyNote and chordNote), the sim-
ilarity between two cadences in terms of the system’s mod-
elling should depend merely on them.

Figure 2: Score annotation of the two input cadences (1-
2), 4 blends of the input spaces (3-6) and 3 miscellaneous
cadences (7-9).

3.2 Participants

Fifteen listeners (aged 19-48, mean age: 26.5, 8 female)
participated in the listening test. All reported normal hear-
ing and long term music practice (years on average: 18.7,
range: 6 to 43). Participants were students in the Depart-
ment of Music Studies of the Aristotle University of Thes-
saloniki. All participants were naive about the purpose of
the test.
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input blends miscellaneous
index 1 2 3 4 5 6 7 8 9

keyNote [7, 11, 2, 5] [10, 1, 5] [1, 5, 8, 11] [10, 2, 5, 8] [10, 2, 5] [2, 5, 9, 0] [7, 10, 2] [1, 5, 7, 11] [3, 7, 10, 1]
chordNote [0, 4, 7, 10] [0, 3, 7] [0, 4, 7, 10] [0, 4, 7, 10] [0, 4, 7] [0, 3, 7, 10] [0, 3, 7] [0, 4, 6, 10] [0, 4, 7, 10]

Table 3: The penultimate cadence chords for the experiments along with their features and their respective indexes.

3.3 Procedure

In the pairwise dissimilarity listening test, participants
were asked to compare all the pairs among the nine sound
stimulus set using the free magnitude estimation method
[23]. Therefore, they rated the perceptual distances of
forty-five pairs (same pairs included) by freely typing in
a number of their choice to represent dissimilarity of each
pair (i.e., an unbounded scale) with 0 indicating a same
pair.

Listeners became familiar with the different cadences
during an initial presentation of the stimulus set in random
order. This was followed by a brief training stage where
listeners rated four selected pairs of stimuli. For the main
part of the experiment participants were allowed to listen to
each pair of sounds as many times as needed prior to sub-
mitting their rating. The pairs were presented in random
order and listeners were advised to retain a consistent rat-
ing strategy throughout the experiment. In total, the listen-
ing test sessions, including instructions and breaks, lasted
around twenty minutes for most of the participants.

4. EXPERIMENTAL RESULTS

The proposed formal conceptual blending framework en-
ables the generation of multiple cadences with different
values of ‘importance’, as reflected by the priorities of the
attributes preserved into the penultimate chords of the re-
sulting cadences. For the purpose of this study, the system-
wise ‘objective’ distance metric between cadences (see
subsection 2.2) is merely based on the common features
of the penultimate chords, not taking priority values into
account. The aim of this study is to examine whether
the pairwise distances between several cadences, as ex-
pressed by this ‘objective distance’ is aligned with the cog-
nitive/perceptual distances that musically trained partici-
pants assign.

A non-metric, weighted individual differences scaling
(INDSCAL) MDS analysis as offered by the SPSS PROX-
SCAL (proximity scaling) algorithm [13] was applied to
the dissimilarity matrices. INDSCAL computes weights
that represent the importance attributed to each perceptual
dimension by each participant and then uses these weights
to reconstruct a common perceptual space. Additionally,
the ‘ordinal’ option applies a rank ordering transforma-
tion to the raw dissimilarities within each participant’s re-
sponses. The non-metric approach was adopted since it has
been proven robust to the presence of monotonic transfor-
mations or random error in the data [19, 22].

A two-dimensional solution of the behavioural data
with the following goodness of fit measures: Stress-I: .228
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Figure 3: The perceptual (a) and the algorithmic (b) spa-
tial configurations for the nine selected cadences. The ca-
dences are labelled according to the indexes of table 3.

and Dispersion Accounted for (DAF): .947 3 was favoured.
Considering the number of objects in combination with the
number of dimensions, the achieved Stress-I value does not
imply an adequate fit between the MDS model produced
disparities and the actual distances reported by the partic-
ipants. This fact can be attributed to the high level of un-
certainty present in the subjective responses. However, the
satisfactory interpretability of the two dimensional config-
uration (as will be shown below) supports the acceptance
of this solution.

The dissimilarity matrix that was produced by the dis-
tance metrics of the cadence-blending-system was also
analysed through non-metric MDS. The two-dimensional

3 Stress-I is a measure of missfit where a lower value indicates a better
fit (with a minimum of zero) and DAF is a measure of fit where a higher
value indicates a better fit (with a maximum of one).
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solution featured both acceptable Stress-I (.123) and DAF
(.985). The configurations of both spaces are shown in Fig-
ure 3.

Visual inspection of the perceptual space reveals that
prior expectations regarding cadence positioning are gen-
erally fulfilled. The perfect (no.1) and the Phrygian (no.2)
input cadences are positioned far away from each other on
the 1st dimension. This dimension could be interpreted as
‘modal vs tonal’ since negative values coincide with ab-
sence of the leading note [11] while positive values sig-
nify presence of the leading note. Cadences no.4 (back-
door with seventh) and 5 (backdoor without seventh) are
naturally closely related. The clustering of no.4 and no.5
with the Phrygian could be explained by their shared notes
[5, 10] and also by the absence of the leading note [11]
that moves them away from the perfect cadence territory.
Also, the close positioning of cadences no.3 (tritone sub-
stitution) and no.8 is explained by the fact that the former
is a German-sixth-type while the latter is a French-sixth-
type both sharing three basic notes [1, 5, 11]. These two
cadences are additionally positioned more closely to the
perfect cadence (no.1) than to the Phrygian showing that
although the tritone substitution is created by incorporat-
ing the most salient attributes of the two input cadences
(see subsection 2.1), it is not perceived as being equidistant
between them. This can be explained by the fact that both
no.3 and no.8 take the leading note [11] and the seventh
[5] (that needs to be resolved) from the perfect cadence but
only take note [1] (base of the Phrygian) from the Phry-
gian. Cadence no.6 -the plagal- is positioned in the middle
between the perfect and Phrygian along dimension 1 but is
expectedly an outlier along dimension 2.

The comparison between the perceptual and algorith-
mic configurations was performed using Tucker’s congru-
ence coefficient [20]. As a guideline, for the congruence
coefficient, values larger than .92 are considered good/fair,
and values larger than .95 practically show equality be-
tween configurations [12]. In our case, the congruence co-
efficient between the perceptual and the algorithmic space
was computed to be .944 indicating that the system can
make a very good estimation of the relationships between
cadences.

5. CONCLUSIONS

According to the theory of conceptual blending developed
by Fauconier and Turner, novel conceptual spaces can be
created by blending elements from diverse input concep-
tual spaces. Based on this theory and its category-theoretic
interpretation proposed by Goguen this study presented
initial developments of a system for blending between har-
monic structures, using cadence blending as a proof of con-
cept. To this end, two input spaces with simple formalisa-
tions of the perfect and the Phrygian cadences were used
to produce several blended cadences.

The two input spaces along with the produced blends,
and other cadences, were subjected to a pairwise dissim-
ilarity rating listening test and subsequent MDS analysis
in order to evaluate the output produced by the cadence

blending system. The basic aim of the study was to ex-
amine whether perceptual distances between pairs of ca-
dences, as rated by the participants, were actually reflected
by an objective distance metric that related to the formal-
isation of cadences in the blending system. Indeed, the
comparative results showed that the system is capable of
making fair predictions of the perceived dissimilarities be-
tween the blended cadences. Given the uncertainty intro-
duced by both the demanding nature of the behavioural
task and the MDS analyses for the two sets of data, this
result is deemed rather satisfactory and leads to the follow-
ing implications:

1. The presented cadence description framework is
meaningful. Although the representation of knowl-
edge in cadences is very elementary (just describing
the penultimate chords with their absolute and rela-
tive notes), the derived results align with human per-
ception/cognition.

2. The utilised blending methodology produces consis-
tent results in the sense that resulting blends do in-
deed match the perceptual/cognitive attributes of the
input spaces.

The utilisation of more sophisticated system-oriented
metrics is expected to increase the accuracy of the self-
evaluation process within the system so as to produce
meaningful results for a wider combination of input ca-
dences (also ending in different final chords) or even for
more complex harmonic structures. As an obvious next
step, the parameters of the system distance metric can be
refined to optimise the fit between the algorithm’s predic-
tion and the actual perception of cadence dissimilarities.

Cadence blending is a proof-of-concept example of the
computational framework for conceptual blending that is
being developed in the context of the COINVENT project
[18]. Overall, the results of the subjective experiment,
even with this elementary representation of cadences, in-
dicate the effectiveness of this framework towards creating
meaningful output. The long term objective is the appli-
cation of the computational blending approach for devel-
oping melodic harmonisation methodologies that facilitate
structural blending between harmonies of diverse music id-
ioms. This will require the development of ontologies ca-
pable of describing significantly more complex harmonic
concepts compared to a simple harmonic cadence. At the
same time, the employed subjective evaluation will need
to be enriched by more elaborate experiments that will not
only be able to assess the aesthetic value and functional-
ity of the blends but to also address the challenge of rating
longer stimuli.
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ABSTRACT

In this paper, we propose a novel approach to harmonic-
percussive sound separation (HPSS) using Non-negative
Matrix Factorization (NMF) with sparsity and harmonicity
constraints. Conventional HPSS methods have focused on
temporal continuity of harmonic components and spectral
continuity of percussive components. However, it may not
be appropriate to use them to separate time-varying har-
monic signals such as vocals, vibratos, and glissandos, as
they lack in temporal continuity. Based on the observa-
tion that the spectral distributions of harmonic and percus-
sive signals differ – i.e., harmonic components have har-
monic and sparse structure while percussive components
are broadband – we propose an algorithm that successfully
separates the rapidly time-varying harmonic signals from
the percussive ones by imposing different constraints on
the two groups of spectral bases. Experiments with real
recordings as well as synthesized sounds show that the pro-
posed method outperforms the conventional methods.

1. INTRODUCTION

Recently, musical signal processing has received a great
deal of attention especially with the rapid growth of digi-
tal music sales. Automatic musical feature extraction and
analysis for a large amount of digital music data has been
enabled with the support of computational power. The ma-
jor purposes of such tasks include extracting musical infor-
mation such as melody extraction, chord estimation, onset
detection, and tempo estimation.

Because most music signals often consist of both har-
monic and percussive signals, the extraction of tonal at-
tributes is often severely degraded by the presence of per-
cussive interference. On the other hand, when we analyze
rhythmic attributes such as tempo estimation, the harmonic
signals act as interference that may prevent accurate anal-
ysis. Consequently, the separation of harmonic and per-
cussive components in music signals will function as an

c© Jeongsoo Park, Kyogu Lee.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jeongsoo Park, Kyogu Lee.
“Harmonic-Percussive Source Separation Using Harmonicity and Spar-
sity Constraints”, 16th International Society for Music Information Re-
trieval Conference, 2015.

important pre-processing step that allows efficient and pre-
cise analysis.

For these reasons, many researchers have focused on
investigating HPSS using various approaches. Uhle et
al. performed singular value decomposition (SVD) fol-
lowed by independent component analysis (ICA) to sep-
arate drum sounds from the mixture [1]. Gillet et al. pre-
sented a drum-transcription algorithm based on band-wise
decomposition using sub-band analysis [2].

Other researchers have employed matrix factoriza-
tion techniques such as non-negative matric factoriza-
tion (NMF). Helen et al. proposed a two-stage pro-
cess composed of a matrix-factorization step and a basis-
classification step [3]. Kim et al. employed the matrix co-
factorization technique, where spectrograms of the mix-
ture sound and drum-only sound are jointly decomposed
[4]. NMF with smoothness and sparseness constraints
was utilized by Canadas-Quesada et al. [5]. The algo-
rithm was developed based on assumptions regarding the
anisotropic characteristics of the harmonic and percussive
components; harmonic components have temporal con-
tinuity and spectral sparsity, whereas percussive compo-
nents have spectral continuity and temporal sparsity.

Most HPSS algorithms have employed the same as-
sumption. Ono et al. presented a simple technique to rep-
resent a mixture sound spectrogram as a sum of harmonic
and percussive spectrograms based on the Euclidean dis-
tance [6]. Their technique aims to minimize the tempo-
ral dynamics of harmonic components and the spectral dy-
namics of percussive components. They further extended
their work to use an alternative cost function based on
the Kullback-Leibler (KL) divergence [7]. More recently,
FitzGerald presented a median filtering-based algorithm
[8], where a median filter is applied to the spectrogram in
a row-wise and column-wise manner for the extraction of
harmonic and percussive sounds, respectively. Gkiokas et
al. also proposed a non-linear filter-based HPSS algorithm
[9].

However, the assumption regarding the temporal con-
tinuity, which is considered to be crucial for conven-
tional harmonic-percussive studies, does not account for
the rapidly time-varying harmonic signals often present in
vocal sounds and musical expressions such as slides, vi-
bratos, or glissandos. This is because their spectrograms
often fluctuate over short periods of time. Thus, it may de-
grade the performance of the algorithms, particularly when
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loud vocal components or such musical expressions are
mixed.

In this paper, we propose a HPSS algorithm that is clas-
sified as a spectrogram decomposition-based method. We
consider the spectrum of harmonic components to have a
harmonic and sparse structure in the frequency domain,
whereas the spectrum of percussive components to have
an unsparse structure. To realize the successful separation
of harmonic/percussive sounds, we apply constraints that
impose a particular structure of the spectral bases. The
novelty of the proposed method resides in the harmonic-
ity constraint, which is an extension of the sparsity con-
straint presented in previous works [10]. The constraint is
closely related to the Dirichlet prior, which is frequently
used in probabilistic analysis. Because the proposed al-
gorithm does not assume temporal continuity for the sep-
aration of harmonic signals, we can successfully separate
harmonic signals from the mixture sound, even when there
are significant fluctuations over time.

The rest of this paper is organized as follows. Section
2 explains in detail how the proposed method works. In
Section 3, we present experimental results, and in Section
4, we conclude the paper.

2. PROPOSED METHOD

In this section, we present a detailed explanation of the
proposed HPSS method. The proposed algorithm uses the
spectrogram-decomposition technique, NMF, with the har-
monicity and sparsity constraints based on the Dirichlet
prior. For the efficient description of the proposed method,
we first introduce the conventional NMF. Then, the algo-
rithm description for the proposed method is presented. Fi-
nally, the theoretical relations of the proposed method to
the Dirichlet prior are described.

2.1 Conventional NMF

Lee and Seung introduced the multiplicative update rule of
NMF for KL divergence [11]. As we iteratively update the
parameters, we can represent a non-negative matrix, which
may correspond to a magnitude spectrogram, as a multi-
plication of two non-negative matrices that may contain
spectral bases and temporal bases. The update rule can be
represented as:

Hk,n ←
Hk,n

∑
m

{
Wm,kFm,n

/
F̃m,n

}

∑
m′

Wm′,k
(1)

Wm,k ←
Wm,k

∑
n

{
Hk,nFm,n

/
F̃m,n

}

∑
n′

Hk,n′
(2)

where F and F̃ denote the M ×N magnitude spectrogram
of an audio mixture, and its estimation, respectively, W
and H denote the M ×K matrix of the spectral bases and
the K ×N matrix of their activations.

2.2 Formulation of Harmonic-Percussive Separation

We present a modified NMF algorithm to impose the char-
acteristics of harmonic/percussive sounds. The update rule
is separately represented for the harmonic source basis and
percussive source basis as follows:

Hk,n ←
Hk,n

∑
m

{
Wm,kFm,n

/
F̃m,n

}

∑
m′

Wm′,k
(3)

Wm,k ←
Wm,k

∑
n

{
Hk,nFm,n

/
F̃m,n

}

∑
n′

Hk,n′
(4)

wk ←
(
1− γHH

)
wk + γHH ifft ({fft (wk)}p) , k ∈ ΦH

(5)

wk ← max (wk, 0) , k ∈ ΦH (6)

{
wk ←

(
1− γHS

)
wk + γHS (wk)

q
, k ∈ ΦH

wk ←
(
1− γPS

)
wk + γPS (wk)

r
, k ∈ ΦP

(7)

where ΦH and ΦP denote a set of harmonic bases and per-
cussive bases, respectively, fft (·) and ifft (·) denote the
functions of the fast Fourier transform (FFT) and the in-
verse FFT (IFFT), respectively, wk denotes the kth col-
umn of W, γHH denotes the harmonicity weight parameter
for the harmonic signal, and γHS and γPS denote the sparsity
weight parameters for harmonic and percussive signals, re-
spectively. Note that Eqns (3) and (4) are identical to Eqns
(1) and (2), respectively. Eqns (5)-(7) contribute to shaping
the spectral bases as desired as the iteration proceeds.

Mixing weights that have values between 0 and 1 rep-
resent the importance of each constraint imposition, and
indicate the degree to which we need to impose the charac-
teristic. To enable the harmonic bases to have a harmonic
and sparse structure while preserving the original figures
of spectral bases, γHH and γHS are set to have small positive
numbers, as the effect of the constraint is accumulated over
the iteration.

The exponents p, q, and r have to be determined consid-
ering the range of each parameter, 0 ≤ r ≤ 1 ≤ p, q. Here,
p and q respectively reflect the degree of harmonicity and
sparsity of the destination, and they have to be controlled
considering the spectral characteristics of the original har-
monic sources. Likewise, r reflects the degree of “unspar-
sity” of the percussive sources.

Among the update equations shown above, the function
of the conventional NMF update equations in Eqns (3) and
(4) is to minimize the error between F and its estimation
F̃. On the other hand, the remainders of the equations
aim to shape the spectral bases. The sparsity constraint
in Eqn (7) has been similarly adopted for the matrix de-
composition [10], and it is based on the fact that the square
operation increases the differences among the vector com-
ponents. If the square root operation is used instead, as
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in the percussive case of Eqn (7), unsparsity can be im-
posed to the basis. Similarly, we can extend this concept
to the harmonicity. The second term in Eqn (5) denotes
the harmonics-emphasized basis, which is due to the fact
that the spectrum of the spectrum is sparse. To prevent ele-
ments from being negative, the max (·, ·) operation in Eqn
(6) has to be jointly involved.

The harmonic and percussive sounds are reconstructed
using the corresponding bases as follows:

F(Harmonic) =
∑

k∈ΦH

wkhk (8)

F(Percussive) =
∑

k∈ΦP

wkhk (9)

where hk denotes the kth row of H.

2.3 Relation to Dirichlet Prior

The proposed update equations can be intuitively compre-
hended. However, the equations are based on a firm theo-
retical background, not heuristically induced. In this sub-
section, we employ Dirichlet prior from the probability
theory, and investigate its relations to the proposed method.

Priors were primarily adopted for the Bayesian proba-
bility theory, including the probabilistic latent component
analysis (PLCA) or probabilistic latent semantic analysis
(PLSA). Such spectrogram decomposition techniques of-
ten regard spectrogram components as histogram elements
of multinomial distributions. Because the Dirichlet distri-
bution is a conjugate prior of a multinomial distribution,
it can be adopted as a prior knowledge of a multinomial
distribution. By adopting the prior, we can modify our
goal to be the maximizing posterior from the maximizing
likelihood. For this reason, the Dirichlet prior has been
adopted for the matrix factorization in the previous works
[10], [12]. Our method employs one of the extensions of
the Dirichlet prior for harmonicity imposition.

Because PLCA is a special case of NMF, where its
cost function is KL divergence [13], we can generalize the
Dirichlet prior of the PLCA [12] by applying it to the NMF
algorithm as follows:

Hk,n ← (1− γ1)

Hk,n

∑
m

{
Wm,kFm,n

/
F̃m,n

}

∑
m′

Wm′,k
+γ1Ak,n

(10)

Wm,k ← (1− γ2)

Wm,k

∑
n

{
Hk,nFm,n

/
F̃m,n

}

∑
n′

Hk,n′
+γ2Bm,k

(11)
where A and B denote the matrices of hyper parameters
with respect to H and W, respectively, and γ1 and γ2 de-
note the mixing weights. In our research, we focus only on
the spectral bases, and thus Eqn (10) is discarded. As can
be observed, the proposed update equations, Eqns (3)-(7),

have the same form as Eqn (11), and the way in which we
shape the spectral bases depends on the form of B matrix.

Frequency-domain sparsity imposition can be easily
achieved by setting the hyper parameter B as [10]

bk = (wk)
u (12)

where bk denotes the kth column of B, and u denotes an
exponent that controls the degree of sparsity of bk.

On the other hand, harmonicity imposition can be
achieved when the hyper parameter is represented as

bk = ifft ({fft (wk)}v) (13)

where v denotes the exponent that controls the degree of
harmonicity of bk. This is because a periodic signal can
be represented as a sum of sinusoids, and the spectrum
of the periodic signal is sparse. Conversely, if a spec-
trum is sparse, we can assume that the original signal has
a strongly periodic characteristic. Thus, we aim to make
the spectrum of the spectrum to be sparse in order to shape
a signal such that it has a harmonic structure. Note that in
order to prevent destructive interference caused by phase
distortion, we have to manipulate only the magnitudes
within the IFFT function, preserving the original phases
of fft (wk).

3. PERFORMANCE EVALUATION

3.1 Sample Problem

In this section, we apply the proposed method and the con-
ventional methods to simple sample examples, which is
suitable for showing the novelty and validity of the pro-
posed method. Spectrograms of synthesized sounds that
consist of horizontal and vertical lines are presented in
Figure 1(a) and Figure 2(a). Figure 1(a) models the case
where a pitched harmonic sound is sustained for a certain
period. The sounds of harmonic instruments such as gui-
tars, pianos, flutes, and violins fall within this scenario.
On the other hand, Figure 2(a) illustrates the case where
a harmonic signal alters its frequency over time. In this
case, vibratos, glissandos, and vocal signals correspond to
the harmonic components. We compare the performance
of the proposed method to the separation results obtained
using three conventional methods: Ono et al.’s Euclidean
distance-based method [6], Ono et al.’s KL divergence-
based method [7], and FitzGerald’s method [8].

As shown in Figure 1(b), both the conventional methods
and the proposed method are able to successfully separate
the sounds. This is because the horizontal lines in this ex-
ample have horizontally continuous characteristics, which
are assumed by the conventional methods to be present.
However, when the harmonic sound vibrates and the hor-
izontal lines fluctuate, as shown in Figure 2(a), conven-
tional methods cannot distinguish the horizontal lines from
vertical lines. As we can see in Figure 2(b), the estimated
percussive components of conventional methods contain
harmonic partials, and only the proposed method can suc-
cessfully separate them. Thus, we can claim that the pro-
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(b) Separation results of Ono’s Euclidean distance-based method,
Ono’s KL divergence-based method, FitzGerald’s method, and the
proposed method (from top to bottom)

Figure 1. Sample example of separating horizontal lines
and vertical lines.

posed method is not affected by variations in the pitch be-
cause it relies on the harmonic structure of the vertical axis,
and not the degree of horizontal transition.

3.2 Qualitative Analysis

We evaluated the performance of the proposed method us-
ing a real recording example. Figure 3 shows a log-scale
plot of the spectrogram of an excerpt from “Billie Jean,”
by Michael Jackson. The signal was sampled at 22,050 Hz,
and the frame size and overlap size were set to 1,024 and
512, respectively. We can observe from the spectrogram
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(b) Separation results of Ono’s Euclidean distance-based method,
Ono’s KL divergence-based method, FitzGerald’s method, and the
proposed method (from top to bottom)

Figure 2. Sample example of separating fluctuating hori-
zontal lines and vertical lines.

that the excerpt contains both harmonic and percussive
components. The harmonic components can be seen as
horizontally connected lines, whereas the percussive com-
ponents are seen as vertical lines as in the sample exam-
ples.

Figure 4(a) and (b) show the separation results of the
harmonic sound (up) and percussive sound (down), which
were obtained using Ono et al.’s Euclidean distance-based
method and KL divergence-based method, respectively.
Here, we set the parameters to the values recommended in
the references. We observe that the estimated percussive
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Figure 3. Spectrogram of a real audio recording example
(“Billie Jean” by Michael Jackson).

components still contain harmonic components that may
correspond to the vocal components. This is because Ono
et al.’s algorithms aim to minimize the temporal transition
of the harmonic spectrogram. However, vocal components
in the original spectrogram do not match well with the un-
derlying assumption.

Figure 4(c) shows the result of FitzGerald’s method
with a median filter length of 17 and when the exponent
for the Wiener filter-based soft mask is two, as recom-
mended by FitzGerald [8]. We also observe that the sep-
arated percussive components still contain harmonic com-
ponents, as in the previous case. This is because of the use
of a one-dimensional median filter, which assumes that the
harmonic components are sustained for several periods.

Figure 4(d) shows the performance of the proposed
method. We observe that the harmonic and percussive
components are clearly separated, and the percussive com-
ponents do not have any vocal components in these results.
This is because unlike conventional methods, the proposed
algorithm does not rely on the horizontal continuity prin-
ciple. Rather, the proposed algorithm tries to account for
the harmonic components using the harmonic and sparse
spectral bases.

3.3 Quantitative Analysis

We performed a quantitative analysis to verify the va-
lidity of the proposed algorithm. First, we compiled
a dataset that consists of 10 audio samples, which is
a subset of the MASS database [14], but two sets of
data, namely tamy-que pena tanto faz 6-19 and tamy-
que pena tanto faz 46-57, were excluded in this exper-
iment because they lack percussive signals. Then, we
obtained a spectrogram for each audio sample with the
frame size and hop size set to 2,048 samples and 1,024
samples, respectively. Note that the sampling rate of
the songs in the MASS dataset is 44,100 Hz. Fi-
nally, we measured the signal-to-distortion ratio (SDR),
signal-to-interference ratio (SIR), and signal-to-artifact
ratio (SAR) using the BSS EVAL toolbox (http://bass-
db.gforce.inria.fr /bss eval/) supported by [15]. Table 1
shows the parameter values of the proposed method used in
this experiment. The parameters of the conventional meth-
ods are set to the recommended values, as in the previous
experiment.

The evaluation results are summarized in Figure 5. We
can see that the proposed method guarantees a better av-
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(d) Proposed method

Figure 4. Qualitative performance comparison of conven-
tional and proposed methods.
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erage SDR result compared to conventional methods, even
though the proposed method has a lower SIR performance
than Ono et al.’s Euclidean distance-based method. This is
because the proposed method far outperforms other meth-
ods with respect to the SAR, which has a trade-off relation
with the SIR [16].

Parameter Value
p 1.1
q 1.1
r 0.5
γHH 0.001
γHS 0.001
γPS 0.1

Number of bases (H,P) (300,200)

Table 1. Experimental parameters.
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Figure 5. Quantitative performance comparison of con-
ventional and proposed methods.

4. CONCLUSION

In this paper, we proposed a novel HPSS algorithm based
on NMF with harmonicity and sparsity constraints. Con-
ventional methods assumed that the harmonic components
were represented as horizontal lines with temporal conti-
nuity. However, such an assumption could not be applied
to the vocal components or various musical expressions
of harmonic instruments. To overcome this problem, we
presented a harmonicity constraint, which is a generalized
Dirichlet prior. By letting the spectrum of the spectrum be
harmonic and sparse, we could refine the harmonic compo-
nents and eliminate inharmonic components. The experi-
mental results showed the validity of the proposed method
by comparing it with conventional methods.
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ABSTRACT

Here we propose a score-informed monaural source separation
system to extract every tone from a mixture of piano tone sig-
nals. Two sinusoidal models in our earlier work are employed
in the above-mentioned system to represent piano tones: the
General Model and the Piano Model. The General Model, a
variant of sinusoidal modeling, can represent a single tone with
high modeling quality, yet it fails to separate mixtures of tones
due to the overlapping partials. The Piano Model, on the other
hand, is an instrument-specific model tailored for piano. Its
modeling quality is lower but it can learn from training data
(consisting entirely of isolated tones), resolve the overlapping
partials and thus separate the mixtures. We formulate a new
hierarchical Bayesian framework to run both Models in the
source separation process so that the mixtures with overlapping
partials can be separated with high quality. The results show
that our proposed system gives robust and accurate separation
of piano tone signal mixtures (including octaves) while achiev-
ing significantly better quality than those reported in related
work done previously.

1. INTRODUCTION

Here we propose a score-informed monaural source separation
system under a new hierarchical Bayesian framework to ex-
tract every tone from a mixture of piano tone signals with high
separation quality. Two sinusoidal models in our earlier work
in [14, 15] are employed in the above mentioned system to
represent piano tones. Sinusoidal modeling is commonly used
in many existing monaural source separation systems to model
pitched musical sounds [6,7,9,11,16]. The major difficulty of
source separation (SS) is to resolve overlapping partials.

Existing systems are based on assumptions on the general
properties of pitched musical sounds. For example, the spectral
envelope of tones is assumed to be smooth (as in [7,16]), or
that the amplitude envelope of each partial from the same note
tends to be similar [11] (known as common amplitude modula-
tion (CAM)), or that the amplitude envelope of a partial evolves
similarly among different notes of the same musical instrument

c© Wai Man SZETO, Kin Hong WONG.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Wai Man SZETO, Kin Hong WONG. “A
Hierarchical Bayesian Framework for Score-Informed Source Separation
of Piano Music Signals”, 16th International Society for Music Information
Retrieval Conference, 2015.

in [9]. Yet these assumptions may not be suitable for SS of
piano mixtures as explained in [15]. A very recent work in [17]
can resolve two closed partials but it may not work on octaves,
in which the partials of the upper tone are totally immersed
within the frequencies of the lower tone. Moreover, it assumes
that partials are exact multiples of the fundamental frequency.
This assumption is not valid for piano because piano tones are
only quasi-harmonic [1].

Instead of formulating similar assumptions, we limit input
mixtures to piano music signals. This allows us to design a
piano-specific model called the Piano Model (PM) to resolve
overlapping partials in [15]. In piano music, a particular pitch
tends to appear more than once. The tones of the same pitch
share some common characteristics which can be captured
by PM. Our system is based on two requirements. First, the
pitches in the mixtures should reappear as isolated tones in the
target recording. Second, the piano music is performed without
pedaling. Then the isolated tones can be used as the training
data for PM to resolve the overlapping partials even for octaves.

Although PM can resolve the overlapping partials, its mod-
eling quality of single piano tones is lower than our General
Model (GM) in [14]. However, GM cannot be directly applied
to SS because it fails to separate mixtures of tones due to the
overlapping partials. Here we formulate a new hierarchical
Bayesian framework to run both PM and GM in the SS process
so that the mixtures with overlapping partials can be separated
with high quality. The separation process is divided into the
training stage and the SS stage. Given the estimated PM param-
eters and the training data, we can, in the SS stage, set the prior
distributions of the GM parameters to favor the proper regions
of values under the Bayesian framework, estimate the GM
parameters successfully even the case of overlapping partials,
and reconstruct the individual tones in the mixtures with high
quality. We hope that our system could shed some light on the
empirical study of expressiveness in music performance [5]
by comparing the subtleties of various artists’ performances,
based on individual tones extracted by SS.

2. SIGNAL MODELS

Here an individual tone (the sound of hitting one piano key) is
considered as a particular sound source of the corresponding
pitch. When multiple piano keys are pressed, a mixture signal
is generated. We model a mixture signal as a sum of its cor-
responding individual tones as y(t)=

∑K
k=1xk(t) where y(t)

is the observed mixture signal in the time domain, K is the
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number of tones in the mixture, xk(t) is the kth individual tone
in the mixture, and t is the time in seconds. We assume that
the score has been known so that the pitch and the duration of
each xk(t) are given (music transcription systems [2,10] can
be used here). The goal of our research is to recover the signal
of each individual tone xk(t) from the mixture signal y(t) via
the signal models GM and PM.

2.1 General Model (GM)

In [14], we present a frame-wise sinusoidal model called GM
to represent a piano tone. For a piano tone, the frequencies of
the partials are stable so the frequencies can be fixed across
frames. The number of partials can also be fixed for a tone. In
GM, the estimated tone x̂k,r, which is the estimate of the kth
tone in a mixture at the rth frame, can be written as:

x̂k,r[l]=

Mk∑

m=1

w[l]

(αk,m,rcos(2πfk,mtl)+βk,m,rsin(2πfk,mtl)) (1)

where Mk is the number of partials, αk,m,r is the amplitude
of the cosine component, βk,m,r is the amplitude of the sine
component, fk,m is the frequency, w[l] is the window function
with the window length L and l=0,...,L−1, and tl is the time
in second at the index l so tl = l/fs and fs is the sampling
frequency in Hz. The overlap-and-add method in [18] can be
used to reconstruct the entire signal from GM.

Based on the above model, the estimated mixture ŷr[l] at
the rth frame is the sum of each estimated tone x̂k,r[l] such
that ŷr[l]=

∑K
k=1x̂k,r[l]. The observed mixture is the sum of

the estimated mixture and the noise term so yr[l]= ŷr[l]+vr[l]
where vr[l] is the noise component. To estimate the parameters
in each frame, it is convenient to rewrite the model in (1) into
the matrix form. Let Hk be the frequency matrix of the kth
tone in the form of

Hk[l,u] =




w[l]cos(2πfk,utl) if 1≤u≤Mk,

w[l]sin(2πfk,u−Mk
tl)

ifMk+1
≤u≤2Mk

(2)

and we also let fk be the frequency vector containing all fk,u.
The amplitudes of the cosine and sine terms of the kth tone

at the rth frame can be expressed as a column vector gk,r
defined by

gk,r[u]=

{
αk,u,r if 1≤u≤Mk,

βk,u−Mk,r ifMk+1≤u≤2Mk

. (3)

For the mixture, the frequency matrices from each tone are
concatenated into the matrix H= [H1 ···HK] and all fk are
concatenated into the column vector f =

[
fT1 ··· fTK

]T
. The

amplitude vectors of each tone can also be concatenated into
a column vector gr=

[
gT
1,r ··· gT

K,r

]T
. The estimated mixture

at rth frame can be expressed as ŷr=Hgr and the estimated
mixture is related to the observed mixture as below:

yr=Hgr+vr (4)

where vr is the noise term. It is modeled as the zero-mean
Gaussian noise with the variance σ2vr .

The observed mixture signal can be expressed in the form
of Y=[y1 ··· yR]. Then the estimated mixture for all frames

can be written as
Ŷ=HG (5)

where Ŷ=[ŷ1 ···ŷR], G=[g1 ··· gR] andR is the number of
frames. All GM parameters can be grouped into Θ={f,G}.
The goal of our SS is to estimate both the frequency matrix H
and the amplitude matrix G so that each individual tone can
be reconstructed. However, H is often rank deficient. This
happens when some of the partials from different tones in the
mixture are overlapping. This implies that if only the mixture
in such case is given, it is impossible to separate the mixture
into its individual tones unless more information is provided.
This problem can be solved by using the training data as the
prior information under the Bayesian framework in Section 3.

2.2 Piano Model (PM)

In [15], we propose PM to resolve the overlapping partials
by exploring the common properties of recurring tones. PM
employs a time-varying sum-of-sinusoidal signal model for
piano tones, and it describes a tone in an entire duration instead
of a single analysis frame as

x̂k(tn)=

Mk∑

m=1

a(tn;ck,ϕk,m)·cos(2πfk,mtn+φk,m) (6)

where Mk is the number of partials of the kth tone, fk,m
and φk,m are the frequency and the phase respectively, and
a(tn;ck,ϕk,m) is the time-varying amplitude of the partial
stated in [15] where the envelope parameters ϕk,m control
the envelope surface against the intensity ck and the time tn.
The intensity ck is assigned to be the peak amplitude of the
observed time-domain signal of the tone. The onset of each
tone in the mixture may not be exactly the same so a time-
shift factor is introduced for each tone in the estimated mixture
ŷ(tn)=

∑Mk

k=1x̂k(tn−τk) where τk is the time shift in seconds.
All parameters in PM for the kth tone can be grouped

into a parameter set ψk so ψk = {ϕk,m,fk,m,φk,m,ck,τk}
and Ψ = {ψ1,...,ψK}. The PM parameters ψk can be di-
vided into two groups: the invariant PM parameters ψk,I =
{ϕk,m,fk,m,φk,m} and the varying PM parameters ψk,V =
{ck,τk}. The invariant PM parameters contain parameters in-
variant to instances of the same pitch and they are estimated
from the training data. The varying PM parameters consist of
parameters which may vary across instances. Given a mixture,
only the varying PM parameters of the mixture are required
to be estimated if the invariant PM parameters have been esti-
mated from the training data.

In both GM and PM, we have assumed that the number of
partialsMk of each tone is known. The number of partialsMk

is fixed for all experiments. The details of findingMk can be
found in [14].

3. BAYESIAN FRAMEWORK FOR SS

This section will explain how the Bayesian framework inte-
grates the two models in the previous section and incorporates
the training data to resolve overlapping partials. Given the
mixture y and the training data X , the goal of Bayesian SS
with GM is to find the Maximum A Posterior (MAP) solution
Θ̂y that maximizes the posterior p(Θy|y,X ) where Θy is the
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Figure 1. (a) The likelihood function. (b) The prior. (c) The
posterior. This schematic diagram shows that an appropriate
prior gives the desirable MAP solution. The vertical line shows
the true value of Θy.

GM parameter set for y. By Bayes’ theorem, the posterior can
be written in the form p(Θy|y,X )∝p(y|Θy)p(Θy|X ).

The key issue of Bayesian SS is how to set up the prior
p(Θy|X ). If overlapping partials are present, the frequency
matrix H is rank deficient and many choices of Θ can give sim-
ilar values of the likelihood p(y|Θy). Hence, there are many
peaks in the likelihood function as shown in the schematic
diagram (Figure 1(a)). In order to find the desirable MAP
solution, it is advantageous that the prior distribution has a high
density around the correct value of Θy. In Figure 1(b), the
prior is appropriate so that the MAP solution, i.e. the peak of
the posterior, can be located correctly as depicted in Figure
1(c). In short, an appropriate prior of the GM parameters is
crucial for resolving the overlapping partials. It can be found
by using the training data and the estimated PM parameters.

The prior p(Θy|X ) expresses the probability distribution
of Θy given the training data X and before the mixture y is
observed. The functional form of p(Θy|X ) can be formulated
in terms of PM. The PM parameter set Ψy of the mixture y
is divided into two sets: the invariant PM parameter set Ψy,I
and the varying PM parameter set Ψy,V. For the training data
X , the PM parameter set ΨX is divided into the invariant PM
parameter set ΨX ,I and the varying PM parameter set ΨX ,V.
Note that both the mixture and the training data share the same
set of the invariant PM parameters. The subscripts y and X
for the invariant PM parameters can be omitted for clarity so
ΨI=Ψy,I=ΨX ,I.

The posterior p(Θy|y,X ) of the GM parameters can be
linked up with the PM parameters by using marginalization:

p(Θy|y,X )=

∫∫
p(Θy,Ψy,V,ΨI|y,X )dΨy,VdΨI. (7)

Note that the noise variance σ2vr of the mixture in (4) is omit-
ted in the derivation for clarity. Then by the product rule of
probability, (7) can be put into

p(Θy|y,X )=

∫∫
p(Θy|y,X ,Ψy,V,ΨI)

p(Ψy,V,ΨI|y,X )dΨy,VdΨI (8)

where the first term is the posterior of Θy and the second is
the posterior of Ψy,V and ΨI.

However, finding the MAP solution involves evaluating
the integration over all possible values of Ψy,V and ΨI in
(8). PM is a highly dimensional and nonlinear model that
makes the integration analytically infeasible. Different ap-
proximation techniques can be used to find the MAP solution.
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Piano 
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(PM)

Invariant
PM

parameters

Piano Model
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Training Source separation
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Figure 2. Bayesian framework for SS.

For computational efficiency, here we have used the evidence
approximation [12, 13]. Following the derivation of the evi-
dence approximation in [3, p. 408], we assume that the pos-
terior p(Ψy,V,ΨI|y,X ) is sharply peaked around their most
probable values Ψ̂y,V and Ψ̂I. Then (8) can be written as
p(Θy|y,X )≈p(Θy|y,X ,Ψ̂y,V,Ψ̂I).

Hence, the MAP solution Θ̂y is the maximum of the pos-
terior p(Θy|y,X ,Ψ̂y,V,Ψ̂I). The estimation of Ψ̂y,V and Ψ̂I
can be done as follows: (i) Ψ̂y,V is estimated by maximizing
the posterior p(Ψy,V|y,X ) via the evidence approximation
which gives p(Ψy,V|y,X ) ≈ p(Ψy,V|y,Ψ̂I) (note that X is
omitted because Ψy,V is independent of X if Ψ̂I is given);
(ii) Ψ̂I is estimated by maximizing the posterior p(ΨI|y,X )
that can be approximated by using the training data only so
p(ΨI|y,X )≈p(ΨI|X ).

According to these results, the whole SS process is sum-
marized in Figure 2. The whole process is divided into the
following two stages:

1. Training. Given the training data X , find the most
probable value of the invariant PM parameters Ψ̂I of
p(ΨI|X ).

2. SS. Given the mixture y, the training data X and the
invariant PM parameters Ψ̂I, SS functions in two steps:

(a) SS with PM. Given y and Ψ̂I, find the most prob-
able value of the varying PM parameters Ψ̂y,V of
p(Ψy,V|y,Ψ̂I).

(b) SS with GM. Given y, X , Ψ̂y,V and Ψ̂I, find the
MAP solution Θ̂y of p(Θy|y,X ,Ψ̂y,V,Ψ̂I).

4. TRAINING AND SS WITH PM

The goal of the training stage is to find the most probable
invariant PM parameters Ψ̂I that maximize the posterior of
the invariant PM parameters p(ΨI|X ) given the training data
X . By Bayes’ theorem, the posterior can be rewritten as
p(ΨI|X )∝p(X |ΨI)p(ΨI). The prior p(ΨI) reflects our prior
knowledge of the invariant PM parameters ΨI. The values of
ΨI greatly vary from different pitches and pianos. If we have
little idea on suitable values for a parameter, it is safe to assign
a prior which is insensitive to the values of that parameter [4].
Then maximizing the posterior p(ΨI|X ) is effectively equiv-
alent to maximize the likelihood p(X |ΨI). The details of
finding the solution Ψ̂I can be found in [15].

Given the invariant PM parameters Ψ̂I and the mixture y,
we perform SS with PM as shown in Figure 2. The goal of SS
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with PM is to find the most probable varying PM parameters
Ψ̂y,V that maximize the posterior of the varying PM param-
eters p(Ψy,V|y,Ψ̂I). By Bayes’ theorem, the posterior can
be rewritten as p(Ψy,V|y,Ψ̂I)∝p(y|Ψy,V,Ψ̂I)p(Ψy,V). The
prior p(Ψy,V) reflects our prior knowledge of the invariant PM
parameters Ψy,V. The values of Ψy,V greatly vary from differ-
ent playings. Hence, we choose an insensitive prior for Ψy,V as
ΨI. Then maximizing the posterior p(Ψy,V|y,Ψ̂I) is again ef-
fectively equivalent to maximize the likelihood p(y|Ψy,V,Ψ̂I).
The details of finding Ψ̂y,V are also presented in [15].

5. SS WITH GM

The process of SS with GM is divided into the following two
steps: (1) estimate the hyperparameters, and (2) given the hy-
perparameters, find the MAP solution Θ̂y. We will focus on
the second step first.

5.1 Find the MAP solution

The MAP solution Θ̂y is found by maximizing the posterior
p(Θy|y,X ,Ψ̂y,V,Ψ̂I). The GM parameters Θy include the
amplitude matrix G and the frequencies f . An iterative update
scheme is designed to find the MAP solution: (1) given f ,
update G, and (2) given G, update f . Steps 1 to 2 are repeated
until convergence. The iterative update starts with the input
frequencies from the estimated frequencies in PM in Section 4.
The frequencies in PM are close to those in GM. We find that
10 iterations are enough for convergence. In the followings, the
iterative update scheme will be discussed in details.

5.1.1 Step 1: update the amplitude matrix G

Each gr in the amplitude matrix G can be estimated indepen-
dently. Given the estimated frequencies f̂ , now we rewrite the
posterior of gr into p(gr|yr,X ,̂f,Ψ̂y,V,Ψ̂I,σ̂2vr). The goal of
this step is to find the MAP solution ĝr which maximizes the
posterior of gr. By Bayes’ theorem, the posterior of gr can be
expressed in the form of

p(gr|yr,X ,̂f,Ψ̂y,V,Ψ̂I,σ̂
2
vr)

∝p(yr|gr ,̂f,σ̂2vr)p(gr|X ,Ψ̂y,V,Ψ̂I) (9)

where σ̂2vr represents the estimated variance of the zero-mean
Gaussian noise in (4).

The prior p(gr|X ,Ψ̂y,V,Ψ̂I) in (9) represents the prior
distribution of gr conditioned on the training data X and the
PM parameters Ψ̂y,V and Ψ̂I. It is modeled as a Gaussian with
the mean µ̂gr and the covariance matrix Σ̂gr . In this section,
it is assumed that the hyperparameters σ̂2vr , µ̂gr and Σ̂gr have
been estimated and their values are known. The estimation of
these hyperparameters fromX , Ψ̂y,V and Ψ̂I will be discussed
in Section 5.2. Note that each gr has its own set of µ̂gr and Σ̂gr

so the MAP solution of each gr can be found independently.
As ŷr=Hgr is a linear model for given H, and both the

noise and the prior are Gaussian, the resulting posterior of gr
is also Gaussian. Therefore, the MAP solution ĝr is equal to
the posterior mean. By using the result in [4, p. 153], the MAP
solution is

ĝr=
(
Σ̂
−1
gr +σ̂−2vr HTH

)−1(
Σ̂
−1
gr µ̂gr +σ̂−2vr HTyr

)
. (10)

5.1.2 Step 2: update the frequencies f

Given the estimated amplitude matrix Ĝ in Step 1, the goal
of Step 2 is to find the MAP solution f̂ which maximizes the
posterior p(f|Y,X ,Ĝ,Ψ̂y,V,Ψ̂I,σ̂

2
v). However, the model

Ŷ=HG in (5) is nonlinear with f . Based on our work in [14],
we vectorize the matrix Ŷ into Ŷvec and then linearize Ŷvec

by using Taylor’s expansion so

Ŷvec(f)≈Ŷvec(f
cur)+Z(fcur)(f−fcur) (11)

where Ŷvec(f) is the estimate depending on the new frequency
vector f which is to be updated, and Ŷvec(f

cur) is the esti-
mate depending on the current estimate of fcur. The matrix
Z = Z(fcur) is the Jacobian matrix ∂Ŷvec/∂f evaluated at
fcur and Z =

[
ZT
1 ··· ZT

r ··· ZT
R

]T
. The matrix Zr is the Ja-

cobian matrix ∂ŷr/∂f at rth frame for all tones and Zr =
[Z1,r ··· Zk,r ··· ZK,r]. Then the Jacobian matrix Zk,r at rth
frame for kth tone is

Zk,r[l,m]=
∂ŷr[l]

∂fk,m
=2πtlw[l]

(−αk,m,rsin(2πfk,mtl)+βk,m,rcos(2πfk,mtl)). (12)

Hence, each element in Z can be computed from (12).
Following the prior distribution of gr, the prior distribution

of f is also modeled as a Gaussian with the mean µ̂f and the
covariance matrix Σ̂f . By applying (11) to the result in [4, p.
93], the MAP solution f̂ is

f̂ =
(
Σ̂
−1
f +ZTΣ̂

−1
v Z

)−1

(
Σ̂
−1
f µ̂f+ZTΣ̂

−1
v

(
Yvec−Ŷvec+Zfcur

))
(13)

where Z = Z(fcur), Ŷvec = Ŷvec(f
cur), and the covariance

matrix Σ̂v = diag(σ̂2v11L,...,σ̂
2
vR1L) and 1L denotes the L-

dimensional column vector filled with 1’s. In the next section,
we will show how to find the hyperparameters which are crucial
for resolving overlapping partials.

5.2 Estimation of the hyperparameters

Given the training dataX , we first estimate the GM parameters
for each isolated tone in X by the method in [14]. Together
with the estimated PM parameters Ψ̂y,V and Ψ̂I found in Sec-
tion 4, we will estimate the hyperparameters σ̂2vr , µ̂gr , Σ̂gr ,
µ̂f and Σ̂f .

5.2.1 Estimation of the noise variance σ2vr

To estimate the noise variance σ2vr of yr in (4), we model the
noise variance of an isolated tone xk,r at a frame is directly
proportional to the signal power. Then the noise variance of
xk,r is σ2vk,r = σ̄2vk ||xk,r||

2 where σ̄2vk is the proportionality
constant for pitch pk and it can be determined by the training
dataX which may contain multiple instances of the same pitch.
Let xik,r,X be a frame of an isolated tone in X where the index
i denotes the ith instance of the pitch pk. Then σ̄2vk can be
estimated by

σ̄2vk =
1

IkRkL

Ik∑

i=1

Ri
k∑

r=1

L−1∑

l=0


x

i
k,r,X [l]−x̂ik,r,X [l]∣∣∣
∣∣∣xik,r,X

∣∣∣
∣∣∣




2

(14)
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where Ik is the number of instances of pitch pk in X , Rik is
the number of frames in the ith instance of the pitch pk and
Rk =

∑Ik
i=1R

i
k, and x̂ik,r,X is the estimate of xik,r,X and is

found by using the method in [14].
The noise variance of the mixture yr is

σ2vr =
K∑

k=1

σ2vk,r,y =
K∑

k=1

σ̄2vk ||xk,r,y||
2 (15)

where xk,r,y is the kth individual tone in the mixture, and
σ2vk,r,y is its noise variance. However, xk,r,y is not known. In
order to estimate σ2vr , we approximate ||xk,r,y||2 into

||xk,r,y||2≈
(

ĉk∑K
k=1ĉk

)
||yr||2 (16)

where the estimated intensity ĉk in PM determines the pro-
portion of ||xk,r,y||2 in ||yr||2. Substituting (16) into (15), we
estimate the noise variance σ̂2vr in the mixture yr in the form of

σ̂2vr =
K∑

k=1

(
ĉkσ̄

2
vk∑K

k=1ĉk

)
||yr||2. (17)

5.2.2 Estimation of the prior distribution of the amplitudes gr

The prior distribution p(gr|µ̂gr ,Σ̂gr) of gr is modeled as the
Gaussian with the mean µ̂gr and the covariance Σ̂gr . Both
µ̂gr and Σ̂gr depend on Ψ̂y,V and Ψ̂I. This dependence can
be formulated by converting the PM parameters Ψ̂y,V and Ψ̂I
into the GM parameters. Let t′r be the time at the center of the
rth frame so that t′r = ((r−1)D+0.5L)/fs where D is the
hop size in samples. Evaluating the envelope function of PM
in (6) at the center of the rth frame, we can find the estimated
amplitude âk,m,r,y,PM = a(t′r;ĉk,ϕ̂m) where ĉk and ϕ̂m are
included in Ψ̂y,V and Ψ̂I respectively.

The phase at the center of rth frame can be calculated from
Ψ̂y,V and Ψ̂I by

φ̂k,m,r,y,PM =2πf̂k,m,PM(t′r−τ̂k)+φ̂k,m,PM (18)

where the frequency f̂k,m,y,PM and the phase φ̂k,m,PM are in-
cluded in Ψ̂I, and the time shift τ̂k is included in Ψ̂y,V. Then
âk,m,r,y,PM and φ̂k,m,r,y,PM in PM can be transformed into
the amplitude of cosine α̂k,m,r,y,PM and the amplitude of sine
β̂k,m,r,y,PM in GM. The mean µ̂gr of the prior is assigned to
be these estimated amplitudes from PM so that

µ̂αk,m,r
=α̂k,m,r,y,PM = âk,m,r,y,PMcosφ̂k,m,r,y,PM (19)

µ̂βk,m,r
= β̂k,m,r,y,PM =−âk,m,r,y,PMsinφ̂k,m,r,y,PM (20)

where µ̂αk,m,r
and µ̂βk,m,r

are the elements in µ̂gr and they
follow the ordering in (3).

The covariance Σ̂gr measures the deviation between the
values of gr estimated by PM and those estimated by GM. It
is modeled as a diagonal matrix of which the diagonal is filled
with the variances σ̂2αk,m,r

and σ̂2βk,m,r
and follows the order-

ing in (3). We assume that the variances σ̂2αk,m,r
and σ̂2βk,m,r

are identical and they are directly proportional to the power of
the partial amplitude. This gives

σ̂2αk,m,r
= σ̂2βk,m,r

= σ̄2Gk
(âk,m,r,y,PM)

2 (21)

where σ̄2Gk
is the proportionality constant and it can be deter-

mined by the training data X as below.

Let α̂ik,m,r,X ,GM and β̂ik,m,r,X ,GM be the amplitudes in GM
for X and they have been estimated by the method in [14]. Let
α̂ik,m,r,X ,PM and β̂ik,m,r,X ,PM be the amplitudes in GM for X
and they are converted from the PM estimate. The conversion
from the PM estimate to the GM estimate for X follows that
for the mixture y in (19) and (20). Let âik,m,r,X ,PM be the
partial amplitude in PM then

âik,m,r,X ,PM =

√(
α̂ik,m,r,X ,GM

)2
+
(
β̂ik,m,r,X ,GM

)2
. (22)

Following (21), we can estimate σ̄2Gk
from X by

σ̄2Gk
=

1

2IkMkRk

Ik∑

i=1

Mk∑

m=1

Ri
k∑

r=1



(
δα̂ik,m,r

âik,m,r,X ,PM

)2

+

(
δβ̂ik,m,r

âik,m,r,X ,PM

)2


 (23)

where δα̂ik,m,r = α̂ik,m,r,X ,GM− α̂ik,m,r,X ,PM and δβ̂ik,m,r =

β̂ik,m,r,X ,GM−β̂ik,m,r,X ,PM.

Note that the prior p(gr|µ̂gr ,Σ̂gr) reflects the difference
between the individual tones estimated by GM and PM. As
PM gives satisfactory quality of estimation in [15], the differ-
ence should be small enough to make the prior distribution
p(gr|µ̂gr ,Σ̂gr) has a high density around the correct value of
gr as shown in the schematic diagram in Figure 1. Hence, over-
lapping partials can be resolved and higher quality of SS can be
obtained. It will be verified and explained in the experiments.

5.2.3 Estimation of the prior distribution of frequencies f

The prior distribution p(f|µ̂f ,Σ̂f) of f is modeled as the Gaus-
sian with the mean µ̂f and the covariance Σ̂f . The mean µ̂f
is set to the estimated frequencies in PM from Ψ̂I so that

µ̂fk,m = f̂k,m,PM (24)

where µ̂fk,m are the elements in µ̂f . Following the derivation
of Σ̂gr , we also assume that Σ̂f is a diagonal matrix of which
the diagonal is filled with each variance σ̂2fk,m . The variance
σ̂2fk,m is modeled to be directly proportional to the square of
the frequency in PM. This gives

σ̂2fk,m = σ̄2fk

(
f̂k,m,PM

)2
(25)

where σ̄2fk is the proportionality constant which can also be
determined by the training data X . The estimate of σ̄2fk is

σ̄2fk =
1

Mk

Mk∑

m=1

(
f̂k,m,X ,GM−f̂k,m,PM

f̂k,m,PM

)2

(26)

where f̂k,m,X ,GM is the estimated frequency in GM for X and
it can be estimated by using the method in [14]. Note that there
is no subscript X in f̂k,m,PM because f̂k,m,PM are the invariant
PM parameters so the training data and the mixture share the
same set of f̂k,m,PM.

In summary, after estimating the hyperparameters σ̂2vr in
(17), µ̂gr in (19) and (20), Σ̂gr in (21), µ̂f in (24) and Σ̂f in
(25), we can find the MAP solution Θ̂y of GM by iteratively
updating the amplitude matrix G in (10) and the frequencies
f in (13). In the next section, experimental results will be
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presented to show the performance of the whole SS process.

6. EXPERIMENTS

6.1 Data set and experimental setup

We used the same data set in [15] for comparing the perfor-
mance. The data set contains 25 mixtures. Each mixture was
generated by mixing the isolated tones in the recorded piano
databases [8, 15], taken from 4 different pianos. Only tones
from the same piano were used to form a mixture. The pitches
in each mixture correspond to a chord randomly selected from
11 piano pieces in the RWC database [8]. The number of tones
(represented byK) in our selected mixtures ranges from 1 to
6: 1 tone (8 mixtures), 2 tones (6), 3 tones (5), 4 tones (4),
5 tones (1) and 6 tones (1). These 25 mixtures consist of 62
tones. 7 mixtures contain one pair of octaves, 2 (K= 5 and
K=6) contain 2 pairs of octaves. For the training data, two
instances of each pitch are available so Ik = 2. The first 0.5
second of the mixtures and the training data were used in the
experiments. All data were downsampled to 11.025 kHz for
faster processing. The window setting in GM is as follows: the
window function is the hamming window with length 11.61
ms (L=128) and 50% overlap. The titles of the piano pieces
used and details of the selected mixtures are available on the
website of this paper (link available at the end of this section).

6.2 Results

The performance of our SS system is evaluated by the signal-
to-noise ratio (SNR) defined by

SNR=10log10

∑
nx(tn)2∑

n(x(tn)−x̂(tn))2
(27)

where x(tn) is the isolated tone in the time domain before
mixing and x̂(tn) is the estimated tone in the time domain. The
isolated tones give the ground truth for evaluation.

6.2.1 Evaluation on modeling quality

We followed the procedures in [15] to evaluate the modeling
quality, i.e. the quality of PM and GM to represent an isolated
tone before mixing. The isolated tones of the 25 mixtures
were inputted into our proposed SS system including both PM
and GM. The outputs of our system were the estimated tones
reconstructed from PM and GM. If the parameters obtained
in PM and GM are accurate, they can regenerate the original
tones in high quality. The result is that the average SNRs of
PM and GM are 11.15 dB and 17.38 dB respectively. The
average SNR of GM is much higher than that of PM. This is
because GM is more flexible to represent piano tones.

6.2.2 Comparing with other systems for separation quality

The procedures in [15] were followed to evaluate the separation
quality, i.e. the quality of PM and GM separating a mixture
into its individual tones. We also compared PM and GM with
a recent SS system in [11], in which Li, Woodruff and Wang
built their system (Li’s system) based on CAM mentioned in
Section 1. It uses the non-overlapping partials to estimate the
overlapping partials of the same note. The implementation of

SNR (dB)
PM GM Li

All mixtures 10.88 13.51 6.63
K=2 11.76 15.26 12.07

2≤K≤6 10.97 13.15 5.40
Upper tones in octaves 10.95 12.77 1.57

Table 1. Comparison of Li’s system and our PM and GM.
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Figure 3. Average SNR against the number of tones K for
PM, GM, and Li’s system.

Li’s system was provided by the authors. The true fundamental
frequency of each tone was supplied to Li’s system.

The results are shown in Table 1. For the 25 mixtures, the
average SNRs of PM, GM and Li’ system are 10.88 dB, 13.51
dB and 6.63 dB respectively. Both PM and GM outperform
Li’s system. A significant improvement is in the octave cases
as shown in the table. Li’s system is unable to resolve the
overlapping partials of the upper tones in octaves because non-
overlapping partials are not available. On the other hand, both
PM and GM are able to reconstruct the upper tone in an octave.
The overlapping partials were successfully resolved even for
mixtures containing 2 pairs of octaves of C3, G3, C4, E4, G4
(K=5) and of F]3, C4, F4, C5, D5, F5 (K=6).

The average SNR against the number of tonesK is plotted
in Figure 3. The average SNR of Li’s system decreases much
more rapidly than PM and GM. Our system can make use
of the training data to give higher separation quality. Some
audio files in the experiments are selected for demonstration
purpose. The audio files, titles of piano pieces used, details of
the selected mixtures and mathematical notations used in this
paper are available at http://www.cse.cuhk.edu.hk/∼khwong/
www2/conference/ismir2015/ismir2015.html.

7. CONCLUSIONS

Here we have proposed a score-informed monaural SS system
to extract each tone from a mixture of piano tone signals. Two
sinusoidal models, PM and GM, are employed to represent pi-
ano tones in the system. We formulate a hierarchical Bayesian
framework to run both Models in the SS process so that the
mixtures with overlapping partials can be resolved with high
quality. Experiments show that our proposed system gives
robust and accurate separations of mixtures and improves the
separation quality significantly comparing to the previous work.
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ABSTRACT 

Musics, like languages and genes, evolve through a pro-
cess of transmission, variation, and selection. Evolution 
of musical tune families has been studied qualitatively for 
over a century, but quantitative analysis has been ham-
pered by an inability to objectively distinguish between 
musical similarities that are due to chance and those that 
are due to descent from a common ancestor. Here we 
propose an automated method to identify tune families by 
adapting genetic sequence alignment algorithms designed 
for automatic identification and alignment of protein fam-
ilies. We tested the effectiveness of our method against a 
high-quality ground-truth dataset of 26 folk tunes from 
four diverse tune families (two English, two Japanese) 
that had previously been identified and aligned manually 
by expert musicologists. We tested different combina-
tions of parameters related to sequence alignment and to 
modeling of pitch, rhythm, and text to find the combina-
tion that best matched the ground-truth classifications. 
The best-performing automated model correctly grouped 
100% (26/26) of the tunes in terms of overall similarity to 
other tunes, identifying 85% (22/26) of these tunes as 
forming distinct tune families. The success of our ap-
proach on a diverse, cross-cultural ground-truth dataset 
suggests promise for future automated reconstruction of 
musical evolution on a wide scale.  

1. INTRODUCTION 

Darwin’s theory of evolution is a broad one that applies 
not only to biology but also to cultural forms such as lan-
guage and music [21], [27]. Musicologists have long been 
interested in understanding how and why music evolves, 
particularly the three key mechanisms of 1) transmission 
between generations, 2) generation of musical variation, 
and 3) selection of certain variants over others [10], [21]. 
In some cases, historical notations, audio recordings, or 
other musical “fossils” allow us to document music’s cul-
tural evolution through the accumulation of minute varia-
tions over time [5], [14], [28]. More often, the process of 
oral transmission results in contemporaneous groups of 
related melodies known as “tune families” [2], careful 

comparison of which can be used to partially reconstruct 
the process of musical evolution [4]. This situation is 
analogous to the evolution of language families and bio-
logical species [1].  

Traditionally, analysis of tune family evolution has 
been done by manually identifying and aligning small 
groups of related melodies (see Fig. 1a) and then qualita-
tively comparing the similarities and differences. This led 
to two major challenges that limited the scale of tune 
family research: 1) the need for an automated method of 
comparing large numbers of melodies; and 2) the need for 
an objective means of determining tune family member-
ship.  

Thanks to the rise of music information retrieval 
(MIR), the first challenge has been largely overcome by 
automated sequence alignment algorithms for identifying 
melodic similarity [9], [16], [23], some of which have 
been specifically designed for studying tune families [24-
26]. However, the second challenge remains unsolved, 
with tune family identification considered “currently too 
ambitious to perform automatically” [24].  

Here we propose a novel method of tune family iden-
tification inspired by molecular genetics [8]. In particular, 
the problem of protein family identification shares many 
analogies with tune family identification. Proteins are bi-
ological molecules that are constructed by joining se-
quences of amino acids into 3-dimensional structures that 
function to catalyze biochemical reactions. Meanwhile, 
tunes are constructed by joining sequences of notes into 
multidimensional melodies that function to carry song 
lyrics, accompany dance, etc. When attempting to identi-
fy both protein families and tune families, a major chal-
lenge is to determine whether any observed similarities 
are due to chance or common ancestry. 

We sought to develop automated methods for identi-
fying and aligning tune families that could be used in fu-
ture large-scale studies of musical evolution throughout 
the world. To do this, we adapted methods designed for 
identifying and aligning protein families and tested their 
effectiveness on a cross-cultural ground-truth set of well-
established tune families that had already been manually 
identified and aligned by expert musicologists. We then 
tested out different model parameters to determine which 
parameters are most effective at capturing the known 
ground-truth patterns. 

2. DATA 

Our ground-truth dataset consisted of 26 melodies from 
four contrasting tune families that had previously been  
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Figure 1. A sample portion of a manually aligned tune 
family. a) The opening phrase of three tunes manually 
aligned by Bayard [3] and identified as part of the tune 
family he labeled “Brave Donnelly”. b) The same infor-
mation encoded as aligned pitch-class sequences using 
our proposed method (see Methods and Fig. 2). Note 
that keys are transposed so that the tonic (originally F) is 
always represented as C. 

identified and aligned manually by expert musicologists1. 
Two of these tune families were British-American tune 
families that had been chosen by Samuel Bayard (who 
coined the term “tune family”) in order to capture "...all 
the problems attending a comparative tune study, and all 
the important features of traditional development that we 
constantly encounter when we try to elucidate the really 
extensive families of tunes." [3]. The other two were Jap-
anese tune families chosen for similar reasons by the Jap-
anese folksong scholars MACHIDA Kashō and 
TAKEUCHI Tsutomu [12]. We chose this dataset be-
cause we needed a known baseline against which to com-
pare the effectiveness of our methods, and because we 
wanted our method to have cross-cultural validity that is 
not limited to idiosyncracies of the types of European-
American folk tunes that have traditionally been studied. 
In addition, the first author has first-hand experience 
singing English and Japanese folksongs, and this dataset 
is also comparable to similar but larger collections of 
British-American and Japanese folk songs (approximately 
5,000 each in [5], [18]) to which we aim to eventually 
apply these automated methods. 

Music is much more than notes transcribed in a score. 
However, in order to understand tune family evolution, 
we need a standardized method of comparing tunes 
across time and space. To allow for analysis of tunes  

                                                             
1 Full metadata and aligned sequences are available at 
http://dx.doi.org/10.6084/m9.figshare.1468015 

 

Figure 2. The most widely used “alphabet” for describ-
ing musical pitches divides an octave into 12 equally 
spaced semitones. Here these are visualized using the 
standard piano keyboard representation, with C repre-
senting the tonic. 

documented before the advent of audio recording tech-
nology, this requires the use of transcriptions, although 
this comes at the cost of losing details about performance 
style (e.g., timbre, ornamentation, microtuning, microtim-
ing). Furthermore, to allow evolutionary analysis using 
state-of-the-art methods from evolutionary biology, we 
need to further reduce the information in the score into 
aligned sequences. This approach was already implicit in 
the melodic alignment approach developed by tune fami-
ly scholars, in which tunes were transposed into a com-
mon key and time signatures, phrases, and rhythms were 
stretched and compressed as necessary to align notes 
sharing similar pitches (see Fig. 1a).  

Just as DNA can be modeled as a sequence construct-
ed from an “alphabet” of 4 nucleic acids (C, G, A, or T) 
or a protein can be modeled as a sequence constructed 
from an alphabet of 20 amino acids, a melody can be 
modeled as a sequence constructed from an alphabet of 
12 pitch classes representing the 12 notes of the chro-
matic scale (Fig. 2). By aligning sequences known to 
share common ancestry (as done manually in [3] and 
[12]), we can identify points on the alignment that are 
conserved, where a different pitch has been substituted, 
or where a pitch has been inserted/deleted (“indel”, repre-
sented using dashes). Fig. 1b shows how this method is 
used to encode the manual alignment shown in Fig. 1a. 
This information can then be analyzed quantitatively to 
reconstruct a phylogenetic tree, network, or other repre-
sentation of the evolutionary history of the tune family. 

The intuition of early tune family scholars to empha-
size alignment of pitches, rather than rhythms or global 
stylistic features, is supported by recent research that has 
demonstrated quantitatively that pitch is greatly superior 
to rhythm and to global stylistic features both for the pur-
poses of tune family identification in particular and for 
melodic similarity in general [23], [25]. However, judi-
cious use of rhythm and other non-pitch features may im-
prove tune family identification [25], and we explore this 
using several modeling techniques. 

3. METHODS 

3.1 Sequence alignment parameters 
 

14 MIDWEST FOLKLORE, IV : I 

and American tradition; the Brave Donnelly, so far as I know, 
only in British. In the tune tables given below, all airs have been 
put into the same register, to facilitate comparison. Original keys 
or signatures are given in the notes, however, and of course the 
modes, melodic intervals and note values have been preserved. 
Having taken into account all the versions and related airs known 
to me, I believe that these tables represent the tunes adequately. 
Table I illustrates the Brave Donnelly tune.' 

TABLE I Pt. 1 
A35 

B 
t J v _--m 

,,- 

t -6 

Xt W 1,Ht~~~~~~4 5 

Ilrf . 

li- r 7 ii- 1 - ' - ~ 5 

12 4 56 

~' 1 2 3 57 

2. 3 1 .i ~~~~~5 7 

This Brave Donnelly tune shows a not unusual case of the 
preservation of a melody in several rather close variants among 
the Irish, Welsh and English. The rhythmic differences between 
variants (D, F in 4/4 time, the others in 6/8; one bar of F cor- 
responding to two in the other sets) are features of common re- 
currence in our tune families. Comparing B with A (or any set) 
we may see that often the melodic lines go momentarily in precisely 
opposite directions, without obscuring the cognateness of the sets. 
This occurs, e.g., in B, bars 1, 9, 11, 14, 15. Such features remind us 

1 Tune Table I: A is "Well done, cries she, brave Donnelly," in C. V. 
Stanford ed., The Complete Petrie Collection of Ancient Irish Music (Lon- 
don: Boosey & Co., 1902-hereinafter called "Petrie" ), No. 316. Tune 
given in the original key. Evidently the air had a persistent association in 
Ireland with the prize-ring ballad "Donnelly and Cooper"; see a close variant, 
to that piece, in Colm 0 Lochlainn, Irish Street Ballads (Dublin & Lon- 
don: Constable & Co., 1939), p. 52. A third close variant of the air is in 
Sabine Baring-Gould, Sonas of the West (revised ed., London: Methuen 
& Co., 1905), p. 38, to "The Seasons of the Year." 

B is "Y' Deryn Du Pigfelyn" (The Golden-beaked blackbird), Maria 
Jane Williams, Ancient National Airs of Gwent and Morganwg (Llandovery, 
1844), pp. 12, 13. In original key. Note, p. 78, begins "Very commonly 
sung in South Wales." 

This content downloaded from 106.168.234.226 on Sat, 30 Aug 2014 01:27:51 AM
All use subject to JSTOR Terms and Conditions

D: CCCCGC-GAb-bGGA
E: FEECCCCGAbCbAGF
F: GCCCCCCGAb-GAGF

 

a)#

b)#

C D E F G A B     
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Automated sequence alignment requires a number of pa-
rameters to be defined. The choice of values for these pa-
rameters depends on the nature of the data and the goals 
of classification. Because automated tune family identifi-
cation remains largely unexplored, we don’t yet know 
which values are most appropriate for this goal. There-
fore, we tested several values for each parameter to allow 
for empirical comparison of which parameter values per-
formed best. When possible, we tested values that have 
worked well in similar work on protein family identifica-
tion and automated melodic similarity algorithms.  

3.1.1 Gap penalties 
The functional mechanisms of protein structure result in 
substitutions being much more common than indels (in-
sertions/deletions). Thus, most amino acid alignment al-
gorithms set a gap opening penalty (GOP) parameter to 
be quite high to penalize the creation of gaps in a se-
quence. However, when indels do occur, they often en-
compass not only one amino acid residue, but rather can 
include fairly long sections. Thus gap extension penalties 
(GEP) are usually set to be substantially smaller than gap 
opening penalties (the default values for the popular 
ClustalW algorithm are for GOP and GEP values of 15 
and 6.66, respectively [22]). 

The mechanisms of musical sequence evolution are 
less well known, but previous tune family research sug-
gests that insertion/deletion (e.g., of ornamentation) is 
quite common and may even be more common than sub-
stitution of different pitches. Thus, it seemed desirable to 
examine the effect of using a range of GOP and GEP val-
ues, ranging from the combination of GOP=0.8, GEP=0.2 
used to align tunes in [25], to the amino acid alignment 
values given above. To do this, we chose GOP values of 
.8, 4, 8, 12, and 16, for each of which we tested 
GOP:GEP ratios of both 2 and 4. Thus, the gap penalty 
parameters ranged from minimums of GOP=0.8, 
GEP=0.2 (GOP:GEP ratio=4) to maximums of GOP=16, 
GEP=8 (GOP:GEP ratio =2). For all gap penalty parame-
ters we followed previous tune family research [25] in 
using the Needleman-Wunsch alignment algorithm [17], 
as implemented in the Biostrings package in R V3.1.1 
[19]. 

3.1.2 Pitch 
There are various possibilities for weighting pitches to 
accommodate different degrees of similarity beyond sim-
ple match and mismatch. Previous weighting schemes 
using interval consonance or interval size have shown 
minimal improvement over a simple match/mismatch 
model [25]. Here we instead explore a novel weighting 
scheme based on qualitative tune family research that has 
found that tunes will sometimes change mode (i.e., some 
or all scale degrees may become flattened or sharped to 
shift from major to minor or vice-versa [3]). To do this, 
we simply treated an alignment of major and minor ver-
sions of each scale degree as a match (i.e., treating lower-
case letters in Fig. 2 as capitals). 

3.1.3 Rhythm/text 
Previous tune family research has suggested that some 
notes are likely to be more evolutionarily stable than oth-
ers. In particular, notes that are rhythmically accented [6] 
or that carry text [11] are proposed to be more reliable in 
identifying tune families than rhythmically unaccented or 
non-text-carrying notes, respectively. To examine these 
possibilities, we contrasted the results using the full se-
quences with those using shorter sequences created by 
excluding rhythmically unaccented notes (i.e., notes not 
falling on the first beat of a measure) or non-text-carrying 
notes (e.g., notes where the vowel is held over from a 
previous note) from the full sequences. 

3.1.4 Summary 
In sum, we tested all possible combinations of the follow-
ing parameters: 

1) Gap opening penalty: i) .8, ii) 4, iii) 8, iv) 12 or 
v) 16 

2) Gap opening penalty : Gap extension penalty 
(GOP:GEP) ratio: i) 2 or ii) 4 

3) Pitch: i) including or ii) ignoring mode 
4) Rhythm: i) including or ii) ignoring rhythmically 

unaccented notes 
5) Text: i) including or ii) ignoring non-text-

carrying notes 
This gave a total of 5x2x2x2x2=80 parameter combina-
tions to explore, the average values of which are reported 
in Table 1. 

3.2 Evaluation 
In order to achieve our goal of automated identification 
and alignment for the purpose of reconstructing tune fam-
ily evolution, we need a method of quantifying how well 
a given alignment captures the manual judgments of ex-
perts. The goal is to maximize both the degree of match 
in the alignment within tune families and the degree of 
accuracy in separating between tune families.  

3.2.1 Sequence alignment 
To evaluate alignment within tune families, we need a 
measure of the degree to which the similarities between 
sequences captured by the automated alignment matched 
similarities captured by the manual alignments. For this, 
we adopted the Mantel distance matrix correlation test 
[13]. The Mantel r-value is identical to a standard Pear-
son correlation r-value, but the Mantel significance test 
controls for the fact that pairwise distance values in a dis-
tance matrix are not independent of one another. 

We adopted the simplest method for comparing pairs 
of sequences, which is by calculating their percent identi-
ty (PID).  This is calculated based on the number of 
aligned pitches that are identical (ID) divided by the se-
quence length (L) according to the following equation:  

PID =100 ID
L1 + L2
2
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                                   (1) 
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This equation uses the average length of both sequences 
as the denominator, as this appears to be the most con-
sistent measure of percent identity when dealing with 
cases where the sequences have unequal lengths due to 
the insertion/deletion of large segments [15] (as occurs in 
our dataset).   

3.2.2 Tune family identification 
To evaluate separation between tune families, we need a 
measure of the degree to which our automated clustering 
into tune families matches the manual tune family classi-
fications. This needs to take into account both true posi-
tives (tunes correctly grouped into a given tune family) 
and false positives (tunes incorrectly grouped into a given 
tune family).  

A method used previously by van Kranenburg et al. 
[25], used the true positive rate (tpr) and false positive 
rate (fpr) to calculate a score J as follows:  

J = tpr
1+ fpr

                                   (2) 

Because van Kranenburg et al. did not have a method for 
automatically identifying boundaries between tune fami-
lies, they used a “nearest neighbor” criterion to define 
true positives. Thus, J represents the proportion of tunes 
whose nearest neighbor (tune with highest automatically 
measured similarity) is also in the same (manually identi-
fied) tune family. Here we calculate this J score, as well 
as a second J score that more directly tests our goal of 
identifying boundaries between tune families.  

For this second J score, the criterion used to define 
true positives is of significant sequence similarity for 
each pair of tunes. Significance is assessed by a random 
permutation test, in which the PID value for a given pair 
of sequence is compared against the distribution of 100 
random PID values given the same sequence lengths and 
compositions, as calculated by randomly reordering one 
of the sequences [8]. Thus, when calculating this second J 
score, bold values within the boxes in Table 2 (i.e., sig-
nificant sequence similarity between pairs of tunes manu-
ally identified as belonging to the same tune family) are 
counted as true positives, while bold values outside of the 
boxes (i.e., significant sequence similarity between pairs 
of tunes not manually identified as belonging to the same 
tune family) are counted as false positives.  

4. RESULTS 

The average scores under the different alignment parame-
ters are shown in Table 1, with the best-performing pa-
rameter values highlighted in bold. 

4.1 Sequence alignment (within-family) 
The degree to which similarities within tune families cap-
tured by the automated alignment match those captured 
by the manual alignments of experts are indexed by the 
Mantel correlation r-values, reported in Table 1. On aver-
age, all of the alignment parameter combinations gave 
similarly strong correlations ranging from r=.82-.85. 
 

  
Within-
family Between-family 

Automated 
alignment 
parameter 

Parameter 
value r 

J 
(nearest 

neighbor) 

J 
(signif-
icance) 

GOP 

.8 0.850 0.875 0.408 
4 0.843 0.870 0.421 
8 0.823 0.849 0.479 
12 0.833 0.877 0.497 
16 0.829 0.844 0.474 

GOP:GEP 
ratio 

2 0.834 0.862 0.462 
4 0.837 0.864 0.450 

Mode 
Included 0.839 0.841 0.445 
Ignored 0.832 0.885 0.467 

Rhythmically 
unaccented 
notes 

Included 0.841 0.964 0.587 

Ignored 0.830 0.762 0.325 
Non-text 
notes 

Included 0.838 0.873 0.460 
Ignored 0.833 0.853 0.452 

Table 1. Mean values comparing different automated 
alignment parameters against manual ground-truth align-
ments. Best-performing values are highlighted in bold. 
See Methods for details.  

4.2 Tune family identification (between-family) 
The degree to which the automated algorithms were able 
to separate between tune families is indexed by the J 
scores, reported in the right-hand columns of Table 1. Us-
ing gap opening penalties of 12, ignoring mode, including 
non-text notes, and especially including rhythmically un-
accented notes all improved tune-family identification. 
GOP:GEP ratios of 4 gave slightly higher J scores using 
the nearest neighbor criterion, but a ratio of 2 gave higher 
J scores using the more crucial criterion of significant 
pairwise sequence similarity. The specific parameter 
combination combining the best-performing parameter 
values - GOP=12, GOP:GEP ratio=2, ignoring mode, in-
cluding rhythmically unaccented notes and including 
non-text notes - resulted in a Mantel correlation of r=.83 
and J scores of J=1 and J=.64 for the nearest neighbor 
and significance criteria, respectively.   

It was not possible to directly compare all parameters 
using the approach presented in [25], in part because the 
approach in [25] is based on sequences of pairwise me-
lodic intervals, whereas the manual alignments that 
formed our ground-truth dataset were based on sequences 
of individual notes in relation to the tonic (i.e., tonic in-
tervals). However, it was possible to directly compare 
between-family identification J scores using the best-
performing parameter combination listed above, but using 
sequences of melodic intervals rather than tonic intervals. 
This melodic interval approach resulted in J scores of 
J=.88 and J=.33 for the nearest neighbor and significance 
criteria, respectively. These values were somewhat lower 
than the respective values using our tonic interval ap-
proach (J=1 and J=.64). However, further analyses are 
required to determine the degree to which incorporating  
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Table 2. Pairwise percent identity scores among the 26 
tunes. Tunes are labeled based on manual classifications 
by musicologists [3], [12]. Numbers correspond to the 
four tune families (1=”Brave Donnelly”, 2=”Job of Jour-
neywork”, 3=”Oiwake”, 4= “Okesa”), letters correspond 
to the different variant tunes within each family. The val-
ues in the lower triangle are based on automated align-
ments using the best-performing parameters (GOP=12, 
GOP:GEP ratio=2, ignoring mode, including rhythmically 
unaccented notes and including non-text notes). The val-
ues in the upper triangle are based on manual alignments. 
Inter-tune family manual values are not shown because 
manual alignments were only done within tune families. 
Solid borders indicate automatically identified tune fami-
lies in which at least three tunes are all significantly simi-
lar to one another. When these did not capture all tunes in 
a manually identified tune family, the manually identified 
boundaries are shown using dashed borders. Bold values 
indicates pairs whose similarities are significant at P<.05.  

more fine-grained weighting of intervals, rhythmic in-
formation, etc. of the type used in [25] affects tune family 
identification using both melodic interval and tonic inter-
val approaches.     

4.3 Overall reconstruction of tune family evolution 
The results of the top-performing parameter combination 
listed above are compared against manual classifications  

 
in Table 2 and Fig. 3. The lower triangle in Table 2 gives 
the raw pairwise sequence identity values, using bold text 
to indicate pairs of sequences whose similarities were sta-
tistically significant, while the upper diagonal gives with-
in-family sequence identity values for the manual align-
ments. The mean percent identity values were somewhat 
higher for the automated alignments than the manual 
alignments within each family (45.7% vs. 33.7%, respec-
tively). This presumably reflects the automated alignment 
identifying more false links, although in some cases it 
may also be identifying better alignments than the manual 
ones. Comparison with manual alignments conducted by 
different musicologists may help to clarify this issue in 
the future. 

Fig. 3 summarizes the information in Table 2 visually 
using a NeighborNet diagram. NeighborNet is a type of 
phylogenetic network that is similar to a neighbor-joining 
tree, but allows visualization of conflicting non-tree like 
structure (“reticulation”). 100% of the tunes (26/26) were 
correctly grouped such that their nearest neighbor was a 
member of the same tune family, and the sub-grouping of 
tune family 2 also corresponded to Bayard’s sub-
grouping into a “long” and “short” version. However, on-
ly 85% (22/26) of these tunes were automatically grouped 
into a tune family using the criterion that all pairs within 
a family must be significantly similar to one another. Us-
ing this criterion also mis-identified the “long” and 
“short” versions of tune family 2 as two distinct tune 

 1A 1B 1C 1D 1E 1F 2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K 3A 3B 3C 3D 4A 4B 4C 4D 4E 
1A  33 45 42 52 38                     
1B 51  29 37 31 28                     
1C 59 47  34 28 38                     
1D 47 47 48  40 32                     
1E 62 54 43 45  48                     
1F 53 43 50 48 61                      
2A 41 36 34 37 34 36  49 32 23 27 19 19 18 13 15 16          
2B 35 38 44 37 45 38 54  51 50 31 25 23 26 20 18 21          
2C 40 49 41 39 40 41 47 57  44 41 23 34 28 28 21 16          
2D 33 41 42 34 33 35 45 54 61  29 19 19 26 22 18 12          
2E 31 34 43 39 36 42 45 48 57 44  32 27 21 22 21 23          
2F 43 37 41 36 46 34 39 48 41 45 35  28 16 22 22 29          
2G 38 34 41 34 39 31 34 36 42 40 41 55  34 33 43 29          
2H 31 33 30 31 38 30 37 45 41 43 33 36 47  36 62 37          
2I 44 35 34 34 45 36 28 28 42 35 39 30 35 46  44 24          
2J 40 38 28 29 38 35 26 35 39 34 31 39 55 62 49  41          
2K 36 34 35 30 28 31 31 41 46 45 34 43 45 48 30 39           
3A 32 51 36 37 29 33 31 40 42 34 35 35 42 38 31 38 43  64 44 47      
3B 40 40 35 36 32 30 36 43 46 40 38 39 40 36 33 41 32 61  57 55      
3C 42 42 38 35 40 45 30 38 34 33 38 41 39 25 29 35 39 51 62  73      
3D 38 45 37 44 37 38 25 36 30 43 37 44 29 28 23 36 31 56 60 67       
4A 40 40 28 31 39 40 26 29 34 27 31 28 27 31 40 32 27 27 29 29 23  32 39 35 33 
4B 32 29 33 38 39 36 27 29 35 28 39 30 27 24 30 30 22 35 32 28 38 40  43 45 44 
4C 31 23 36 33 31 40 26 31 28 27 38 34 18 24 21 19 25 23 29 31 30 37 52  67 61 
4D 35 26 27 30 33 36 28 26 36 28 35 31 26 25 27 22 21 26 30 21 24 41 55 65  78 
4E 32 32 35 28 39 32 27 30 40 32 41 33 26 27 32 29 23 31 33 36 28 42 62 56 62  
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Figure 3. A NeighborNet visualization of the phyloge-
netic relationships among the 26 tunes automatically 
identified by the best-performing alignment algorithm. 
See Table 2 for explanation of tune labels 1A-4E and  
solid/dashed lines.  

families. Joining families into “superfamilies” when only 
one or a few members have significant similarities to 
members of other families [8] would join the “long” and 
“short” versions into a superfamily, but would also join 
all the tune families into this superfamily.  

5. DISCUSSION AND FUTURE WORK 

Although previous research suggested that tune family 
identification was “too ambitious to perform automatical-
ly” [24], we have presented an automated approach that 
successfully recovers most of the key relationships within 
and between tune families identified manually by musi-
cologists. Our approach adapts sequence alignment algo-
rithms for protein family identification to successfully 
delineate the boundaries separating groups of melodies 
that share similar sequences of pitches due to descent 
from a common ancestor.  

Our approach correctly identified three out of the four 
manually identified tune families, as well as both the 
“long version” and “short version” sub-groups of the 
fourth “Job of Journeywork” tune family. However, our 
automated approach failed to unite these sub-groups into 
a single tune family, instead splitting them into two tune 
families. The “Job of Journeywork” tune family was spe-
cifically chosen by Bayard [3] to present one of the most 
complicated examples of tune family evolution, including 
several measures that were deleted from the beginning of 
the “long version” and added to the end of the “short ver-
sion”. Hence, this type of complex evolution may require 
more complex algorithms and/or the incorporation of ex-
pert knowledge beyond the basic pitch sequence infor-
mation encoded in the simplified model used here. How-
ever, the fact that our approach captured the relationships 
among the four tunes from the “Oiwake” tune family, de-
spite the fact that this family contained both internal and 

terminal insertion/deletion events of substantial length, 
suggests that our approach is still able to capture fairly 
complicated patterns of musical evolution.  

One area for improvement of our method is that the 
false positive rate is somewhat high (see Table 2). We 
believe that this may be due to the fact that our method is 
designed primarily to distinguish between chance and 
common ancestry, and does not do a very good job of dis-
tinguishing between common ancestry and convergent 
evolution. Hence, it appears likely that many of the false 
positives are due to stylistic similarities shared between 
unrelated tunes that share similar scales and motivic pat-
terns (e.g., 1A and 2A, both Irish tunes in a diatonic ma-
jor scale). Horizontal transmission and/or convergent 
evolution of such traits among phylogenetically unrelated 
groups have long been known to complicate analysis of 
tune family evolution [3], [7]. Horizontal transmission 
and convergent evolution are challenges shared with lan-
guage evolution and genetic evolution, and may benefit 
from methods developed in these fields [1].   

In the future we hope to extend our approach to larger 
datasets, and to incorporate more-sophisticated models of 
cultural evolution and sequence alignment [1], more-
nuanced weighting of musical information (e.g., beyond 
simple match/mismatch models of pitch, rhythm, and text 
[24-26]), and higher-level units of musical structure and 
meaning. In music, as in genetics, the individual notes 
that make up the sequences have little meaning in them-
selves. The phylogenetic analysis of sequences is thus 
merely the starting point from which to understand how 
and why these sequences combine to form higher-level 
functional units (e.g., motives, phrases) that co-evolve 
with their song texts and cultural contexts of music-
making as they are passed down from singer to singer 
through centuries of oral tradition. Using such infor-
mation, we hope to not only identify previously unknown 
tune family relationships on a wide scale, but also to care-
fully reconstruct the histories and mechanisms of tune 
family evolution to identify general processes governing 
the cultural evolution of music. The general nature of our 
approach means that it should be applicable not only to 
folk music, but also to art music (e.g., European classical 
music [28], Japanese gagaku [14]) and popular music 
(e.g., copyright disputes [20]). Understanding the cultural 
evolution of music should help to identify the mecha-
nisms that govern stability and creativity of aesthetic 
forms, as well as to use this knowledge to help musicians 
and musical cultures struggling to adapt their intangible 
cultural heritage to today’s globalized world. 
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ABSTRACT

With an increasing number of available music characteris-
tics, feature selection becomes more important for various
categorisation tasks, helping to identify relevant features
and remove irrelevant and redundant ones. Another ad-
vantage is the decrease of runtime and storage demands.
However, sometimes feature selection may lead to “over-
optimisation” when data in the optimisation set is too dif-
ferent from data in the independent validation set. In this
paper, we extend our previous work on feature selection
for music genre recognition and focus on so-called “album
effect” meaning that optimised classification models may
overemphasize relevant characteristics of particular artists
and albums rather than learning relevant properties of gen-
res. For that case we examine the performance of classifi-
cation models on two validation sets after the optimisation
with feature selection: the first set with tracks not used for
training and feature selection but randomly selected from
the same albums, and the second set with tracks selected
from other albums. As it can be expected, the classifica-
tion performance on the second set decreases. Neverthe-
less, in almost all cases the feature selection remains ben-
eficial compared to complete feature sets and a baseline
using MFCCs, if applied for an ensemble of classifiers,
proving robust generalisation performance.

1. INTRODUCTION

Among many different scenarios for automatic classifica-
tion of music data (we refer to [4] for an introduction to
content-based music information retrieval and an overview
of related tasks), the recognition of high-level music cate-
gories such as music genres and styles is one of the most
prominent and user-related applications. Probably the first
study on automatic categorisation of music was addressed
to distinguish between several classical and popular pieces
[22]. After the seminal work of Tzanetakis and Cook on
classifying musical data into a hierarchy of 25 music gen-
res and speech categories [38] many efforts were spent to

c© Igor Vatolkin, Günter Rudolph, Claus Weihs.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Igor Vatolkin, Günter Rudolph, Claus
Weihs. “Evaluation of Album Effect for Feature Selection in Music Genre
Recognition”, 16th International Society for Music Information Retrieval
Conference, 2015.

enhance the methods, develop new features, and integrate
actual techniques from machine learning research [42]. [37]
lists several hundreds of studies related only to the recog-
nition of genres. Since 2005, audio genre classification
belongs to tasks of the annual MIREX contest [6].

The operating principle of supervised classification is
based on two stages: the training of a classification model
CT and its application C on uncategorised data:

CT :
(
X ∈ RF×TTR ,yL ∈ RTTR

)
7→ M,

C :
(
X ∈ RF×T ,M

)
7→ yP ∈ RT . (1)

Given a set of F numeric data characteristics, or fea-
tures, for TTR data instances (also referred to as classifi-
cation windows) resulting in the feature matrix X, and the
corresponding labels yL, the training stage identifies rele-
vant dependencies between features and labels and stores
them as a modelM. Some approaches are based on the es-
timation of probability-based distribution of features (Naive
Bayes) or boundaries between data instances of different
categories (support vector machines); for an overview of
classification approaches see, e.g., [13, 43]. Once the clas-
sification models are saved, they can be applied to classify
T unlabelled data instances represented by the same F pre-
viously extracted features.

Music classification can be carried out using features
from different sources. For instance, the score allows a
precise estimation of harmonic, instrumental, and rhyth-
mic descriptors of music pieces, but it is not always avail-
able for popular music. Meta data, cultural features, or
tags provide another source of information, but are some-
times incomplete or erroneous. Audio features can be ex-
tracted for every digitised music piece, and many classifi-
cation approaches are limited to or focused on this kind of
features [9, 18, 19, 21, 27, 34, 36, 38, 40]. Another advan-
tage of these characteristics is that they are not dependent
on the popularity of a song, availability of the score, or In-
ternet connection for the download of metadata. Even if
audio features typically require high computing efforts for
their extraction, these costs can be reduced to a certain de-
gree if the extraction is done offline or on a server farm. In
that case only the time for the training and the application
of classification models will influence a user’s satisfaction
during the definition of new categorisation tasks. For these
reasons we have limited the scope of this study to audio
features only.
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Having a large number of available descriptors at hand,
individual features may be very important or completely
useless depending on a categorisation task. As the com-
bination of features from different sources may increase
the classification quality (e.g., as shown for audio, sym-
bolic, and cultural features in [26]), the inclusion of fea-
tures from many sources would lead to an increased num-
ber of both relevant and irrelevant features. If the number
of irrelevant features would become too high, the classifi-
cation quality may suffer because the probability increases
that some irrelevant features are identified as relevant by
chance [13, 43]. A solution is to start with a sufficiently
large initial feature set and to remove irrelevant and noisy
characteristics for a current category by means of feature
selection (FS). Other benefits of FS are that classification
models created with less features often require less storage
space, the classification is done faster, and the danger of
overfitting towards the training set may be reduced using a
proper evaluation of models and feature sets [3].

In our previous work we have applied feature selection
for the recognition of music genres and styles and mea-
sured a significant increase of classification performance
compared to complete feature sets [39]. For the final eval-
uation of models optimised with feature selection, we used
an independent validation set with tracks not used for model
training and feature selection. The motivation for an in-
dependent evaluation in music classification is discussed
in [9]. However, strictly observed, the validation set used
in our previous experiments was not completely indepen-
dent: due to the limited size of our music database, mu-
sic pieces for validation were different from training and
optimisation sets, but randomly selected from the same al-
bums. Therefore, a danger existed that optimised classifi-
cation models would have an especially high performance
on music pieces of the same artists and albums.

Such effect was observed in [30] for the recognition
of genres. Also the tags of songs belonging to the same
albums may have higher co-occurrences as inspected in
[20]. Further investigations showed interesting results on
the difference between album and artist effect for music
databases of different sizes [10] as well as varying im-
pact of artist filter with regard to music from different ge-
ographic locations around the world [15]. However, none
of these studies explicitly evaluated the sensitivity of FS to
artist/album effect using a large number of features. Such
evaluations can be promising in future, in particular be-
cause both latter papers stated differences in measured artist
effect for different feature groups, even if the overall num-
bers of integrated features were not very high.

Thus, the idea behind this study was to re-evaluate the
measured advantage of feature selection using a new “album-
independent” validation set and to estimate the album ef-
fect for different music categories. In the next section,
we outline basic concepts of feature selection and refer to
several applications. Section 3 describes the setup of the
study. In Section 4, the results and the album effect on
feature selection are discussed. We conclude with a brief
summary of the work and outline steps for future research.

2. FEATURE SELECTION

For an exhaustive introduction into feature selection meth-
ods see [12]. In general, the task of feature selection is to
find an optimal feature subset indicated by the binary vec-
tor q (qi = 1 for the i-th feature to be selected, otherwise
qi = 0), so that some relevance function, or evaluation cri-
terionm (e.g., classification error) is minimised. The func-
tions to maximise (e.g., accuracy) can be easily adapted for
minimisation. We define the task of feature selection as:

q∗ = arg min
q

[m (yL,yP ,Φ(x,q))] , (2)

where Φ(x,q) corresponds to the subset of the original
feature vector x. yL ∈ [0; 1] are the labelled category re-
lationships of classification instances, and yP ∈ [0; 1] are
the predicted category relationships. Note that in general
m may not necessarily depend on labels, e.g., if the corre-
lation between features is used as selection criterion, or if
labels are not available (as in unsupervised classification).

Feature selection with regard to only one evaluation cri-
terion may lead to a decrease of performance for other
ones. For example, classification models built with too
many features may have smaller classification errors for
a specific data set, but be slower and have a poor general-
isation performance on other data. Therefore, several rel-
evance functions or objectives m1, ...,mO may be consid-
ered for simultaneous optimisation:

q∗ = arg min
q

[m1 (yL,yP ,Φ(x,q)) , ...,

mO (yL,yP ,Φ(x,q))].
(3)

In literature, individual features are often referred to as
relevant or redundant w.r.t. the performance of a Bayesian
classifier which predicts labels based on a probabilistic dis-
tribution of feature vectors. For a given feature set X , a
feature subset X ′ ⊂ X is called relevant, iff its removal
will decrease the performance of a Bayesian classifier:

P (yP |yL = yP , X) < P (yP |yL = yP , X \X ′) and

P (yP |yL 6= yP , X) > P (yP |yL 6= yP , X \X ′). (4)

A redundant feature subset X ′ can be replaced without
decrease of a Bayesian classifier’s performance by at least
one subset S, which does not contain X ′:

∃S ⊆ X,X ′ ∩ S = ∅ : P (yP |X) = P (yP |S). (5)

The equations (4)–(5) can be adapted to any relevance
function, describing a decrease of performance after the re-
moval of relevant features and retaining it after the removal
of redundant features.

FS is a very complex task: for F features, the number
of all possible non-empty feature subsets is 2F −1, and the
related problems were described as NP-hard [1,14]. There-
fore, metaheuristics like evolutionary algorithms (EA) [33]
which simulate the natural evolution based on principles
of recombination (keeping the positive characteristics of
solutions) and mutation (exploring the search space using
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some random procedure) are a possible remedy. EAs have
proven their ability to solve many complex optimisation
tasks, among others for data mining and classification [28].
The first application of EAs for FS was introduced in [35],
and EAs were recommended for sets with more than 100
features in [16] after the comparison of 18 FS methods.

FS has been already often applied for music classifi-
cation, for example for the recognition of musical instru-
ments (44 features) [5], moods (66 features) [34], or sev-
eral classification tasks (between 60 and 1140 features)
[25]. Evolutionary FS was integrated in music classifi-
cation for the first time in [11] and was applied also in
later studies, e.g., [8, 27, 36]. The first application of evo-
lutionary multi-objective algorithms to FS for the simul-
taneous minimisation of the number of features and mis-
classification rate was proposed in [7]. In music classifi-
cation, multi-objective evolutionary feature selection was
introduced in [40] for genre categorisation and later for the
recognition of instruments [41].

In the following, we will describe the study to measure
the impact of two-objective FS (minimisation of the clas-
sification error and the number of features) on the classifi-
cation into music genres and styles. Classification results
are compared to models built with full feature sets and a
baseline with MFCCs. Further, we will investigate the sen-
sitivity of the proposed method to the album effect.

3. EXPERIMENTAL SETUP

3.1 Categorisation Tasks

We distinguish between music genres and styles provided
by AllMusicGuide, where a track may belong to one mu-
sic genre and up to several music styles which are more
specific and are typically harder to predict.

Our main database for experiments consists of 120 al-
bums with approximately one third of commercial popu-
lar music (45 Pop/Rock albums) as well as tracks of sev-
eral other genres for a better evaluation of generalisation
performance (15 albums of each genre Classic, Electronic,
Jazz, Rap, and R&B). For the evaluation of the album ef-
fect the database was extended with 120 songs from al-
bums of other artists but the same genre and similar style
distribution. It is important to mention that we use our
own database, because many publicly available ones were
not well suited for this work. Several databases contain
only segments of songs so that it is not possible to extract
features from long frames (e.g., structural complexity, see
the next section). Others are strongly biased towards cer-
tain genres or are expensive because of a large share of
commercial music. These problems could be in principle
avoided using data sets with features only (e.g., Echo Nest
descriptors). However, a sufficiently large number of audio
features is necessary to measure the impact of feature se-
lection, and many descriptors are developed by ourselves
being not available in freely distributed feature sets.

We distinguish between training, optimisation, and two
test sets (all of them are disjunct on track level, i.e. it is
not permitted to have the same track in more than one

set). Each classification model is trained from 20 tracks,
10 of which belong to the category to predict (positive ex-
amples), and 10 do not belong to it (negative examples).
These small training sets are motivated by the real-world
situation, where a listener would like to omit high efforts
for the labelling of ground truth. On the other side, mu-
sic pieces have strong variations on different levels (instru-
mentation, vocal segments, harmony, etc.) and we build
classification instances from music intervals of 4 s with 2
s overlap, so that 20 tracks contribute to more than 2,000
classification instances. The data set for the identification
of relevant features is the optimisation set of 120 songs,
each of them selected randomly from the 120 albums. The
final evaluation of feature sets after feature selection is
done either on 120 test tracks randomly selected from the
original albums (test set TS) or 120 tracks from other artists
(test set TSAI). Thus, the overall number of tracks for each
classification experiment was equal to 260. The exact lists
of tracks are available on our web site 1 .

3.2 Features

Two large audio feature sets are used as baselines to com-
pare them with sets optimised by means of feature selec-
tion. For exact definitions and references please see [39].
The third baseline set is built with MFCCs which are often
used for music classification [18].

The first large set comprises low-level audio signal de-
scriptors. Such features can be roughly grouped into tim-
bre, rhythmic, and pitch characteristics [38]. We extend
this categorisation to ‘timbre and energy’, ‘chroma and
harmony’, ‘temporal and correlation characteristics’, and
‘rhythm’. Table 1 provides examples of features for differ-
ent extraction domains and lists numbers of corresponding
feature dimensions. Because we estimate the mean and the
standard deviation of each feature vector in a classification
window, the original number of 318 dimensions leads to
636 features used for the training of categorisation models.

The second set contains semantic audio features which
are closely related to music theory and are listed in Ta-
ble 2. They can be assigned to four main groups accord-
ing to their properties and the extraction procedure. The
first group consists of chroma-related, harmony, and chord
characteristics. The second one comprises temporal, rhyth-
mic, and structural characteristics. The third group (in-
struments, moods, and various high-level characteristics)
relates to features estimated with supervised classification
models previously optimised as described in [39]. The last
group was extracted using the concept of structural com-
plexity [24]. Here, selected interpretable musical charac-
teristics (instrumentation, harmonic properties, etc.) are
represented by a vector of base features, and estimated
statistics describe the temporal progress of these vectors
over large texture frames.

1 https://ls11-www.cs.uni-dortmund.de/rudolph/mi#music test database
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Table 1. Low-level audio features
Groups and examples of features No.
TIMBRE AND ENERGY - TIME DOMAIN
Linear prediction coefficients, low energy,
peak characteristics

17

TIMBRE AND ENERGY - SPECTRAL DOMAIN
Various spectral characteristics (bandwidth, centroid,
etc.), tristimulus, sub-band energy ratio

29

TIMBRE AND ENERGY - CEPSTRAL DOMAIN
MFCCs, delta MFCCs,
CMRARE modulation features [21]

101

TIMBRE AND ENERGY - PHASE DOMAIN
Angles and distances [27] 2
TIMBRE AND ENERGY - ERB AND BARK DOMAINS
Bark scale magnitudes, charact. of ERB bands [17] 53
CHROMA AND HARMONY
Charact. of spectral peaks, fundamental frequency,
chroma, chroma DCT-reduced log pitch (CRP) [29]

101

TEMPORAL AND CORRELATION CHARACTERISTICS
Characteristics of periodicity peaks 3
RHYTHM
Characteristics of fluctuation patterns [17] 12

Table 2. Semantic audio features
Groups and examples of features No.
CHROMA AND HARMONY
Consonance [23], tonal centroid [17],
strengths of major and minor keys [17]

129

CHORD STATISTICS
Number of different chords and chord changes in 10
s, shares of the most frequent chords [39]

5

TEMPO, RHYTHM AND STRUCTURE
Duration of music piece, estimated number of beat,
tatum, and onset events per minute, tempo, segmen-
tation characteristics after [31]

9

INSTRUMENTS
Identification of guitar, piano, wind, and strings [41] 32
MOODS
Aggressive, confident, energetic, etc. [39] 64
VARIOUS HIGH-LEVEL CHARACTERISTICS
Singing characteristics, effects distortion,
characteristics of melodic range [32]

128

STRUCTURAL COMPLEXITY
Chord, harmony, instruments, tempo and rhythm
complexity [39]

70

3.3 Algorithms and Evaluation

The exhaustive tuning of classification methods was be-
yond the scope of this study - however it was important
to test the impact of feature selection and the album effect
using classifiers with different operating methods. After
preliminary studies, we selected four algorithms. Deci-
sion tree C4.5 provides interpretable models and already
includes internal feature pruning, but is rather slow. Ran-
dom forest (RF) creates a large number of unpruned trees
based on a randomly drawn subset of features. It is often
superior to C4.5 w.r.t. classification quality and is faster,
but classification models are not the same if trained an-
other time and are not interpretable. Naive Bayes (NB) is
very fast and leads to comprehensible models, especially if
they are created from interpretable semantic features. On
the other side, it is a probabilistic method which treats fea-
ture distributions independently from each other, and clas-

sification performance is usually lower. Finally, support
vector machine (SVM) is in many cases the state-of-the
art method, which achieves the best classification results.
However, for the best performance it requires parameter
tuning, is slower than other methods, and models have a
lower interpretability.

The following two criteria are minimised during feature
selection. Because of imbalanced distribution of songs in
the optimisation and test sets, the balanced relative error
mBRE measures classification quality:

mBRE =
1

2

(
FN

TP + FN
+

FP

TN + FP

)
, (6)

where TP is a number of true positives (tracks belong-
ing to a category and predicted as belonging to it), TN is
a number of true negatives (tracks not belonging to a cate-
gory and predicted as not belonging to it), FP is a number
of false positives (tracks not belonging to a category and
predicted as belonging to it), and FN is a number of false
negatives (tracks belonging to a category and predicted as
not belonging to it).

The predicted relationships of tracks to categories are
estimated by major voting across all corresponding classi-
fication windows:

yP (x1, ...,xTS
; j) =

⌈∑TS

i=1 yP (xi)

TS
− 0.5

⌉
, (7)

where TS is the number of classification instances in the
song j and xi describes the feature vector of instance i.

The second optimisation criterion is the selected feature
rate mSFR:

mSFR =
|Φ(x,q)|
|X| , (8)

where |Φ(x,q)| is the number of selected features and
|X| the number of all features. mSFR is a rough estima-
tor for runtime and storage demands (classification using
a model with more features is typically slower), but may
also correlate with the generalisation performance of clas-
sification models: models built with less features have a
lower tendency to be overfitted towards the training set if
the optimisation of feature selection is done using an inde-
pendent song set.

The feature selection method itself is based on a multi-
objective evolutionary algorithm SMS-EMOA [2]. The
output is the set of non-comparable feature subsets: the
first with the largest mSFR and smallest mBRE , and the
last with the smallestmSFR and largestmBRE

2 . Because
we focus here on the measurement of album effect having
regard to classification error, the discussion of results in the
next section is based on subsets with the smallest mBRE .
These subsets contain smallest errors achieved for as small
feature subsets as possible.

2 As we minimise both mSFR and mBRE , an example of two non-
comparable (also referred to as non-dominated) subsets is, e.g., a subset
with mSFR = 0.05, mBRE = 0.20 and another one with mSFR =
0.10, mBRE = 0.15. The first subset is built with less features and the
second one has a smaller classification error.
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Table 3. Errors of optimised feature sets and comparison to baselines (smaller values are better). For details see the text.
Categorisation tasks Data set LOW-LEVEL FEATURES SEMANTIC FEATURES

m̃BRE ΦLL ΦMFCC m̃BRE ΦSEM ΦMFCC

RECOGNITION OF GENRES
Classic TS 0.0127 41.91 33.07 0.0137 37.43 35.68

TSAI 0.0175 39.95 32.47 0.0270 57.20 50.09
Electronic TS 0.0928 66.19 48.91 0.1191 59.25 62.78

TSAI 0.1040 82.47 56.37 0.1275 56.52 69.11
Jazz TS 0.0497 66.89 47.56 0.0605 69.86 57.89

TSAI 0.1192 107.00 89.42 0.1113 49.47 83.50
Pop TS 0.1291 74.71 68.34 0.1270 43.94 67.23

TSAI 0.1599 41.20 75.53 0.1353 27.91 63.91
Rap TS 0.0508 70.26 56.31 0.0650 76.29 72.06

TSAI 0.0475 72.74 88.29 0.0579 56.54 107.62
R&B TS 0.1570 89.82 74.09 0.1484 76.85 69.93

TSAI 0.1337 84.73 56.29 0.1486 73.67 62.57
RECOGNITION OF STYLES
AdultContemporary TS 0.1192 67.31 55.94 0.1344 57.02 63.07

TSAI 0.1906 64.83 81.45 0.1860 64.27 79.49
AlbumRock TS 0.0900 65.41 46.68 0.1066 51.15 55.29

TSAI 0.1225 61.47 49.04 0.1617 50.73 64.73
AlternativePopRock TS 0.1066 70.92 49.67 0.1092 54.19 50.89

TSAI 0.1746 71.47 81.40 0.1818 64.10 84.76
ClubDance TS 0.1551 82.41 74.35 0.1389 55.02 66.59

TSAI 0.1398 70.25 54.69 0.1465 64.65 57.32
HeavyMetal TS 0.0839 59.25 92.20 0.0778 56.25 85.49

TSAI 0.1192 59.22 85.26 0.0991 55.06 70.89
ProgRock TS 0.1072 64.00 47.43 0.0973 53.52 43.04

TSAI 0.1780 57.68 65.56 0.2039 59.85 75.10
SoftRock TS 0.1104 67.28 45.19 0.1197 53.13 49.00

TSAI 0.1752 69.91 65.28 0.1498 62.39 55.81
Urban TS 0.1038 76.95 74.67 0.0837 57.06 60.22

TSAI 0.1541 59.09 58.81 0.1553 51.87 59.27

4. DISCUSSION OF RESULTS

4.1 Table with Results

Table 3 provides the summary of results and is organised
as follows. The first column lists categorisation tasks. The
second column indicates whether the album-dependent test
set TS or album-independent test set TSAI was used for
the final validation. Columns 3-5 describe results with
low-level features. In the column 3 the “mean best” er-
ror m̃BRE is listed. The mean is here calculated across
10 statistical repetitions: because evolutionary FS is based
on random decisions, the results are not the same for each
run. So the value of m̃BRE = 0.0127 corresponds to
the expected best mBRE after the application of FS. The
best means that we take into account feature subsets with
the smallest mBRE and the largest mSFR across compro-
mise solutions identified with a multi-objective selection
approach (see the previous section).

Entries in columns 4 and 5 measure the relative reduc-
tion of m̃BRE compared to complete set of low-level fea-
tures, ΦLL, and set of MFCCs, ΦMFCC . Smaller values
are better. For example, in the first line m̃BRE = 0.0127
corresponds to 41.91% of the error of the model which uses
all low-level descriptors (mBRE = 0.0303 3 ). Similarly,

3 Please note that we use an ensemble of four classifiers and select
the best one for each task. Using a complete feature set for the category
Classic leads to mBRE = 0.0303 if trained with random forest; for ex-
ample, using naive Bayes leads to mBRE = 0.0695, so that the error of

m̃BRE is reduced to 33.07% of the error of the model built
with MFCCs only.

Columns 6-8 contain values of m̃BRE for models built
with semantic features and the reduction of error compared
to full set of semantic features ΦSEM and ΦMFCC .

4.2 Album Effect and Two Cases where Feature
Selection Fails

As it could be expected, classification errors increase for
most of categories if we switch from the test set TS to
TSAI. The advantage of optimised feature subsets com-
pared to baselines (columns 4,5,7,8) is often decreased,
but not always. For instance, despite of a larger error for
AdultContemporary using TSAI (0.1906 against 0.1192),
the advantage of optimised low-level feature subsets com-
pared to the model with all low-level features is slightly
increased (64.83 against 67.31, smaller value is better), but
not if compared to the model built with MFCCs (81.45
against 55.94).

A more important observation is that in all but two cases
optimised models are better than baselines (only two en-
tries in columns 4,5,7,8 are above 100%) which means
that feature subsets after FS lead to a robust reduction of
error even if finally validated on the test set from inde-

the optimised combination “feature subset and classifier” is even stronger
reduced if compared to a simple application of naive Bayes together with
all low-level features.
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pendent artists and albums. The first exception is Jazz
(value of 107.00 in the 4th column): here the full ΦLL set
(mBRE = 0.1114) leads to a slightly smaller error than the
optimised set (mBRE = 0.1192). This can be explained by
the choice of music: in the artist-independent validation
song set the category Jazz was represented rather by Eu-
ropean Jazz, where the training and optimisation set con-
tained rather American Jazz 4 . Another exception relates
to the error of optimised subsets with semantic features
compared to MFCCs for Rap (value of 107.62, column 8).
This matches well the theoretical reason that MFCCs are
particularly successful for the recognition of speech. The
smallest error for Rap is achieved using the optimised set
with low-level features (and MFCCs belong to this set):
mBRE = 0.0475.

4.3 A Further Danger for Feature Selection (or
Advantage of Ensembles)

In all but two explained situations FS led to smaller errors.
However, this statement holds for classification with four
methods. Using an ensemble of classifiers makes often
sense, and in our previous work we have already observed
that there is no “winner” for all categories [39]. To exam-
ine whether the feature selection was successful for indi-
vidual combinations of a classifier and a task we compared
the results to baselines by means of Wilcoxon test. If no
statistical advantage against a baseline has been observed
for at least one of four classifiers, the corresponding entry
in Table 3 is marked with an italic font. If the baseline was
even better for at least one classifier, the entry is marked
with a bold font. Particularly some models with MFCCs
seem to provide a better generalisation performance rather
than optimised feature subsets. This happens only if test
set TSAI is used for the validation. In other words, opti-
mising feature selection with an individual classifier may
lead to overfitting–but in our study this case was avoided
using an ensemble of several classifiers.

4.4 A Remark on Resources

Beside possible problems for feature selection discussed
above, it should not be forgotten that FS provides a strong
advantage against large sets of features because it helps
to reduce storage and runtime demands. The advantage
of smaller feature sets is that the classification is typically
faster 5 . When the time expensive feature selection may be
run once for each new music category, the automatic clas-
sification based on the optimised feature set can be applied
on new songs over and over again. It is hard to precisely
measure the reduction of computing demands, especially
for experiments on different machines. As a rough mea-

4 We came to this explanation after the studies were accomplished.
The uniform sampling of European and American Jazz tracks for optimi-
sation and validation sets could be a better decision, but in that case it
would not be possible to exactly compare the results to [39].

5 As we could see, a set of MFCCs is also small and is sometimes
successful, so the reduction of demands on resources is not very strong
here. However, all but one values in columns 5 and 8 are below 100%, and
it is probably not the best idea to build classification models with MFCCs
only for all possible classification tasks (styles, tags, moods, etc.)

sure we may estimate the decrease of runtime of the last
FS iteration compared to the first iteration (in each itera-
tion, a classification model is trained and validated). As an
example, the mean of runtime of the last iteration divided
by runtime of the first iteration for the category Classic
is 15.08 for the low-level feature set and 12.57 for the se-
mantic set (classification with C4.5), 34.55 and 31.72 (RF),
20.88 and 8.56 (NB), and 12.68 and 10.54 (SVM).

5. CONCLUSIONS AND OUTLOOK

In this work we have examined whether the success of fea-
ture selection in music classification suffers from an “al-
bum effect”, so that the properties of albums and artists
rather than of target categories like genres and styles are
learned. As it could be expected, the danger of such over-
fitting exists, and the performance is typically reduced if
the validation set is built with tracks of other artists. How-
ever, if there are enough available features at hand, and fea-
ture selection is applied using an ensemble of classifiers, in
all but two cases the optimised subsets helped to build clas-
sification models not only with less features, but also with
smaller classification errors compared to baselines. These
two cases could be theoretically explained and do not de-
tract the general sense of feature selection - but they un-
derline the consequence that any significant achievements
in classification domain raise and fall with the design of
data sets. A very simple case observed in this study was
that the classification models optimised to recognise par-
ticularly American Jazz were not best suited to recognise
European Jazz. In future we plan to continue our work
investigating advantages and dangers of feature selection
for music classification. In particular, the application on
publicly available data sets is important for a reliable com-
parison of results. However, this is a hard task which re-
quires compromises, e.g., limiting the set of features only
to available Echo Nest descriptors. Further optimisation of
algorithm parameters (e.g., larger ensembles, various ker-
nels for SVMs) is another promising direction.
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ABSTRACT

This paper presents a framework for automatically discov-
ering patterns in a polyphonic music piece. The proposed
framework is capable of handling both symbolic and au-
dio representations. Chroma features are post-processed
with heuristics stemming from musical knowledge and fed
into the pattern discovery framework. The pattern-finding
algorithm is based on Variable Markov Oracle. The Vari-
able Markov Oracle data structure is capable of locating
repeated suffixes within a time series, thus making it an ap-
propriate tool for the pattern discovery task. Evaluation of
the proposed framework is performed on the JKU Patterns
Development Dataset with state of the art performance.

1. INTRODUCTION

Automatic discovery of musical patterns (motifs, themes,
sections, etc.) is a task defined as identifying salient musi-
cal ideas that repeat at least once within a piece [3,11] with
computational algorithms. In contrast to “segments” found
in the music segmentation task [14], the patterns found
here may overlap with each other and may not cover the
entire piece. In addition, the occurrences of these patterns
could be inexact in terms of harmonization, rhythmic pat-
tern, melodic contours, etc. Lastly, hierarchical relations
between motifs, themes and sections are also desired out-
puts of the pattern discovery task.

Two major approaches for symbolic representations are
the string-based and the geometric methods. A string-based
method treats a symbolic music sequence as a string of to-
kens and applies string pattern discovery algorithms on the
sequence [2, 18]. A geometric method views musical pat-
terns as shapes appearing on a score and enables inexact
pattern matching as similar shapes imply different occur-
rences of one pattern [4, 16]. For a comprehensive review
of pattern discovery with symbolic representations, readers
are directed to [11]. For audio representations, geometric

c© Cheng-i Wang, Jennifer Hsu and Shlomo Dubnov.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Cheng-i Wang, Jennifer Hsu and
Shlomo Dubnov. “Music Pattern Discovery with Variable Markov Ora-
cle: A Unified Approach to Symbolic and Audio Representations”, 16th
International Society for Music Information Retrieval Conference, 2015.

methods for symbolic representations have been extended
to handle audio signals by multi F0-estimation with beat
tracking techniques [5]. Approaches adopted from mu-
sic segmentation tasks using self-similarity matrices and
greedy search algorithms are proposed in [19, 20]. Most
of the research involving audio representations has been
focused on “deadpan audio” rendered from MIDI. In [5],
the pattern discovery task is extended to live performance
audio recordings with a single recording for each music
piece. In the current study, instead of directly applying the
proposed framework on performance recordings, multiple
recordings are gathered for each musical piece to aid the
pattern discovery on deadpan audio.

In this paper, the work presented in [25] focusing on
pattern discovery on deadpan audio is extended to handle
symbolic representations. The framework proposed in this
paper can be seen as a string-based method in which input
features are symbolized. The framework consists of two
blocks: 1) feature extraction with post-processing routines
and 2) the pattern finding algorithm. For both symbolic
and audio representations, chroma features are extracted
and post-processed based on musical heuristics, such as
modulation, beat-aggregation, etc. The core of the pattern
finding algorithm is a Variable Markov Oracle (VMO). A
VMO is a data structure capable of symbolizing a signal by
clustering the observations in a signal, and is derived from
the Factor Oracle (FO) [13] and Audio Oracle (AO) [9]
structures. The FO structure is a variant of a suffix tree
data structure and is devised for retrieving patterns from
a symbolic sequence [13]. An AO is the signal extension
of a FO, and is capable of indexing repeated sub-clips of
a signal sampled at discrete times. AOs have been applied
to audio query [6] and audio structure discovery [8]. The
VMO data structure was first proposed in [24] as an effi-
cient audio query-matching algorithm. This paper shows
the capability of using a VMO to find repeated sub-clips in
a signal in an unsupervised manner.

This paper is structured as follows: section 2 introduces
the VMO data structure and the accompanying pattern find-
ing algorithm. Section 3 documents the experiments on
symbolic and audio representations as well as the dataset,
feature extraction, and task setup. Section 4 provides an
evaluation of the experiment. Last, future work, observa-
tions and insights are discussed in section 5.
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Figure 1. (Top) A VMO structure with symbolized sig-
nal {a, b, b, c, a, b, c, d, a, b, c}, upper (solid) arrows repre-
sent forward links with symbols for each frame and lower
(dashed) are suffix links. Values outside of each circle are
the lrs value for each state. (Bottom) A visualization of
how patterns {a, b, c} and {b, c} are related to lrs and sfx.

2. VARIABLE MARKOV ORACLE

A VMO symbolizes a time series O, sampled at time t,
into a symbolic sequence Q = q1, q2, . . . , qt, . . . , qT , with
T states and with frame O[t] labeled by a symbol qt. The
symbols are formed by tracking suffix links along the states
in an oracle structure. An oracle structure (either FO, AO
or VMO) carries three kinds of links: forward link, suffix
link and reverse suffix link. A suffix link is a backward
pointer that links state t to k with t > k, without a label,
and is denoted by sfx[t] = k.

sfx[t] = k ⇐⇒ the longest repeated suffix of

{q1, q2, . . . , qt} is recognized in k.

Suffix links are used to find repeated suffixes inQ. In order
to track the longest repeated suffix at each time index t, the
length of the longest repeated suffix at each state t (denoted
as lrs[t]) is computed by the algorithm described in [13].
A reverse suffix link, rsfx[k] = t, is the suffix link in
the reverse direction. sfx, lrs and rsfx allow for the
proposed pattern discovery algorithm described in section
2.2.

Forward links are links with labels and are used to re-
trieve any of the factors from Q. Since forward links are
not used in the proposed algorithm, readers are referred
to [13] for details.

The last piece for the construction of a VMO is a thresh-
old value, θ. θ is used to determine if the incoming O[t] is
similar to one of the frames following the suffix link be-
ginning at t − 1. Two frames, O[i] and O[j], are assigned
the same symbol if |O[i] − O[j]| ≤ θ. In extreme cases,
a VMO may assign different symbols to every frame in O
(θ excessively low), or a VMO may assign the same sym-
bol to every frame in O (θ excessively high). In these two
cases, the VMO structure is incapable of capturing any pat-
terns (repeated suffixes) in the signal. The optimal θ can be
found by calculating the Information Rate (IR), a music in-
formation dynamics measure, and this process is described
in section 2.1. An example of an oracle structure with ex-
treme θ values is shown in Fig. 2.

The on-line construction algorithms of VMO are intro-

Figure 2. Two oracle structures with extreme values of
θ. The characters near each forward link represent the as-
signed labels. (Top) The oracle structure with θ = 0 or
extremely low θ value. (Bottom) The oracle structure with
a very high θ value. In both cases the oracles are not able
to capture any structure in the time series.

duced in [24] and not repeated here. Fig. 1 shows an ex-
ample of a constructed VMO and how lrs and sfx are
related to pattern discovery. The symbols formed by gath-
ering states connected by suffix links share the following
properties : 1) the pairwise distance between states con-
nected by suffix links is less than θ, 2) the symbolized
signal formed by the oracle can be interpreted as a sam-
ple from a variable-order Markov model because the states
connected by suffix links share common suffixes with vari-
able length, 3) each state is labeled by a single symbol be-
cause each state has a single suffix link, 4) the alphabet
size of the assigned symbols is unknown before the con-
struction and is determined by θ.

2.1 Model Selection via Information Rate

The same input signal may be associated with multiple
VMOs with different suffix structures and different sym-
bolized sequences if different θ values are used to construct
the VMOs. To select the one symbolized sequence with
the most informative patterns, IR is used as the criterion in
model selection between different structures generated by
different θ values. IR is an information theoretic measure
capable of measuring the information content of a time se-
ries [7] in terms of the predictability of its source process
on the present observation given past ones. In the context
of pattern discovery with a VMO, a VMO with higher IR
value captures more of the repeating sub-clips (ex. pat-
terns, motives, themes, gestures, etc) than the ones with
lower IR values.

The VMO structure uses the same approach as the AO
structure [8] to calculate IR. Let xN1 = {x1, x2, . . . , xN}
denote time series x with N observations, H(x) the en-
tropy of x, the definition of IR is

IR(xn−1
1 , xn) = H(xn)−H(xn|xn−1

1 ). (1)

IR is the mutual information between the present and past
observations and is maximized when there is a balance
between variations and repetitions in the symbolized sig-
nal. The value of IR can be approximated by replacing the
entropy terms in (1) with complexity measures associated
with a compression algorithm. These complexity measures
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θ are on the horizontal axis. The solid blue curve shows
the relationship between IR and θ, and the dashed black
line indicates the chosen θ by locating the maximum IR
value. Empirically, IR curves exhibit quasi-concave func-
tion shapes, thus a global maximum can be located.

Algorithm 1 Pattern Discovery using VMO
Require: VMO, V, of length T and minimum pattern length L.
Ensure: sfx,rsfx,lrs ∈ V
1: Initialize Pttr and PttrLen as empty lists.
2: Initialize prevSfx = −1,K = 0
3: for i = T : L do
4: pttrFound = False
5: if i− lrs[i] + 1 > sfx[i] ∧ sfx[i] 6= 0 ∧ lrs[i] ≥ L then
6: if ∃k ∈ {1, . . . ,K},sfx[i] ∈ Pttr[k] then
7: Append i to Pttr[k]
8: PttrLen[k]← min(lrs[i], P ttrLen[k])
9: pttrFound = True

10: end if
11: if prevSfx− sfx[i] 6= 1 ∧ pttrFound == False then
12: Append {sfx[i], i,rsfx[i]} to Pttr
13: Append min{lrs[{sfx[i], i,rsfx[i]}]} to PttrLen
14: K ← K + 1
15: end if
16: prevSfx← sfx[i]
17: else
18: prevSfx← −1
19: end if
20: end for
21: return Pttr, P ttrLen,K

are the number of bits used to compress xn independently
and compress xn using the past observations xn−1

1 . The
formulation of combining the lossless compression algo-
rithm, Compror [12], with AO and IR is provided in [8]. A
visualization of the sum of IR values versus different θs on
one of the music pieces tested in this paper is depicted in
Fig. 3.

2.2 Pattern Discovery

Algorithm 1 shows the VMO-based algorithm for the auto-
matic pattern discovery task. The idea behind Algorithm
1 is to track patterns by following sfx and lrs. sfx
provides the locations of patterns, and lrs indicates the
length of these patterns. In line 5 of Algorithm 1, checks
are made so that redundant patterns are avoided, and the
lengths of patterns are larger than a user-defined minimum
L. From line 6 to 10, the algorithm recognizes occurrences
of established patterns, and from line 11 to 15 it detects
new patterns and stores them into Pttr and PttrLen.

Algorithm 1 returns Pttr, P ttrLen and K. Pttr is a
list of lists with each Pttr[k], k ∈ {1, 2, . . . ,K}, a list
containing the ending indices of different occurrences of
the kth pattern found. K is the total number of patterns
found. PttrLen has K values representing the length of
the kth pattern in Pttr.

3. EXPERIMENTS

The dataset chosen for the music pattern discovery is the
JKU Pattern Development Dataset (JKU-PDD) [3]. This
dataset consists of five polyphonic classical music pieces
or movements in both symbolic and audio representations.
The ground truth of repeated patterns (motifs, themes, sec-
tions) for each piece is annotated by musicologists. The
details of the experimental setup are provided in the fol-
lowing sections.

3.1 Feature Extraction

For the automatic musical pattern discovery task, the chro-
magram is the input feature to Algorithm 1 for both the
symbolic and audio representations. The chromagram is a
feature that characterizes harmonic content and is a com-
monly used in musical structure discovery [1].

3.1.1 Symbolic Representation

For the experiments described in this paper, the symbolic
representation chosen is MIDI, but other symbolic repre-
sentations may be used instead. The chromagram derived
from the symbolic representation is referred to as the “MIDI
chromagram”.

The MIDI chromagram is similar to the MIDI histogram
described in [23] and represents the presence of pitch classes
during each time frame. To create a MIDI chromagram
with quantization b in terms of MIDI whole note beats,
frame size M , and hop size h, the MIDI file is first parsed
into a matrix where each column is a MIDI beat quantized
by b and each row is a MIDI note number (0 − 127). For
each analysis frame, the velocities are summed over M
MIDI beats, and then folded and summed along the MIDI
notes to create a single octave of velocities. In other words,
all velocities that correspond to MIDI notes that share the
same modulo 12 are summed. The analysis frame then
hops h MIDI beats forward in time, repeats the folding
and summing, and continues on until the end of the MIDI
matrix is reached. The bottom plot in Fig. 4 is an exam-
ple of the MIDI chromagram extracted from the Beethoven
minuet in the JKU-PDD.

3.1.2 Audio Recording

The routines for extracting the chromagram from an audio
recording used in this paper is as follows. For a mono au-
dio recording sampled at 44.1 kHz, the recording is first
downsampled to 11025 Hz. Next, a spectrogram is calcu-
lated using a Hann window of length 8192 with 128 sam-
ples overlap. Then the constant-Q transform of the spec-
trogram is calculated with frequency analysis ranging be-
tween fmin = 27.5 Hz to fmax = 5512.5 Hz and 12 bins
per octave. Finally, the chromagram is obtained by folding
the constant-Q transformed spectrogram into a single oc-
tave to represent how energy is distributed among the 12
pitch classes.

To achieve the pattern discovery on a music metrical
level, the chroma frames are aggregated with a median fil-
ter according to the beat locations found by a beat tracker
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Figure 4. Features, found patterns, and ground truth
for the Beethoven minuet in the JKU-PDD. 1. Beat-
synchronous chromagram from the deadpan audio record-
ing. 2. Patterns found by Algorithm 1 using the chroma-
gram shown above. 3. Ground truth from JKU-PDD. 4.
Patterns found by Algorithm 1 using the MIDI chroma-
gram. 5. Quantized MIDI chromagram. For 2., 3. and
4., each row is a pattern place holder with dark regions
representing the occurrences on the timeline. The order
of found patterns is manually sorted to best align with the
ground truth for visualization purpose. Notice the hierar-
chical relations of patterns embedded in the ground truth
and found from the algorithms.

[10] conforming to the music metrical grid. For finer rhyth-
mic resolution, each beat identified is spliced into two sub-
beats before chroma frame aggregation. Last, the sub-beat-
synchronous chromagram is whitened with a log function.
Whitening boosts the harmonic tones implied by the mo-
tifs so that the difference between the same motif with and
without harmonization is reduced. See the top plot in Fig.
4 for an example of the the beat-synchronous chromagram
extracted from the Beethoven minuet in the JKU-PDD.

3.2 Repeated Themes Discovery

For both symbolic and audio representations, after the
chroma feature sequence O is extracted from the music
piece as described in section 3.1.1 and 3.1.2, θ ∈ (0.0, 2.0]
is used to construct multiple VMOs withO. The L2−norm
is used to calculate the distance between incoming obser-
vations and the ones stored in a VMO. The single VMO
with the highest IR is fed into Algorithm 1 with L to find
patterns and their occurrences. Instead of setting L = 5

for all pieces as in [25], L is set according to lrs as
L = γ

T

∑T
t=1 lrs[t], where L is adaptive to the average

length of repeated suffixes found in the piece. γ is a scaling
parameter which is set to 0.5 empirically.

To consider transposition (moving patterns up or down
by a constant pitch interval), the distance function used
for VMO structures is a cost function with transposition
invariance. For a transposition invariant cost function, a
cyclic permutation with offset k on an n-dimensional vec-
tor x = (x0, x1, . . . , xn−1) is defined as

cpk(x) := {xi → x(i+k mod n),∀i ∈ (0, 1, . . . , n− 1)},

and the transposition invariant dissimilarity d between two
vectors x and y is defined as, d = mink{‖x − cpk(y)‖2}.
n = 12 for the chroma vector, and the cost function is used
during the VMO construction.

In addition to the basic chromagram, a stacked chroma-
gram using time-delay embedding with M steps of history
as in [22] is also used. Experiments reveal that choices
for b, M , and h for both the MIDI chromagram and the
stacked MIDI chromagram can greatly alter the accuracy
of patterns discovered. The values used in the experiments
were quantization sizes b = [ 18 ,

1
16 ,

1
32 ], frame size M =

[1, 8, 16, 32], and hop lengths h = [1, 2, 4] where M and
h are described in terms of MIDI beats of size b. It was
found that the stacked MIDI chromagram with b = 1

32 ,
M = 16, and h = 2 resulted in the best pattern discov-
ery. For the audio representation, there is no significant
difference in terms of the patterns found or the evaluation
metrics between regular and stacked chromagrams.

Fig. 4 shows the chromagram found from audio and
MIDI for the Beethoven minuet in the JKU-PDD along
with the patterns found by the VMO structure and the
ground truth patterns. The patterns found by the audio and
symbolic representations share similarities and visually re-
semble the ground truth patterns. In section 4, quantitative
measures for evaluating the patterns found by the VMO are
explained and reported.

3.3 Performance Recordings to Aid Pattern Discovery

Five performance recordings for each of the pieces included
in the JKU-PDD are collected in order to further explore
the discovery of repeated themes. The motivation behind
this experiment is to explore the notion that music perfor-
mances contain information about how performers inter-
pret the musical structure embedded in the score [21] and
to examine whether or not the patterns found on deadpan
audio could be improved with the addition of such infor-
mation.

For each of the performance recordings, the chroma-
gram is extracted and aggregated along the beats as de-
scribed in section 3.1.2. Dynamic Time Warping [17] is
used to align the beat-synchronous chromagram from the
performance audio with the beat-synchronous chromagram
of the deadpan audio. Since motif annotations on these
performance recordings do not exist yet, the alignment be-
tween the deadpan audio and performance recordings are
necessary so that the patterns found from the performance
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Figure 5. 1. Ground truth from JKU-PDD. 2. Patterns
found from deadpan audio with the VMO. 3 − 7. Patterns
found from the five performances. 8. Patterns from dead-
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recordings can be compared to the ground truth or added
to the found patterns from the deadpan audio. The draw-
back of the alignment is that timing variations contain-
ing the performer’s structural interpretation are lost. Al-
though timing variations are lost in this experiment, ve-
locity variations applied across time and different voices
are retained. The aligned performance audio chromagram
is then whitened, normalized and fed into the VMO pat-
tern finding algorithm. For patterns found across multiple
performances of one piece, the intersection of patterns for
any two performances of one piece that are longer than L
are kept and added to the found patterns from the deadpan
audio. Fig. 5 is an example of how incorporating perfor-
mance recordings can change the discovered patterns from
deadpan audio.

4. EVALUATION

The evaluation follows the metrics proposed in the Mu-
sic Information Retrieval Evaluation eXchange (MIREX)
[3]. Three metrics are considered for inexact pattern dis-
covery. For each metric, standard F1 score, defined as
F1 = 2PR

(P+R) , precision P and recall R are calculated. The
first metric is the establishment score (est) which measures
how each ground truth pattern is identified and covered by
the algorithm. The establishment score takes inexactness
into account and does not consider occurrences. The sec-
ond metric is the occurrence score (o(c)) with a thresh-
old c. The occurrence score measures how well the al-
gorithm performs in finding occurrences of each pattern.
The threshold c determines whether or not an occurrence
should be counted. The higher the value for c, the lower
the tolerance. c = {0.5, 0.75} are used in standard MIREX

evaluation. The last metric is the three-layer score that con-
siders both the establishment and occurrence score. The re-
sults of the proposed framework are listed in Table 1 along
with a comparison to previous work.

From the evaluations for both symbolic and audio rep-
resentations, the establishment scores are generally lower
than the occurrence scores, meaning that the proposed al-
gorithm is better at finding occurrences of established pat-
terns than finding all possible patterns. With the symbolic
representation, the standard Fest, Fo(.75), and F3 scores
are better than previously published results. The estab-
lishment, occurrence, and three-layer precision scores are
also as good as or better than previous algorithms [5, 15].
The recall scores reveal that this is a part of the algorithm
that could be improved as previous algorithms all scored
higher on recall than the proposed algorithm. Similar to the
symbolic results, the proposed audio algorithm achieves
high F1 and precision scores for the establishment, oc-
currence, and three-layer scores. The recall of the audio
algorithm is higher than previously reported results [5, 19,
20]. The recall rates of the proposed framework are infe-
rior when compared to the precision scores and previous
work in symbolic representation. This may occur because
chroma features were used and the folding of the constant-
Q spectrogram discards information contained in different
voices.

The inclusion of performance recordings is the effort
made in this work to improve both the coverage and accu-
racy of the pattern discovery framework for audio repre-
sentations. Due to space limitations, the detailed metrics
for each piece in the JKU-PDD is not shown here. The
effects of including performance recordings are described
here. The establishment recall rate and occurrence pre-
cision rate with threshold 0.5 are improved when perfor-
mance recordings are included, but in general the pattern
discovery task is not improved because the decrease in es-
tablishment precision rate is larger than the improvement
on recall rates. This result indicates that more patterns and
their occurrences could be discovered if different versions
of the same piece are used in the pattern discovery task, but
more false positive patterns will be found.

The proposed pattern finding algorithm completed in
less time than previously reported algorithms on both sym-
bolic and audio representations. Although the VMO data
structure is used for both the proposed symbolic and au-
dio algorithms, there is a discrepancy in the time that it
takes to find the patterns for all five songs. The audio al-
gorithm takes much less time because the analysis frames
are larger than the frames used in the symbolic representa-
tion (32th note versus 8th note relatively). Thus, there are
less frames to analyze with the audio representation and
building a VMO takes less time.

Fig. 6 is a summary of the three-layer F1 scores for
each of the 5 pieces in the JKU-PDD for the proposed au-
dio and symbolic frameworks along with the current state
of the art results. The small quantization value for the
MIDI representation leads to a higher score in the case
of the Beethoven and Chopin pieces. The proposed audio
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Algorithm Fest Pest Rest Fo(.5) Po(.5) Ro(.5) Fo(.75) Po(.75) Ro(.75) F3 P3 R3 Time (s)
VMO symbolic 60.79 74.57 56.94 71.92 79.54 68.78 75.98 75.98 75.99 56.68 68.98 53.56 4333

[5] 33.7 21.5 78.0 76.5 78.3 74.7 − − − − − − −
[15] 50.20 43.60 63.80 63.20 57.00 71.60 68.40 65.40 76.40 44.20 40.40 54.40 7297

VMO deadpan 56.15 66.8 57.83 67.78 72.93 64.3 70.58 72.81 68.66 50.6 61.36 52.25 96
deadpan + real 52.76 53.2 58.25 67.35 74.42 63.31 70.51 72.73 68.58 48.25 50.2 52.84 −

[20] 49.8 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454
[5] 23.94 14.9 60.9 56.87 62.9 51.9 − − − − − − −

[19] 41.43 40.83 46.43 23.18 26.6 20.94 24.87 32.08 21.24 28.23 30.43 31.92 196

Table 1. Results from various algorithms on the JKU-PDD for both symbolic (upper three) and audio (bottom four)
representations. Scores are averaged across pieces. Missing values were not reported in their original publications.
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Figure 6. Three-layer F1 score (F3 in Table 1) for the
proposed audio and symbolic method on the 5 pieces in
the JKU-PDD plotted along with state of the art results.

and symbolic framework have the highest F1 value on the
Beethoven minuet and the lowest F1 value with the Bach
Fugue. When looking at the proposed method along with
current the state of the art results, it is evident that the Bach
Fugue and the Gibbons piece are songs where patterns are
embedded in different voices, and that the Beethoven piece
has more consistent repeated phrases. The algorithm for
symbolic data described in [15] performs better with Bach
and Gibbons in comparison to VMO and [20], most likely
because of its capability to discover patterns embedded in
different yet simultaneous voices.

In summary, our method has improved upon the F1 and
P scores as well as time to find patterns. The patterns
found using audio and symbolic representations are similar
and the evaluation scores reflect this similarity. Improving
recall and allowing for inexact occurrences should be a fo-
cus for future studies. Source codes and details about the
experiments are accessible via Github 1 .

5. DISCUSSION

In this work, a framework for automatic pattern discovery
from a polyphonic music piece based on a VMO is pro-
posed and shown to achieve state of the art performance on
the JKU-PDD dataset. With both the regular and stacked
MIDI chromagram, a smaller quantization value b results
in better pattern discovery because finer details are cap-
tured with smaller quantization. From the results, it seems
that a larger frame size M for smaller quantization b re-
sulted in better pattern finding. For hop size h, it is ob-
served that h = 2 results in a hop of a 16th note which

1 https://github.com/wangsix/VMO_repeated_
themes_discovery

is the shortest note in the JKU-PDD ground truth annota-
tions. Results from both the audio and MIDI representa-
tions show that the recall of discovered themes could be
improved. Although it is possible for a VMO to identify
inexact patterns from the input feature sequence with sym-
bolization from θ, different occurrences of the same pattern
are sometimes not recognized because chroma features dis-
card information from various voices in the music piece.
Our framework could be improved if the feature used al-
lows for separation of voices from polyphonic MIDI and
audio. Incorporating techniques for identifying multiple
voices in polyphonic audio would improve the proposed
framework.

In addition to the proposed framework for both sym-
bolic and audio representations, using multiple perfor-
mance recordings in the repeated themes discovery task
for deadpan audio is another novelty presented in this pa-
per. The work done in this paper differs from [5] in that the
performance audio recordings are used as supplements to
deadpan audio and not analyzed as separate musical enti-
ties. The original intention behind using deadpan audio for
repeated themes discovery is to allow for the use of audio
signal processing techniques, but deadpan audio contains
the same amount of information as its symbolic counter-
part with less accessibility because of its representation.
This is evident by the similarity between the MIREX met-
rics for the MIDI and deadpan audio since similar tech-
niques are applied. Performance recordings, on the other
hand, contain expressive performance variations on phras-
ing and segmentation. In this paper, it is shown that
adding performance recordings to the proposed framework
achieved improvements on some of the standard metrics.
The next step for advancing the repeated themes discov-
ery task is to annotate the performance recordings so that
these recordings can be used as a dataset directly without
referencing back to the deadpan audio version. By observ-
ing the results from the pattern finding with performance
recordings, the patterns found for each performance show
informative cues as to how each rendition of the same piece
differs from the others visually (Fig. 5). These visualiza-
tions are interesting discoveries on their own, even with-
out a comparison to ground truth annotations, and could
be further investigated for use in expressive performance
analysis and music structural segmentation.
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ABSTRACT

This paper presents a note-by-note approach for auto-
matic solfège assessment. The proposed system uses me-
lodic transcription techniques to extract the sung notes from
the audio signal, and the sequence of melodic segments is
subsequently processed by a two stage algorithm. On the
first stage, an aggregation process is introduced to perform
the temporal alignment between the transcribed melody
and the music score (ground truth). This stage implicitly
aggregates and links the best combination of the extracted
melodic segments with the expected note in the ground
truth. On the second stage, a statistical method is used to
evaluate the accuracy of each detected sung note. The tech-
nique is implemented using a Bayesian classifier, which is
trained using an audio dataset containing individual scores
provided by a committee of expert listeners. These individ-
ual scores were measured at each musical note, regarding
the pitch, onset, and offset accuracy. Experimental results
indicate that the classification scheme is suitable to be used
as an assessment tool, providing useful feedback to the
student.

1. INTRODUCTION

The practice of solfège is used by beginner musicians to
learn and improve the ability of the musical reading through
the repeated singing of musical notes from a music score. In
fact, this kind of exercise is a fundamental part of the music
learning process. It guides the student to build its own mu-
sical perceptions by creating an internal image of the sound
along the vocal emission of a note (or sequences of notes as
intervals, scales and melodies). The ability to read the notes
on a music score and at the same time to hear internally
and to sing them a prima vista is here generically called
solfège, and it is considered a prerequisite for performance
and effective musical knowledge [13]. During the solfège,
is crucial to have a constant feedback by an external expert,
who should be responsible for detecting eventual mistakes
and pinpoint the best way to fix them. Traditionally, the
evaluation process of the solfège is conducted by a music
teacher, inside of a classroom. Nowadays, with the spread

c© Rodrigo Schramm, Helena de Souza Nunes, Cláudio Ros-
ito Jung. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Rodrigo Schramm, Helena de Souza
Nunes, Cláudio Rosito Jung. “Automatic Solfège Assessment ”, 16th
International Society for Music Information Retrieval Conference, 2015.

of the internet, new educational methods bring up new pos-
sibilities to music education using the e-learning paradigm.
In the case of large number of evaluations, which is a typi-
cal situation in distance learning courses, the labor of the
teacher becomes exhaustive and tedious. Even in cases of
traditional and presential music lessons, the judgment by an
expert musician is not a trivial task, specially because the
human discernment may be affected by subjective factors
and fatigue [14, 20]. Thus, an automatic solfège assessment
tool can be very helpful in this context.

Usually, solfège is evaluated by comparing the singing
performance with the target music score (ground truth).
In this case, the first part of this task have some similari-
ties with automatic melodic transcription algorithms [14].
However, a set of similarity measures to correlate the user
performance with the expert’s (human) judgment is still
needed. Although there are some papers that provide an
overall score for a given solfège [10], it is not to our knowl-
edge the existence of systems that perform a note-by-note
analysis, which is very important in music teaching. In this
paper we introduce a new note-by-note evaluation method
based on the individual scores provided by human evalu-
ators. More precisely, we introduce a Bayesian classifier
which is applied to each musical note detection, working as
an alternative to the correlation method based on the global
judgment score used in [10]. The main difference here is
the fact that the performance can be evaluated with a small
granularity, at each musical note, but keeping the assess-
ment correlated with the human judgment. Additionally, the
Bayesian approach allows the mapping of the performance
errors into a confidence measure. We also introduced a
new temporal alignment method between the transcribed
melody and the music score (ground truth) by using a clus-
tering process. The grouping process was chosen in place
of dynamic time warping (DTW) [12] approach because it
is less sensible to error propagation and it does not have any
monotonicity condition.

This paper is organized as follows: Section 2 presents
an overview about the related techniques. Section 3 shows
a detailed description of the audio database generation and
the corresponding annotation process by the musicians ex-
perts. Section 4 describes the proposed method to automatic
solfège assessment. Section 5 presents the results of our
experiments and Section 6 draws the conclusion of this
work.
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2. RELATED WORKS

As far as we know, there is no method for solfège evaluation
in a note-by-note scale. Therefore, this section will revise
some papers that tackle related problems. For example, Jha
and Rao [4] focused on the vowel quality of the singing
voice. The authors use low-level features, including the
spectrum envelope and pitch contour for singing evalua-
tion. Their algorithm detects the onset of each vowel by
searching for rapid changes in specific frequency bands
that characterize the vowel formants, and then correlates
each vowel with an articulatory space by a linear regres-
sion scheme. Miryala et al. [8] do not perform assessment
directly, but their approach automatically identifies vocal
expressions as voice glides and vibratos, which could be
also used as a kind of singing evaluation.

The related problem of melodic transcription has been
studied by several researchers. The common pipeline on the
melody transcription techniques splits the process in low-
level feature estimation, note segmentation and labeling,
and post processing [3,11]. For example, [19] implemented
a melodic transcription algorithm by detecting a sequence
of fundamental frequencies in a frame-wise fashion, which
are subsequently converted into observation probabilities
and used in a Hidden Markov Model (HMM). Ryynanen
and Klapuri [17] implemented a similar approach, but ex-
tending the number of low-level features. Thus, besides
the fundamental frequency estimates, they also mapped
into probabilities distributions the features regarding voice/
unvoice, accent, and meter estimation. Frequently, a mu-
sicological model is also included in music transcription
algorithms to improve the system accuracy, acting as a prior
probability. The authors of [19] also incorporate a duration
model, which maps probability density functions with the
subdivisions and multiples unities of the beat time. Musico-
logical models might be used to detect the tonality and the
rhythmic structure of the musical performance, constraining
the output options and consequently improving the accu-
racy [5]. Unfortunately, the musicological model cannot be
directly used as a priori information on assessment tools
since it is not possible to have any expectation about the
student singing performance.

The work by Molina et al. [10], which explores the
singing assessment regarding note-based melodic similari-
ties, as well as the temporal alignment between the student
performance and the target melody, has similar goals to
ours. Despite the use of note-level similarity measures, the
final evaluation is built using the global assessment scores
from the human experts, who had placed a global score (be-
tween 1 and 10) for each singing performance on a previous
training stage. The estimated correlations in [10] seem to
be advantageous to extract a measure of quality in a global
context. However, as a drawback, that approach discard
local (note level) information from the experts’ evaluation.
In other words, it is not possible to precisely locate and
quantify the note(s) responsible for a bad or good score
from the singing performance. A small extension of this
approach was presented in [6], including new audio spectral
features. A recent work [9] shows a taxonomy of evaluation

measures used in several automatic singing transcriptions
algorithms. Most of the tabulated approaches have used
evaluation measures for singing transcription algorithms
based on note/frame-level error. There are also some strate-
gies that use time warping alignment information between
the ground truth and the transcribed melody [10]. Despite
the variety and effort to build robust and comprehensive
evaluations measures, these previous ideas cannot be di-
rectly used in the context of solfège assessment. In fact, the
used definition of correct pitch/ onset/offset in [9] applies
ranges of tolerance with fixed values, that may be a reli-
able procedure to compare distinct algorithms of melodic
transcription. However, it may not agree with the human
judgment perception in a solfège assessment context. Some
authors [6,10] tried to solve this issue connecting the expert
analysis with the evaluation measures, but the final human
evaluation carries out only a global interpretation, lacking
in details at individual sung notes. In the next sections we
present our dataset and proposed model for solfège assess-
ment. This model aims to evaluate individual sung notes,
giving a note-based feedback that makes a meaningful link
with the human judgment by musician experts.

3. PROPOSED DATASET AND ANNOTATIONS

The proposed dataset consists of sequences of musical inter-
vals in the chromatic scale. The audio recordings were done
using seven adults, including trained (three) and untrained
(four) singers ranging from 17 to 61 years old. These me-
lodic sequences were recorded during four months, in mono
format with a sample rate of 44100Hz and 16 bits quantiza-
tion.

It was decided to support the singing process by a refer-
ence piano audio track, since a part of the group of singers
was unable to read music scores. In this reference audio
track, the intervals were played in sequence, but with gaps
between them. Each singer filled these gaps repeating the
previous heard melodic interval at the next beat time, and
all recording sessions were synchronized by a metronome.

The singers were asked to choose and, if possible, to
diversify the used phonemes. They were also asked to
sing freely, but respecting the pitch, attack and duration
of the previously indicated sounds, aiming to capture real
examples of spontaneous everyday singing. Intentionally
aiming to capture a higher variability of natural situations,
the recordings were conducted in two distinct environments:
a part of the examples was recorded in a studio, where the
resulting audio records are clean; another part of the audio
records was done in informal conditions, presenting some
background noise and reverberation.

A total of 21 sessions were recorded, containing (twelve
ascending intervals and twelve descendants intervals of the
chromatic scale). Each singer performed the melodic in-
tervals in three distinct tempos: Adagio, 60 bpm; Andante
Moderato, 90 bpm; and Allegro, 120 bpm. Along with the
recordings, an annotation process was conducted by a com-
mittee of experts (five graduated musicians with more than
ten years of experience in solfège assessment auditions) in
order to label each sung note from the recorded dataset into
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two possible categories (correct and incorrect) regarding
the pitch, onset and offset accuracy. Before each annotation
section, the committee was advised to hear some random
samples from the dataset. This warmup procedure was im-
portant because it helped to create an agreement among the
experts, who shared some important characteristics and as-
pects of the recorded melodic intervals. As the dataset was
broken in parts, this process was repeated in several days,
until the whole set of audio records had been evaluated (in
fact, the whole process for building the annotated dataset
took several months).

For each sung note in the audio dataset, all the five
evaluators casted a vote (correct or incorrect) regarding
each analyzed parameter (pitch, onset and offset). As it will
be explained in the next section, disagreement among the
evaluators were kept and used to model our probabilistic
classifier. Also, each note is assigned to a single label
(correct or incorrect) regarding to each parameter, based on
the majority of votes cast by the experts (i.e., at least 3 votes
for the same label). Hence, some labels can be considered
more reliable than others, based on the number of votes.
For example, regarding the pitch, 15.38% of the samples
received 3 votes in agreement, which means an expressive
degree of doubt among the experts. The same analysis was
made for the onset and offset parameters, and the percentage
of notes with 3 votes (doubt) was 10.71% and 12.09%,
respectively. The final annotated dataset contains 3276
labeled samples.

4. OUR MODEL

The proposed computational model for automatic solfège
evaluation is structured in two main stages. The first stage
performs the melodic transcription, using the pYIN algo-
rithm [7] to extract the fundamental frequency from the
audio signal. The pYIN algorithm is a modification of the
smoothing procedure of the YIN technique [1], introducing
a probabilistic variant that outputs multiple pitch candidates
along with the associated probabilities. It also employs a
Hidden Markov Model (HMM) based on [16] to perform the
pitch tracking, providing an improvement in the accuracy
of the standard YIN. The extracted frame-wise sequence
f0 is then segmented and labeled into segments of music
notes using the hysteresis approach of [11]. After, in this
stage, we introduced a new alignment procedure, where the
transcribed sung segments are aligned with the music score.
This procedure converts group of melodic segments into
atomic unities (music notes) and allows a direct comparison
(note against note) between the transcribed melody and the
ground truth. In the second stage, a probabilistic classifier
performs the note-based evaluation. The algorithm takes
the generated sequence of notes from the previous stage
and applies a Bayesian classifier to evaluate the accuracy
of the parameters pitch, onset and offset. At this stage, a
rejection procedure is also introduced to map the doubt
from the categorization (correct or incorrect) given by the
expert listeners. These stages are described next.

4.1 Melodic alignment

To evaluate the solfège performance, a comparison of the
singing performance with the target music score (ground
truth) is required. Thus, after obtaining the automatic me-
lodic transcription (using [7] and [11]), it is still necessary
to connect each transcribed note with its corresponding note
in the music score.

The first challenge is the fact that the melodic transcrip-
tion often generates groups of fragmented notes (segments),
which should be mapped to only one element of the ground
truth. Each melodic fragment is represented by fil , where
i is the segment index and l is the relative index of each
frame within this segment. Additionally, as in [10], there is
no assumption of synchronization by a metronome in our
approach, so that the transcribed notes might be misaligned.
In [10], an integrated dynamic time warping procedure
(DTW) was employed to perform the time alignment in a
frame-wise fashion. However, in some cases, the bound-
ary condition of the DTW algorithm might propagate the
accumulated matching error, which causes an undesirable
alignment between the transcribed sequence and the ground
truth.

Here, we propose a new alignment process that, at the
same time, groups note fragments and also maps the result-
ing block with the correspondent music note in the ground
truth. Despite being similar to the DTW approach, it does
not propagate the cumulative error since it does not need to
obey the boundary condition of the DTW algorithm. The
joint grouping/alignment process was designed as a brute
force algorithm that is implemented using a cost matrix C.
For each note k in the ground truth, the algorithm computes
the cumulative distance measure considering all possibili-
ties of grouping of adjacent segments, starting at segment
index i and stopping at segment index j. This algorithm is
efficiently built with the support of a 3D data structure, as
depicted in Figure 1a. Thus, for each possible combination
(k, i, j), a dissimilarity measure is computed as

C(k, i, j) = α1∆ f (k, i, j)+α2∆d(k, i, j)+

α3∆s(k, i, j)+α4∆e(k, i, j),
(1)

where
∆ f = | f gt

k −median( fi,1... f j,lmax)| (2)

is the pitch distance between the ground truth note k and
the median values of f0 belonging to the range starting at
first frame of the segment i and finishing at the last frame
lmax of the segment j,

∆d = |Dgt
k −

j

∑
m=i

Dm| (3)

measures the duration difference (in seconds) between the
note k in the ground truth (Dgt

k ) and the group formed from
segment i to j in the transcribed melody (Di is the duration
of segment i),

∆s = |Sgt
k −Si| (4)

accounts for the delay or advance (in seconds) of the onset
of the first segment of the selected group and the ground
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Figure 1: (a) 3D structure used to compute the similarities between the transcribed melodic segments and the music score.
(b) Grouping process of several segments (gray) into one music note (blue). (c) The best grouping for the note k in the
ground truth is found by the indexes i (first element) and j (last element), which minimize the function C(k, i, j).

truth note k, and analogously

∆e = |Egt
k −E j| (5)

accounts for the delay or advance of the offset (in seconds).
The coefficients αi are weights to balance the individual
contribution of each measure, and our experiments show
that α1 = 1.0, α2 = 2.0, α3 = 2.0, α4 = 2.0 is a good com-
bination.

The grouping process and its mapping to the ground
truth sequence is achieved by a function

υ(k) = (ik, jk) = argmin
i, j

C(k, i, j), (6)

so that each note k is mapped to the group of segments from
indices i (first segment) to j (last segment), obtaining the
final and consolidated transcribed note.

The computational complexity of the alignment process
in the worst case is O(MN2), where M is the number of
music notes in the ground truth and N is the number of me-
lodic segments. However, the inclusion of components ∆s
and ∆e in Eq. (1) makes the magnitude of the dissimilarity
measure to grow fast when the group of segments is far
from the expected time position. As a consequence, it is
possible to interrupt the brute force search loop in a few it-
erations by limiting the value of C(k, i, j). Furthermore, the
window of evaluation containing the melodic segments can
be restricted to begin closer to the target note. This process
will also decrease the computational cost and also avoid
eventual local minimum issues in Eq. (6). Figure 1b illus-
trates one example of the grouping and alignment process,
in which six segments are mapped into three notes.

4.2 Note-based evaluation

After the alignment achieved by the melodic transcription,
the system performs the note-based assessment. Distinct
probability density functions are modeled to represent the
correct and incorrect sung notes, regarding individually to
the pitch (∆ f , in midi scale), onset (∆s, in seconds) and
offset (∆e, in seconds) deviations. For each sung note, a
Bayesian classifier assigns the parameters pitch, onset and
offset into correct ϕ or incorrect ϕ categories. Next, the
Bayesian classification process will be explained, focusing
on the ∆ f (pitch) parameter. However, it is worth noting

that the classification process is also individually applied to
∆s and ∆e in an analogous way.

Figure 2a shows the histograms of the pitch deviations
for correct and incorrect categories based on the expert’s
evaluation, denoted by ϕ∆ f and ϕ∆ f , respectively. As it can
be observed, the histogram of ϕ∆ f presents a sharp peak
close the origin (related to low pitch errors), as expected.
Nevertheless, the two categories present considerable over-
lap, corroborating the discrepancies in the accuracy evalua-
tion by experts when for intermediate errors in the pitch. In
fact, since we had used the individual ratings of each note
from all evaluators to build de histograms, the pitch devi-
ation ∆ f related to a note that received conflicting labels
among the evaluators contributes both for the histograms of
ϕ∆ f and ϕ∆ f .

A conditional probability density function is then es-
timated from the distributions of ∆ f for each class r ∈
{ϕ∆ f ,ϕ∆ f }, so that a posterior probability (that can be con-
sidered a measure of confidence) can be easily obtained.
Among several existing parametric probability density func-
tions (PDFs) for modeling positive random variables, the
Gamma distribution was chosen because it has been suc-
cessfully used to model similar problems [18], which have
similar characteristics to our data, such as single mode and
frequently skewed shape. The gamma PDF, parameterized
by the two positive parameters shape αr and scale θr, is
given by:

p(∆ f |r)∼ Ga(∆ f ;αr,θr) =
∆ f αr−1e

−δr
θr

Γ(αr)θ αr
r

, (7)

where Γ is the gamma function.
The shape (αr) and scale (θr) parameters for each class

r ∈ {ϕ,ϕ} were estimated using a maximum likelihood
approach [15]. Given the PDFs p(∆ f |ϕ) and p(∆ f |ϕ),
we can estimate the posterior probability of the pitch of a
correct/incorrect sung note by using the Bayes rule [2]:

p(r|∆ f ) =
p(∆ f |r)P(r)

p(∆ f )
, (8)

where p(∆ f ) = p(∆ f |ϕ)P(ϕ)+ p(∆ f |ϕ)P(ϕ) is the over-
all distribution of ∆ f , and the prior probabilities P(ϕ) and
P(ϕ) are defined as equiprobable.

Figure 2b illustrates the decision boundary for ϕ∆ f and
ϕ∆ f as a red vertical dashed line, and it can be observed
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Figure 2: (a) Histogram of ∆ f for classes ϕ and ϕ along
with fitted Gamma PDFs. (b) Posterior probabilities, along
with acceptance and rejection regions.

that there is a “fuzzy” decision boundary around it. In this
region, there is considerable overlap between p(∆ f |ϕ) and
p(∆ f |ϕ), causing the winning posterior probability to be
just a little above 0.5. Since this overlap region is caused in
part by conflicting labels from the evaluators, an appropriate
option is to reject samples that fall inside this fuzzy region.
As in [18], the errors (or misclassifications) are converted
into rejects using the Bayes rejection rule for the minimum
error [21]. The rejection rule splits the sample space into an
acceptance region A and a rejection region R, that is given
by:

R(T∆ f ) = {∆ f |1−max
r

p(r|∆ f )> T∆ f }, (9)

A(T∆ f ) = {∆ f |1−max
r

p(r|∆ f )≤ T∆ f }, (10)

where the threshold T∆ f balances the tradeoff between the
number of rejected samples and the error rate e(T∆ f ), given
by:

e(T∆ f ) = ∑
∆ f∈A(T∆ f )

(
1−max

r
p(r|∆ f )

)
p(∆ f ). (11)

The choice of the threshold T∆ f = 0.33 was determined
from a set of experiments where the classification accuracy
and the number of rejections were taken into account (more
details about this choice are presented in section 5). The
posterior probabilities and the boundaries between regions
A and R generated by this threshold are shown in Figure 2b.

Thus, regarding the pitch accuracy and using the
Bayesian classifier given by Eq. (8) in combination with
the rejection procedure provided by Eqs. (9) and (10), each
sung note is classified into three possible classes: correct,
incorrect, or undetermined (reject). When a classification is

done (correct or incorrect), the corresponding probability
measure is also used to provide a meaningful feedback of
confidence to the user. The whole note-based evaluation
process is also done independently for the onset and offset
note accuracy. This means that, for each sung note, the
system output gives individual class labels and confidence
measures for pitch, onset and offset.

5. EXPERIMENTAL RESULTS

Aiming to extract an objective evaluation of the proposed
solfège assessment system, a set of experiments were con-
ducted using the annotated audio dataset described in Sec-
tion 3. From the audio recordings, we extracted the melodic
transcriptions, which were subsequently aligned with the
ground truth, as described in Section 4.1. The pitch, onset
and offset deviations (∆ f , ∆s and ∆e) were computed from
the comparison between the ground truth and the aligned
melodies, and a subset of the samples was used to estimate
the parameters required in the corresponding Gamma PDFs.
The remaining samples were reserved to test the model.

For the validation scheme, we used a 10-fold cross-
validation scheme, in which the dataset is split randomly
into ten equal parts. For each round of the cross-validation,
9 folds are used to train the probabilistic model and the
remaining fold is used to validate the Bayesian classifier
described in Section 4.2. In our experiments, we used the
Bayesian classifier with and without the rejection rule. In
both situations, the system classifies each parameter (pitch,
onset, offset) of each sung note in two possibles categories:
correct or incorrect (when the rejection rule was applied,
some notes were kept unclassified).

Table 1 shows the confusion matrices generated by the
Bayesian classifiers for the pitch, onset and offset without
the rejection rule, and the accuracy is over 90% for the
three analyzed parameters. Also, the system tends to pro-
duce more false negatives (i.e., mark as incorrect a correctly
sung note) then false positives, particularly for the offset
parameters, being a “rigid” evaluator. The misclassification
errors are caused by two main reasons: first, a possible bad
melodic transcription and/or bad alignment between the
sung fragments and the ground truth can introduce errors
on the similarities measures; second, the disagreement be-
tween the human evaluators generated an inherently fuzzy
region near to the decision boundary. In fact, as noted in
Section 3, 10 to 15% of the notes presented strong disagree-
ment among the evaluators, so that the ground truth label
may not be reliable.

The rejection rule provided by Eq. 9 avoids the classi-
fication of samples that potentially fall inside this fuzzy
region. The effect of varying the rejection thresholds in the
percentage of accepted samples and also the accuracy for
the pitch, onset and offset analysis is shown in Figure 3.
As expected, lower thresholds decrease the number of ac-
cepted samples and increases the accuracy rate. Although
the definition of an optimal value for the threshold is diffi-
cult, the accuracy should be as maximum as possible while
the number of rejected samples should be minimal. As the
focus of this work is on music education, we believe it is
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(c) Offset evaluation

Table 1: Evaluation of the proposed approach using 10-Folds cross validation without the Bayesian rejection rule.

Ta
rg

et
C

la
ss

Output Class

ϕ∆ f ϕ∆ f

ϕ∆ f 94.45% 5.55%

ϕ∆ f 2.54% 97.46%

95.96%

(a) Pitch evaluation: T∆ f = 0.33
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ϕ∆S ϕ∆S

ϕ∆S 94.17% 5.83%

ϕ∆S 7.34% 92.66%

93.42%

(b) Onset evaluation: T∆S = 0.31
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ϕ∆E ϕ∆E

ϕ∆E 91.64% 8.36%

ϕ∆E 2.54% 97.46%

94.55%

(c) Offset evaluation: T∆E = 0.39

Table 2: Evaluation of the proposed approach using 10-Folds cross validation with the Bayesian rejection rule. The system
can answer in 90% of the times, increasing the final accuracy in almost 4%.
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Figure 3: Comparative of the accuracy versus the number
of non-rejected samples. Solid lines show the accuracy
evolution, which are affected by the thresholds T∆ f (pitch),
T∆s (onset), and T∆e (offset).

preferred to not have an answer than to provide an incorrect
feedback. Based on this assumption, and also considering
that the percentage of samples with doubt from the expert
evaluation is over 10%, we decided to set all thresholds to
reject 15% of the samples in average.

Table 2 shows the accuracy evaluation for the 10-fold
experiment using the Bayesian classifier with the rejection
rule, in which the rejection thresholds T∆ f (pitch), T∆S (on-
set) and T∆E (offset) were set so that 15% of the samples are
rejected, matching approximately the percentage of samples
with dubious labels. As it can be observed, the overall accu-
racies for all analyzed parameters increased in 3-5% when
compared to the option without rejection, reaching up to
almost 96% accuracy. Also, the number of false negatives
was greatly reduced, particularly for the offset evaluation.
This fact indicates that when in doubt, the evaluators tend
to label a note as correct rather than incorrect. Furthermore,
32–35% of the rejected samples received 3 agreeing votes
by the experts, which means that our system is removing
more than twice of the samples related to the experts’ doubt
when compared with the whole dataset.

6. CONCLUSION

This paper presented a note-by-note approach for automatic
solfège assessment focused on musical education, in which
each sung note is evaluated considering the human evalu-
ation perception in small scale, focused on the parameters
of pitch, onset and offset at a specific part of the solfege
practice. The proposed system uses melodic transcription
techniques to extract the sung notes from the audio sig-
nal, and the sequence of melodic segments is subsequently
processed by a two stage algorithm. In the first stage, an
aggregation process was introduced to perform the tem-
poral alignment between the transcribed melody and the
music score (ground truth). This stage implicitly aggre-
gates and links the best combination of the extracted me-
lodic segments with the expected notes in the ground truth.
The proposed alignment process does not impose the DTW
boundary condition between the two sequences, avoiding
the propagation of the accumulated matching error. In the
second stage, a Bayesian classifier is used to evaluate the
accuracy of each detected sung note. This statistical model
was trained using a combination of the extracted measures
(∆ f , ∆s, and ∆e) with the individual scores provided by a
committee of expert listeners.

Experimental results indicate that the classification
scheme achieved accuracy rates in the range 90–91% with-
out using the rejection rule (i.e., feedback for all evaluated
notes), and 93–96% using the Bayesian rejection procedure
(for the chosen thresholds, our tool is able to give feedback
in 85% of the trials in average). Besides the classifica-
tion label (correct, incorrect or undefined), the system also
provides probability measure, which helps to indicate how
likely correct or incorrect was the performance of the sung
note. As future work, new research is planned to integrate
new audio features, as well as the usage of lyrics analysis,
to improve the segmentation and alignment on the first stage
of this approach.
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ABSTRACT
Social music listening is a prevalent and often fruitful ex-
perience. Social jukeboxes are systems that enable so-
cial music listening with listeners collaboratively choosing
the music to be played. Naturally, because music tastes
are diverse, using social jukeboxes often involves conflict-
ing interests. Because of that, virtually all social juke-
boxes incorporate conflict management mechanisms. In
contrast with their widespread use, however, little atten-
tion has been given to evaluating how different conflict
management mechanisms function to preserve the positive
experience of music listeners. This paper presents an ex-
periment with three conflict management mechanisms and
three groups of listeners. The mechanisms were chosen
to represent those most commonly used in the state of the
practice. Our study employs a mixed-methods approach to
quantitatively analyze listeners’ satisfaction and to exam-
ine their impressions and views on conflict, conflict man-
agement mechanisms, and social jukeboxing.

1. INTRODUCTION

The act of listening to music together is ubiquitous. In
many situations, the choice of the music to be played for a
group is done by an authority, such as a performer or a DJ;
in other situations, groups rely on more democratic choices
through social jukeboxes. Such devices have varying im-
plementations in industry and have received attention from
academia. In the latter, research has observed systems
which arbitrate the selection of songs in gyms consider-
ing the musical tastes of those attending the gym [15], and
systems that democratize the choice of music to be played
in parties [10, 17], public spaces [16] and in cars [18]. In
industry, Plug.DJ [3] (three million registered accounts),
the recently shut down Soundrop [6] (peaked at nearly 49
thousand monthly active users) and the mobile applica-
tions Noispot [1], PlayMySong [2], Rockbot [5], and Se-
cret.DJ [7] (all of them with more than ten thousand down-
loads on virtual stores) are some commercial systems that
presently have a significant user base.

Because people are often affected by the music heard
in an environment [11], sharing the choice of music to be
heard may lead to pleasant or dissatisfying experiences. In-

c© Felipe Vieira, Nazareno Andrade. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Felipe Vieira, Nazareno Andrade. “Evaluating conflict manage-
ment mechanisms for online social jukeboxes”, 16th International Society
for Music Information Retrieval Conference, 2015.

deed, in the presence of diverse musical tastes, it is likely
that there will be conflicts in choosing music collectively.
In the simplest case, one member of the group may like a
genre or specific songs disliked by others. Even for par-
ticipants that share similar tastes, one of them may be at
a given moment interested in relaxing songs, while an-
other participant is interested in increasing arousal. Tory
et al. [10] and O’Hara et al. [16] have documented exam-
ples of such conflicts in the context of social jukeboxes.

To prevent that conflicts cause unpleasant experiences,
it is central that social jukeboxes have mechanisms that
manage such conflicts. Some of the aforementioned sys-
tems rely on voting to allow users to communicate their
preferences. In part of these systems, this feedback also
serves as an input to choose music based on the prefer-
ence of the majority. However, in spite of the necessary
and common use of conflict management mechanisms in
social jukeboxes, there has been little or no comparative
scientific evaluation of such mechanisms.

This work contributes to filling this gap by studying the
use of three conflict management mechanisms in the same
social jukeboxing system. The three mechanisms studied
are present in multiple solutions in the state of the practice
of social jukeboxes, and aim to represent significant points
in the design space of conflict management mechanisms.
Experiments were conducted with three user groups, each
using the social jukebox in their natural settings. Our eval-
uation uses a mixed methods approach combining quan-
titative measures of user satisfaction and textured impres-
sions stemming from semi-structured interviews in combi-
nation with observation reports and chat logs.

By analysing user satisfaction data, our results confirm
that in spite of conceptual differences, the three conflict
management mechanisms provide a significant gain in user
satisfaction when compared to a baseline social jukebox
with no mechanism. Moreover, the up/downvoting mech-
anism provides the highest satisfaction among the mech-
anisms we experiment with. A qualitative analysis of in-
terviews, observation notes, and chat logs suggests that the
effectiveness of voting is related to its interaction demands
and the feedback it provides. Furthermore, analysing such
data highlights other fonts of conflicts and opportunities
for the design of new conflict management mechanisms.

2. ONLINE SOCIAL JUKEBOXES AND
CONFLICT

Akin to the jukebox metaphor, in online social jukeboxes
users add songs to a queue to be played. This choice of
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songs is the primary source of conflict, as users may dis-
agree on the best song to be played in a given moment. Ex-
amining the industry and social jukeboxes in the research
literature, we identify three mechanisms most often used to
manage conflict: like/dislike feedback, up/down voting of
songs in a queue, and a skip feature. Like/dislike is present
in all systems mentioned except Jukola, up/down voting is
used in Soundrop, Noispot, Rockbot and Jukola, and skip
is implemented in Plug.DJ, Noispot and Jukola.

These three conflict management mechanisms can be
easily evidenced in the observed jukeboxes. Like/dislike
feedback is comprised of messages from users about the
song currently playing. As such, it does not directly or
immediately affect the music playing; in the presence of
conflict it only conveys to the person responsible for the
song the desire that future choices are different. This is
the less intrusive mechanism. Up/down voting, in turn, al-
lows for the group to change the order of songs that will
be played next. If users downvote a song, this both com-
municates their negative preference and delays the song
start. This delaying represents a more intrusive approach
to manage conflicts by avoiding songs that will not satisfy
some participants. Finally, skipping gives the group means
to directly interfere in a song that is presently playing.

Allowing users to express their appreciation for some
content is a widespread feature in social media. Cheng et
al. [13] have found that in large-scale systems, this type
of mechanism can lead to significant changes in the au-
thor’s future behaviour by attaching more quality to the
content shared after negative feedback. The mechanism
of affecting the next song to be played by up/down vot-
ing on the queue items is perhaps the most straightforward
mechanism of democratizing music choice. It also resem-
bles approaches applied in different settings such as social
Q&A or media aggregating sites such as Reddit [4], where
users are able to choose which shared content is going to be
most evident in the website by up/down voting posts. The
possibility of abruptly stopping a song execution through
skip seems to be more specific of social music systems, but
has been recognized as valuable to avoid mood-breaking
songs [18] and to prevent frequent users from the frustra-
tion of hearing the same song multiple times [16].

It is worthwhile mentioning that although there are a
number of conflict management mechanisms used in social
jukebox systems, to the best of our knowledge there has
been no experimental study that compares the effectiveness
of conflict management mechanisms for these systems.

3. THREE CHOSEN MECHANISMS IN AN
ONLINE JUKEBOX

Given the state of the practice observed in conflict manage-
ment for social jukeboxes, we opted to experiment with
the three mechanisms identified as most often employed:
like/dislike feedback, up/down voting and skip. These
mechanisms were implemented in a social jukebox devel-
oped by the authors and named WePlay, which has its basic
interface shown in Figure 1.

WePlay allows for a group of users to synchronously

listen to music coming from a shared queue of songs to
which all can contribute. Each user can contribute as many
songs as desired by searching these songs on YouTube and
adding to a queue visible by all. The queue lists songs, but
not the users who contributed the songs. Besides features
available to the users, WePlay also allows an experimenter
to alternate the conflict management mechanism exposed
to users at will. The implementation of the three mecha-
nisms is detailed next.

Figure 1. The interface of WePlay, the social jukebox sys-
tem used in our experiments

3.1 Like/Dislike

Similarly to prevalent mechanisms in online social me-
dia, when this mechanism is available, users have access
to like and dislike buttons next to the name of the song
presently playing, as shown in Figure 2. Similar to the so-
cial jukebox systems we observed, this explicit feedback
does not directly control which song will play next. In-
stead, it serves as a message to the user who queued the
song stating how welcome that song has been considered
by current listeners. In WePlay, only one immutable feed-
back may be provided per song. Moreover, the number of
likes and dislikes is visible for all listeners, but no listener
has access to the list of users who liked or disliked a song.
Finally, when this mechanism is enabled, users are able to
see a list of previously played songs and the feedback they
received.

3.2 Up/down voting

By using the up/down voting mechanism in WePlay, users
can vote up or down songs in the queue. Users can cast one
vote per song, also immutable. After each vote, songs are
ordered according to their balance, calculated as the dif-
ference between its positive and negative votes. The queue
interface is depicted in Figure 3. Neither voters nor current
balance are shown in the interface, but the highest-ranked
song is always highlighted. In the event of a tie, the times-
tamp is considered the tiebreaker, awarding highest rank to
the song first suggested to the system.

3.3 Skip

This mechanism allows the jukebox users to collectively
skip the current song. If enough users manifest such will,
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Figure 2. The like/dislike mechanism and the feedback
history

Figure 3. The up/downvoting mechanism

the song is then immediately skipped and the next song
from the queue starts playing. To manifest opinions about
the song, users can cast positive or negative votes about it.
Considering the number of listeners n, the number of posi-
tive votes p, and the negative votes s, if the overall satisfac-
tion o = ((p−s)/n)+1 of the current song reaches a value
below the threshold of 0.5, the song is skipped, following
the skip mechanism idealized heuristically by the original
authors of a side project which was adapted to result in our
WePlay and maintained due to the similarity of the original
use of the system and our experimental scenario.

4. EXPERIMENTAL SETUP

Three different groups were recruited to participate in our
experiments. Recruitment was done using the social net-
work of authors, primarily targeting groups of potential
users of an online social jukebox that would be available
over multiple consecutive days for the experiments. Partic-
ipants from the first two groups are undergraduate students,
graduate students or researchers working in the same uni-
versity as the authors, totalizing 18 participants (16 males
and 2 females, average age 25.2). Participants in these
groups are work colleagues who used the system during
normal workdays, and were collocated in the same or adja-
cent rooms during the experiment. The third group is com-
prised by friends of one of the authors (10 males, average
age 25) who have known each other for years, work in di-
verse fields, used the system during leisure time, and were
located in different places in a common city. In all three
groups, our goal is to study the use of the social jukebox
system integrated in the subjects’ routine, aiming at the
ecological validity in social listening research suggested

by North [9].
Each experiment lasted for the period of five days. All

participants were submitted to a briefing explaining how
the system would work and describing the experiment
dynamics (e.g. what conflict management mechanisms
would be enabled on each day). None of the participants
was aware of the specific details of the research. All partic-
ipants were informed that the goal of the experiment was to
evaluate multiple designs of the social jukebox, and agreed
to use the system for the duration of the experiment, and
to have data collected during this time to be used in the
research. In the week after each experiment, users were
interviewed about their experience using semi-structured
interviews. Four, seven and seven participants were inter-
viewed respectively on groups one, two and three, totalling
18 interviews. Interviews lasted on average 15 minutes.

During the experiment, each group first interacted with
the social jukebox using no conflict management mecha-
nism in a situation we dub baseline. After the baseline, the
other conflict resolution mechanisms were available one at
a time and in the same order for all groups, for one com-
plete day each. On the fifth day, all three mechanisms
were available for participants, in a setting we call com-
bined mechanisms. During the complete experiment, par-
ticipants and the experimenter shared a text chat room us-
ing Google Hangouts. This communication channel was
meant primarily for the experimenter to answer questions,
but also hosted diverse conversations among participants
during the experiments.

The social jukebox used in the experiments is instru-
mented to provide detailed usage information through logs.
Furthermore, to gauge participant’s overall satisfaction
with the system, the jukebox asked participants to pro-
vide every 30 minutes their level of satisfaction through
a 5-point likert scale in a form which asked users to ex-
plicitly state their satisfaction with recently played songs.
Although the action of listening to music is often a back-
ground task and users could forget to answer this request,
whenever a new request was made, participants were re-
minded to answer the from through the group chat.

5. CONFLICT SITUATIONS

As expected, the interviews and our observation of system
usage revealed conflict situations. Overall, our data shows
some conflicts related to a participant having an aversion to
a song proposed by another participant. Such aversion may
be related to one’s musical identity [8] (Everytime she sug-
gested I immediately voted negative, because of her musi-
cal taste 1 ) and were perceived to affect satisfaction (There
was a moment when I felt upset about the songs. They were
putting some songs like funk, and I don’t really like funk.
But it was a radio, and it was in a democracy style, so I
had to listen to that. or In some moments I was very dis-
satisfied. There were some songs I cannot stand... Some
musical styles. ).

1 Quotes from the interviews are presented henceforth in italics and
parenthesis. All quotes were translated from Portuguese to English by
the authors.
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Figure 4. Distribution of median satisfaction reported by
users in each of the scenarios. The violin glyphs encode
density. Error bars represent 95% confidence intervals for
the medians. In comparing the intervals, one should take
into account that samples are paired; this pairing results
in, up/down voting having a significantly higher median
satisfaction than the combined scenario, and in skip signif-
icantly outperforming the baseline.

A second and minor source of conflict relevant to the
mechanisms we experimented with is related to gaming
the mechanisms and trolling. Participants reported their
tendency to game the voting mechanism, and trolling be-
havior by users.

6. CONFLICT MANAGEMENT AND USER
SATISFACTION

Our quantitative data contains multiple satisfaction ratings
for each participant in each of the five different designs:
baseline, like/dislike, up/downvoting, skip, and all mech-
anisms. In the following, each participant’s satisfaction is
summarized as the median of the ratings provided in each
design.

Albeit conceptually categorical, likert scales data in the
form employed in our experiment can be reliably used
in numerical statistical tests [14, 19]. A normality test
however points that the satisfaction data is not normal,
(Shapiro-Wilk test, p < .01 for all five scenarios). This
observation combined with the sample size (N < 30 for
all samples) leads us to use non-parametric tests to com-
pare participant satisfactions.

Participants’ satisfaction and the 95% confidence in-
terval for the median satisfaction across participants are
shown in Figure 4. It is readily apparent that like/dislike,
up/downvoting, and the combine mechanisms all lead to
significantly higher user satisfaction than the baseline sys-
tem. A rank-sum comparison using Mann-Whitney paired
one-tailed tests reveals that all mechanisms provide sig-
nificantly higher satisfaction than the baseline (p < .02

for all designs. Like/dislike: V = 276, up/downvoting:
V = 276, skip: V = 117.5).

Comparing the mechanisms among themselves, we see
that up/down voting has at the same time the highest me-
dian satisfaction and the smallest dispersion in satisfac-
tion values. The overall higher satisfaction of participants
when using the voting mechanism is also confirmed by a
rank-sum comparison with the combined scenario (Mann-
Whitney paired one-tailed, p = .02, V = 75). Since the
participants in group 3 had different backgrounds to those
in the other two groups, the previous statistical tests were
repeated withholding data pertaining to group 3, The re-
sults of this test have similar outcomes.

Next to up/down voting, the combination of mecha-
nisms resulted in the second highest satisfaction scores.
This may reflect the availability of the high-performing
up/down voting mechanism in the combination. The sec-
ond best performing sole mechanism is like/dislike. The
mechanism that provided the smallest increase in satisfac-
tion in our experiments was skipping.

Finally, Figure 5 compares satisfactions reported by
participants in the different groups. The general pattern
is the same for all three groups. This is so in spite of the
relatively different context in which group 3 used the sys-
tem.

Together, our quantitative results suggest that the best
strategy for a designer considering implementing a con-
flict management mechanism in a social jukebox system is
to focus on up/down voting. In the next section we elab-
orate on the reasons behind participants’ preferences, and
on other relevant episodes in the experiments.

7. IMPRESSIONS ABOUT CONFLICT
MANAGEMENT

Besides the quantitative data, we now turn to analyze col-
lected interviews, observations taken by the experimenters,
and chat history among participants. The qualitative data
was explored using Grounded Theory [12] methods for
coding and categorizing quotes, and to analyse the emer-
gent themes.

7.1 Mechanisms’ effectiveness

An overall positive effect of the conflict management
mechanisms reported by users is the possibility of com-
municating of one’s identity and preferences to negotiate a
common ground and reduce conflict (... and I found it very
interesting the little window on the bottom of the screen
where we could see our latest ratings. It’s useful when
you’re choosing your next song and you don’t want to pick
a song nobody likes).

Focusing on up/down voting, this mechanism seems to
offer a particularly convenient trade-off between express-
ing preferences on multiple songs and having to often in-
terrupt other tasks to use the social jukebox (... and I also
thought the songs list [with the up/ down votes] very in-
teresting because we could express our opinions and go
back to our main activities, avoiding to open the system all
the time, focusing on our jobs and still making our voices
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Figure 5. Distribution of median satisfaction reported by
users in each of the scenarios, with users divided in the
three experimental groups.

active inside the system). Both like/dislike and skip must
be performed on a song while it was playing, and thus re-
quired more frequent interaction with the system (I used
[the like/dislike feature] on almost all songs, except when
I was really busy with work).

In our experiments, positive feedback was seen as more
usual, and negative feedback as related to more extreme
cases (I only used the dislike feature when a song was a
really really bad choice or if the other guy was clearly
trolling), or to constantly send explicit messages to users
with mismatched musical tastes about the incoherence of
their choices (There’s no significant difference between my
positive and negative voting, I guess, except that when [a
participant’s name] suggested. Then I always voted nega-
tive due to her musical taste).

The skip feature as implemented in our experiments had
a major limitation related to presence. Our system ac-
counted for listeners as active if they are logged in, and de-
manded that a proportion of active listeners voted for skip-
ping to actually skip the song. Because music listening was
a background activity, and participants interleaved this ac-
tivity with attention to other tasks or even being temporar-

ily physically away from the computer, there were often
insufficient votes for skipping (It was hard to see the skip
feature happening. It barely happened, and in a rare mo-
ment when [the song] was skipped I think it only happened
because that song had a really big rejection or Although
I think the skip is a great idea it almost didn’t happened,
and when it happened I thought it was because our room
wasn’t full yet and a few negative feedbacks were enough
to skip the song, which sadly came to be a song of mine...).

7.2 Gaming and trolling

Gaming conflict resolution and trolling are two often re-
ported phenomena in online communities. In our experi-
ments, both behaviours happened and were commented on
during interviews. For example, one participant reported
strategies for imposing their choices on the group: There
were several times when I tried to downvote all songs ex-
cept mine’s, so I could just upvote any of my songs and
place them at the top, playing it before the other’s choices.
It didn’t succeed because the guys discovered my strategy
and started to downvote my songs. I tried also to dislike
all the other’s songs, hoping that the system skipped those,
but that didn’t happen.

On a different occasion, because participants were
mostly friends, there were participants who posted non-
sense songs or repeatedly posted a song related to some
meme as a joke with the group. Although subverting the
rules and joking may reinforce social ties, in our experi-
ments it had detrimental effects (There was a time when
we had a song related to a viral, and because of that the
song got repeated over and over again, so as I couldn’t
handle it I took my earphone off and put it on a little later
to hear some new songs, if that was the case.). Another
user clearly stated he was motivated by jokingly annoying
others (It was my fuel. When it annoyed people, I’d put the
song again).

7.3 Design Suggestions

After being exposed to four situations in conflict manage-
ment, participants were also asked about their views about
the design space of social jukeboxes.

A participant suggested that more mechanisms to com-
municate musical identity may be of use, and that perhaps
allowing one to specify such identity explicitly could con-
tribute to reduce conflict by enabling semi-automatic song
choice (I think a good way [to increase conflict manage-
ment] is to allow user profiling, something like: an user
has three musical preferences, so when he starts using the
system he could be asked to fill a form stating those three
choices, and after that the system could check who is on-
line and select the next song according to the intersection
of musical tastes).

Further room to increase the convenience of express-
ing preferences in the system when music is a background
task was also mentioned. A participant suggested the use
of smartphones for enabling interaction in such cases (It
would be great if we have a tool to facilitate the voting
process, because we can only vote at the web page, and
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sometimes we are [on our desk but] not using our PC but
we keep listening the songs, so if we could, for example,
vote in a song using our smartphone that could make the
democratic process even better).

A more challenging suggestion to experiment with that
was mentioned by multiple participants is the possibility of
punishing users perceived as trolls (It came to a point when
I had enough of [another participant’s name]’s songs. I
really wish he was unable to suggest songs, so the system
could at least enable the chance of banning a song which
received too much negative votes, but actually I think it
would be even greater if we could ”mute” a specific user,
removing the access to the features and only allowing him
to listen the songs suggested by the others).

8. IMPLICATIONS FOR DESIGN

Our experiment evaluates three commonly used conflict
management mechanisms in online social jukeboxes. To-
gether, the quantitative and qualitative results point for
multiple implications for designers of social jukeboxes.

In our experience, conflicts were relatively easy to re-
produce. Participants of all of our experiments were al-
ready friends or colleagues, and had multiple communi-
cation channels besides the social jukebox. Yet, conflicts
related to incompatibility in music tastes and different in-
tentions in listening to music on a given moment were re-
ported to influence satisfaction with the music listening ex-
perience.

Quantitatively, all three conflict management mecha-
nisms led to significant improvements in user satisfaction
with the music played in the experiments. It is also notable
that the mechanisms provided such increase in the pres-
ence of conversations both face-to-face and through online
chat to manage the same conflicts. This result suggests that
simple mechanisms effectively complement more textured
social interactions to negotiate this type of conflict.

Comparing mechanisms, our results point that up/down
voting songs on the queue leads to the highest overall user
satisfaction. Both the median and minimum satisfaction
of participants were the highest with this mechanism. A
qualitative analysis points that up and downvoting seems
to be on a sweet spot of the design space as it allows
for conveniently sparse batch interactions with the sys-
tem, combined with an informative log of past song evalu-
ations. These results, together with the ease of implement-
ing up and down voting recommends that present design-
ers consider this mechanism. Moreover, it suggests that
conflict resolution mechanisms for background music lis-
tening take into account the frequency of interaction with
the system.

With respect to the log of past evaluations, our analysis
suggests it has a constructive role in preventing conflicts.
Our experiment does not allow for isolating its effect, but
suggests this and other mechanisms that allow users or the
group to express their taste are likely to contribute to con-
flict management. Indeed, this direction is similar to the
common behaviour of stating group norms explicitly in
many online communities.

Other relevant aspects that arose in our analyses were
the limited effect of the skip mechanisms and the presence
of gaming and trolling. The former is chiefly related to
difficulties in detecting and communicating user presence
while music was a background task. As a result, the sys-
tem perceived too many users as active, and participants
felt that voting for skipping was not effective. Detecting
which users are presently interacting with the system and
devising a skipping policy more easily understandable may
lead to different results, and our mechanism allow limited
conclusions in this perspective.

With respect to gaming and trolling, our experiments
highlight that these phenomena happen in social music lis-
tening even for small-scale scenarios. From our observa-
tions, the mechanisms we experimented with were robust
to gaming. Trolling in our setting was related to jokes from
a user that reduced the satisfaction of others – which nev-
ertheless were reported as trolling in the interviews. The
interviews suggest that mechanisms to regulate such be-
haviours may contribute to the success of online social
jukeboxes.

9. LIMITATIONS AND FUTURE WORK

This work contributes preliminary findings to an under-
standing of the effectiveness of multiple points in the de-
sign space of conflict management mechanisms for online
social jukeboxes. In doing so, it has a number of limita-
tions and leaves open questions for future work.

An issue that markedly limits the generalizability of our
findings is related to the characteristics of our sample of
users. All participants where already acquainted, and by
and large male. Replicating our experiment with more
groups with different compositions is a direct and neces-
sary extension of this work. This is necessary to examine
the degree to which the context, closeness, and size of the
group affect our results. Moreover, understanding whether
and how direct conversation interferes with conflict man-
agement also seems like a promising avenue of research.

Another point that demands further study is the analy-
sis of other policies for each of the mechanisms examined
here. Other policies for consolidating votes, skip requests,
and like and dislike feedback may be more suitable for cer-
tain contexts. Also, experimenting with other policies for
skipping seems particularly relevant, given the feedback
from the participants in our experiments.

Finally, our experience highlights and commends for fu-
ture work the benefits of conducting similar research in a
naturalistic setting. Observing participants use the system
in their normal routine, and participating in social listen-
ing with colleagues and friends helped unveil a number of
relevant observations in our research.
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ABSTRACT

Recent approaches in meter tracking have successfully ap-
plied Bayesian models. While the proposed models can
be adapted to different musical styles, the applicability of
these flexible methods so far is limited because the appli-
cation of exact inference is computationally demanding.
More efficient approximate inference algorithms using par-
ticle filters (PF) can be developed to overcome this limita-
tion. In this paper, we assume that the type of meter of a
piece is known, and use this knowledge to simplify an exist-
ing Bayesian model with the goal of incorporating a more
diverse observation model. We then propose Particle Fil-
ter based inference schemes for both the original model and
the simplification. We compare the results obtained from
exact and approximate inference in terms of meter track-
ing accuracy as well as in terms of computational demands.
Evaluations are performed using corpora of Carnatic music
from India and a collection of Ballroom dances. We docu-
ment that the approximatemethods perform similar to exact
inference, at a lower computational cost. Furthermore, we
show that the inference schemes remain accurate for long
and full length recordings in Carnatic music.

1. INTRODUCTION

Rhythm analysis of musical audio signals plays an impor-
tant role in Music Information Retrieval (MIR) research.
Many of the works in MIR related to rhythm attempt to
establish a relation between the audio signal and the un-
derlying musical meter. For instance, in the task of beat
tracking, the goal is to obtain an alignment of the metri-
cal level referred to as the tactus [15] to an audio signal,
see [8] for a list of references to recent beat tracking algo-
rithms. Tracking meter at a higher metrical level is a task
pursued under the title of downbeat detection. Approaches
were presented that either attempt to identify the downbeat
separately from the tactus [7], or that pursue beat tracking
and downbeat detection as a combined task [11, 17]. The
combined task of beat and downbeat detection is what we
refer to as meter tracking, since it aims at aligning several

© Ajay Srinivasamurthy, Andre Holzapfel, Ali Taylan
Cemgil, Xavier Serra.
Licensed under a Creative CommonsAttribution 4.0 International License
(CC BY 4.0). Attribution: Ajay Srinivasamurthy, Andre Holzapfel,
Ali Taylan Cemgil, Xavier Serra. “Particle Filters for Efficient Meter
Tracking with Dynamic Bayesian Networks”, 16th International Society
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levels of a known meter to an audio recording of a music
performance.

Many applications can profit from accuratemeter or beat
tracking. Some synchronization tasks, such as the one pre-
sented in [6], tracking the beat is sufficient. However, other
applications, such as musical structure analysis [16] can
profit from a more detailed understanding of the temporal
structure of a performance. Approaches that can achieve
such an analysis for a wider variety of music usually incor-
porate machine learning strategies to adapt to new styles.
For instance, Böck et al. [1] presented a method for beat
tracking in various styles that achieves high accuracy using
recurrent neural networks that were adapted to the individ-
ual styles. The task of downbeat tracking was addressed
in [4] using a set of deep belief networks trained on various
features, and the regularity of the outputs was enforced by
incorporating a simple hidden Markov model (HMM). The
task of meter tracking was combined with the determina-
tion of the type of meter in [9], using a Dynamic Bayesian
Network (DBN) similar to the one applied in [1].

A significant shortcoming of the mentioned tracking ap-
proaches is that their flexibility in terms of musical style
comes at an increased computational cost, either in terms of
time spent for the training of networks [1,4], or in terms of
long inference times [9]. In the present paper, we approach
faster inference in a DBN in two ways. Firstly, we propose
a change to the model structure as presented in [9, 14] that
enables faster inference by simplifying the independence
assumptions between the variables of the model. The pro-
posed simplification also addresses one of the main limit-
ing factors in most of the approaches so far: a simplistic
observation model that cannot effectively handle diversity
in rhythmic patterns. Secondly, one reason for long infer-
ence times of the model proposed in [9] is the utilization of
exact inference in an HMM, which discretizes the hidden
variables of the state space to compute the most likely path
in the exact posterior distribution using the Viterbi algo-
rithm. Here, we avoid the discretization of the state space
by approximating the posterior using particle filter meth-
ods [3]. The biggest challenge in applying such approx-
imate methods to meter tracking is the multi-modality of
the underlying posterior distribution [22] due to the ambi-
guity inherent to musical meter. Recently, methods were
proposed that overcome these challenges [14]. We outline
the existing [9,14] and the proposed simplified model, and
compare the performance of exact and approximate infer-
ence schemes for both the models, in terms of meter track-
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(a) model-A (b) model-B

Figure 1: The DBNs used in this paper: circles and
squares denote continuous and discrete variables, respec-
tively. Gray nodes and white nodes represent observed and
latent variables, respectively. Model-A is from [14] and
model-B is the proposed simplification.

ing accuracy and computational demands.
Carnatic music, the art music tradition from South India

is a representative case to study in this context. Meter in
Carnatic music is defined by the tālạ, which are time cycles
with three metrical levels: the sama (downbeat, the first
pulse of the cycle), beat, and the subdivision level (a com-
prehensive account on Carnatic music is provided in [19]).
In performances of Carnatic music, however, large degrees
of freedom are taken by the musicians to conceal the under-
lying meter and to add metrical ambiguity, for instance by
changing the beat structure during a metrical cycle. This
playful rhythmic character of Carnatic music leads to our
hypothesis that meter tracking should be able to profit from
a diverse observation model. Most of the rhythmic struc-
tures, melodic phrases, and strutural elements are tightly
associated with the cycles of the tālạ [20] and hence track-
ing the sama (downbeat) is an important MIR task in Car-
natic music, which is the main focus of this paper. We will
also evaluate if meter tracking in Carnatic music can profit
from including a richer observation model that can incor-
porate information from multiple patterns.

In order to further illustrate the ability of the approach to
generalize, it will be additionally evaluated on a corpus of
Ballroom dances [5]. Furthermore, reproducibility will be
ensured by providing free access for research purposes to
all code repositories and datasets 1 . We begin by describ-
ing the models and inference schemes that we use for meter
tracking.

2. MODEL STRUCTURE

We compare two different Bayesian models for the task
of meter tracking. The first model (model-A), depicted in
Figure 1a, is identical to the model used in [9, 14] and was
initially proposed in [24]. We propose and discuss a sim-
plification tomodel-A for the task of meter tracking, shown
as model-B in Figure 1b. Model-B uses a diverse observa-
tion model and can be applied if the type of meter is known
in advance. It is to be noted that model-A can also be used
for inferring the type of meter, though we apply it in this
paper only for meter tracking.

1 Please see the companion webpage for more details: http://
compmusic.upf.edu/ismir-2015-pf

In aDBN, an observed sequence of features derived from
an audio signal y1:K = {y1, . . . , yK} is generated by a se-
quence of hidden (unknown) variables x1:K ={x1, . . . , xK},
where K is the length of the sequence (number of audio
frames in an audio excerpt). The joint probability distribu-
tion of hidden and observed variables factorizes as,

P (y1:K , x0:K) = P (x0) ·
K∏

k=1

P (xk|xk−1) P (yk|xk) (1)

where, P (x0) is the initial state distribution, P (xk|xk−1)
is the transition model, and P (yk|xk) is the observation
model.

2.1 Hidden Variables

At each audio frame k, the hidden variables describe the
state of a hypothetical bar pointer xk = [ϕk ϕ̇k rk], repre-
senting the bar position, instantaneous tempo and a rhyth-
mic pattern indicator, respectively (see Figure 1 of [23] for
an illustration).
• Bar position: The bar position ϕ ∈ [0,M), where M is
the length of the bar (cycle). The maximum value of M
depends on the longest bar (cycle) that is tracked. We
set the length of a full note to 1600, and scale other bar
(cycle) lengths accordingly.

• Rhythmic pattern: The rhythmic pattern variable r ∈
{1, . . . , R} is an indicator variable to select one of the
R observation models corresponding to each bar (cycle)
length rhythmic pattern learned from data. Each pattern
has a bar length M and a number of beats B, which are
assumed to be known in advance, i.e. the goal is the
tracking of a known metrical structure.

• Instantaneous tempo: Instantaneous tempo ϕ̇ is the rate
at which the bar position variable progresses through the
cycle at each time frame, measured in bar positions per
time frame. The range of the variable ϕ̇k ∈ [ϕ̇min, ϕ̇max]
depends on the length of the cycle M and the hop size
(∆ = 0.02s used in this paper), and can be preset or
learned from data. A tempo value of ϕ̇k corresponds to
a bar (cycle) length of (∆ · M/ϕ̇k) seconds and (60 ·
B·ϕ̇k/(M ·∆)) beats per minute.

The conditional dependence relations between the variables
for both the models are shown in Figure 1.

2.2 Initial state distribution

We can use P (x0) to incorporate prior information about
the metrical structure of the music into the model. In this
paper, we assume uniform priors on all variables, within
the allowed ranges of tempo.

2.3 Model-A: Transition and Observation model

Due to the conditional dependence relations in Figure 1a,
the transition model factorizes as,

P (xk|xk−1) = P (ϕk|ϕk−1, ϕ̇k−1, rk−1)P (ϕ̇k|ϕ̇k−1)

× P (rk|rk−1, ϕk, ϕk−1) (2)

Each of the terms in Eqn (2) are defined in Eqns (3)–(5).

P (ϕk|ϕk−1, ϕ̇k−1, rk−1) = 1ϕ (3)
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where 1ϕ is an indicator function that takes a value of one
if ϕk = (ϕk−1 + ϕ̇k−1)mod(M(rk)) and zero otherwise
(in our case, M(rk) = M ), meaning that the bar position
advances at the rate of the instantaneous tempo variable,
and folds back when it crosses the maximum value that is
defined by the length M of the metrical cycle.

P (ϕ̇k|ϕ̇k−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇
) × 1ϕ̇ (4)

where 1ϕ̇ is an indicator function that equals one if ϕ̇k ∈
[ϕ̇min, ϕ̇max] and zero otherwise. N (µ, σ) denotes a normal
distribution with mean µ and standard deviation σ.

P (rk|rk−1, ϕk, ϕk−1) =

{
A(rk−1, rk) if ϕk < ϕk−1

1r else
(5)

where, A(i, j) is the time-homogeneous transition proba-
bility from ri to rj , and 1r is an indicator function that
equals one when rk = rk−1 and zero otherwise. Since the
rhythmic patterns are one bar (cycle) in length, pattern tran-
sitions are allowed only at the end of the bar (cycle). The
pattern transition probabilities are learned from data.

The observation model is identical to the one used in
[14], and depends only on the bar position and rhythmic
pattern variables. We use a two dimensional spectral flux
feature in two frequency bands (Low: ≤ 250 Hz, High:
> 250 Hz). Using beat and downbeat annotated training
data, a k-means clustering algorithm clusters and assigns
each bar of the dataset (represented by a point in a 128-
dimensional space) to one of the R rhythmic patterns. We
then discretize the bar into 64th note cells (corresponding to
25 bar positions withMmax = 1600), collect all the features
within the cell for each pattern, and compute the maximum
likelihood estimates of the parameters of a two component
Gaussian Mixture Model (GMM). The observation proba-
bility hence is computed as,

P (y|x) = P (y|ϕ, r) =

2∑

i=1

wϕ,r,i N (y;µϕ,r,i,Σϕ,r,i) (6)

where, N (y;µ,Σ) denotes a normal distribution and for
the mixture component i, wϕ,r,i,µϕ,r,i and Σϕ,r,i are the
component weight, mean (2-dimensional) and the covari-
ance matrix (2 × 2), respectively.

2.4 Model-B: Transition and Observation model

We propose a simpler model-B (Figure 1b) that uses a di-
versemixture observationmodel incorporating observations
from multiple rhythmic patterns. Since all the rhythmic
patterns belong to the same type of meter (tālạ), we can
simplify model-A to track only the ϕ and ϕ̇ variables while
using an observation model that computes the likelihood of
an observation by marginalizing over all the patterns. The
motivation for this simplification is two-fold: the inference
is simplified, and we can increase the influence of diverse
patterns that occur throughout a metrical cycle in the infer-
ence.

Formodel-B, we first define xk = [αk, rk], whereαk =

[ϕk, ϕ̇k]. Based on the conditional dependence relations in
Figure 1b, the transition model now is,

P (xk|xk−1) = P (αk|αk−1) = P (ϕk|ϕk−1, ϕ̇k−1)P (ϕ̇k|ϕ̇k−1)
(7)

Eqns. (3) and (4) remain identical apart from the removal
of the dependence on rk−1 in Eqn (3). The observation
model is a pre-computed mixture observation model com-
puted from Eqn (6) by marginalizing over the patterns, as-
suming equal priors.

P (y|α) ∝
R∑

j=1

P (y|ϕ, r = j) (8)

3. INFERENCE METHODS

The goal of inference is to find a hidden variable sequence
thatmaximizes the posterior probability of the hidden states
given an observed sequence of features: a maximum a pos-
teriori (MAP) sequence x∗

1:K thatmaximizesP (x1:K |y1:K).
The inferred hidden variable sequence x∗

1:K can then be
translated into a sequence downbeat (sama) instants (ϕ∗

k =
0), beat instants (ϕ∗

k = i · M/B, i = 1, . . . , B), and the
local instantaneous tempo (ϕ̇∗

k). We describe two different
inference schemes, an exact inference using an HMM in a
discretized state space, and an approximate inference using
particle filters using the continuous values of ϕ and ϕ̇.

3.1 Hidden Markov model (HMM)

By discretizing the continuous variables bar position and
tempo, we can perform an exact inference using HMM.
We use the discretization proposed in [14], by replacing
the continuous variables ϕ and ϕ̇ by their discretized coun-
terparts, m ∈ {1, 2, . . . , ⌈M⌉} and n ∈ {nmin, nmin + 1,

· · · , nmax}, with the discrete tempo limits as nmin =⌊ϕ̇min⌋
and N = nmax = ⌈ϕ̇max⌉, where ⌈·⌉ and ⌊·⌋ denote the ceil
and floor operations, respectively. Eqns (2), (3) and (5)
remain valid. We define the tempo transition probability
within the allowed tempo range as,

P (nk|nk−1) =





1 − pn if nk = nk−1
pn

2 if nk = nk−1 ± 1

0 otherwise
(9)

where pn is the probability of tempo change. We useViterbi
algorithm [18] to obtain a MAP sequence of states with the
HMM. We refer to the HMMs for inference from model-A
and model-B as HMMa and HMMb, respectively.

The drawback of this approach is that the discretization
has to be on a very fine grid in order to guarantee good per-
formance, which leads to a prohibitively large state space
and, as a consequence, to a computationally demanding in-
ference. The size of the state space is S = M ·N ·R and
needs an S×S sized transition matrix. As an example, di-
viding a bar into M = 1600 position states, with N = 15
tempo states and R = 4 patterns, the size of the state space
is S = 96000 states. The computational complexity of
the Viterbi algorithm is O(K ·|S|2). Even though the state
transition matrix is sparse due to lesser number of allowed
transitions leading to a complexity ofO(K·M·R), the infer-
ence with HMM can become computationally prohibitive
and does not scale well with increasing number of states.
This problem can be overcome, for instance, by using ap-
proximate inference methods such as particle filters.

3.2 Particle Filter (PF)

Particle filters (or Sequential Monte Carlo methods) are a
class of approximate inference algorithms to estimate the
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posterior density of a state space. They overcome twomain
problems of the HMM: discretization of the state space and
the quadratic scaling up of the size of state space with more
number of variables. In addition, they can incorporate long
term relationships between hidden variables.

The exact computation of the posterior P (x1:K |y1:K) is
often intractable, but it can be evaluated pointwise. In par-
ticle filters, the posterior is approximated using a weighted
set of points (known as particles) in the state space as,

P (x1:K |y1:K) ≈
Np∑

i=1

w
(i)
K δ(x1:K − x(i)

1:K) (10)

Here, {x(i)
1:K} is a set of points (particles) with associated

weights {w
(i)
K }, i = 1, . . . , Np, and x1:K is the set of all

state trajectories until frame K, while δ(x) is the Dirac
delta function, δ(x) = 1 if x = 0 and 0 otherwise. Np

is the number of particles.
To approximate the posterior pointwise, we need a suit-

able method to draw samples x(i)
k and compute appropriate

weights w
(i)
k recursively at each time step. A simple ap-

proach is Sequential Importance Sampling (SIS) [3], where
we sample from a proposal distribution Q(x1:K |y1:K) that
has the same support and is as similar to the true (target)
distribution P (x1:K |y1:K) as possible. To account for the
fact that we sampled from a proposal and not the target,
we attach an importance weight w(i)

K to each particle, com-
puted as,

w
(i)
K =

P (x1:K |y1:K)

Q(x1:K |y1:K)
(11)

With a suitable proposal density, these weights can be com-
puted recursively as,

w
(i)
k ∝ w

(i)
k−1

P (yk|x(i)
k )P (x(i)

k |x(i)
k−1)

Q(x(i)
k |x(i)

k−1, yk)
(12)

Following [14], we choose to sample from the transition
probability Q(x(i)

k |x(i)
k−1, yk) = P (x(i)

k |x(i)
k−1), which re-

duces Eqn (12) to

w
(i)
k ∝ w

(i)
k−1P (yk|x(i)

k ) (13)

The SIS algorithm derives samples by first sampling from
proposal, in this case the transition probability and then
computes weights according to Eqn (13). Once we deter-
mine the particle trajectories {x(i)

1:K}, we then select the tra-
jectory x(i∗)

1:K with the highest weightw(i∗)
K as theMAP state

sequence.
Many extensions have been proposed to the basic SIS

filter (see [3] for a comprehensive overview) to address
several problems with it. We briefly mention some of the
relevant extensions, emphasizing their key aspects. Amore
detailed description of the algorithms has been presented
in [14]. The most challenging problem in particle filter-
ing is the degeneracy problem, where within a short time,
most of the particles have a weight close to zero, represent-
ing unlikely regions of state space. This is contrary to the
ideal case when we want the proposal to match well with
the target distribution leading to a uniform weight distri-
bution with low variance. To reduce the variance of the
particle weights, resampling steps are necessary, which re-
places low weight particles with higher weight particles by

selecting particles with a probability proportional to their
weights. Several resampling methods have been proposed,
but we use systematic resampling in this paper as recom-
mended in [3]. With resampling as the essential difference,
the SIS filter with resampling is called as Sequential Impor-
tance Sampling/Resampling (SISR) filter.

Inmeter tracking, due tometrical ambiguities, the poste-
rior distribution P (xk|y1:k) is highly multimodal. Resam-
pling tends to lead to a concentration of particles in one
mode of the posterior, while the remaining modes are not
covered. One way to alleviate this problem is to compress
the weights wk = w

(i)
k , i = 1, . . . , Np by a monotoni-

cally increasing function to increase the weights of parti-
cles in low probability regions so that they can survive re-
sampling. After resampling, the weights have to be uncom-
pressed to give a valid probability distribution. This can be
formulated as an Auxiliary Particle Filter (APF) [10]. Fur-
ther, a system that is capable of handling metrical ambigu-
ities must maintain this multimodality and be able to track
several hypotheses together, which SISR and APF cannot
do explicitly. A system called the Mixture Particle Filter
(MPF) was proposed to track multiple hypotheses in [22],
and was adapted to meter inference in [14].

In an MPF, each particle is assigned to a cluster that
(ideally) represents a mode of the posterior. During re-
sampling, the particles of a cluster interact only with parti-
cles of the same cluster. Resampling is done independently
in each cluster, while maintaining the probability distribu-
tion intact. This way, all the modes of the posterior can
be tracked through the whole audio piece, and the best hy-
pothesis can be chosen at the end. We use an identical clus-
tering scheme using a cyclic distance measure as described
in [14] to track several different possible metrical positions
at a given time. In the MPF, after an initial cluster assign-
ment, we perform a re-clustering before every resampling
step, merging or splitting clusters based on the average dis-
tance between cluster centroids. The clustering, merging
and splitting of clusters is necessary to control the number
of clusters, which ideally represents the number of modes
in the posterior. The mixture particle filter can be com-
bined with the Auxiliary resampling to give the Auxiliary
Mixture Particle Filter (AMPF). As recommended in [14],
we resample at a fixed interval Ts. It was shown in [14]
that AMPF can be effectively used for the task of meter
inference and tracking.

With model-A, we setup an AMPF (AMPFa) to com-
pute the pointwise estimates of the posterior of x1:K , rep-
resented by

{
w

(i)
x,K , x(i)

1:K , i = 1, · · · , Np

}
, whereNp is the

number of particles and w
(i)
x,K are the weights correspond-

ing to the particle trajectories x(i)
1:K . The weights are up-

dated as in Eqn (13), using the observationmodel in Eqn (6).
This particle filter is identical to the AMPF described in
[14], however, in this paper it is evaluated for the first time
assuming several patterns with transitions allowed.

For the simplified model-B, we setup AMPFb similarly
for α1:K , represented by

{
w

(i)
α,K , α

(i)
1:K , i = 1, · · · , Np

}
,

where w
(i)
α,K are the weights corresponding to the particle

trajectories α
(i)
1:K . Similar to Eqn (13), the weight updates
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Algorithm 1 Outline of the AMPFb algorithm
1: for i = 1 to Np do
2: Sample (α(i)

0 ) ∼ P (ϕ0)P (ϕ̇0), set w
(i)
α,0 = 1/Np

3: Cluster {ϕ
(i)
0 } and obtain cluster assignments {c

(i)
0 }

4: for k = 1 to K do
5: for i = 1 to Np do
6: Sample ϕ

(i)
k ∼ P (ϕ

(i)
k |ϕ(i)

k−1), Set c
(i)
k = c

(i)
k−1

7: w̃
(i)
α,k = w

(i)
α,k ×

R∑
j=1

P (yk|ϕ(i)
k , r = j)

8: for i = 1 to Np do ▷ Normalize weights

9: w
(i)
α,k =

w̃
(i)
α,k∑Np

i=1 w̃
(i)
α,k

10: if mod (k, Ts) = 0 then
11: Recluster and Resample {αk, wα,k} and obtain

{α̂k, ŵα,k}, update {c
(i)
k }

12: for i = 1 to Np do
13: Set α(i)

k = α̂
(i)
k , wα,k = ŵα,k

14: Sample ϕ̇
(i)
k ∼ P (ϕ̇

(i)
k |ϕ̇(i)

k−1)

for AMPFb are,
w

(i)
α,k ∝ w

(i)
α,k−1 P (yk|α(i)

k ) (14)

where P (yk|α(i)
k ) is computed as in Eqn (8) by marginal-

izing P (yk|x(i)
k ) over r

(i)
k . The AMPFb enables therefore

to incorporate the full expressivity of the observed patterns
into the inference. An outline of AMPFb is provided in Al-
gorithm 1.

The complexity of the PF schemes scale linearly with
Np irrespective of the size of state space, leading to an ef-
ficient inference in large state spaces. Further, compared to
the HMMusing Viterbi decoding that has a space complex-
ity of O(K ·|S|), the PF needs to store just Np state trajec-
tories and weights, significantly reducing the memory re-
quirements. An additional advantage is that the number of
particles can be chosen based on the computational power
we can afford, and we can make the state space larger with
no or only a marginal increase in the computational re-
quirements. Since the observation likehood can be precom-
puted, inference with model-B requires much lower com-
putational resources, with only a marginal increase in cost
during inference with increase in number of patterns.

4. EXPERIMENTS

The experiments aim to compare the performance of the
particle filter and the HMM inference schemes for meter
tracking with both model-A andmodel-B. Further, we wish
to see if using a larger number of patterns per rhythm class
(tālạ) improves meter tracking performance. Meter track-
ing is done for each type of meter (tālạ) separately, in a two
fold cross validation experiment.

4.1 Music Corpora

The primary dataset we evaluate on is the Carnatic music
dataset (CMD) used in [9]. It includes 118 two minute long
excerpts spanning four commonly used tālạs as shown in
Table 1, with a total duration of 236 minutes and over 5500

Tālạ M B #Excerpts
CMD

#Pieces
CMDf

Ādi (8/8) 1600 8 30 (60) 50 (252.8)
Rūpaka (3/4) 1200 3 30 (60) 50 (267.4)

Miśra chāpu (7/8) 1400 7 30 (60) 48 (342.1)
Khanḍạ chāpu (5/8) 1000 5 28 (56) 28 (134.6)

Table 1: The Carnatic music datasets, showing the cycle
length M used in the paper and the number of beats B
for each tālạ. The analogous time signature is also shown.
CMD is a subset of CMDf , with two minute excerpts from
full pieces. The number of pieces/excerpts in both datasets
is also shown, the numbers in parentheses indicate the total
duration of audio in minutes.

sama instances. To test if the results extend to full pieces,
we use the super set of CMD consisting of longer and full
length pieces (called CMDf ) as used in [21]. CMDf com-
prises about 16.6 hours of audio with over 22600 sama in-
stances. For comparability, we also present results on the
Ballroom dataset [5], using the annotations from [12].
4.2 Parameter Selection and Learning

The tempo ranges were manually set for Carnatic music as
ϕ̇ ∈ [4, 15] (cycle lengths between 1.33 s and 8 s) and ϕ̇ ∈
[6, 32] (bar lengths between 0.75 s to 5.3 s) for the Ballroom
dataset. With Mmax = 1600 (corresponds to ādi tālạ with
8 beats/cycle), the length of cycle M and the number of
beats B for each tālạ is shown in Table 1. For Ballroom
dataset, we used M = 1600 and M = 1200 for tracking
time signatures 4/4 and 3/4, respectively. For the HMM,
we use pn = 0.02 as in [12], and for the AMPF, we use
σϕ̇ = 10−4 · M . We explore the performance with R =

{1, 2, 4}, with the number of particles set toNp = 1500·R.
The other AMPF parameters are identical to the values used
in [14].
4.3 Evaluation Measures

A variety of measures for evaluating beat and downbeat
tracking performance are available (see [2] for a detailed
overview and descriptions of the metrics listed below 2 ).
We chose two metrics that are characterized by a set of di-
verse properties and are widely used in beat tracking eval-
uation. We describe it for beats, but the definitions extend
to downbeats/samas as well, with the same tolerances. We
use the prefix ‘s-’ and ‘b-’ to distinguish between the per-
formancemeasures of sama and beat tracking, respectively.

Fmeas (F-measure): The F-measure (a number between
0 and 1) is computed from correctly detected beats within
a window of ±70 ms as the harmonic mean of the preci-
sion (the ratio between the number of correctly detected
beats and all detected beats) and recall (the ratio between
the number of correctly detected beats and the total anno-
tated beats).

AMLt (Allowed Metrical Levels with no continuity re-
quired): In the AMLt measure (a number between 0 and
1), beat sequences are considered as correct if the beats oc-
cur on the off-beat, or are double or half of the annotated
tempo, allowing for metrical ambiguities. The value of this

2 We used the code available at http://code.soundsoftware.ac.
uk/projects/beat-evaluation/ with default settings
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Sama tracking Beat tracking
Measure s-Fmeas s-AMLt b-Fmeas b-AMLt

R 1 2 4 1 2 4 1 2 4 1 2 4
HMMa 0.733 0.736 0.713 0.837 0.837 0.804 0.85 0.847 0.850 0.868 0.874 0.852
AMPFa 0.708 0.697 0.704 0.827 0.809 0.822 0.846 0.833 0.843 0.872 0.874 0.862
HMMb 0.726 0.735 0.736 0.830 0.862 0.867 0.844 0.849 0.837 0.864 0.893 0.900
AMPFb 0.690 0.712 0.735 0.832 0.842 0.853 0.833 0.838 0.846 0.869 0.888 0.890

Klapuri [11] 0.175 0.181 0.657 0.650

Table 2: Meter tracking performance on CMD. In addition, the performance of meter tracking with the algorithm proposed
in [11] is also shown for reference.

Dataset CMDf Ballroom
Measure s-Fmeas b-Fmeas s-Fmeas b-Fmeas
HMMa 0.727 0.834 0.806 0.929
AMPFb 0.728 0.834 0.793 0.930

Table 3: F-measure for meter tracking on CMDf and the
Ballroom dataset, with R = 4. Values in each column are
not statistically significantly different.

measure is then the ratio between the number of correctly
estimated beats divided by the number of annotated beats.

4.4 Results and Discussion

We report the average Fmeas and AMLt values for all ex-
cerpts over all the tālạs for the HMM and AMPF schemes
in Table 2. The results for AMPF are the mean values over
three experiments. We conducted evaluations using sev-
eral other measures as well without any qualitative change
in results. Therefore, experimental results are documented
using these two measures. We use a three-way ANOVA
with tālạ, inference scheme, and R as factors to assess sta-
tistically significant differences (at 5% significance levels).

In general, we see that the beat tracking performance
is similar across all the inference schemes and values of
R, with the b-Fmeas and b-AMLt values being compara-
ble. This shows that adding a diverse observation model
and additional patterns does not add a significant change,
showing that handling pattern diversity is not needed for
beat tracking.

For sama tracking, we see that the AMPFs show sta-
tistically equivalent performance to the HMMs. The sim-
pler AMPFb performs as good or better than AMPFa, with
a lower computational complexity. Higher number of pat-
terns (R > 1) do not show significant improvement in
tracking performance, despite a richer observation model.
This observation needs further exploration to verify if in-
corporating more patterns with the currently used features
helps to improve sama tracking. Further, s-AMLt is signif-
icantly larger than s-Fmeas and shows that there is a poten-
tial for improvement in tracking the correct metrical level.

Though we report only consolidated set of results aver-
aged over all the tālạs, the tracking performance is signif-
icantly poorer for ādi tālạ (e.g. s-Fmeas = 0.4, b-Fmeas =
0.632 with AMPFb andR = 4), with superior (and statisti-
cally equivalent) results with other three tālạs (e.g. s-Fmeas
= 0.849, b-Fmeas = 0.92 with AMPFb and R = 4). This
is attributed to the long cycle durations and a large vari-
ety of patterns in ādi tālạ, which shows a definite scope for
improvement using higher number of patterns and better

observation models.
We extend the evaluation and report the performance

of HMMa and the proposed AMPFb on CMDf and Ball-
room datasets (in an identical setting, assuming that theme-
ter type is known) in Table 3. We see that the observations
from CMD extend to these datasets too. We further see a
similar performance between CMD and CMDf , that shows
that the AMPF generalizes to longer and full length pieces.

One of the main advantages of model-B over model-A is
the lower computational cost. For meter tracking under the
conditions described, all the inference schemes have faster
than real time execution. Inference in model-B is faster
than that in model-A: model-B speeds up inference by a
factor of about 5 for HMM and 2.5 for AMPF (for R = 4
and ādi tālạ). Even in the smaller state space with model-
B, HMMb has a higher memory requirement than AMPFb ,
which shows the utility of PF inference schemes.

5. CONCLUSIONS

For the task of meter tracking, we presented a simplified
Bayesianmodel that incorporates a richer observationmodel.
We compared the performance of an exact inference us-
ing an HMM using a discrete approximation of the mod-
els, with an approximate inference using an AMPF on the
exact model. The simplified model leads to faster infer-
ence and a similar performance as the full model, with the
performance extending to full length pieces and generaliz-
ing to different music styles. However, the proposed way
to enrich the observation model did not lead to significant
differences in performance. This might be caused by the
simplistic audio features, and improving signal represen-
tations appears as a necessary next step. In the future, we
plan to explore approximate inference in improved models
(such as [13] using an improved state space discretization
and tempo transition model) that also use better observa-
tion models and can effectively utilize multiple rhythmic
patterns. We also plan to extend meter tracking to Hindus-
tani music, where long cycles (longer than a minute) exist
and hence present additional challenges.
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ABSTRACT

We present an analysis of the topics and research groups
that participated in the ISMIR conference over the last 15
years, based on its proceedings. While we first investigate
the topological changes of the co-authorship network as
well as topics over time, we also identify groups of re-
searchers, allowing us to investigate their evolution and
topic dependence. Notably, we find that large groups last
longer if they actively alter their membership. Further-
more, such groups tend to cover a wider selection of topics,
suggesting that a change of members as well as of research
topics increases their adaptability. In turn, smaller groups
show the opposite behavior, persisting longer if their mem-
bership is altered minimally and focus on a smaller set
of topics. Finally, by analyzing the effect of group size
and lifespan on research impact, we observed that papers
penned by medium sized and long lasting groups tend to
have a citation advantage.

1. INTRODUCTION

Music Information Retrieval (MIR) is an interdisciplinary
research field that integrates a wide variety of research ar-
eas, including audio signal processing, musicology, mu-
sic psychology and cognition, information retrieval, and
human-computer interfaces. The collection of papers pub-
lished in the annual proceedings of the ISMIR conference
provides a wealth of information enabling us to mine for
knowledge such as the networks of researchers that con-
tribute papers and corresponding topics. Specifically, such
abundant data allows us to explore two main research ques-
tions. First we focus on topics in the field. Given the
breadth of the expertise of the field and the high speed
at which the digital technologies are developing, we in-
vestigate if popular topics can be transient. Second, we
study the stability of research groups that emerge from the
co-authorships of manuscripts, focusing on their sizes, di-
versity of topics and competitiveness. While various ap-
proaches for the exploration of knowledge in the ISMIR

c© Mohamed Sordo, Mitsunori Ogihara, Stefan Wuchty.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Mohamed Sordo, Mitsunori Ogi-
hara, Stefan Wuchty. “Analysis of the Evolution of Research Groups and
Topics in the ISMIR Conference”, 16th International Society for Music
Information Retrieval Conference, 2015.

paper collection exist, we considered a combination of net-
work and text analysis.

Recently, the analysis of scientific endeavors by investi-
gating author relationships and their manuscripts provided
insights into innovation and idea creation processes [3],
inter-dependencies between disciplines [2], or potential high-
impact discoveries [5]. Utilizing proceedings of the main-
stream conference we provide such a map of the status and
temporal evolution of the MIR field. To the best of our
knowledge, only two studies on the nature of the ISMIR
proceedings [7,10] have been presented recently. Grachten
et al. [7] applied text mining techniques and non-negative
matrix factorization to identify topics and study their evo-
lution over time. Lee et al. [10] applied simple text statis-
tics to detect topics in paper titles and abstracts. In our
case, we present a much broader analysis of research top-
ics, that we map to categories that were defined by the IS-
MIR community. While Lee et al. [10] also presented
a few statistics to identify patterns of co-authorship we
model the co-authorship as a complex network and study
its topology. Yet, the main contribution of this paper is the
identification of research groups and their evolution over
time, and especially their time and topic dependencies. In
the context of this paper, we do not use the definition of a
research group in its traditional sense (e.g., a research in-
stitution). Rather, we define it as a topological group in a
co-authorship network.

As for the organization of the paper we first describe the
network of collaborations among authors in section 2. In
section 3, we provide an analysis of the manuscripts text
contents with a generative mixture model, allowing us to
find temporal trends in the popularity of topics over the
years. In section 4 we identify research groups in the co-
authorship network and analyze their evolution throughout
the lifetime of the conference, investigating their time and
topic dependencies. Finally, we discuss our findings in sec-
tion 5.

2. CO-AUTHORSHIP ANALYSIS

Utilizing all manuscripts in the proceedings of the ISMIR
conference from 2000-2014 we observed that the mean
number of authors per manuscript is growing over time
(Table 1), confirming previous results [18]. Starting with
the proceedings of the 2000 conference, we added new
manuscripts that were published in a given year to a grow-
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Year Papers Authors Authors/Paper

2000 35 63 1.94
2001 37 82 2.54
2002 53 113 2.36
2003 47 108 2.74
2004 104 213 2.41
2005 114 232 2.73
2006 87 185 2.56
2007 127 267 2.84
2008 105 262 2.93
2009 123 292 3.05
2010 110 262 3.01
2011 133 320 2.97
2012 101 264 3.21
2013 98 232 3.02
2014 106 273 3.24

Table 1. For each year, we show the total number of papers
and authors that published a manuscript in the proceedings
of the ISMIR conference.

ing pool of papers. Based on such cumulative sets of manu-
scripts, we constructed undirected unweighted networks
G, where nodes represent authors, while edges indicate
their co-authorships up to a given year.

Table 2 suggests that the cumulative networks drasti-
cally increased in size over time, a statistics that coincides
with an increasing number of collaboration partners (i.e.
mean degree 〈k〉).

Another important measure of social networks is the
clustering coefficient, reflecting the transitivity of a net-
work. In particular, this network parameter determines the
fraction of edges that appear between the neighbors of a
given author over all such possible links [17]. Table 2 indi-
cates that the co-authorship networks appear increasingly
clustered, resembling a well known feature of other social
networks from different domains [9,12]. Such a high level
of clustering may be rooted in the assumption that many
authors work in the same research field, and as a conse-
quence, are aware of each others work [13]. Another pos-
sible explanation may be that authors tend to write papers
with colleagues from the same institution. Furthermore,
we stress that our way of constructing a network of collab-
orations between authors emphasizes manuscripts with a
large number of authors. Specifically, a set of authors that
penned a manuscript together is represented as a clique, a
graph that has a clustering coefficient of 1. Consequently,
manuscripts with many authors potentially introduce a bias
toward strongly clustered networks.

Another network parameter that well reflects the under-
lying topology of an emerging network over time is the
Strong Giant Component, SGC, defined as the greatest
connected subset of nodes in a network. In particular, a
high value of SGC points to the observation that the vast
majority of scientists are connected through mutual collab-
orations. During the first years of the conference (up until
2007), Table 2 indicates that the size of SGCs was small,

Year N 〈k〉 C 〈d〉 SGC D

2000 63 1.81 0.47 1.00 9.52% 1
2001 129 2.51 0.55 1.00 6.20% 1
2002 202 2.62 0.55 3.20 10.40% 6
2003 268 2.86 0.55 3.22 8.21% 6
2004 400 2.92 0.58 4.14 10.75% 10
2005 522 3.18 0.59 3.96 14.75% 9
2006 625 3.18 0.60 4.34 14.72% 10
2007 756 3.34 0.62 4.85 20.24% 11
2008 884 3.44 0.64 7.72 41.18% 17
2009 1041 3.58 0.65 8.13 46.11% 18
2010 1170 3.70 0.66 6.60 48.55% 15
2011 1339 3.76 0.67 6.47 53.70% 15
2012 1442 3.94 0.68 5.82 58.46% 14
2013 1548 4.03 0.69 5.74 61.18% 13
2014 1683 4.14 0.70 5.52 60.90% 13

Table 2. We show properties of the cumulative authors’
collaboration networks, combining manuscripts up to a
given year. In particular, N is the number of nodes, 〈k〉
is the mean degree, C is the clustering coefficient. Fur-
thermore, 〈d〉 is the avg. shortest path of the SGC, which
stands for the size (percentage of nodes) of the strong giant
component, while D is the diameter of the SGC.

suggesting that collaborations between authors appeared
rather scattered. However, the size of the SGC doubled
in 2008, indicating an increased convergence where previ-
ously present authors increasingly published a manuscript
together. On the other hand, the observed increase in size
also points to a gradual increase in the mean shortest path
〈d〉 between all pairs of nodes in the SGC. A closer look
at our data confirmed that the increase in size of the SGC
was the consequence of a merger of the two largest com-
ponents from the previous year. Notably, this topological
change was caused by a small set of nodes that bridged
the previously disconnected components in the underlying
network. As a consequence, the topological mean shortest
path lengths between nodes increased substantially since
shortest paths between nodes that were placed in previ-
ously disjoint components run through the small set of con-
necting nodes. Such an assumption is further confirmed by
the increasing diameter of the underlying networks defined
as the maximum of shortest paths through a given network
(Table 2).

3. RESEARCH TOPICS

The analysis of the time evolution of research topics is a
valuable asset for a research community to solve initial
problems and to adapt to challenging areas of research.
In this section, we automatically extract underlying top-
ics from the text content of proceeding papers, allowing us
to map the evolution of these topics since the inception of
the MIR field.
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topic 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

MIR Data & fundamentals
mus. signal processing 17.1 - - - - - 8.0 - - 19.5 - - 10.9 10.2 12.3
metadata, & semantic web 11.4 5.6 - 17.0 12.5 11.5 16.1 12.7 10.5 9.8 11.8 9.8 - - -
social tags & user gen. data - - - - - - - 13.5 10.5 12.2 10.9 12.8 11.9 12.2 -
lyrics & genres & moods - - - - - - - - 11.4 11.4 - 10.5 9.9 - 11.3

Domain Knowledge
comp. music. & ethnomus. - 8.3 - - - - - - - - - - - - -
mus. notation - 8.3 - - - - - - - - - - - - -
mir & cultures - - - - - - - - - - - 9.8 - 10.2 -

Mus. Features & Properties
melody & motives 11.4 - 11.3 8.5 8.7 - 9.2 11.9 - - - 11.3 12.9 - -
harmony, chords & tonality - 13.9 - - 13.5 8.8 9.2 10.3 9.5 13.0 10.9 10.5 11.9 10.2 -
rhythm, beat, tempo - 19.4 - 12.8 13.5 12.4 - - 13.3 8.9 11.8 - - 12.2 12.3
mus. affect, emot. & mood - - - 10.6 - - - - - - - - - 10.2 -
structure, segment. & form - - 11.3 - - - - - 10.5 12.2 10.0 12.0 8.9 10.2 13.2

Music Processing
sound source separation - - - - - - 8.0 10.3 - - 13.6 - 14.9 12.2 11.3
mus. transcrip. & annot. 5.7 8.3 - - - 11.5 - - - - - - - 12.2 -
optical mus. recognition - - - - - - 6.9 10.3 - - - - 9.9 - -
align., synch. & score foll. - - - 10.6 - 12.4 - - - - - - - - -
mus. summarization - - 7.5 - - - - - - - - - - - -
fingerprinting - - 11.3 - - - - - - - - 12.8 - - -
automatic classification 8.6 11.1 11.3 12.8 13.5 14.2 13.8 12.7 12.4 13.0 11.8 - - - 14.2
indexing & querying 22.9 13.9 9.4 10.6 7.7 9.7 9.2 - - - 10.9 - - - -
pattern match. & detection - 11.1 - 8.5 10.6 9.7 - - 11.4 - - - - - 5.7
similarity metrics - - - 8.5 9.6 - 11.5 8.7 - - 8.2 10.5 - - -

Application
user behavior & modeling - - - - - - - - - - - - 8.9 - -
digital libraries & archives 11.4 - - - 10.6 - - - - - - - - - -
mus. retrieval systems - - 22.6 - - - - - 10.5 - - - - - 8.5
mus. rec. & playlist gen. - - 15.1 - - 9.7 8.0 - - - - - - - 11.3
mus. & gaming - - - - - - - 9.5 - - - - - - -
mus. software 11.4 - - - - - - - - - - - - - -

Table 3. Utilizing a LDA model, we determined topic evolution over time, where topics are grouped according to the topic
classification in the call for papers. Values in bold correspond to the most salient topics in each ISMIR conference edition.

3.1 Topic extraction

We automatically extract the main topics by using Latent
Dirichlet Allocation (LDA) [4], a generative probabilistic
model in which documents are represented as random mix-
tures over latent topics. Each topic is characterized by a
multinomial distribution over words that form those doc-
uments [4]. As a main characteristic LDA assumes that
the topic distribution has a Dirichlet prior, which not only
results in a smooth distribution but also simplifies the prob-
lem of topic inference [16].

In particular, we used the MALLET implementation of
LDA, a java-based package for statistical natural language
processing, document classification, clustering, topic mod-
eling and machine learning applications of text [11]. MAL-
LET’s implementation takes a text corpus and the number
of topics (k) to generate as input, and produces a list of the
most relevant topics for that corpus, along with the topics’
most salient terms. Furthermore, MALLET also provides
a distribution of the topics among the documents that form
the corpus and includes a text pre-processing step prior to
generate the topic models.

Here, we build a corpus for each set of manuscripts in
the ISMIR proceedings in a given year and set k = 10,
resembling the number of oral sessions defined by the pro-
gram chairs, which typically group paper presentations by

their topic affinity. For the text pre-processing step, we
removed English stopwords, considered words that were
longer than 2 characters and used a combination of word
unigrams and bigrams. Since topics produced by an LDA
model are only described by their word distribution, we
manually assigned “titles” after an inspection of the most
probable terms. In particular, we used the list of topics
described in the conference call for papers 1 as our ba-
sis to assign and disambiguate topic titles 2 . We also ob-
served that this LDA implementation was systematically
producing a topic containing most of the common words in
any MIR publication (such as music, system, information,
query, retrieval). Since such topics were almost never the
most salient topic of a document in the corpus we removed
them from our analysis.

3.2 Topic evolution

Table 3 shows the most salient topics that appeared in the
ISMIR proceedings over time, as well as a visualization of
their evolution, pointing to their presence in each confer-
ence edition. Each value in Table 3 represents the percent-
age of papers per year whose most probable topic in the

1 http://ismir2015.uma.es/callforpapers.html
2 due to lack of space we made the topic distribution available online:

https://goo.gl/6OmGl5
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Figure 1. Fission/fusion patterns in social networks from [14]. Considering social networks over time, groups are governed
by dynamic events such as mergers (i.e .fusion) and splits of groups (fission).

document–topic distribution corresponds to the topic in a
given row. For instance, the topic indexing and querying
was the most salient topic of 22.9% of the papers in the IS-
MIR 2000 edition. We stress that the lack of a value for a
topic in a specific conference edition does not necessarily
point to its absence in the underlying edition. In fact, such
an observation rather indicates that the topic in question
was not among the k = 10 most salient topics that year.

For a better interpretation, we grouped topics accord-
ing to the topic classification in the call for papers. No-
tably, we observed that the most salient topics over time
belonged to the categories “MIR Data and Fundamentals”,
“Musical Features and Properties” and “Music Process-
ing”, respectively, categories that can be regarded as the
core categories in the MIR field. Some topics have been
largely present over time, such as automatic classification,
harmony, melody, etc. Other topics appeared or became
more popular halfway through the life-span of the confer-
ence (e.g. tags, lyrics, moods, structure, etc.) or in the
last few years (e.g. source separation and music cultures).
Such observations may be the consequence of introduc-
ing emerging research topics or approaches from “neigh-
boring” communities or from a shift in research funding
by national or international agencies. Finally, some top-
ics emerged that have only been present in a short time
period (e.g. digital libraries or music and gaming). In par-
ticular, we highlight the digital libraries topic, which was
more present during the first editions of the conference, but
disappeared from the most salient topics over time. Such
an observation may be explained by the increased focus on
music content- and context-based analysis (groups 1, 3 and
4).

4. GROUP DETECTION AND EVOLUTION

In the past few years, considerable attention has been paid
to uncovering topological groups in social networks. These
groups are expected to fundamentally impact the network’s
dynamical properties as well: nodes that belong to the same
tightly connected module are expected to display highly
correlated dynamical activity, compared to nodes belong-
ing to different groups. Previous studies found that large
groups are more stable and have a longer lifetime if they
are capable of dynamically altering their membership, sug-

gesting that an ability to change the group composition re-
sults in better adaptability [14]. Small groups display the
opposite trend, suggesting that their condition for stability
is an unchanged group composition. These discoveries are
expected to play a fundamental role in our understanding
of human dynamics, with particular impact on our ability
to detect persuasion campaigns in a changing network en-
vironment. Notably, dynamics of group composition have
been noted by Dunbar and co-workers as a key mecha-
nism to understand underlying human behavior across do-
mains [1, 6]. In particular, we not only expect that such
patterns will occur in the co-authorship networks based on
conference proceedings of the ISMIR conference but also
assume that the (in)stability of groups is a function of their
underlying topics.

4.1 Method

Our method is a modification of the method presented in
[14]. In particular, we define a co-authorship network for
each edition of the conference, where each edge represents
a manuscript that a pair of authors penned in a given year.
Furthermore, we extract groups using the clique percola-
tion method (CPM), an algorithm for the detection of over-
lapping network communities [15]. Groups in CPM, called
k-clique percolation clusters, are built up from adjacent k-
cliques 3 . Two k-cliques are considered adjacent if they
share k − 1 nodes. Such a definition allows nodes to ap-
pear in several k-clique percolation clusters, a suitable as-
sumption, given that authors may participate in more than
one group. Specifically, we set k = 3, since papers in
the ISMIR proceedings are co-authored on average by 3
scientists. As a consequence, this restriction implies that
authors who collaborate with less than 2 other authors will
never be part of a group.

After groups have been determined in a given year, we
need to find their possible matches in subsequent years. In
particular, we construct a joint network by merging nodes
and edges of networks at consecutive time steps t and t+1
[14], considering different fission/fusion patterns (Fig. 1).
We label the set of groups in time t as D, the set of groups
in time t+1 asE, and the set of groups in the joint network

3 subgraphs of size k in which each node is connected to every other
nodes
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life span 1 2 3 4 5 6 8 9

num. groups 327 65 24 7 2 5 1 1

Table 4. Distribution of groups by their life time

as V . The definition of CPM implies that each group in D
(E) is contained in exactly one group in V , although not
all groups in V will contain a group in D (E). If a group
Vk ∈ V contains a group Ej ∈ E but no group in D, then
group Ej is considered born. Similarly, if a group Vk ∈ V
contains a group Di ∈ D but no group in E, then group
Di is considered dead. Furthermore, if a group Vk ∈ V
contains one or more groups in D and one or more groups
in E, then the relative overlap between all different pairs
(Dk

i , E
k
j ) is obtained as:

Ck
i,j =

Dk
i ∩ Ek

j

Dk
i ∪ Ek

j

(1)

The pair (Dk
i , Ek

j ) of groups that maximizes this for-
mula is considered a match of the same group in consecu-
tive time steps t and t+1. The remaining groups are either
marked as dead (Dk) or born (Ek).

Contrary to the approach in [14], we considered the
overlap of nodes (instead of edges) to check whether groups
in D and E are contained in V . Since our networks are
built at discrete times two networks at time steps t and
t + 1 do not necessarily have a high overlap as suggested
in [14]. Although the overlap of nodes might incur more
noisy matchings [14], we observed that our approach is
less sensitive to the noise since the overlap of networks is
limited.

In some cases, we may consider a group dead in time
step t + 1 but observe it re-born in time step t + 2 as a
consequence of members that did not publish a paper in the
proceedings of year t+1. Even though the time interval is
larger than one year we consider them as the same group.
Specifically, we matched such dead groups at time t with
born groups at t+n with n = 2, as larger values of n only
merged a very small number of groups.

4.2 Experimental results

Applying our method to our set of ISMIR proceedings we
obtained a list of 432 groups, distributed as shown in ta-
ble 4. Notably, we observed that only 40 groups persisted
for 3 or more years, representing less than 10% of the total.
In particular, we split the groups in two categories: groups
with short (< 3) and a long life spans (≥ 3). Analyzing
group sizes we determined the average size of each group
(in terms of group members in each time step) over time
and split the groups in three size categories: small (avg.
size < 4 members), medium (4 ≤ avg. size < 5) and large
(avg. size > 5). The three size categories contained 234,
120 and 78 groups, respectively.

Group size σavg Avg. cumul. authors

small 0.58 5.17±1.47
medium 1.18 9.06±2.54
large 2.35 13.55±3.47

Table 5. Group member variability in groups with long life
time.

Group size µ (σ) median

small 3.17±1.07 3
medium 3.88±1.60 3
large 6.0±2.04 5

Table 6. Topic variability in groups with long life time.

4.2.1 Group member variability

We analyzed the variability of group members when groups
persisted for a longer period of time. In particular, we
calculated the variance of group size for each group in
each group category, and averaged them using σavg =√∑

t var(st), where st is the size of a group at a partic-
ular time t. Moreover, we computed the average number
of distinct authors that participated in the group at a given
time. Table 5 indicates that larger groups tend to have a
higher variability of members to persist for a longer pe-
riod of time. Notably, we observed the opposite when we
considered small groups, confirming results in [14].

4.2.2 Topic variability

A higher topic variability means that groups change top-
ics constantly throughout their life time. In particular, we
calculated the average number of topics covered by small,
medium and large groups (Table 6). Similar to the pre-
vious experiment, we only considered groups with a life
time ≥ 3. To persist longer, large groups tend to cover
more topics as exemplified by a higher topic variability, as
opposed to medium or small groups. Such observations
suggest that the persistence of groups does not only de-
pend on their member dynamics, but also on the variability
of research topics.

4.2.3 Group characteristics and scientific impact

Focusing on the relation between group characteristics and
scientific impact we considered the number of citations of
each paper, as of Google Scholar, representing an indica-
tor of scientific impact. Specifically, we group papers by
their most salient topic and only select the top 10 most
cited papers in each topic, providing a total of 243 papers
from 28 different topics 4 . Out of this set of 243 papers, we
observed that only 137 were published by groups while the
remainder was penned by one or two authors. As presented
in Table 7 we observed that papers written by medium
sized groups tend to get significantly more citations than

4 some topics are present in less than 10 papers.
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Group size/lifespan avg. paper citations # papers

small 62.54±54.74 54
medium 113.67±107.56 37
large 64.65±40.71 46

short 73.49±67.37 95
long 85.12±83.77 42

Table 7. Relation between group characteristics (size and
life span) and scientific impact. We only consider the top
10 most cited papers per topic.

other group categories. As for aspects of a group’s life
time, papers by groups that last longer tend to get more ci-
tations than short living groups. Such an observation may
be rooted in the assumption that persisting research groups
with stable members may have a higher chance of getting
noticed by their peers, positively affecting their research
impact. Furthermore, we stress that the distribution of ci-
tations has heavy tails [18]. As a consequence the number
of citations of highly cited papers varies widely, explaining
the large margin of error in our analysis.

5. CONCLUSIONS

In this paper, we analyzed the evolution of the MIR field
represented by the proceedings of its most prestigious con-
ference ISMIR over the last 15 years. Notably, we found
that the co-authorship network indicated a converging field
of authors as indicated by the emergence of large con-
nected and clustered network components as well as a trend
toward larger research teams. While such a trend may
be rooted in the way we constructed the network of co-
authorships, our results also suggest that authors that have
previously published conference papers separately increas-
ingly collaborate. Therefore, present conference contribu-
tions may be viewed as ’seeds’ for future collaborations
between researchers that have not yet worked together. As-
suming that increasing levels of collaboration govern inno-
vation and the development of a research field, our results
indicate that the ISMIR conference is a potential driver of
the Music Information Retrieval field.

Furthermore, a topic analysis revealed persistent as well
as ’rising’ and ’falling’ research topics over the years, pro-
viding a simple assessment of ISMIR’s evolution. Such
an analysis allowed us to investigate the longevity as well
as the salience of certain topics. Our results also indicate
the emergence of novel topics that potentially may dom-
inate the focus of conference contributions in the future.
Moreover, we assumed that the evolution of topics may be
a function of the underlying groups of co-authors, prompt-
ing us to analyze their composition. Notably, we found
that large groups persist through higher variability of team
members while small groups show the opposite behavior.
Furthermore, large groups show more variability of topics
as opposed to medium or small groups. While not neces-
sarily a function of group size, such results suggest that the

variability of group composition may be the driving factor
of topic variability. In particular, such results support the
notion that groups composed of incumbents and newcom-
ers have a heightened chance of success [8]. As a conse-
quence, our results suggest that large transient groups may
be the drivers for innovation given that such groups pro-
vide topic variability. In turn, the arrival of new members
of a group may be accompanied by the introduction of new
topics. As such, our observations also suggest that group
persistence is not only a question of the variability of team
members but also of research topics, ultimately providing
a competitive edge.
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ABSTRACT

Performance of a musical work potentially provides a rich
source of multimedia material for future investigation, both
for musicologists’ study of reception and perception, and
in improvement of computational methods applied to its
analysis. This is particularly true of music theatre, where a
traditional recording cannot sufficiently capture the ephem-
eral phenomena unique to each staging. In this paper we
introduce a toolkit developed with, and used by, a musi-
cologist throughout a complete multi-day production of
Richard Wagner’s Der Ring des Nibelungen. The toolkit
is centred on a tablet-based score interface through which
the scholar makes notes on the scenic setting of the perfor-
mance as it unfolds, supplemented by a variety of digital
data gathered to structure and index the annotations. We
report on our experience developing a system suitable for
real-time use by the musicologist, structuring the data for
reuse and further investigation using semantic web tech-
nologies, and of the practical challenges and compromises
of fieldwork within a working theatre. Finally we con-
sider the utility of our tooling from both a user perspective
and through an initial quantitative investigation of the data
gathered.

1. INTRODUCTION AND MOTIVATION

The performance of a fully staged opera is perhaps the
richest form of production when considering the potential
for a wide diversity of music information united around
a single body of work. Its study provides both opportu-
nity and challenges for gathering, organising, retrieving,
and analysing data and artefacts from and about the event.
Thanks to a willing partnership with the Birmingham Hip-
podrome and the Mariinsky Opera under the baton of Val-
ery Gergiev, their performance of all four operas compris-

c© K. R. Page, T. Nurmikko-Fuller, C. Rindfleisch, D. M.
Weigl, R. Lewis, L. Dreyfus, D. De Roure.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: K. R. Page, T. Nurmikko-Fuller,
C. Rindfleisch, D. M. Weigl, R. Lewis, L. Dreyfus, D. De Roure. “A
toolkit for live annotation of opera performance: Experiences capturing
Wagner’s Ring Cycle”, 16th International Society for Music Information
Retrieval Conference, 2015.

ing Richard Wagner’s Der Ring des Nibelungen (hence-
forth Ring) over five days in November 2014 presented a
unique opportunity to develop and trial a musical perfor-
mance annotation kit providing a structured frame of ref-
erence for interpreting collections of multimedia data.

In this paper we report on the design and implementa-
tion of the annotation software and supporting tools, which
were co-designed with a musicologist to provide maximal
utility when deployed for fieldwork in a working theatre.
We begin by considering motivations from the fields of
musicology and Music Information Retrieval (MIR).

1.1 Musicological motivation

In recent decades, methodological shifts such as a ‘perfor-
mative turn’, widely affecting research in the Arts, Human-
ities and Social Sciences, and reception theory questioned
musicology’s traditional focus on the work as an idealised
concept and on the written score. Instead, music is consid-
ered as a continuous cultural practice, couched within the
respective contexts in which it is perceived, which attaches
an increased value both to performance as a general con-
cept or ritual as well as to specific performance events [6].
The individual realisation of a work in performance, espe-
cially in music theatre, differs significantly from the ab-
stract aesthetic concept captured in the score: while the
musical dimension may be treated with a high degree of
‘faithfulness’, scenic interpretation is created afresh in ev-
ery new staging. Even in cases such as Wagner’s music
dramas, in which music and scenic events are coordinated
down to the smallest detail, the degree to which his scenic
instructions are followed varies considerably, and the re-
ality of individual stagings goes far beyond the concept in
the score. This raises the question of how a music-dramatic
performance, as an ephemeral phenomenon, can be cap-
tured [14]. Analyses of recorded performances are almost
as old as the respective technologies themselves [9]; but
as the recording often assumes the status of an aesthetic
text in the process, ephemeral phenomena are again over-
looked [5]. As an audiovisual recording is neither an ob-
jective nor an exhaustive documentation, the investigation
of new ways of capturing different kinds of performance
data is a worthwhile undertaking. Live annotation of a per-
formance helps to overcome the ‘recording bias’ by en-
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abling researchers to document events and gather informa-
tion which cannot be reified in audiovisual recordings. The
method of documentation and the resulting record is more-
over of a significantly different quality: live-annotation al-
lows for a selective, focused and structured record-keep-
ing, where different annotation schemes can be tailored to a
specific research question, thus integrating documentation
with on-the-fly analysis. While digital technologies ease
gathering of this information, this comes at a scale greater
than could be recorded ‘by hand’. The ability to semanti-
cally structure gathered data for publishing and reuse, and
to undertake computationally assisted analysis, provides
further breadth to the study of performances.

1.2 MIR motivation

A second motivation is the utility of a well-described and
structured multimedia dataset, annotated by an expert mu-
sicologist, and tooling to create such corpora, to inform,
refine, and test MIR algorithms. A comprehensive data
source could act as an authoritative ground truth for a va-
riety of MIR tasks including: automated identification of
musicological facets and melodic phrase recognition (e.g.
leitmotif detection); tempo prediction and score following
(based on page turns and annotations). It holds prospects
for hypothesis-driven exploration of bio-sensed data mea-
sured from audience members, and for calibration of auto-
mated prediction of listener arousal from scores, and po-
tentially that of musical expectation and mood.

2. RELATED WORK

The complementary nature of performance studies and em-
pirical musicology (§6) has been noted by Cook [6]. Ker-
shaw [14] discusses performances as “site-specific spec-
tacles”, reporting research that largely confirms theatre re-
ception as extensively influenced by idiosyncratic observer
perspectives. The recording as the most accurate captur-
ing of the live performance has been commented on by
Trezise [24], while Doğantan Dack [8] used video record-
ings for a performer-centred study of chamber music, al-
though not extending to theatrical aspects and staging.

In Section 3.3 we capture the scenic elements of per-
formance through annotation. The extensive ethnographic
study of musical annotations carried out by Winget [25] il-
lustrates existing precedent for this approach, though from
the perspective of musicians marking a score rather than a
musicologist annotating a live operatic performance. Our
technique is strongly guided by established rehearsal prac-
tice for opera, where the scenic aspects and stage directions
that constitute a new staging are captured in an annotated
score. These ‘scripts’ are not usually published, and no
other works capturing timings of specific features of a live
performance are known to the authors.

An overview of digital technologies in performance stud-
ies by Marsden [15] contends that research successfully
bridging musicology with the digital is found within the
domain of music information retrieval, rather than musical
or performance analysis. For exploratory analysis, Dolan

et al. refer to Sonic Visualizer [3, 11], but are exclusive
of staging, theatrics, and actor dynamics, the digital anno-
tation of which has little prior work. Okumura et al. [18]
modelled ways to capture deviations from strict interpreta-
tions of the score during a performance – a potential use
case for our dataset. A model for acquiring content, de-
scription of data, and subsequent evaluation that comple-
ments our work is been outlined by Repetto and Serra [21].

Reflecting on corpora containing live performance and
annotations, Bainbridge et al. [1] list The Hathitrust Digi-
tal Library [4], and the International Music Score Library
Project (IMSLP) [16], as examples of large-scale digital
libraries for or including music and music-related data;
Doerr et al. comment on the role of metadata for digital
library resource retrieval [10]; cross-cultural approaches
and models for resource discovery in music digital libraries
have been examined by Hu et al. [13] and Porter et al. [20]
respectively; and Smith et al. [23] designed and imple-
mented a large database for structural annotation. These
inform our ontological structures (Section 3.2).

3. DESIGN AND IMPLEMENTATION

The Musical Score Annotation Kit – ‘MuSAK’ 1 – was as-
sembled from off-the-shelf hardware and applications com-
bined with additional bespoke software, for recording the
ephemera of live performance, as motivated in Section 1.1.
It was designed to three primary requirements: (i) an inter-
face sufficiently intuitive and fast enough to operate so that
the musicologist could annotate under the pressure of a live
performance, including turning pages to match activity on
stage; (ii) for reconfigurability to incorporate changing an-
notation techniques and structures developed in the course
of preparatory study prior to the performance events; and
(iii) to be adaptable to the uncertainties of fieldwork in a
working theatre environment, including potential changes
to locations, power supply, access, etc. and extremely lim-
ited ‘dress rehearsals’ with a touring production.

3.1 Toolkit components

3.1.1 Annotation server and tablet interface

At the heart of MuSAK is an annotation system used by
the musicologist during the performance. Initial designs
called for a taxonomic palette of symbols that could be se-
lected on an iPad tablet touchscreen and placed as annota-
tions onto a digital copy of the score. This quickly raised
three problems: (i) all proposed user interface sketches for
selecting one of many annotations were complex and in-
trusive enough to interrupt score following and the per-
formance observation; (ii) the operational cognitive load
was judged high and different enough from traditional ‘pa-
per and pencil’ marking to require a significant period of
learning and training before use at a live event; (iii) pre-
determining an adequate set of music and scenic symbols
required several weeks’ precursory study, leaving limited
time to add symbols to the system; furthermore, symbols
might be created ad-hoc during use.

1 http://www.transforming-musicology.org/tools/metaMuSAK
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A pragmatic compromise was reached: short piano score
pages from the IMSLP music library 2 were shown on a
tablet, allowing freehand digital annotations according to a
pictogram key of the musicologist’s design. Desirable ‘in
content’ semantics were lost, but a user experience strongly
matching the traditional and familiar pattern of score mark-
ing was gained. It retained digital advantages including
timestamped annotations and ease of saving, replacing,
modifying, and deleting content. Image layers were ‘flat-
tened’ to combine scores and existing annotations into new
images, which could be redeployed for re-annotation.

A Union Platform 3 server with custom room module
was run on a laptop deployed in the theatre, handling stor-
age and communication of the annotation events. To sim-
plify distribution and quick modification, each score page
was served to the tablet as a JPEG resource from an HTTP
daemon, alongside client HTML and Javascript communi-
cating with Union from the regular Safari web browser.

The web client implements buttons to turn pages and
undo annotations; all annotations were recorded using Java-
script event handlers to millisecond accuracy and stored
both by the browser and by Union which logged to file 4 .
The tablet and server were networked using a small battery
powered wireless router with a private IP address space.

3.1.2 Digital pen

The tablet tool is, by necessity and design, reductionist. In-
evitably some elements of the live performance are worthy
of note, but either not preconceived within the symbolic
key, or so unique as to require a longer form description.
To accommodate this the kit includes a Livescribe Echo 5

digital ‘smart pen’. It has a standard ballpoint pen tip, but
when used in conjunction with ‘Anoto’ paper, captures a
digital copy of all writing – the paper is printed with a faint
non-repeating pattern, which is read by a small infra-red
camera in the pen that ascertains nib position within and
between pages. While ‘in content’ semantics are not auto-
matically decoded, the use of the pen is similar to standard
note taking, and thus minimises intrusiveness. The digital
transcription is downloaded from the pen using USB.

A second feature is a microphone for timestamped au-
dio recordings. When polite to speak aloud, short audio
comments were taken in lieu of written notes; when silence
was required, the microphone captured background noise
for the duration of the performance. While low quality, the
latter is sufficient to calibrate temporal synchronicity.

3.1.3 Score following and replay tool

We developed a second, simple, Web application for fol-
lowing and recording the page-turns during the performance
by a second operator, independent to the annotator (who
might skip forward and backwards between pages to add

2 http://imslp.org/
3 http://www.unionplatform.com/
4 1 CSV file per score page with co-ordinate defined paths tracing the

annotations, 1 row per straight line. Each annotation path may be de-
scribed by multiple lines; paths within the same ‘pen down’-‘pen up’
event are given the same timestamp. Pages without annotations are empty
but still timestamped to record page turn times.

5 http://www.livescribe.com/uk/smartpen/echo/

notes during quieter spells). The score-following page turns
capture timings for the realization of the music contained
on each page for this specific performance. Pages of the
score are rendered one at a time, timestamped in a Post-
greSQL database when the user advances to the next page.

An extension of this interface displays tablet annota-
tions (§3.1.1) in real-time using an HTML canvas superim-
posed over the score. Data is converted from CSV to JSON
to ease JavaScript working and a custom renderer calcu-
lates the appropriate time delta before drawing a stroke.
JSON page-turn timestamps were also combined with the
score, turning pages at the correct moment.

3.1.4 Audio and video

As is typical in commercial theatres, audio and video feeds
of the performance were available within the venue (§4)
but, also typically, limited distribution rights preclude their
inclusion in public archives. It is desirable, and for some
calculations essential, to reference their implicit existence,
particularly when synchronising captured annotations for
replay (§3.1.3 & §4) and structured data dissemination
(§3.2) – or rather, to explicitly reference the timeline again-
st which the notional recording was made 6 . For replay
of annotations it is possible to include a substitute audio
recording of an alternate performance (§4).

A second distinct video use was recording the annota-
tion actions of the musicologist, providing a contextual ref-
erence for toolkit evaluation and, should the Union server
fail, potential for reconstruction of annotation times.

3.2 Data publication

The use of semantic technologies to publish performance
metadata from the Internet Archive Live Music Archive 7

is described by Bechhofer et al. [2], and in the context of
diversifying and enriching music information retrieval by
Page et al. [19]. Crawford et al. [7] examines the potential
of Linked Data for early music corpora, and Bainbridge et
al. [1] comments on the effect of musical content analy-
sis and Linked Data in the context of digital libraries. Se-
bastien et al. [22] report on ontology creation for musical
perfomance, forms and structures.

Adopting these motivations, and to provide a strong
foundation for the further investigation and reuse for musi-
cology and MIR, we have structured our data as RDF. This
entails complex ontological structures to fully and explic-
itly represent the items and their relationships, illustrated
in Fig.1 by the timeline patterns required to encode the
apparently simple relationship between the annotation of
score pages and their performance on stage 8 .

A second benefit of web technology is fidelity of access
at the resource level. For example, we might publish the
overall structure and formal annotations, but restrict access
to the video to individually registered ethnographers.

6 While the recording is not technically required in addition to the time-
line of the recording, its conceptual, if not actual, inclusion can simplify
the metadata encoding structures and increase their comprehension.

7 https://archive.org/details/etree
8 See [17] for a detailed description of Linked Data generation.
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Figure 1. Simplified data modelling.

3.3 Score preparation and musicological annotations

Central to the annotation workflow, and used in several
tools, the score page images required several iterations of
processing 9 and annotation before distribution in the kit.
Piano and vocal arrangements were chosen to reduce the
frequency of page turns, converted from IMSLP PDFs to
images 10 . Screen use was reduced by a semi-automated
process: whitespace detection identified edges, and mark-
ers indicating proportionately smaller margins were accept-
ed or adjusted in a simple editing view; saved geometries
enacted the crop and enable later scaling of annotations
for overlay on original scores. Artefacts from the pre-
IMSLP scanning process were cleaned and score images
sharpened. Scripts applied a consistent naming scheme for
images, used later for inter- and intra-opera page ordering.

A two stage annotation process reduced the note-taking
required during the live performance to a minimum. An-
notations extracting certain musical points of interest in the
score (such as leitmotifs and marked changes of tempo or
dynamics) were made by hand, using symbols designed
prior to the performance. Each opera score was marked
over an average of three days 11 and scanned to images,
creating the first derivative layer.

The musicologist used the same symbolic key to anno-
tate this layer using the tablet during the live performance,
making further notes where musical aspects differed from
those expected and previously marked, and of ‘stage direc-
tions’ (such as lighting, use of props, actions and move-
ments of the characters) which were not directly marked in
the original score yet are critical for any interpretation of
the performance. These live annotations were ‘flattened’
into a second derivative image layer of the score.

4. TOOLKIT DEPLOYMENTS

The kit was deployed by a musicologist and two techni-
cal assistants as part of a larger project team for the Mari-
insky Opera’s production of the Ring at the Birmingham
Hippodrome. Installation in a working theatre hosting a
large touring troupe 12 necessitated quick adaptations to
the limitations of the available spaces and ad-hoc solutions
as events unfolded – the majority beyond the control of
the annotation team. Earlier design decisions to reduce

9 The digital processing scripts described here were implemented us-
ing Image Magick and the Perl Image::Magick module.

10 An image file per page; served by respective web servers in the kit.
11 For context, the score for Das Rheingold (the shortest) is over 250

pages; Götterdämmerung (the longest) comprises 365 pages.
12 Whose predominant language was Russian, compared to English for

the annotation and Hippodrome teams!

the technical complexity of the components proved worth-
while – it is not an understatement to report that a more so-
phisticated version would have been insufficiently resilient
to the challenges of this fieldwork.

For the first night’s opera (Das Rheingold) the musi-
cologist was located in a dressing room backstage with an
audio and video feed from the stage; while the quality of
this viewing was far from ideal, it enabled spoken Live-
scribe annotations 13 . On subsequent nights (Die Walküre,
Siegfried, & Götterdämmerung) the ‘audio describing’
room was used, adjoining a lighting gallery rear of the cir-
cle and with an unobstructed view of the stage. In this
improved location lights were dimmed and silence main-
tained; notes were written, not spoken. The annotation
server and router were co-located with the musicologist ev-
ery night and a video camera recorded the annotation pro-
cess. The score-following annotation system was run from
a laptop in a theatre office with an audio feed provided for
the operator.

While the simplified design generally paid dividends,
there were some malfunctions: we had not expected nor
tested for the hour long second interval in Die Walküre
and the connection between tablet and annotation server
timed out. The most practicable solution was to restart
both tablet and server, losing annotations for the first scene
of the third act 14 . A second issue occurred when pag-
ing through tablet annotations after a performance, causing
time-stamps to be rewritten – original times were reconstr-
cuted from page turn logs and intra-page timings.

The captured Ring totalled 15 hours, consisting four
nights’ performance over five days, with corresponding tab-
let activity of over 100,000 strokes making 8,216 annota-
tions and almost 1,300 performance based page turns. The
kit deployment and data capture generated 1,316 digital
images, 104 pages of writing producing nearly 13 hours
of digital pen replay, and 15 hours of video footage. While
Network Time Protocol (NTP) clients were used to syn-
chronise equipment clocks some drift was observed, due to
differences in Operating Systems and many devices lack-
ing a live connection to an NTP server; these offsets are
crucial for data replay and thus explicitly recorded for data
publication (§3.2).

A second deployment of the kit demonstrated its flexi-
bility in reconfiguration: at a public engagement event, au-
dience members used their mobile devices to provide anno-
tations while listening to a live audio replay, either by an-
notating musical score, or “annotating” by placing marks
on a simple image with zones for e.g. fast/slow, loud/soft.
Both versions of the interface were provided using simulta-
neous client connections. Comparative visualisations were
played to a substitute audio track, derived from a commer-
cial recording using the MATCH Vamp plugin 15 and the
rubberband audio time warping tool 16 .

13 In German, the musicologist’s native tongue.
14 Which includes the section popularly known as the Ride of the

Valkyries. The cause of this problem was not indicated in logs; rebooting
may have destroyed debugging evidence.

15 https://code.soundsoftware.ac.uk/projects/match-vamp
16 http://breakfastquay.com/rubberband/
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Opera Shapes
/page S.D. Dur-

ation S.D. Over-
head S.D.

Das Rheingold 5.46 4.6 34.92 15.78 -0.028 5.83
Die Walküre 6.95 6.42 44.31 26.59 0.038 8.62
Siegfried 5.76 5.19 39.23 19.06 0.044 12.97
Götterdämmerung 7.22 5.52 43.4 25.45 -0.47 14.98

Table 1. Mean annotation shapes per page, page perfor-
mance durations and annotation overhead (both seconds).

5. USER EVALUATION

Post-deployment interviews with the musicologist evalu-
ated the usablity of MuSAK in this small trial according to
learnability, efficiency, memorability, and satisfaction [12].

Defined as the degree of ease with which functionality
can be learnt and task proficiency gained, learnability was
evaluated through the experience of acquiring the skills
necessary to complete the annotation process. The mu-
sicologist found the system non-invasive and in-line with
existing annotation pragmatics, minimising training time:

“[Annotation is] very similar to the process that I as
a musicologist used to do regularly...I think it worked
very well because [it] fit in with actions I was very well
adapted to...the tools were very non-invasive.”

Efficiency of use was measured in annotation shapes per
score page and analysed through mean and standard devi-
ation (Table 1). The average number of annotation shapes
per page was between five and seven across all operas, cor-
responding to an average of 9.7 shapes per minute.

Memorability of the kit – the musicologist’s recall of
set-up and annotation after a five month period of non-use
– was assessed using a think-aloud protocol. The evalua-
tion concluded she remembered both to a very high extent.

A qualitative evaluation assessed whether functionality
and performance were satisfactory: the musicologist de-
scribed the experience as follows, believing time needed to
make additional freehand annotations and cognitively pro-
cess observations made page turn annotations inaccurate.

“I was quite well able to keep up with the pace... an
important realisation is that making these scenic anno-
tations [...]requires a lot of time to think and... process
even if it is only like 10 seconds or 5 seconds.

Page turn analysis (§6) indicates that, on average, the an-
notator could keep pace with the performance.

The musicologist reported an ability to capture the id-
iosyncratic profile of each specific performance, includ-
ing deviations from the score or expectations based on the
score, as well as staging, lighting, and the behaviour of the
actors. The kit was described as supportive of traditional
annotation paradigms, not necessitating new skills for ef-
fective use, and the touchpad screen and stylus were:

“intuitive [...] similar to using pen and paper which ev-
eryone [...] analysing music is very used to.”

The additional affordances of a digital system were noted,
including the automatic capture of the temporal profile of
the performance and the benefit of being able to easily cre-
ate corrections, and undo mistakes.

Figure 2. Musicologist’s page viewing durations and per-
formance durations for those pages (Siegfried Act I).

6. DATA INVESTIGATION

A preliminary analysis considers four research questions
to improve our understanding of the data captured. These
come with important interpretive contexts: potentially gen-
eralisable findings are limited by the scope of data collec-
tion to a single performance of the Ring; annotations are
recorded as continuous shapes from pen touching to leav-
ing the screen, thus symbols comprising several distinct
shapes are identified as multiple annotations; and some
performance sections are excluded: the start of Die Walküre
Act III due to kit malfunction, the first page of each opera,
and those either side of the intermissions 17 .

6.1 Overhead of annotation task

To determine whether the overhead of annotation inter-
fered with music following, we compared the musicolo-
gist’s page view durations with the score-page performance
events. The corresponding plots reveal strong tracking of
the two timelines (Fig.2); Table 1 displays the mean page
performance durations, and the time difference compared
to the annotator’s mean page view durations (the annota-
tion overhead). While performance durations are variable
due to changes in tempo and in musical information den-
sity on a given page, the magnitude of the mean annotation
overhead is below half a second in all four performances.
Standard deviations indicate there were periods when an-
notation acts were delayed, but overall, the musicologist
was able to keep up with the music. The value is negative
in two performances, indicating a tendency to read ahead.

6.2 Variability of annotation rate

We tested the variability of annotation rates 18 for each
night (Table 2; Figure 3). Results demonstrate significant
correlations in each performance, accounting for between
18% (Götterdämmerung) and 43% (Walküre) of the varia-
tion in rank between page performance duration and num-
ber of annotation shapes per page. The finding of a largely

17 Pages were left open during the interval so durations are artefactual.
18 A hypothetical uniform rate would exhibit strong correlation between

the duration of a score page performance event and the number of anno-
tation shapes produced for that page.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 215



Opera Rheingold Walküre Siegfried Götterdämmerung
rs .46 .65 .57 .42
r2s .21 .43 .32 .18

Table 2. Spearman correlation (p<.001) between page
performance duration and annotation shapes per page.

Figure 3. Correlation between score page performance du-
ration and annotation shapes per page.

consistent annotation rate reflects the suitability of the an-
notation key for the task, suggesting the musicologist could
adopt symbols with different granularities of meaning ac-
cording to the time available. It suggests that even seem-
ingly small ‘events’ such as gestures were not overlooked.

6.3 Annotation density; Performance correspondence

Finally, we investigated whether periods of high annota-
tion density reflect consistent types of stage events, or cor-
responded to scenes of high activity or intensity. For this
analysis, periods in Siegfried with a number of annotations
per minute exceeding a threshold of the mean plus two
standard deviations, as well as three major peaks in anno-
tation activity for the final act of Götterdämmerung, were
mapped to page sequences in the annotated score. The mu-
sicologist reinspected the corresponding pages, determin-
ing that the symbols occurring at these periods predomi-
nantly indicate changes in performers’ posture or position.
These symbols largely consist of four or more shapes; thus,
the high rate of annotation during these relative to other
periods may be partly artefactual. These peak periods may
refer to key dramatic moments, e.g. when Siegfried kisses
and awakens Brünnhilde in Act III, or parts of larger di-
alogic scenes, where every utterance is interpolated by a
postural change. Certain passages with greater staged ac-
tivity (for instance when Siegfried kills Fafner) were not
observed within this subset of the data. A possible explana-
tion is that these scenes were staged with a high reliance on
lighting effects, annotated with simple symbols; they were
also generally drawn out for longer periods, and thus po-
tentially overlooked by our per-minute-metric. The three
peaks in the third act of Götterdämmerung each reflected
essential moments: the Rhinemaidens telling Siegfried ab-
out the curse; Hagen killing Gunther; and Hagen strug-
gling with the Rhinemaidens for the Ring. One other ex-
pected scene, Siegfried’s death, took up over two minutes,

and was thus represented by two rate observations that both
came close to the threshold without quite meeting it. A re-
fined measure of annotation density accounting for varia-
tions in granularity by considering the immediate temporal
context could accommodate this issue.

7. CONCLUSIONS AND FUTURE WORK

We have described the software developed to, in combina-
tion with off-the-shelf hardware, form a kit used to capture
data informing performance studies and the MIR analy-
ses that may be applied to them. We have reported its
use to annotate a complete production of Wagner’s Ring
and evaluation of the kit’s performance after the deploy-
ment. An initial data driven investigation of the annota-
tions has shown it can support and enrich analysis of the
performance, and that the corpus could be developed as a
‘ground truth’ for MIR research.

Investigations to date have focused on temporal analysis
of acts of annotation, whereas our next step will examine
semantics within the symbols, realizing further benefits for
indexing and searching within performance data. We will
trial computer vision techniques to categorise pictograms
in the annotation layers, and revisit options for encoding
stronger symbol semantics during the annotation. While
the desirable affordances of the current interface preclude
full taxonomic symbol selection, our data analysis suggests
even a very coarse grained categorisation (e.g. complex vs.
simple events) would yield a much improved musicologi-
cal understanding of the data. Our work informs future
design of symbols used within the kit: ensuring greater
uniformity of semantic complexity which would simplify
analysis, as would the ability to more clearly delimit writ-
ing events, either by the reduction of all symbols to single
(rather than compound) drawing, or through a metric com-
bining of temporal and geometric distance. Future deploy-
ments of the kit will also record instances of ‘undo’.

Our data indicates events with complex layering of type
and meaning throughout the performances, cautioning ag-
ainst formulation of naively phrased MIR tasks such as
identifying “musicologically interesting parts in this anno-
tated score”. Reflecting how tools can be utilised for musi-
cology, our preliminary study makes clear there is unlikely
to be a ‘perfect’ feature to automatically complete a study;
instead the method is iterative, with computational anal-
ysis informed by musicology research questions and vice
versa – through this iteration a fuller understanding of the
question, investigation, and its limitations can be found.
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ABSTRACT

Automatic melody segmentation is an important yet un-
solved problem in Music Information Retrieval. Research
in the field of Music Cognition suggests that previous lis-
tening experience plays a considerable role in the percep-
tion of melodic segment structure. At present automatic
melody segmenters that model listening experience com-
monly do so using unsupervised statistical learning with
‘non-selective’ information acquisition techniques, i.e. the
learners gather and store information indiscriminately into
memory.

In this paper we investigate techniques for ‘selective’
information acquisition, i.e. our learning model uses a goal-
oriented approach to select what to store in memory. We
test the usefulness of the segmentations produced using se-
lective acquisition learning in a melody classification ex-
periment involving melodies of different cultures. Our re-
sults show that the segments produced by our selective
learner segmenters substantially improve classification ac-
curacy when compared to segments produced by a non-
selective learner segmenter, two local segmentation meth-
ods, and two naı̈ve baselines.

1. INTRODUCTION

Motivation: In Music Information Retrieval (MIR),
melody segmentation refers to the task of dividing a
melody into smaller units, such as figures, phrases, or sec-
tions. Given that melody is an aspect of music shared by al-
most all cultures in the world, and that melodies are known
to be memorable, many MIR systems base their functional-
ity in melody processing. Automatic melody segmentation
is hence an important preprocessing step for MIR tasks in-
volving searching, browsing, visualising, and summarising
music collections.

Scope: Research in automatic melody segmentation has
been conducted by subdividing the segmentation problem
into a number of subtasks, the most traditional one being
segment boundary detection, i.e. automatically locating the
time instants separating contiguous segments. In this paper

c© Marcelo E. Rodrı́guez-López, Anja Volk.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Marcelo E. Rodrı́guez-López, Anja
Volk. “Selective Acquisition Techniques for Enculturation-Based Melo-
dic Phrase Segmentation”, 16th International Society for Music Informa-
tion Retrieval Conference, 2015.

we focus on detecting the boundaries of segments resem-
bling the musicological concept of subphrase. The musi-
cal factors influencing the perception of melodic segment
boundaries are diverse [4, 8]. In this paper we focus on
modelling factors related to previous listening experience
and melodic expectation [1, 9, 23, 25, 27].

Terminology: We use the term ‘phrase’ to refer to a se-
quence of notes lasting roughly from 6 notes to 8 bars. We
use the term ‘figure’ to refer to a relatively short sequence
of notes, lasting roughly from 2-6 notes. We use the term
‘subphrase’ to refer to melodic figures in the context of
phrases, i.e. as the constituent parts of a melodic phrase.

Assumptions: Our main assumption is that human lis-
teners exposed to melodies of a given culture acquire a
vocabulary of melodic figures through ‘incidental’ learn-
ing, 1 and that this acquired melodic vocabulary aids the
segmentation of phrases into subphrases. 2 We refer to
such a listener as ‘enculturated’.

Problem statement: At present, automatic melody seg-
menters that model previous listening experience usually
do so by storing information indiscriminately into mem-
ory. We argue that selective (rather than indiscriminate)
information acquisition is necessary to simulate encultura-
tion. We hence propose and investigate two techniques for
selective acquisition in the context of phrase segmentation:
one in which an artificial learner selects the subphrases that
give it the ‘clearest’ possible ‘understanding’ of a phrase,
and another in which the learner attempts to use subphrases
it ‘knows well’ to expand its melodic vocabulary. To com-
pare the segmentations produced by enculturated segmen-
ters using selective and non-selective acquisition techni-
ques, we perform a melody classification experiment in-
volving melodies of different cultures, where the segments
are used as classification features.

Paper contributions: We have three main contribu-
tions. First, the proposed techniques for selective acquisi-
tion are, to the best of our knowledge, novel in the context
of melody segmentation. Second, we focus on subphrase
level segmentation, which is a neglected area in music seg-
mentation research. Third, our results show that the seg-
ments produced by our selective learning segmenters sub-
stantially improve classification accuracy when compared
to segments produced by using a non-selective learning

1 We use the term incidental to mean that the listener does not have an
explicit learning intention.

2 Refer to [15, 16, 24] for experimental work in music cognition and
cognitive neuroscience that supports our assumption.
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segmenter, two local segmentation methods [5,6], and two
naı̈ve baselines.

Paper summary: The remainder of this paper is or-
ganised as follows: §2 reviews related work, §3 describes
our selective acquisition learning model , §4 describes our
proposed enculturated segmenter, §5 describes the classi-
fication experiment and presents results, §6 discusses the
evaluation results, and finally, §7 summarises our conclu-
sions and outlines possibilities of future work.

2. RELATED WORK

Previously proposed melody segmenters that model listen-
ing experience have mostly used non-selective learners.
For instance, [23] presents a segmentation model with a
long-term memory (LTM) component. To train the LTM
model the prediction by partial match (PPM) algorithm [21]
is used, which gathers and stores ngrams and ngram statis-
tics indiscriminately into LTM. Much of the work carried
out by the authors of [23] in melodic learning has focused
mostly on dealing with melodic multidimensionality [19]
and on the combination of short-term and long-term mem-
ory models [20], but not much attention has been paid to
the construction of the LTM itself.

We base our approach on [11], where selective acquisi-
tion learning is used for motivic pattern extraction from a
corpus of melodies. Our approach extends their work by
proposing and testing different selective acquisition tech-
niques, and by combining the learning approach proposed
in [11] with characteristics of the ‘feature selection’ learn-
ing approach proposed in [3] for natural language process-
ing. Moreover, we focus on using selective learning to cre-
ate more powerful LTM models for melody segmentation.
In the following section we describe our approach in detail.

3. ENCULTURATION VIA SELECTIVE
ACQUISITION LEARNING

The goal of selective acquisition learning is to construct an
enculturated LTM model. In this paper we model encul-
turation as a refinement process. That is, our learner takes
two inputs: (1) a LTM model, which is simply a collection
of melodic figures acquired during prior listening experi-
ence, and (2) a corpus of melodies of a given culture to
which the learner is to be exposed. The output is a LTM
model in which, ideally, only melodic figures characteris-
tic of the culture to which the learner has been exposed are
preserved. Our learning approach is summarised as pseudo
code in Algorithm 1.

As shown in Algorithm 1, our learner ‘listens’ to each
melody one phrase at a time, and decides which figures to
store in LTM by evaluating different segmentations. That
is, the learner stores in LTM only the figures that allow it
to segment the phrase in an optimal way. This process is
continued until the learner has acquired the melodic vo-
cabulary that allows it to perform optimal segmentations.
In the following sections we describe each part of the ap-
proach in more detail.

Input: LTM model, Phrase-segmented Melodic
Corpus,

Output: LTM model

while termination condition not met do
read melody from corpus;
for each phrase in melody do

Compute possible segmentations;
Select the optimal segmentation;
Store suphrases in LTM;

Check termination condition;
Algorithm 1: Selective Acquisition Learning

3.1 Input/Output

3.1.1 Input: Melody Representation

Our learner takes as input melodies represented as a se-
quence of chromatic pitches, constrained to a range of two
octaves. 3 Formally, we take p = p1 . . . pN to be a se-
quence of pitch intervals, where each interval pi ∈ A =
{−12, . . . , 0, . . . ,+12}. In A each numerical value en-
codes the distance in semitones between two contiguous
pitches, and the ± symbol encodes its orientation (ascend-
ing, descending).

3.1.2 Input: phrase segmented corpus

We assume input melodies are annotated with phrase bound-
aries, so that our learner can process melodies on a phrase
by phrase basis, finding for each an optimal segmenta-
tion. We choose to process phrases based on cognitive
constraints, as exhaustively evaluating multiple segmenta-
tions for a whole melody would break known limitations
of human memory.

3.1.3 Input/Output: long term memory (LTM) model

We model LTM probabilistically using a Markov modelling
strategy. Essentially this boils down to constructing a data
structure to hold the number of times melodic figures up to
5 intervals appear in a corpus, and then use those counts to
estimate probabilities (we go into more detail in §3.3). 4

3 In this paper our learner and segmenters take as input symbolic en-
codings of melodies, i.e. computer readable representations of scores
transcribed by experts (see §5.1 for more details). Symbolically encoded
melodies can be represented in a variety of ways, e.g. chromatic pitch,
step-leap pitch intevals, inter onset intervals, and so on. In statistical
learning this multi-dimensional attribute representation of melodic events
can be tackled using multiple viewpoint systems [7, 19]. However, using
multiple viewpoints comes at expense of a considerable increase in the
complexity of the statistical model architecture, resulting in an increase in
processing time and space requirements, as well as lower interpretability
of the model. In this paper we favour using a single melodic represen-
tation to simplify the evaluation our of segmenters, which is important
considering that we evaluate our segmenters indirectly, by means of a
classification experiment (see §5).

4 The input LTM model can also be computed by sampling from
known parametric distributions, e.g. in [2] the LTM model is constructed
sampling from a Dirichlet distribution. However, by using corpus statis-
tics we can assess how different (and perhaps more suitable) are the seg-
mentations produced by one of the learners in respect to the others when
exposed to the same melodies, which is a better way to try to prove or
disprove our hypothesis.
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3.2 Computing Possible Segmentations

Ideally, our learner should evaluate all possible segmenta-
tions of a phrase. However, processing time is exponential
on the number of notes in the phrase, so in practice eval-
uating all segmentations is unfeasible. Thus, we use the
algorithm proposed in [17] to efficiently compute a con-
strained space of possible segmentations. The algorithm
takes as input the minimum and maximum length of sub-
phrases, as well as the minimum and maximum number of
subphrases. As we mentioned previously we have limited
subphrases to be sequences of 1-5 intervals in length. We
also limit phrases to be composed of at most 6 subphrases
(by doing so we are able to cope with phrases of a maxi-
mum length of 30 intervals).

3.3 Select the optimal segmentation

Below we present two techniques to select an optimal seg-
mentation. One in which the learner selects subphrases that
give it the ‘clearest’ possible understanding of a phrase,
and another in which the learner uses subphrases it ‘knows
well’ to increase its vocabulary.

3.3.1 Common and Complete Figures

Melodic figures that aid segmentation should be ‘charac-
teristic’ of a melodic culture. One way to measure how
characteristic figures are is by searching for ‘common’ fig-
ures in a corpus representative of a melodic culture. How-
ever, common figures are mainly of short duration, and
normally less specific and informative than figures of larger
duration (see [28]). There is hence a trade-off between
how common a figure is and how specific to a given tra-
dition it can be. 5 Thus, we need a way to automatically
determine how long do the figures we are after need to be,
so that we search for the longest possible common figures
instead of only the most common ones. One way to do
so is by attempting to determine if a given figure is some-
how ‘complete’ on its own, or if its part of a larger figure.
Our search then would be for figures that are common, yet
large enough so as to be perceptually complete. Accord-
ing to melodic expectation theory [14, 27], the perceptual
completeness of a melodic figure is inversely proportional
to the degree by which it stimulates expectation. In other
words, melodic figures for which is hard to predict what
comes next are perceived as more complete than those for
which is easy to predict what comes next.

Using information theory we can attempt to jointly quan-
tify the commonness and completeness of a figure. If from
within a phrase of length T we take a figure w = pi . . . pj ,
with i, j ∈ [1 : T ], we can compute its conditional entropy
h as

h(x|w) = P (w)
∑

x∈A
P (x|w)log (P (x|w)) (1)

5 In natural language this is also a commonly found problem, ‘content’
or informative words (e.g. nouns) tend to be of greater length that ‘non-
content’ words (e.g. determinants).

where x is used to symbolise melodic events that can
follow w, and P denotes probability. In Eq. 1 the first term
P (·) will be high for common figures in a corpus, and the
second term

∑
P (·)log (P (·)) will be high if it is hard to

predict what comes after w. Hence, h will be high for fig-
ures that are common and complete in an information the-
oretic sense.

The values of probabilities P (·) can be estimated from
the counts of w and the concatenation wx in a given melo-
dic corpus: P (w) ∼ N(w)/NT and P (x|w) ∼ N(wx)/
N(w), where N(·) denotes counts, and NT denotes the to-
tal number of counts for figures of length equal to w in the
corpus.

3.3.2 Monitoring LTM

Using conditional entropy we can monitor the state of our
LTM before and after a new melodic figure is listened to.
So, first, the total entropy for figures w of the same size is

Ho = −
∑

w∈A∗

P (w)
∑

x∈A
P (x|w)logP (x|w) (2)

where we use A∗ to denote the space of all figures of
size o with attribute space A. In our LTM o = {1, . . . , 5}
and hence its total entropy is

H = H1 + · · ·+H5 (3)

and then we can define ∆H as

∆H = Hafter listening to w −Hbefore listening to w (4)

which allows us to monitor the evolution of our LTM.

3.3.3 Selection Technique 1

We have now the necessary information to formulate our
first selection technique. Since common and complete fig-
ures are expected to have high entropy, a ‘good’ phrase
segmentation among a group of possible segmentations is
that segmentation with the highest average ∆H . That is, if
we have a space of possible segmentations S, the average
∆H of a candidate segmentation s = w1, . . . , wm is

φ(s) =
∆H(w1) + · · ·+ ∆H(wm)

m
(5)

and hence our first selection technique is

s∗ = argmax
s∈S

φ(s) (6)

Where s∗ denotes the segmentation with maximal score.
Note that, to ensure convergence, the leaner stores in LTM
only the subphrases in s∗ for which ∆H is positive.

One problem with our first technique is that it makes
our learner very conservative. The melodic figures stored
are characteristic of the corpus as a whole. Hence, the
technique operates under the assumption that the corpus is
stylistically homogeneous. For most cultural traditions the
assumption of complete stylistic homogeneity is too strong
(it is likely that certain figures are important but only char-
acteristic of subsets of the corpus).
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Collection Subset Cultural Encoding Number of Average Melody Number of Average Phrase
Name Abbreviation Name Origin of Sample Melodies Size in Notes Phrases Size in Notes
MTC FS Dutch ∗∗kern 4120 52.3 (22.5) 19935 9.1 (2.5)
EFSC CHINA Chinese ∗∗kern 2201 62.8 (41.2) 11046 12.5 (4.7)
OHFT - Hungarian EsAC 2323 38.6 (12.0) 9308 9.6 (3.2)

Table 1. Melodic Corpora. Numbers in parenthesis correspond to standard deviation.

3.3.4 Selection Technique 2

Our second technique aims to relax the assumption of ho-
mogeneity and stimulate the learner to expand its vocabu-
lary. More importantly, it aims to reveal segmentations in
which one or more subphrases are common and complete,
and others are representative of the melody, yet relatively
rare in the corpus. For a figure w the latter idea can be
quantified as

ρ(w) = −Pmelody(w) ∗ log (Pcorpus(w)) (7)

with Pmelody(w) ∼ M(w)/MT and Pcorpus(w) ∼
N(w)/NT , where M denotes counts of w in the melody,
MT is used to indicate the total number of counts of figures
of size equal to w in the melody/corpus, and N denotes
counts of w in the corpus.

For a complete segmentation we take the average of ρ

ρ(s) =
ρ(w1) + · · ·+ ρ(wm)

m
(8)

Finally, we combine the ρ and φ using a geometric mean: 6

λ(s) =
√
φ(s) · ρ(s) (9)

and compute our second technique as

s∗ = argmax
s∈S

λ(s) (10)

Where s∗ denotes the segmentation with maximal score.
Our leaner stores all subphrases of s∗ in LTM.

3.4 Termination Condition

We keep track of the scores of s∗ when processing the
corpus, expecting that, as the learner reaches convergence,
the score difference between subsequent instances s∗ gets
smaller and smaller. We hence assume convergence has
been reached if ∆s∗ < ε.

Since Eq. 10 encourages learning new vocabulary, con-
vergence is slow and not guaranteed. Thus, in addition to
∆s∗ < ε, we also set a maximum number of learning iter-
ations as a second termination condition.

4. ENCULTURATED SEGMENTATION

Once the LTM model has been trained (via either selec-
tive or non-selective learning), our segmenter proceeds in
a way similar to Algorithm 1. That is, it processes each
melody a phrase at a time, for each phrase it computes a

6 Since φ(s) can in principle be negative, to compute λ we consider
negative ∆H(w) values to be zero when computing φ(s) to avoid the
possibility of negativity.

space of possible segmentations, and selects the best one.
However, this time the selection of the best segmentation
is made by computing

h
∗

= argmax
s∈S

h(s) (11)

where h(s) = h(w1)+···+h(wm)
m and h(w) is computed

using Eq. 1.

5. EVALUATING SUBPHRASE SEGMENTATIONS

At present, freely available corpora annotated with sub-
phrase boundaries do not exist. This implies we are un-
able to evaluate our segmenters in a traditional scenario
(i.e. by comparing automatic segmentations to human-an-
notated segmentations). Hence, we opt for a ‘use-case’
evaluation scenario: test the output of our segmenters in a
melody classification experiment.

The classification task consists in predicting the cultural
origin of each melody in a dataset of melodies, using sub-
phrases as classification features. In this scenario ‘good’
segmentations should facilitate classification and thus re-
sult in high classification performance.

In the following subsections we describe the melodic
corpora used for our classification experiment, the com-
pared segmenters, the classifiers employed, and finally we
list evaluation metrics and present results.

All segmenters and baselines were coded in Matlab. All
source files as well as the train/test data listings are avail-
able at http://www.projects.science.uu.nl/music/.

5.1 Phrase Annotated Melodic Corpora

The melodic corpora used in our experiments is summa-
rised in Table 1. The Meertens Tune Collection 7 (MTC) is
a collection of Dutch folk songs. The Essen Folk Song Col-
lection 8 (EFSC) is a collection of vocal folk songs from
Eurasia. The Old Hungarian Folksong Types collection 9

(OHFT) is a collection of vocal folk songs from Hungary.
All corpora summarised in Table 1 have been annotated

with phrase boundaries by expert Ethnomusicologists. 10

We cleaned the collections by removing all melodies with
overly short and overly long phrases. We considered a

7 http://www.liederenbank.nl
8 http://www.esac-data.org
9 We obtained the OHFT data directly from the author of [11].

10 In the case of the EFSC-CHINA the origin of the phrase markings
is uncertain. However, it is often assumed it corresponds to notated
breath marks and/or to the phrase boundaries of lyrics. In the case of
the MTC-FS phrase boundary markings where produced by two experts
(which agreed on a single segmentation). The annotation process is de-
tailed in [26]. In the case of the OHFT the phrase boundary marking
process is detailed in [10, 12].
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Segmenter Parameter Setting

Segmentation Results (for the best parametric setting)
Mean Number of Mean Number of Total Number of Unique
Subphrases per Phrase Subphrases per Melody Subphrases per Corpus

C H D C H D C H D
NS LTM training: PPM-C, with exclusion, 5.0 4.8 4.8 27.7 16.7 23.4 1300 1091 1197

1000 melodies of each culture.

ST1 LTM training: convergence 10E-8 or 8000 phrases, 3.8 3.7 3.7 21.7 13.7 19.6 3437 2562 2204
1000 melodies of each culture.

ST2 LTM training: convergence 10E-8 or 8000 phrases, 3.6 3.5 3.5 23.2 15.4 21.3 3566 2743 2311
1000 melodies of each culture.

LBDM detection threshold {0.2, 0.4, 0.6}, others: suggested setting in [5]. 3.0 2.9 2.9 15.5 10.4 15.4 4497 3841 2999
PAT detection threshold {0.2, 0.4, 0.6}, others: suggested setting in [6]. 3.6 3.4 3.4 19.3 11.4 16.7 3603 3139 2810
FIXLEN constant size CS = 3 intervals. 4.0 3.8 3.8 22.0 13.5 18.9 1371 1179 1474
RAND constant size RS ∈ [2− 4] intervals. 4.1 3.9 3.9 22.2 13.5 19.2 2827 2413 2551

Table 2. Parameter settings and segmentation results. C - Chinese, H - Hungarian, D - Dutch. Text in bold indicates best
performing parametric settings.

phrase to be overly short if it contains only one note or
one interval. We considered a phrase to be overly long if it
is longer than 30 notes in length.

5.2 Enculturated Segmenters

We evaluate three enculturated segmenters: NS, ST1, ST2.
The NS segmenter uses a LTM model trained with non-
selective acquisition (using the PPM-C algorithm [22]).
The ST1 segmenter uses a LTM model trained with the se-
lective acquisition technique 1, Eq. 6. The ST2 segmenter
uses a LTM model trained with the selective acquisition
technique 2, Eq. 10. A sample of 1000 melodies from each
collection is used to train the LTM models. The paramet-
ric settings for each enculturated segmenter are specified
in Table 2.

5.3 Reference Segmenters and Baselines

We compared the performance of the enculturated segmen-
ters to two local boundary detection segmenters (LBDM

and PAT), and two naı̈ve baseline segmenters (FIXLEN and
RAND). The LBDM and PAT segmenters were selected
for comparison because they have been used for subphrase
level segmentation in the past [6, 18]. The LBDM seg-
menter [5] computes subphrase boundaries by detecting
large pitch intervals and inter-onset-intervals. Intervals si-
zes are given a score by comparing them to immediately
surrounding intervals (the larger the difference the higher
the score). High scoring intervals are taken as subphrase
ends. The PAT segmenter [6] computes subphrase bound-
aries by detecting and scoring repetitions of pitch inter-
val sequences within each phrase. The starting points of
high scoring repetitions are taken as subphrase starts. The
FIXLEN baseline segments a phrase into subphrases of con-
stant size. The RAND baseline segments a phrase into sub-
phrases of randomly chosen sizes. The parametric settings
for each of the reference and baseline segmenters are spec-
ified in Table 2.

5.4 Features and Classifiers

As mentioned above, in our experiment we are interested
in evaluating the effectiveness of subphrases as classifica-
tion features. To use subphrases in the most transparent

way, we represent melodies as a ‘bag-of-subphrases’. That
is, we use a vector space model representation, 11 where
each vector element is weighted using the common term
frequency - inverse document frequency (tf ∗ idf ) heuris-
tic [13]. We then use two simple and well known classifiers
for the cultural origin prediction task: k-means and k near-
est neighbours (kNN).

Segmenter
k-means (k=3) kNN (k optimised)

R P A R P A

NS 0.94 0.93 0.71 0.93 0.87 0.83
ST1 0.90 0.95 0.74 0.93 0.94 0.87∗

ST2 0.92 0.93 0.71 0.92 0.96 0.88
LBDM 0.47 0.50 0.47 0.75 0.84 0.76
PAT 0.74 0.76 0.58 0.83 0.87 0.79
FIXLEN 0.88 0.89 0.67 0.86 0.90 0.83
RAND 0.84 0.84 0.63 0.88 0.85 0.78

Table 3. Clasification results: recall (R), precision (P ),
and accuracy (A) averaged over 10-folds. Text in bold
highlights the highest performances. Asterisks indicate
performances that are not significantly different from the
highest performances.

5.5 Test set, Performance Measures, and Results

We constructed a dataset of 3000 melodies by randomly
sampling 1000 melodies from each corpus. (All melodies
used to train the enculturated segmenters were excluded
from the sample.) For each of the 3000 melodies, the
classifiers are required to predict whether the melody is
of Hungarian, Chinese, or Dutch origin. Validation tech-
nique: We used 10-fold cross validation to iteratively sep-
arate the melodic dataset into training and test sets. Eval-
uation measures: Given a Ntotal of melodies per fold
to be classified, we use tp to indicate the number of true
positives, fp the false positives, and fn the false nega-
tives. With these statistics we measure measure classifica-
tion performance using accuracy A = Ncorrect

Ntotal
, precision

P = tp
tp+fp

and recall R = tp
tp+fn

. Statistical testing: We

11 in a vector space model, melodies are represented as a vector of size
|V |, where |V | is the number of unique figures occurring in the corpus. If
a figure occurs in the melody, its value in the vector is equal to the number
of times it appears in the melody. The frequency of occurrence of each
figure is then used as a feature for classification.
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used an an ANOVA test (α = 0.01) with Bonferroni cor-
rection to test the statistical significance of the differences
in accuracy for each segmenter. Setting and optimising
classifier parameters: The training sets were used to opti-
mise the permutation labels of the k-means classifier and
select the optimal number of nearest neighbours for the
kNN classifier. The optimal number of nearest neighbours
(selected from k ∈ [1, 15]) was set by optimizing cross-
validated accuracy on the training data.

The results of our experiment are presented in Table 3.
We discuss our results below.

6. DISCUSSION

6.1 Selective vs. Non-Selective Learning Segmenters

Table 2 shows the NS segmenter produces relatively short
segments, resulting in an average of ∼4.9 subphrases per
phrase, and an average of ∼1196 unique subphrases over
all three corpora. Conversely, the ST1-2 segmenters pro-
duce larger segments, resulting in an average of ∼3.6 sub-
phrases per phrase, and an average of ∼2767 unique sub-
phrases over all three corpora. Using the k-means classifier
with subphrases computed using ST1 we obtain a (statis-
tically significant) 3% A improvement over the NS seg-
menter, which seems to be driven by a 2% improvement
in P . Using the k-NN classifier with subphrases computed
using both ST1 and ST2 we obtain (statistically signifi-
cant) 3-4%A improvements over the NS segmenter, which
are again in pair with 7-9% increases in P . These results
show the larger segments produced by the ST1-2 segmen-
ters allow better discrimination between melodies of differ-
ent cultural origin, suggesting that selective learning leads
to better models of prior listening experience than non-se-
lective learning.

6.2 Selective Learning Segmenters vs. Local
Segmenters

Segmentation results in Table 2 show that local segmenters
prefer larger segments than the ST1-2 segmenters. Also,
the local segmenters produce an average of ∼3481 unique
subphrases over all three corpora, which is 741 subphrases
larger than the average of unique subphrases produces by
the ST1-2 segmenters. Table 3 shows that A results using
the segments produced by ST1-2 are >8% better than A
results using the segments produced by LBDM and PAT.
The A performance improvements are in line with rela-
tively large improvements in both P and R. These results
show that the larger segments produced by the local seg-
menters leads to an increase in unique subphrases, and that
these unique subphrases are not discriminative of cultural
origin. The relatively large improvements inA of the ST1-
2 segmenters over the local segmenters supports the hy-
pothesis that enculturated listening might be of importance
for the segmentation of melodic phrases.

6.3 Selective Learning Segmenters vs. Baselines

Table 2 shows the baseline segmenters produce relatively
short segments (of 2 or 3 intervals), resulting in an av-

erage of ∼3.9 subphrases per phrase, and an average of
∼1969 unique subphrases over all three corpora. When
using the k-means classifier we can observe significant and
relatively large differences (> 5%) between theA obtained
using ST1-2 and those obtained using the baseline seg-
menters. These results show the larger segments produced
by the ST1-2 segmenters allow better discrimination be-
tween melodies of different cultural origin than the shorter
segments produced by the baseline segmenters, indicating
once more the ST1-2 segmenters might be capturing im-
portant aspects of subphrase structure.

6.4 Scepticism

Any conclusions from our use case evaluation results are
limited to classification schemes using ‘bag-of-subphrases’
representations of melodies. This representation limits the
similarity assesment between any two subphrases to exact
matches, which might be introducing an unwanted bias on
the evaluation. To draw more definitive conclusions our
experiment needs to be complemented with other use case
studies.

7. CONCLUSIONS

In this paper we introduce techniques for selective acquisi-
tion learning in the context of melodic segmentation, specif-
ically the segmentation of melodic phrases into subphrases.
Our aim is to show that enculturated listening is important
for the segmentation of melodic phrases, and that selective
rather than indiscriminative acquisition techniques are bet-
ter to model an enculturated segmenter. We present two
selective acquisition techniques: one in which an artificial
learner selects the subphrases that give it the ‘clearest’ pos-
sible understanding of a phrase, and another in which the
learner attempts to use subphrases it ‘knows well’ to ex-
pand its melodic vocabulary.

To test the segmentations produced by enculturated seg-
menters using selective and non-selective acquisition tech-
niques, we perform a melody classification experiment in-
volving melodies of different cultures. Our results show
that the segments produced by our selective learning seg-
menters substantially improve classification accuracy when
compared to segments produced by using a non-selective
learning segmenter, two local segmentation methods, and
two naı̈ve baselines.

In future work we plan to conduct experiments to test
the sensitivity of our selection techniques to cross-learn-
ing. That is, cases in which the learners have prior knowl-
edge of one melodic tradition and are required to adapt
their knowledge to the particularities of a different melo-
dic tradition. We also plan to extend the current approach
so that it can process multiple attribute representations of
a melody. To this end an integration between our approach
and the multipleviewpoint formalism of [7, 19] is planned.
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[12] Z. Kodály and L. Vargyas. Folk music of Hungary. Da Capo
Press, 1982.

[13] C. D. Manning, P. Raghavan, and H. Schütze. Scoring, term
weighting and the vector space model. Introduction to Infor-
mation Retrieval, 100, 2008.

[14] L. B. Meyer. Meaning in music and information theory. Jour-
nal of Aesthetics and Art Criticism, pages 412–424, 1957.

[15] S. J. Morrison, S. M. Demorest, E. H. Aylward, S. C . Cramer,
and K. R. Maravilla. FMRI investigation of cross-cultural
music comprehension. Neuroimage, 20(1):378–384, 2003.
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ABSTRACT

Compared to studies with symbolic music data, advances in
music description from audio have overwhelmingly focused
on ground truth reconstruction and maximizing prediction
accuracy, with only a small fraction of studies using audio
description to gain insight into musical data. We present
a strategy for the corpus analysis of audio data that is op-
timized for interpretable results. The approach brings two
previously unexplored concepts to the audio domain: au-
dio bigram distributions, and the use of corpus-relative or
“second-order” descriptors. To test the real-world applica-
bility of our method, we present an experiment in which we
model song recognition data collected in a widely-played
music game. By using the proposed corpus analysis pipeline
we are able to present a cognitively adequate analysis that
allows a model interpretation in terms of the listening his-
tory and experience of our participants. We find that our
corpus-based audio features are able to explain a compa-
rable amount of variance to symbolic features for this task
when used alone and that they can supplement symbolic
features profitably when the two types of features are used
in tandem. Finally, we highlight new insights into what
makes music recognizable.

1. INTRODUCTION

This study addresses the scarcity of corpus analysis tools
for audio data. By corpus analysis, we refer to any analy-
sis of a collection of musical works in which the primary
goal is to gain insight into the music itself. Such analyses
makes up only a small fraction of the music computing
field, with much more research being done on classifica-
tion, recommendation and retrieval [16], where the focus
is often more on prediction accuracy than interpretability.
Examples of corpus analysis studies include work on sum-
marization and visualisation (e.g., [1]), hypothesis testing,
(e.g., evidence for Western influence in the use of African
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touridis, Daniel Müllensiefen, Remco C. Veltkamp.
Licensed under a Creative Commons Attribution 4.0 International License
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itrios Bountouridis, Daniel Müllensiefen, Remco C. Veltkamp. “Corpus
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Society for Music Information Retrieval Conference, 2015.

tone scales in [11]), and discovery-based analysis (e.g., of
the structural melodic features that predict performance in
a music memory task [12]).

Strikingly, while audio data is by far the most widely
researched form of information in the community [16], a
brief review suggests that only a minority of corpus analysis
studies used audio data. This includes the above work on
visualisation [1], tone scales analysis [11], and a number
of recent studies on the structure and evolution of popular
music [10, 15, 18]. Symbolic corpus analysis, in contrast,
includes Huron’s many studies [9], Conklin’s work on mul-
tiple viewpoints and Pearce’s extensions [6, 14], corpus
studies of harmony [5, 7] as well as toolkits such as Hum-
drum, 1 Idyom, 2 and FANTASTIC. 3

Although the music information retrieval community has
made substantial progress in improving the transcription of
audio to symbolic data, considerable hurdles remain [16].
We therefore aim to further the resources for audio analysis
. We present a set of audio corpus description features that
are founded on the use of three novel concepts. A new
kind of melodic and harmonic interval profiles are used
to describe melody and harmony, extending the notion of
interval bigrams to the audio domain. We then propose three
so-called second-order features, a concept that has yet to
be applied to audio features. Finally, we define song-based
and corpus-based second-order features.

We test our newly developed analysis pipeline in a case
study on “hook discovery”.

2. CORPUS-BASED AUDIO FEATURES

2.1 Harmony and Melody Description

We propose a novel set of harmony and melody descrip-
tors. The purpose for these descriptors is to translate basic
harmonic and melodic structures to a robust representation
on which corpus statistics can be computed. They should
be relatively invariant to other factors such as tempo and
timbre, and have a fixed size.

In [17], the correlation matrix of the chroma features
is used as a harmonic descriptor. The 144-dimensional

1 www.musiccog.ohio-state.edu/Humdrum/
2 code.soundsoftware.ac.uk/projects/

idyom-project
3 www.doc.gold.ac.uk/isms/m4s/
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‘chroma correlation features’ measure co-occurrence of har-
monic pitch. They capture more detail than a simple chroma
pitch histogram, while preserving tempo and translation-
invariance. The feature was shown to perform reasonably
well in a small-scale cover song experiment. In this study
we extend this and two related concepts to three new in-
terval representations. Whereas pitch bigram profiles are
expected to strongly correlate with the key of an audio frag-
ment, interval bigrams are key-invariant, which allows them
to be compared across songs.

The Harmonic Interval Co-occurrence (HIC) is based
on the triad profile, which is defined as the three-dimensional
co-occurrence matrix of three identical copies of the chroma
time series ct, i (t is time, i is pitch class):

triads(c)i1, i2, i3 =
∑

t

ct, i1 ct, i2 ct, i3 . (1)

The pitch class triplets in this feature can be converted to
interval pairs using the function:

intervals(X ) j1, j2 =
12∑

i=0

X(i− j1) mod 12, i, (i+ j2) mod 12. (2)

This essentially maps each triad (i1, i2, i3) to a stack of
intervals (i2 − i1, i3 − i2). A major chord (0, 4, 7) would
be converted to (4, 3), or a major third with a minor third
on top. Applied to the triads matrix, the intervals function
yields the harmonic interval co-occurrence matrix,

HIC(c) j1, j2 = intervals(triads(ct, i )) (3)

It measures the distribution of triads in an audio segment,
represented by their interval representation. For example, a
piece of music with only minor chords will have a strong
activation of HIC3,4, while a piece with a lot of tritones will
have activations in HIC0,6 and HIC6,0.

The same processing can be applied to the melodic pitch
to obtain the Melodic Interval Bigrams (MIB). We first
define the three-dimensional trigram profile as an extension
of the two-dimensional bihistogram in [17]:

trigrams(m)i1, i2, i3 =
∑

t

max
τ

(mt−τ, i1 ) mt, i2 max
τ

(mt+τ, i3 ),

(4)
with τ = 1 . . .∆t and m the melody matrix, a binary chroma-
like matrix containing the melodic pitch activations. The
result is a three-dimensional matrix indicating how often
triplets of melodic pitches (i1, i2, i3) occur less than ∆t sec-
onds apart. The pitch trigram profile can be converted to an
interval bigram profile by applying the intervals function
(Eqn 2). This yields the melodic interval bigrams feature, a
two-dimensional matrix that measures which pairs of pitch
intervals follow each other in the melody:

MIB(X ) j1, j2 = intervals(trigrams(mt, i )). (5)

Finally, the harmonisation feature in [17] measures which
harmonic pitches in the chroma c co-occurr with the melodic
pitches in the melody m. We derive a Harmonisation In-
terval (HI) feature as:

HI(m, h) j =
∑

t

12∑

i=0

mt, i ht, i+ j (6)

2.2 Second-order Features

One of the contributions of the FANTASTIC toolbox is to
include second-order features. Second-order features are
derivative descriptors that reflect, for a particular feature,
how an observed feature value relates to a reference corpus.
They help contextualize the values a feature can take. Is
this a high number? Is it a common result? Or if the fea-
ture is multivariate: is this combination of values typical
or atypical, or perhaps representative of a particular style?
Examples of second-order features in the FANTASTIC tool-
box include features based on document frequencies, i.e.
how many songs (documents) in a large corpus contain an
observed event or structure: mtcf.mean.log.DF computes
the mean log document frequency over all melodic motives
in a given melody.

2.2.1 Second-Order Audio Features in One Dimension

Like many audio features, most of the audio features dis-
cussed in this paper are based on frequency-domain compu-
tations, which are typically performed on short overlapping
windows. As a result, the features discussed here represent
continuous-valued, uncountable quantities. Symbolic fea-
tures, on the other hand, operate on countable collections
of events. This makes it impossible to apply the same oper-
ations directly to both, and alternatives must be found for
the audio domain.

After comparison of several alternatives, we propose a
non-parametric measure of typicality based on log odds.
The second-order log odds of a feature value x can formally
be defined as the log odds of observing a less extreme value
in the reference corpus. It is conceptually similar to a p-
value, which measures the probability of observing a more
extreme value, but we look at its complement, expressed as
odds, and take the log.

We further propose a simple non-parametric approach
to compute the above odds. By defining ‘less extreme’ as
‘more probable’, we can make use of density estimation
(e.g., kernel density estimation) to obtain a probability den-
sity estimate f (X ) for the observed feature X , and look
at the rank of each feature value’s density in the reference
corpus. Normalizing this rank by the number of observa-
tion gives us a pragmatic estimate of the probability we’re
looking for, and applying the logit function gives us the log
odds:

Z (X ) = logit
[

rank ( f (X ))
N

]
(7)

where N is the size of the reference corpus. Since Z is
non-parametric and based on ranks, the output always fol-
lows the same logistic distribution, which is bell-shaped,
symmetric, and general very similar to a normal distribu-
tion. The feature can therefore be used out of the box for a
variety of statistical applications.

Some caution is warranted when using Z where there are
a limited number of observations. If the first order feature
X is one-dimensional, some form of density estimation
is typically possible even if few data are available. For
multivariate features with independent dimensions (e.g.,
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MFCC features), each dimension can be treated as a one-
dimensional feature, and a meaningful density estimate
can also be obtained. However, if the dimensions of a
multidimensional feature are not de-correlated by design but
highly interdependent (as is the case for chroma features),
density estimates require more data. For such cases, a
covariance matrix must typically be estimated, increasing
the number of parameters to be estimated, and thereby the
number of required data points for a fit.

2.2.2 Second-Order Audio Features in d Dimensions

For higher-dimensional features, such as MIB and HIC, we
turn to other measures of typicalness. After comparison
of distributions and correlations of several alternatives, we
adopt two approaches. The first measure, directly adopted
from the FANTASTIC toolbox, is Kendall’s rank-based
correlation τ. The second measure is information (I), an
information-theoretic measure of unexpectedness. This
measures assumes that the multidimensional first order fea-
ture itself can be seen as a frequency distribution F over
possible observations in an audio excerpt (cf. term frequen-
cies), and that a similar distribution Fc can be found for the
full reference corpus (cf. document frequencies). We define
the I (F) as the average of − log Fc , weighted by F:

I (F) = −
d∑

i=1

F (i) log Fc (i) (8)

The assumptions hold for HIC, BIM and HI, and pro-
duce well-behaved second-order feature values. The re-
sult is similar to mean.log.TFDF, mtcf.mean.log.DF and
mtcf.mean.entropy in the FANTASTIC toolbox and highly
correlated with mtcf.mean.gl.weight. Information is also
used as a measure of surprise by Pearce [14].

2.3 Song- vs. Corpus-based Second-order Features

In a statistical learning perspective, expectations arise from
statistical inference by the listener, who draws on a lifetime
of listening experiences to assess whether a particular stim-
ulus is to be expected or not. In [9], Huron compares veridi-
cal and schematic expectations, analogous to episodic and
semantic memory. Veridical expectations of a listener are
due to familiarity with a specific musical work. Schematic
expectations arise from the “auditory generalizations” that
help us deal with novel, but broadly familiar situations.

If, in a corpus study, the documents are song segments
rather than entire songs, second-order features can be used
to incorporate a crude model of both layers of expecta-
tion. By choosing the reference corpus to be a collection
of fragments spanning a large number of songs, the above
measures of typicality and surprise approximate schematic
expectations: values that are typical, representative of the
reference corpus, are more expected. By choosing as the
reference corpus the set of all segments belonging to the
same song, veridical expectations can be approximated.

In the following section, we will refer to corpus-based
second-order features as conventionality. The second, song-
based second-order features indicate how representative a

segment is for the song, and to some extent, how much a
segment is repeated. We will refer to this as recurrence.

3. HOOK DISCOVERY: A CASE STUDY

We tested the proposed approach to audio corpus analysis
by examining data from the Hooked! experiment on long-
term musical salience [3]. Using these data, we sought to
address three questions: (i) how do the proposed audio fea-
tures behave and what aspects of the music do they model,
(ii) which attributes of the music, as measured by both an
audio feature set and a selection of symbolic features, pre-
dict recognition rating differences within songs, and finally,
(iii) how much insight do audio-based corpus analysis tools
add when compared to the symbolic feature set?

3.1 Data

The Hooked! experiment used a broad selection of Western
pop songs from the 1930s to the present. The experiment
tested how quickly and accurately participants could recog-
nise different segments from each song, based on the Echo
Nest segmentation algorithm. 4 For each song segment, the
data include an estimate of the drift rate, the reciprocal of
the amount of time it would take a median participant to
recognize the segment, based on linear ballistic accumula-
tion, a cognitive model for timed recognition tasks [2,4]. To
improve reliability, we excluded song segments that fewer
than 15 serious participants had attempted to recognize
(where a “serious” participant is defined to be a participant
who attempted at least 15 segments). We further excluded
all segments from songs from which fewer than 3 segments
met the previous reliability criteria. After these exclusions,
1715 song segments remained, taken from 321 different
songs, representing data from 973 participants. We were
unable to obtain symbolic transcriptions of all songs, and
so for comparing audio and symbolic features, we used a
restricted set of 99 transcribed songs (536 segments).

3.2 Audio Features

For timbre description, we used a feature set that is largely
the same as the one used in [18], where statistical analysis
of an audio corpus is used to model pop songs choruses.
Specifically, we computed the loudness (mean and standard
deviations) for each segment, mean sharpness and rough-
ness, and the total variance of the MFCC features. Instead
of the pitch centroid feature, we obtained an estimate of
pitch height using the Melodia melody extraction algorithm
and computed the mean. 5 FOr chroma, HPCP were used. 6

For each of these one-dimensional features, we then
computed the corpus-based and song-based second-order
features as described in Section 2.2.1 using Python. 7 Fi-
nally, we added song and corpus-based Z (X ) features based
on the mean of the first 13 MFCC components. First-order

4 http://www.echonest.com/
5 http://mtg.upf.edu/technologies/melodia
6 http://mtg.upf.edu/technologies/hpcp
7 code will be made available at http://github.com/jvbalen
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features based on the MFCC means were not included be-
cause of their limited interpretability. All features were
computed over 15-s segments starting from the beginning
of each segment, as participants in the experiment were
given a maximum of 15 s for recognition.

For melody and harmony description, we used the fea-
tures described in Section 2.1, and compute the entropy H
as a first-order measure of dispersion.The entropies were
then normalized as follows:

H ′ = log
Hmax − H

Hmax
(9)

As second-order features, Kendall’s τ and the information
I were computed, as proposed in Section 2.2.2.

3.3 Symbolic features

The symbolic features used were a subset of 19 first-order
and 5 second-order features from the FANTASTIC toolbox,
computed for both melodies and bass lines. Second-order
features were computed with both the song and the full
dataset as a reference, yielding a total of 58 symbolic de-
scriptors.

3.4 Principal Component Analysis

Before going further with either the audio or the symbolic
feature sets, we used principal component analysis (PCA) as
a way to identify groups of features that may measure a sin-
gle underlying source of variance and as a way to reduce the
dimensionality of the feature spaces to a more manageable
number of decorrelated variables. Features were centered
and normalized before PCA, and the resulting components
were transformed with a varimax rotation to improve inter-
pretability. We selected the number of components to retain
(12 in both cases) using parallel analysis [8].

3.5 Linear Mixed Effects Model

In order to fit the extracted components to the drift rates, we
used a linear mixed-effects regression model. Mixed-effects
models can handle repeated-measures data where several
data points are linked to the same song and therefore have a
correlated error structure. The Hooked! data provide drift
rates for individual sections within songs, and one would in-
deed expect considerably less variation in drift rates within
songs than between them: some pop songs are thought to be
much “catchier” than others overall. Moreover, it is likely
impossible to model between-song variation in recognis-
ablity from content-based features alone: it may arise from
differences in marketing, radio play, or social appeal.

Linear mixed-effects models have the further advantage
that they are easy to interpret due to the linearity and addi-
tivity of the effects of the predictor variables. More com-
plex machine-learning schemes might be able to explain
more variance and make more precise predictions for the
dependent variable, but this usually comes at the cost of the
interpretability of the model.

We fit three models, one including audio components
only, one including symbolic components only, and one

including both feature types, and used a stepwise selection
procedure at α = .005 to identify the most significant pre-
dictors under each model. In all models, the dependent
variable was the log drift rate of a song segment and the re-
peated measures (random effects) were handled as a random
intercept, i.e., we added a per-song offset to a traditional
linear regression (fixed effects) on song segments, with the
assumption that these offsets be distributed normally:

log yi j = β
′xi j + ui + εi j (10)

where i indexes songs, j indexes segments within songs,
yi j is the drift rate for song segment i j, xi j is the vector of
standardized feature component scores for song segment
i j plus an intercept term, the ui ∼ N (0, σ2

song), and the
εi j ∼ N (0, σ2

residual). To facilitate comparison, we fit the
audio-only model twice: once using the full set of 321
songs and again using just the 99 songs with transcriptions.

4. RESULTS AND DISCUSSION

4.1 Audio Components

Table 1 displays the component loadings (correlation coeffi-
cients between the extracted components and the original
features) for audio feature set. The loadings tell a consis-
tent story. The 12 components we retain break the audio
feature set down into three timbre components (first order,
conventionality, and recurrence) and three entropy compo-
nents (idem), two features grouping conventionality and
recurrence for melody and harmony, respectively, and three
more detailed timbre components correlating with sharp-
ness, pitch range and dynamic range.

Component 9 is characterized by an increased dynamic
range and MFCC variance and a typical pitch height. We
hypothesize that this component correlates with the pres-
ence and prominence of vocals. It is not unreasonable to
assume that the most typical registers for the melodies in a
pop corpus would be the registers of the singing voice, and
vocal entries could also be expected to modulate a section’s
timbre and loudness. This hypothesis is also consistent
with our own observations while listening to a selection of
fragments at various points along the Component 9 scale.

Overall, the neatness of the above reduction attests to
the advantage of using interpretable features, and to the
potential of this particular feature set.

4.2 Recognizability Predictors

A look at the first column of results for the linear mixed
effects model (Table 2) confirms that the audio features
are indeed meaningful descriptors for this corpus. Eight
components correlate significantly, most of them relating to
conventionality of features. This suggests a general pattern
in which more recognizable sections have a more typical,
expected sound. Another component, timbral recurrence,
points to the role of repetition: sections that are more rep-
resentative of a song are more recognizable. Finally, the
component with the strongest effect is Vocal Prominence.
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Component

Feature 1 2 3 4 5 6 7 8 9 10 11 12

MIB | Song .31 −.10 .12 .08 .05 .66 .05 .08 .23 .08 −.01 .14
HI | Song −.25 −.08 .12 .06 .11 .55 .12 .35 −.06 .04 .01 −.02
MIB | Corpus .15 −.03 −.02 .13 .00 .77 −.06 .00 .08 −.02 −.01 .05
HI | Corpus −.28 −.09 −.05 −.01 .10 .55 .11 .42 −.15 −.02 .08 −.05

HIC | Song .04 .13 .22 .04 .00 .13 −.04 .58 −.03 .06 −.02 −.03
HIC | Corpus −.23 .11 .04 .32 .08 .15 −.07 .66 .03 −.06 .07 .00

HIC Entropy .88 .06 .03 −.16 .02 .07 −.02 −.23 −.12 .02 −.00 −.10
MIB Entropy .83 −.15 −.00 −.19 .04 .04 .08 .26 .26 .03 −.02 .20
HI Entropy .85 −.06 .02 −.20 .01 −.01 .04 .15 .12 .02 −.02 .16
HIC Song Information .84 .17 .06 .09 .11 .13 −.02 −.16 −.28 −.04 .10 −.13
MIB Song Information .79 −.21 −.03 .01 .07 .05 .13 .25 .29 .07 −.02 .21
HI Song Information .90 .18 .01 .11 .07 −.07 .00 −.17 −.03 −.02 .00 −.03
HIC Corpus Information .86 .16 .06 .01 .10 .11 −.02 −.20 −.27 −.02 .09 −.13
MIB Corpus Information .79 −.19 −.01 −.03 .07 .02 .14 .26 .31 .07 −.02 .21
HI Corpus Information .90 .15 .02 −.01 .03 −.12 −.01 −.24 −.03 .00 −.02 −.03

HIB Entropy | Song .03 .11 .42 .08 .03 .00 −.08 .15 .08 .19 .01 −.06
MIB Entropy | Song .01 −.01 .07 .10 .03 −.01 .03 .02 −.01 .82 .00 .05
HI Entropy | Song .03 .02 .11 .12 .06 .04 −.02 −.01 .02 .81 −.01 .02

HIB Entropy | Corpus −.13 .08 .08 .68 .08 .15 −.06 .26 −.03 −.10 .07 −.02
MIB Entropy | Corpus −.04 −.09 −.01 .80 .01 .06 .14 −.01 .05 .16 .00 .07
HI Entropy | Corpus −.03 −.07 −.02 .84 .04 .04 .06 .04 .05 .19 −.02 .04

Loudness −.04 .92 .07 −.06 −.05 −.05 −.07 .06 −.04 .02 −.07 .04
Roughness .14 .78 .14 .01 .15 .09 .31 .06 −.08 .07 .06 .01
Melodic Pitch Height .13 .66 −.05 −.03 .09 −.24 −.16 .09 .22 −.06 −.06 .00
MFCC Variance .13 −.51 −.05 .08 −.26 .10 .05 −.02 .48 .02 −.22 −.10

Loudness | Song −.03 −.05 .67 −.01 .06 .01 .07 −.04 .10 .03 .11 −.03
Roughness | Song .04 .10 .67 −.03 −.01 .02 .11 .08 −.05 −.02 −.04 −.05
Mel. Pitch Height | Song −.01 .02 .46 .03 .13 .14 −.12 −.15 .29 .07 .16 .03
MFCC Mean | Song .07 .07 .61 −.04 .21 .12 .10 .10 −.07 .16 .11 .11
MFCC Variance | Song .00 −.04 .54 .03 .01 −.06 .10 .08 −.10 −.09 −.06 .17

Loudness | Corpus .04 −.23 .06 .07 .12 .08 .76 −.05 .22 .02 .10 −.05
Roughness | Corpus .12 .34 .15 .03 .00 .01 .71 −.07 .05 .04 .03 −.07
Mel. Pitch Height | Corpus .00 .04 .06 .06 .25 .06 .14 −.01 .60 .02 .14 −.09
MFCC Mean | Corpus .21 .13 .12 .07 .51 .03 .31 .20 −.18 .05 .14 .08
MFCC Variance | Corpus −.09 −.09 .08 .08 .25 −.02 .40 .05 −.13 −.13 −.12 .21

Sharpness .23 .11 .03 .08 .72 .04 .29 .13 .08 −.01 .10 .05
Sharpness | Song −.02 −.07 .24 −.04 .50 .06 −.14 −.07 .04 .15 −.08 −.04
Sharpness | Corpus .08 .10 .03 .06 .75 .03 .03 −.02 .14 −.01 −.10 −.01

Loudness SD .10 .38 .09 .06 −.06 .06 .22 .02 .40 .03 −.61 −.03
Loudness SD | Song .04 .02 .22 .02 −.05 .00 −.05 .03 .14 .01 .60 .03
Loudness SD | Corpus .03 .05 −.02 .05 −.03 .04 .19 .02 .04 .00 .78 .02

Mel. Pitch SD .21 −.10 −.02 −.05 .04 −.19 .21 .18 −.27 .12 −.07 −.28
Mel. Pitch SD | Song .01 .04 .11 .01 .04 .13 .00 −.15 .01 .14 .07 .69
Mel. Pitch SD | Corpus .13 .03 −.02 .06 −.01 −.02 .01 .11 −.08 −.04 .00 .74

R2 .16 .06 .05 .05 .05 .04 .04 .04 .04 .04 .04 .03

Note. MIB = Melodic Interval Bigram; HI = Harmonization Interval; HIC = Harmony Interval Co-occurrence. Loadings > .40 are in
boldface. Collectively, these components explain 64 % of the variance in the underlying data. We interpret and name them as follows: (1)
Melodic/Harmonic Entropy, (2) Timbral Intensity, (3) Timbral Recurrence, (4) Melodic/Harmonic Entropy Conventionality, (5) Sharpness
Conventionality, (6) Melodic Conventionality, (7) Timbral Conventionality, (8) Harmonic Conventionality, (9) Vocal Prominence, (10)
Melodic Entropy Recurrence, (11) Dynamic Range Conventionality, and (12) Melodic Range Conventionality.

Table 1. Loadings after varimax rotation for principal component analysis of corpus-based audio features.
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Audioa Audiob Symbolicb Combinedb

Parameter β̂ 99.5 % CI β̂ 99.5 % CI β̂ 99.5 % CI β̂ 99.5 % CI

Fixed effects

Intercept −0.84 [−0.91, −0.77] −0.67 [−0.78, −0.56] −0.62 [−0.73, −0.51] −0.63 [−0.74, −0.53]

Audio
Vocal Prominence 0.14 [0.10, 0.18] 0.11 [0.04, 0.17] 0.08 [0.01, 0.15]
Timbral Conventionality 0.09 [0.05, 0.13]
Melodic Conventionality 0.06 [0.02, 0.11]
M/H Entropy Conventionality 0.06 [0.02, 0.10]
Sharpness Conventionality 0.05 [0.02, 0.09]
Harmonic Conventionality 0.05 [0.01, 0.10]
Timbral Recurrence 0.05 [0.02, 0.08]
Mel. Range Conventionality 0.05 [0.01, 0.08] 0.07 [0.02, 0.13] 0.07 [0.01, 0.12]

Symbolic
Melodic Repetitivity 0.12 [0.06, 0.19] 0.11 [0.05, 0.17]
Mel./Bass Conventionality 0.07 [0.01, 0.13] 0.08 [0.01, 0.14]

Random effects

σ̂song 0.39 [0.34, 0.45] 0.35 [0.26, 0.45] 0.34 [0.25, 0.44] 0.32 [0.24, 0.42]
σ̂residual 0.48 [0.45, 0.50] 0.40 [0.37, 0.44] 0.39 [0.35, 0.43] 0.38 [0.34, 0.42]

R2
marginal

c
.10 .06 .07 .10

R2
conditional

c
.47 .46 .47 .47

−2 × log likelihood 2765.61 699.81 576.74 558.11

Note. Grouping by song, all models displayed are the optimal random-intercept models for the given feature types after step-wise selection
using Satterthwaite-adjusted F-tests at α = .005. Component scores – but not log drift rates – were standardized prior to regression.
a Complete set of 321 songs (N = 1715 segments). b Reduced set of 99 songs with symbolic transcriptions (N = 536 segments).
c Coefficients of determination following Nakagawa and Schielzeth’s technique for mixed-effects models [13]. The marginal coefficient
reflects the proportion of variance in the data that is explained by the fixed effects alone and the conditional coefficient the proportion
explained by the complete model (fixed and random effects together).

Table 2. Estimated prediction coefficients and variances for audio and symbolic components influencing the relative
recognizability (log drift rate) of popular song segments.

The model based on symbolic data only, in the third col-
umn, has just two components. This is possibly due to the re-
duced number of sections available for fitting, as the audio-
based model run on the reduced dataset also yields just
two components. The top symbolic features that make up
the first of the significant components are melodic entropy
and productivity, both negatively correlated, suggesting that
recognizable melodies are more repetitive. The top features
that make up the second components are mtcf.mean.log.DF,
for the melody (song-based and corpus-based), and negative
mtcf.mean.productivity (song-based and corpus-based for
both bass and melody). This suggests that recognizable
melodies contain more typical motives (higher DF, lower
second-order productivity).

The last column shows how the combined model, in
which both audio and symbolic components were used,
retains the same audio and symbolic components that make
up the previous two models. The feature sets are, in other
words, complementary: not only are all four components
still relevant at α < .005, the marginal R2 now reaches
.10, as opposed to .06 and .07 for the individual models.
This answers the last of the questions stated in Section 3:
for the data in this study, the audio-based corpus analysis
tools contribute substantial insight, and make an excellent
addition to the symbolic feature set.

5. CONCLUSIONS AND FUTURE WORK

We have presented a strategy for audio corpus description
that combines a new kind of melodic and harmonic interval
profiles, three general-purpose second-order features,
and the newly introduced notion of song-based and
corpus-based second-order features. Using these features
to analyse the results of a hook discovery experiment,
we show that all of the above contributions add new and
relevant layers of information to the corpus description. We
conclude that an audio corpus analysis as proposed in this
paper can indeed complement symbolic corpus analysis,
which opens a range of opportunities for future work. As
possible future directions we would like to perform more
experiments on the Hooked! data, exploring more first- and
second-order descriptors and more powerful statistical or
machine-learning models, to see if allowing for interactions
and non-linearities helps to explain more of the variance in
drift rates between sections. We also would like to extend
the feature set to explore rhythm description and chord
estimation, especially as more reliable transcription tools
become available from the MIR community.
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ABSTRACT

MIDI files, when paired with corresponding audio record-
ings, can be used as ground truth for many music infor-
mation retrieval tasks. We present a system which can
efficiently match and align MIDI files to entries in a large
corpus of audio content based solely on content, i.e., with-
out using any metadata. The core of our approach is a con-
volutional network-based cross-modality hashing scheme
which transforms feature matrices into sequences of vectors
in a common Hamming space. Once represented in this
way, we can efficiently perform large-scale dynamic time
warping searches to match MIDI data to audio recordings.
We evaluate our approach on the task of matching a huge
corpus of MIDI files to the Million Song Dataset.

1. TRAINING DATA FOR MIR

Central to the task of content-based Music Information Re-
trieval (MIR) is the curation of ground-truth data for tasks
of interest (e.g. timestamped chord labels for automatic
chord estimation, beat positions for beat tracking, promi-
nent melody time series for melody extraction, etc.). The
quantity and quality of this ground-truth is often instrumen-
tal in the success of MIR systems which utilize it as training
data. Creating appropriate labels for a recording of a given
song by hand typically requires person-hours on the order
of the duration of the data, and so training data availability
is a frequent bottleneck in content-based MIR tasks.

MIDI files that are time-aligned to matching audio can
provide ground-truth information [8,25] and can be utilized
in score-informed source separation systems [9, 10]. A
MIDI file can serve as a timed sequence of note annotations
(a “piano roll”). It is much easier to estimate information
such as beat locations, chord labels, or predominant melody
from these representations than from an audio signal. A
number of tools have been developed for inferring this kind
of information from MIDI files [6, 7, 17, 19].

Halevy et al. [11] argue that some of the biggest suc-
cesses in machine learning came about because “...a large
training set of the input-output behavior that we seek to au-
tomate is available to us in the wild.” The motivation behind

c© Colin Raffel, Daniel P. W. Ellis.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Colin Raffel, Daniel P. W. Ellis. “Large-
Scale Content-Based Matching of MIDI and Audio Files”, 16th International
Society for Music Information Retrieval Conference, 2015.

J/Jerseygi.mid
V/VARIA18O.MID
Carpenters/WeveOnly.mid
2009 MIDI/handy_man1-D105.mid
G/Garotos Modernos - Bailanta De Fronteira.mid
Various Artists/REWINDNAS.MID
GoldenEarring/Twilight_Zone.mid
Sure.Polyphone.Midi/Poly 2268.mid
d/danza3.mid
100%sure.polyphone.midi/Fresh.mid
rogers_kenny/medley.mid
2009 MIDI/looking_out_my_backdoor3-Bb192.mid

Figure 1. Random sampling of 12 MIDI filenames and
their parent directories from our corpus of 455,333 MIDI
files scraped from the Internet.

this project is that MIDI files fit this description. Through
a large-scale web scrape, we obtained 455,333 MIDI files,
140,910 of which were unique – orders of magnitude larger
than any available dataset of aligned transcriptions. This
proliferation of data is likely due to the fact that MIDI files
are typically a few kilobytes in size and were therefore a
popular format for distributing and storing music recordings
when hard drives had only megabytes of storage.

The mere existence of a large collection of MIDI data
is not enough: In order to use MIDI files as ground truth,
they need to be both matched (paired with a corresponding
audio recording) and aligned (adjusted so that the timing
of the events in the file match the audio). Alignment has
been studied extensively [8,25], but prior work typically as-
sumes that the MIDI and audio have been correctly matched.
Given large corpora of audio and MIDI files, the task of
matching entries of each type may seem to be a simple mat-
ter of fuzzy text matching of the files’ metadata. However,
MIDI files almost never contain structured metadata, and
as a result the best-case scenario is that the artist and song
title are included in the file or directory name. While we
found some examples of this in our collection of scraped
MIDI files, the vast majority of the files had effectively no
metadata information. Figure 1 shows a random sampling
of directory and filenames from our collection.

Since the goal of matching MIDI and audio files is to
find pairs that have content in common, we can in principle
identify matches regardless of metadata availability or accu-
racy. However, comparing content is more complicated and
more expensive than a fuzzy text match. Since NM com-
parisons are required to match a MIDI dataset of size N to
an audio file dataset of size M , matching large collections
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is practical only when the individual comparisons can be
made very fast. Thus, the key aspect of our work is a highly-
efficient scheme to match the content of MIDI and audio
files. Our system learns a cross-modality hashing which
converts both MIDI and audio content vectors to a common
Hamming (binary) space in which the “local match” opera-
tion at the core of dynamic time warping (DTW) reduces
to a very fast table lookup. As described below, this allows
us to match a single MIDI file to a huge collection of audio
files in minutes rather than hours.

The idea of using DTW distance to match MIDI files to
audio recordings is not new. For example, in [13], MIDI-
audio matching is done by finding the minimal DTW dis-
tance between all pairs of chromagrams of (synthesized)
MIDI and audio files. Our approach differs in a few key
ways: First, instead of using chromagrams (a hand-designed
representation), we learn a common representation for MIDI
and audio data. Second, our datasets are many orders of
magnitude larger (hundreds of thousands vs. hundreds of
files), which necessitates a much more efficient approach.
Specifically, by mapping to a Hamming space we greatly
speed up distance matrix calculation and we receive quad-
ratic speed gains by implicitly downsampling the audio
and MIDI feature sequences as part of our learned feature
mapping.

In the following section, we detail the dataset of MIDI
files we scraped from the Internet and describe how we pre-
pared a subset for training our hasher. Our cross-modality
hashing model is described in Section 3. Finally, in sec-
tion 4 we evaluate our system’s performance on the task
of matching files from our MIDI dataset to entries in the
Million Song Dataset [3].

2. PREPARING DATA

Our project began with a large-scale scrape of MIDI files
from the Internet. We obtained 455,333 files, of which
140,910 were found to have unique MD5 checksums. The
great majority of these files had little or no metadata in-
formation. The goal of the present work is to develop an
efficient way to match this corpus against the Million Song
Dataset (MSD), or, more specifically, to the short preview
audio recordings provided by 7digital [20].

For evaluation, we need a collection of ground-truth
MIDI-audio pairs which are correctly matched. Our ap-
proach can then be judged based on how accurately it is
able to recover these pairings using the content of the au-
dio and MIDI files alone. To develop our cross-modality
hashing scheme, we further require a collection of aligned
MIDI and audio files, to supply the matching pairs of fea-
ture vectors from each domain that will be used to train our
model for hashing MIDI and audio features to a common
Hamming space (described in Section 3). Given matched
audio and MIDI files, existing alignment techniques can
be used to create this training data; however, we must ex-
clude incorrect matches and failed alignments. Even at the
scale of this reduced set of training data, manual alignment
verification is impractical, so we developed an improved
alignment quality score which we describe in Section 2.3.

2.1 Metadata matching

To obtain a collection of MIDI-audio pairs, we first sepa-
rated a subset of MIDI files for which the directory name
corresponded to the song’s artist and the filename gave
the song’s title. The resulting metadata needed additional
canonicalization; for example, “The Beatles”, “Beatles,
The”, “Beatles”, and “The Beatles John Paul Ringo George”
all appeared as artists. To normalize these issues, we ap-
plied some manual text processing and resolved the artists
and song titles against the Freebase [5] and Echo Nest 1

databases. This resulted in a collection of 17,243 MIDI
files for 10,060 unique songs, which we will refer to as the
“clean MIDI subset”.

We will leverage the clean MIDI subset in two ways:
First, to obtain ground-truth pairings of MSD/MIDI matches,
and second, to create training data for our hashing scheme.
The training data does not need to be restricted to the MSD,
and using other sources to increase the training set size
will likely improve our hashing performance, so we com-
bined the MSD with three benchmark audio collections:
CAL500 [26], CAL10k [24], and uspop2002 [2]. To match
these datasets to the clean MIDI subset, we used the Python
search engine library whoosh 2 to perform a fuzzy match-
ing of their metadata. This resulted in 26,311 audio/MIDI
file pairs corresponding to 5,243 unique songs.

2.2 Aligning audio to synthesized MIDI

Fuzzy metadata matching is not enough to ensure that we
have MIDI and audio files with matching content: For in-
stance, the metadata could be incorrect, the fuzzy text match
could have failed, the MIDI could be a poor transcription
(e.g., missing instruments or sections), and/or the MIDI
and audio data could correspond to different versions of the
song. Since we will use DTW to align the audio content
to an audio resynthesis of the MIDI content [8, 13, 25], we
could potentially use the overall match cost – the quantity
minimized by DTW – as an indicator of valid matches,
since unrelated MIDI and audio pairs will likely result in
a high optimal match cost. (An overview of DTW and its
application to music can be found in [18].)

Unfortunately, the calibration of this raw match cost
“confidence score” is typically not comparable between dif-
ferent alignments. Our application, however, requires a
DTW confidence score that can reliably decide when an
audio/MIDI file pairing is valid for use as training data for
our hashing model. Our best results came from the follow-
ing system for aligning a single MIDI/audio file pair: First,
we synthesize the MIDI data using fluidsynth. 3 We
then estimate the MIDI beat locations using the MIDI file’s
tempo change information and the method described in [19].
To circumvent the common issue where the beat is tracked
one-half beat out of phase, we double the BPM until it is at
least 240. We compute 4 beat locations for the audio signal
with the constraint that the BPM should remain close to the

1 http://developer.echonest.com/docs/v4
2 https://github.com/dokipen/whoosh
3 http://www.fluidsynth.org
4 All audio analysis was accomplished with librosa [16].
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global MIDI tempo. We then compute log-amplitude beat-
synchronous constant-Q transforms (CQTs) of audio and
synthesized MIDI data with semitone frequency spacing
and a frequency range from C3 (65.4 Hz) to C7 (1046.5 Hz).
The resulting feature matrices are then of dimensionality
N ×D and M ×D where N and M are the resulting num-
ber of beats in the MIDI and audio recordings respectively
and D is 48 (the number of semitones between C3 and C7).
Example CQTs computed from a 7digital preview clip and
from a synthesized MIDI file can be seen in Figure 2(a) and
2(b) respectively.

We then use DTW to find the lowest-cost path through
a full pairwise cosine distance matrix S ∈ RN×M of the
MIDI and audio CQTs. This path can be represented as
two sequences p, q ∈ RL of indices from each sequence
such that p[i] = n, q[i] = m implies that the nth MIDI beat
should be aligned to the mth audio beat. Traditional DTW
constrains this path to include the start and end of each
sequence, i.e. p[1] = q[1] = 1 and p[L] = N ; q[L] = M .
However, the MSD audio consists of cropped preview clips
from 7digital, while MIDI files are generally transcriptions
of the entire song. We therefore modify this constraint so
that either gN ≤ p[L] ≤ N or gM ≤ q[L] ≤ M ; g is
a parameter which provides a small amount of additional
tolerance and is normally close to 1. We employ an additive
penalty φ for “non-diagonal moves” (i.e. path entries where
either p[i] = p[i + 1] or q[i] = q[i + 1]) which, in our
setting, is set to approximate a typical distance value in
S. The combined use of g and φ typically results in paths
where both p[1] and q[1] are close to 1, so no further path
constraints are needed. For synthesized MIDI-to-audio
alignment, we used g = .95 and set φ to the 90th percentile
of all the values in S. The cosine distance matrix and the
lowest-cost DTW path for the CQTs shown in Figure 2(a)
and 2(b) can be seen in Figure 2(e).

2.3 DTW cost as confidence score

The cost of a DTW path p, q through S is calculated by the
sum of the distances between the aligned entries of each
sequence:

c =
L∑

i=1

S[p[i], q[i]] + T (p[i]− p[i− 1], q[i]− q[i− 1])

where the transition cost term T (u, v) = 0 if u and v are 1,
otherwise T (u, v) = φ. As discussed in [13], this cost is
not comparable between different alignments for two main
reasons: Firstly, the path length can vary greatly across
MIDI/audio file pairs depending onN andM . We therefore
prefer a per-step mean distance, where we divide c by L.
Secondly, various factors irrelevant to alignment such as
differences in production and instrumentation can effect a
global shift on the values of S, even when its local variations
still reveal the correct alignment. This can be mitigated
by normalizing the DTW cost by the mean value of the
submatrix of S containing the DTW path:

B =

max(p)∑

i=min(p)

max(q)∑

j=min(q)

S[i, j]

We combine the above to obtain a modified DTW cost ĉ:

ĉ =
c

LB
To estimate the largest value of ĉ for acceptable align-

ments, we manually auditioned 125 alignments and recorded
whether the audio and MIDI were well-synchronized for
their entire duration, our criterion for acceptance. This
ground-truth supported a receiver operating characteristic
(ROC) for ĉwith an AUC score of 0.986, indicating a highly
reliable confidence metric. A threshold of 0.78 allowed zero
false accepts on this set while only falsely discarding 15
well-aligned pairs. Retaining all alignments with costs bet-
ter (lower) than this threshold resulted in 10,035 successful
alignments.

Recall that these matched and aligned pairs serve two
purposes: They provide training data for our hashing model;
and we also use them to evaluate the entire content-based
matching system. For a fair evaluation, we exclude items
used in training from the evaluation, thus we split the suc-
cessful alignments into three parts: 50% to use as training
data, 25% as a “development set” to tune the content-based
matching system, and the remaining 25% to use for final
evaluation of our system. Care was taken to split based
on songs, rather than by entry (since some songs appear
multiple times).

3. CROSS-MODALITY HASHING OF MIDI AND
AUDIO DATA

We now arrive at the central part of our work, the scheme
for hashing both audio and MIDI data to a common simple
representation to allow very fast computation of the distance
matrix S needed for DTW alignment. In principle, given
the confidence score of the previous section, to find audio
content that matches a given MIDI file, all we need to
do is perform alignment against every possible candidate
audio file and choose the audio file with the lowest score.
To maximize the chances of finding a match, we need to
use a large and comprehensive pool of audio files. We
use the 994,960 7digital preview clips corresponding to
the Million Song Dataset, which consist of (typically) 30
second portions of recordings from the largest standard
research corpus of popular music [20]. A complete search
for matches could thus involve 994,960 alignments for each
of our 140,910 MIDI files.

The CQT-to-CQT approach of section 2.2 cannot fea-
sibly achieve this. The median number of beats in our
MIDI files is 1218, and for the 7digital preview clips it is
186. Computing the cosine distance matrix S of this size
(for D = 48 dimension CQT features) using the highly
optimized C++ code from scipy [14] takes on average
9.82 milliseconds on an Intel Core i7-4930k processor.
When implemented using the LLVM just-in-time compiler
Python module numba, 5 the DTW cost calculation de-
scribed above takes on average 892 microseconds on the
same processor. Matching a single MIDI file to the MSD
using this approach would thus take just under three hours;

5 http://numba.pydata.org/
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Figure 2. Audio and hash-based features and alignment for Billy Idol - “Dancing With Myself” (MSD track ID
TRCZQLG128F427296A). (a) Normalized constant-Q transform of 7digital preview clip, with semitones on the ver-
tical axis and beats on the horizontal axis. (b) Normalized CQT for synthesized MIDI file. (c) Hash bitvector sequence for
7digital preview clip, with pooled beat indices and Hamming space dimension on the horizontal and vertical axes respectively.
(d) Hash sequence for synthesized MIDI. (e) Distance matrix and DTW path (displayed as a white dotted line) for CQTs.
Darker cells indicate smaller distances. (f) Distance matrix and DTW path for hash sequences.

matching our entire 140,910 MIDI file collection to the
MSD would take years. Clearly, a more efficient approach
is necessary.

Calculating the distance matrix and the DTW cost are
both O(NM) in complexity; the distance matrix calcula-
tion is about 10 times slower presumably because it involves
D multiply-accumulate operations to compute the inner
product for each point. Calculating the distance between
feature vectors is therefore the bottleneck in our system, so
any reduction in the number of feature vectors (i.e., beats)
in each sequence will give quadratic speed gains for both
DTW and distance matrix calculations.

Motivated by these issues, we propose a system which
learns a common, reduced representation for the audio and
MIDI features in a Hamming space. By replacing constant-
Q spectra with bitvectors, we replace the expensive inner
product computation by an exclusive-or operation followed
by simple table lookup: The exclusive-or of two bitvectors
a and b will yield a bitvector consisting of 1s where a
and b differ and 0s elsewhere, and the number of 1s in all
bitvectors of length D can be precomputed and stored in a
table of size 2D. In the course of computing our Hamming
space representation, we also implicitly downsample the
sequences over time, which provides speedups for both
distance matrix and DTW calculation. Our approach has the
additional potential benefit of learning the most effective
representation for comparing audio and MIDI constant-Q
spectra, rather than assuming the cosine distance of CQT
vectors is suitable.

3.1 Hashing with convolutional networks

Our hashing model is based on the Siamese network archi-
tecture proposed in [15]. Given feature vectors {x} and
{y} from two modalities, and a set of pairs P such that
(x, y) ∈ P indicates that x and y are considered “similar”,
and a second set N consisting of “dissimilar” pairs, a non-
linear mapping is learned from each modality to a common
Hamming space such that similar and dissimilar feature
vectors are respectively mapped to bitvectors with small
and large Hamming distances. A straightforward objective
function which can be minimized to find an appropriate
mapping is

L =
1

|P|
∑

(x,y)∈P
‖f(x)− g(y)‖22

− α

|N |
∑

(x,y)∈N
max(0,m− ‖f(x)− g(y)‖2)2

where f and g are the nonlinear mappings for each modality,
α is a parameter to control the importance of separating
dissimilar items, and m is a target separation of dissimilar
pairs.

The task is then to optimize the nonlinear mappings f
and g with respect to L. In [15] the mappings are imple-
mented as multilayer nonlinear networks. In the present
work, we will use convolutional networks due to their abil-
ity to exploit invariances in the input feature representation;
CQTs contain invariances in both the time and frequency
axes, so convolutional networks are particularly well-suited
for our task. Our two feature modalities are CQTs from
synthesized MIDI files and audio files. We assemble the
set of “similar” cross-modality pairs P by taking the CQT
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frames from individual aligned beats in our training set. The
choice of N is less obvious, but randomly choosing CQT
spectra from non-aligned beats in our collection achieved
satisfactory results.

3.2 System specifics

Training the hashing model involves presenting training
examples and backpropagating the gradient of L through
the model parameters. We held out 10% of the training set
described in Section 2 as a validation set, not used in train-
ing the networks. We z-scored the remaining 90% across
feature dimensions and re-used the means and standard
deviations from this set to z-score the validation set.

For efficiency, we used minibatches of training exam-
ples; each minibatch consisted of 50 sequences obtained by
choosing a random offset for each training sequence pair
and cropping out the next 100 beats. For N , we simply
presented the network with subsequences chosen at random
from different songs. Each time the network had iterated
over minibatches from the entire training set (one epoch),
we repeated the random sampling process. For optimiza-
tion, we used RMSProp, a recently-proposed stochastic
optimization technique [23]. After each 100 minibatches,
we computed the loss L on the validation set. If the vali-
dation loss was less than 99% of the previous lowest, we
trained for 1000 more iterations (minibatches).

While the validation loss is a reasonable indicator of
network performance, its scale will vary depending on the
α and m regularization hyperparameters. To obtain a more
consistent metric, we also computed the distribution of
distances between the hash vectors produced by the network
for the pairs in P and those in N . To directly measure
network performance, we used the Bhattacharya distance
[4] to compute the separation of these distributions.

In each modality, the hashing networks have the same ar-
chitecture: A series of alternating convolutional and pooling
layers followed by a series of fully-connected layers. All
layers except the last use rectifier nonlinearities; as in [15],
the output layer uses a hyperbolic tangent. This choice
allows us to obtain binary hash vectors by testing whether
each output unit is greater or less than zero. We chose 16
bits for our Hamming space, since 16 bit values are effi-
ciently manipulated as short unsigned integers. The first
convolutional layer has 16 filters each of size 5 beats by 12
semitones, which gives our network some temporal context
and octave invariance. As advocated by [21], all subse-
quent convolutional layers had 2n+3 3×3 filters, where n
is the depth of the layer. All pooling layers performed max-
pooling, with a pooling size of 2×2. Finally, as suggested
in [12], we initialized all weights with normally-distributed
random variables with mean of zero and a standard devia-
tion of

√
2/nin, where nin is the number of inputs to each

layer. Our model was implemented using theano [1] and
lasagne. 6

To ensure good performance, we optimized all model
hyperparameters using Whetlab, 7 a web API which im-

6 https://github.com/Lasagne/Lasagne
7 Between submission and acceptance of this paper, Whetlab announced
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Figure 3. Output hash distance distributions for our best-
performing network.

plements black-box Bayesian optimization [22]. We used
Whetlab to optimize the number of convolutional/pooling
layers, the number and size of the fully-connected layers,
the RMSProp learning rate and decay parameters, and the
α and m regularization parameters of L. As a hyperpa-
rameter optimization objective, we used the Bhattacharyya
distance as described above. The best performing network
found by Whetlab had 2 convolutional layers, 2 “hidden”
fully-connected layers with 2048 units in addition to a fully-
connected output layer, a learning rate of .001 with an
RMSProp decay parameter of .65, α = .5, and m = 4.
This hyperparameter configuration yielded the output hash
distance distributions for P and N shown in Figure 3, for a
Bhattacharyya separation of 0.488.

4. MATCHING MIDI FILES TO THE MSD

After training our hashing system as described above, the
process of matching MIDI collections to the MSD proceeds
as follows: First, we precompute hash sequences for every
7digital preview clip and every MIDI file in the clean MIDI
subset. Note that in this setting we are not computing fea-
ture sequences for known MIDI/audio pairs, so we cannot
force the audio’s beat tracking tempo to be the same as the
MIDI’s; instead, we estimate their tempos independently.
Then, we compute the DTW cost as described in Section
2.2 between every audio and MIDI hash sequence.

We tuned the parameters of the DTW cost calculation to
optimize results over our “development” set of successfully
aligned MIDI/MSD pairs. We found it beneficial to use a
smaller value of g = 0.9. Using a fixed value for the non-
diagonal move penalty avoids the percentile calculation, so
we chose φ = 4. Finally, we found that normalizing by the
average distance value B did not help, so we skipped this
step.

4.1 Results

Bitvector sequences for the CQTs shown in Figure 2(a)
and 2(b) can be seen in 2(c) and 2(d) respectively. Note

it would be ending its service. For posterity, the results of our hyperparame-
ter search are available at http://bit.ly/hash-param-search.
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Rank 1 10 100 1000 10000
Percent ≤ 15.2 41.6 62.8 82.7 95.9

Table 1. Percentage of MIDI-MSD pairs whose hash se-
quences had a rank better than each threshold.

that because our networks contain two downsample-by-2
pooling layers, the number of bitvectors is 1

4 of the number
of constant-Q spectra for each sequence. The Hamming
distance matrix and lowest-cost DTW path for the hash
sequences are shown in Figure 2(f). In this example, we
see the same structure as in the CQT-based cosine distance
matrix of 2(e), and the same DTW path was successfully
obtained.

To evaluate our system using the known MIDI-audio
pairs of our evaluation set, we rank MSD entries accord-
ing to their hash sequence DTW distance to a given MIDI
file, and determine the rank of the correct match for each
MIDI file. The correct item received a mean reciprocal
rank of 0.241, indicating that the correct matches tended to
be ranked highly. Some intuition about the system perfor-
mance is given by reporting the percentage of MIDI files in
the test set where the correct match ranked below a certain
threshold; this is shown for various thresholds in Table 1.

Studying Table 1 reveals that we can’t rely on the correct
entry appearing as the top match among all the MSD tracks;
the DTW distance for true matches only appears at rank 1
about 15.2% of time. Furthermore, for a significant portion
of our MIDI files, the correct match did not rank in the
top 1000. This was usually caused by the MIDI file being
beat tracked at a different tempo than the audio file, which
inflated the DTW score. For MIDI files where the true
match ranked highly but not first, the top rank was often
a different version (cover, remix, etc.) of the correct entry.
Finally, some degree of inaccuracy can be attributed to the
fact that our hashing model is not perfect (as shown in
Figure 3) and that the MSD is very large, containing many
possible decoys. In a relatively small proportion of cases,
the MIDI hash sequence ended up being very similar to
many MSD hash sequences, pushing down the rank of the
correct entry.

Given that we cannot reliably assume the top hit from
hashing is the correct MSD entry, it is more realistic to
look at our system as a pruning technique; that is, it can be
used to discard MSD entries which we can be reasonably
confident do not match a given MIDI file. For example,
Table 1 tells us that we can use our system to compute the
hash-based DTW score between a MIDI file and every entry
in the MSD, then discard all but 1% of the MSD and only
risk discarding the correct match about 4.1% of the time.
We could then perform the more precise DTW on the full
CQT representations to find the best match in the remain-
ing candidates. Pruning methods are valuable only when
they are substantially faster than performing the original
computation; fortunately, our approach is orders of magni-
tude faster: On the same Intel Core i7-4930k processor, for
the median hash sequence lengths, calculating a Hamming

distance matrix between hash sequences is about 400 times
faster than computing the CQT cosine distance matrix (24.8
microseconds vs. 9.82 milliseconds) and computing the
DTW score is about 9 times faster (106 microseconds vs.
892 microseconds). These speedups can be attributed to the
fact that computing a table lookup is much more efficient
than computing the cosine distance between two vectors
and that, thanks to downsampling, our hash-based distance
matrices have 1

16 of the entries of the CQT-based ones. In
summary, a straightforward way to describe the success of
our system is to observe that we can, with high confidence,
discard 99% of the entries of the MSD by performing a cal-
culation that takes about as much time as matching against
1% of the MSD.

5. FUTURE WORK

Despite our system’s efficiency, we estimate that perform-
ing a full match of our 140,910 MIDI file collection against
the MSD would still take a few weeks, assuming we are
parallelizing the process on the 12-thread Intel i7-4930k.
There is therefore room for improving the efficiency of our
technique. One possibility would be to utilize some of the
many pruning techniques which have been proposed for
the general case of large-scale DTW search. Unfortunately,
most of these techniques rely on the assumption that the
query sequence is of the same length or shorter than all the
sequences in the database and so would need to be modified
before being applied to our problem. In terms of accu-
racy, as noted above most of our hash-match failures can
be attributed to erroneous beat tracking. With a better beat
tracking system or with added robustness to this kind of
error, we could improve the pruning ability of our approach.
We could also compare the accuracy of our system to a
slower approach on a much smaller task to help pinpoint
failure modes. Even without these improvements, our pro-
posed system will successfully provide orders of magnitude
of speedup for our problem of resolving our huge MIDI
collection against the MSD. All the code used in this project
is available online. 8
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Müllensiefen, and Geraint A. Wiggins. Towards cross-
version harmonic analysis of music. IEEE Transactions
on Multimedia, 14(3):770–782, 2012.

[9] Sebastian Ewert, Bryan Pardo, Mathias Muller, and
Mark D. Plumbley. Score-informed source separation
for musical audio recordings: An overview. IEEE Signal
Processing Magazine, 31(3):116–124, 2014.

[10] Joachim Ganseman, Gautham J. Mysore, Paul Scheun-
ders, and Jonathan S. Abel. Source separation by score
synthesis. In Proceedings of the International Computer
Music Conference, pages 462–465, 2010.

[11] Alon Halevy, Peter Norvig, and Fernando Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, 2009.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. arXiv
preprint arXiv:1502.01852, 2015.

[13] Ning Hu, Roger B. Dannenberg, and George Tzanetakis.
Polyphonic audio matching and alignment for music
retrieval. In IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, pages 185–188,
2003.

[14] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy:
Open source scientific tools for Python. 2014.

[15] Jonathan Masci, Michael M. Bronstein, Alexan-
der M. Bronstein, and Jürgen Schmidhuber. Multimodal
similarity-preserving hashing. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(4):824–
830, 2014.

[16] Brian McFee, Matt McVicar, Colin Raffel, Dawen
Liang, and Douglas Repetto. librosa: v0.3.1, November
2014.

[17] Cory McKay and Ichiro Fujinaga. jSymbolic: A feature
extractor for MIDI files. In Proceedings of the Inter-
national Computer Music Conference, pages 302–305,
2006.

[18] Meinard Müller. Information retrieval for music and
motion. Springer, 2007.

[19] Colin Raffel and Daniel P. W. Ellis. Intuitive anal-
ysis, creation and manipulation of MIDI data with
pretty_midi. In Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Confer-
ence Late Breaking and Demo Papers, 2014.

[20] Alexander Schindler, Rudolf Mayer, and Andreas
Rauber. Facilitating comprehensive benchmarking ex-
periments on the million song dataset. In Proceedings
of the 13th International Society for Music Information
Retrieval Conference, pages 469–474, 2012.

[21] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning
algorithms. In Advances in Neural Information Process-
ing Systems, pages 2951–2959, 2012.

[23] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks
for Machine Learning, 4, 2012.

[24] Derek Tingle, Youngmoo E. Kim, and Douglas
Turnbull. Exploring automatic music annotation with
“acoustically-objective” tags. In Proceedings of the in-
ternational conference on Multimedia information re-
trieval, pages 55–62. ACM, 2010.

[25] Robert J. Turetsky and Daniel P. W. Ellis. Ground-truth
transcriptions of real music from force-aligned MIDI
syntheses. Proceedings of the 4th International Society
for Music Information Retrieval Conference, pages 135–
141, 2003.

[26] Douglas Turnbull, Luke Barrington, David Torres, and
Gert Lanckriet. Towards musical query-by-semantic-
description using the CAL500 data set. In Proceedings
of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 439–446. ACM, 2007.

240 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



IMPROVING GENRE ANNOTATIONS FOR THE MILLION SONG
DATASET

Hendrik Schreiber
tagtraum industries incorporated

hs@tagtraum.com

ABSTRACT

Any automatic music genre recognition (MGR) system
must show its value in tests against a ground truth dataset.
Recently, the public dataset most often used for this pur-
pose has been proven problematic, because of mislabeling,
duplications, and its relatively small size. Another dataset,
the Million Song Dataset (MSD), a collection of features
and metadata for one million tracks, unfortunately does not
contain readily accessible genre labels. Therefore, multi-
ple attempts have been made to add song-level genre anno-
tations, which are required for supervised machine learn-
ing tasks. Thus far, the quality of these annotations has not
been evaluated.

In this paper we present a method for creating ad-
ditional genre annotations for the MSD from databases,
which contain multiple, crowd-sourced genre labels per
song (Last.fm, beaTunes). Based on label co-occurrence
rates, we derive taxonomies, which allow inference of top-
level genres. These are most often used in MGR systems.

We then combine multiple datasets using majority vot-
ing. This both promises a more reliable ground truth
and allows the evaluation of the newly generated and pre-
existing datasets. To facilitate further research, all derived
genre annotations are publicly available on our website.

1. INTRODUCTION

Automatic music genre recognition (MGR) is among the
most popular Music Information Retrieval (MIR) tasks [5].
Until 2012, the majority of datasets used for MGR re-
search was private and the most popular public dataset was
GTZAN [13, 14]. Unfortunately, GTZAN has some doc-
umented deficiencies [12]. Additionally, with 1,000 ex-
cerpts from ten different genres, GTZAN is relatively small
by today’s standards. Desirable as dataset for MGR, in
terms of size and available features, is the Million Song
Dataset (MSD) [2]. But by 2012, when it was still very
new, only three of the 345 publications (0.7%) surveyed
in [13] had used it. This may be explained by the fact
that the MSD does not contain explicit genre annotations.
The authors of all three publications first had to derive

c© Hendrik Schreiber.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Hendrik Schreiber. “Improving genre
annotations for the million song dataset”, 16th International Society for
Music Information Retrieval Conference, 2015.

song-level genre labels for a subset of the MSD as ground
truth. For this purpose, Hu [7] and Schindler [10] both
used album-level genre labels scraped from the All Mu-
sic Guide website 1 . Dieleman et al. [3] selected 20 com-
monly used genres from the MusicBrainz artist tags con-
tained in the MSD—an approach similar to what the MSD
author suggested for the MSD Genre Dataset, a “simplified
genre dataset from the Million Song Dataset for teaching
purposes” 2 . With the exception of [10], the used ground
truths aren’t re-usable or well documented. And in the case
of [10], they have not been evaluated and don’t allow for
multiple genre annotations per song.

In the spirit of [9], what is required to help facilitate
MGR research using the MSD, is a song-level ground truth
with a documented level of accuracy that also allows for
ambiguity. In the following sections we will first derive
(where necessary) and then compare four different genre
datasets for the MSD. In Section 2 we describe how we
created the beaTunes Genre Dataset (BDG). In Section 3,
we apply a similar approach to the Last.fm Dataset 3 , cre-
ating a Last.fm Genre Dataset (LFMGD). In Section 4
we explore to which degree the BDG, LFMGD and the
datasets created by Hu (HO) 4 and Schindler (Top-MAGD)
agree, and derive two new datasets, by combining multi-
ple sources. Finally, in Section 5 and Section 6, we define
benchmark partitions to promote repeatability of experi-
ments using the new datasets and point to additional raw
data.

2. BEATUNES GENRE DATASET

beaTunes 5 is a consumer application that encourages its
users to correct song metadata using multiple heuristics.
It also supports sending anonymized metadata to a cen-
tral database, which matches it to metadata sent by other
users. Much like tags on Last.fm, this allows keeping track
of multiple user-submitted genres per song. For example,
one song may have been associated with the label Rock
by five users, while three users regarded the same song a
Pop song. The database currently contains more than 870

1 http://allmusic.com/
2 http://labrosa.ee.columbia.edu/millionsong/

blog/11-2-28-deriving-genre-dataset
3 http://labrosa.ee.columbia.edu/millionsong/

lastfm
4 http://web.cs.miami.edu/home/yajiehu/

resource/genre/
5 http://www.beatunes.com/
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million user song submissions of which 772 million are la-
beled with a genre and mapped to more than 85 million
songs. Furthermore, the database stores each user’s sys-
tem language. In the remainder of this section we describe,
how we used the existing genre labels to assign top-level
genres (seeds) to each song and matched them to songs in
the MSD.

2.1 Genre Label Normalization

In the beaTunes database, more than one million dif-
ferent, user-submitted genre labels are stored. Some
of these are slight spelling variations of popular genre
names like Hip-Hop or composites of multiple genres
like Hip-Hop/Rap. Others describe custom categoriza-
tion schemes, ratings, or are simply noise. In order to ex-
tract the most-used and thus most important genre labels
from the database, we first normalized their names and
then ranked them by usage count. The following normal-
ization procedure was employed (building on [6]):

1. Convert to lowercase
2. Remove whitespace
3. Convert ’n’, and, and & in different spellings of

R&B, D&B, and Rock’n’Roll to n
4. Replace alt. with alternative and trad.

with traditional
5. Tokenize with +&/,;:!\[]() as delimiters
6. From each token, remove all characters that aren’t

letters or digits
7. Sort tokens alphanumerically
8. Concatenate tokens with / as delimiter

This effectively treats composite labels like
Hip-Hop/Rap as their own genre, but makes sure that
Hip-Hop/Rap is equal to Rap/Hip-Hop. The special
treatment in step 3 for R&B, D&B, and Rock’n’Roll
is necessary, as the & character is also used as delimiter
in composite labels (e.g. Christian & Gospel).
After normalization, almost 700,000 different genre labels
remain. However, 50% of all user-submitted songs are
covered by the 16 most-used genres, 80% by the top 131
genres, and 90% by the top 750 genres.

2.2 Language-Specific Counts

Since genre labels reflect how listeners with a specific cul-
tural background perceive music and what it means to
them [1, 4, 8], we investigated how the collection’s top
genre rankings differ when taking the user’s system lan-
guage into account. Not surprisingly, by and large they
are quite similar—with Rock, Pop, Hip-Hop and Jazz
occurring in most top tens (Table 1). But there are a few
notable exceptions. English speaking listeners are the only
ones with Country (ranked 9th) in their top ten genres,
French speakers rank Reggae (5th) higher than others,
Spanish speakers rank Latin (5th), House (7th), and
Otros (8th) high, and Japanese speakers rank J-Pop
(3rd) near the top. Clearly, these differences are indica-
tive of cultural preferences and should be taken into ac-
count when creating genre taxonomies. Therefore, in the

remainder of this paper, we have only used the beaTunes
label-submissions of English-speaking users.

2.3 Inferring Genre Taxonomies

As the beaTunes database contains on average about nine
user submissions (i.e. genre labels) per song, we can record
co-occurrences of labels on a per-song basis and thus in-
fer relationships between them. Latent Semantic Analysis
(LSA) with cosine similarity has been used for this pur-
pose before [11]. But because we did not plan on using
the cosine distance as metric, we did not deem it necessary
to use Singular Value Decomposition (SVD) to keep the
dimensionality low. Instead, we opted for a much simpler
method. We filtered out rarely used labels and restricted
ourselves to the top 1,000 genres covering over 93% of all
user submissions with genre information.

Formally, we define G := {Rock,Pop, ...} with |G| =
1000 = n as the set of the n top genres, which are
stored as distinct values in the vector g ∈ Gn with g :=
(Rock,Pop, ...). Each user submission is defined as a
sparse vector u ∈ Nn with

ui =

{
1, if gi = user-submitted genre
0, otherwise.

(1)

To establish the connection between a song s and its
user labels u, we simply add up all u’s belonging to the
song and divide by the number of u’s. Thus each song is
represented by a vector s ∈ Rn with 0 ≤ si ≤ 1 and∑n−1

i=0 si = 1, denoting each genre’s relative strength. To
compute the co-occurrences for a given genre gi with all
other genres g, we element-wise average all s for which
si 6= 0 is true. I.e.:

Cgi := s̄, for all s with si 6= 0;C ∈ Rn×n (2)

The result is the matrix C that allows us to see how
often a given genre co-occurs with another genre. Note
that C is not symmetric as it would have been, had
we used SVD with cosine similarity. So just because
Alternative co-occurs with Rock fairly strongly
(CAlternative,Rock = 0.156), the opposite is not necessar-
ily true (CRock,Alternative = 0.026, see Table 2). From
the C values for the beaTunes database, it is also obvious,
that Rock and Pop can be distinguished very well—both
labels co-occur much more with themselves than with the
other (Rock: 0.609/0.057, Pop: 0.593/0.077).

We exploit the asymmetry ofC to construct a taxonomy
by defining the following two rules:

(1) If a genre a co-occurs with another genre b more
than a minimum threshold τ , and a co-occurs with b more
than the other way around, then we assume that a is a sub-
genre of b. More formally:

a is a sub-genre of b, iff
a 6= b

∧ Ca,b > τ
∧ Ca,b > Cb,a

for all a, b ∈ G

(3)
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All English German French Spanish Japanese
(N = 772.1) (N = 521.1) (N = 97.9) (N = 43.3) (N = 27.1) (N = 11.0)

1. Rock Rock Pop Rock Rock Rock
2. Pop Pop Rock Pop Pop Pop
3. Alternative Alternative Electronic Jazz Jazz J-Pop
4. Jazz Hip-Hop/Rap Hip-Hop Hip-Hop Soundtrack R&B
5. Hip-Hop Hip-Hop Jazz Reggae Latin Soundtrack
6. Hip-Hop/Rap R&B Alternative R&B Dance Jazz
7. Soundtrack Soundtrack Dance Soundtrack House Electronica/Dance
8. R&B Jazz R&B Blues Otros ロック(Rock)
9. Electronic Country Rock/Pop Electronic Blues Altern. & Punk

10. Country Altern. & Punk Soundtrack Rap Electronica Hip-Hop/Rap

Table 1. Top ten genres used by beaTunes users with different languages. N denotes the number of submissions in millions.

Co-Occurrence Rank 1. 2. 3. 4.
Rock Rock (0.609) Pop (0.057) Alternative (0.026) Rock/Pop (0.016)

Pop Pop (0.593) Rock (0.077) Rock/Pop (0.014) R&B (0.013)
Alternative Alternative (0.394) Rock (0.156) Pop (0.052) Alternative/Punk (0.036)

R&B R&B (0.566) Pop (0.061) Soul (0.036) R&B/Soul (0.033)
Soundtrack Soundtrack (0.754) Rock (0.024) Pop (0.022) Game (0.011)

... ... ... ... ...

Table 2. Genre labels in the beaTunes database and their top four co-occurring labels ordered by relative strength given in
parenthesis. The underlying values from the co-occurrence matrix C were computed taking only submissions by English
speakers and the 1,000 most-used labels into account.

(2) Because this rule allows a genre to be a sub-genre of
multiple genres, we add:

a is a direct sub-genre of b, iff
a is a sub-genre of b

∧ Ca,b > Ca,c

with c 6= a ∧ c 6= b; a, b, c ∈ G
(4)

By finding all direct sub-genres and their parents, we
can now create a set of trees. The number of created trees
depends on the threshold τ . We found, that to properly dis-
tinguish between genres like Pop, Rock, Dance, R&B,
Folk, and Other, τ := 0.085 proved to be useful, re-
sulting in 141 trees. The roots of these trees are typi-
cally the names of seed-genres like Jazz, Pop, Rock,
etc. (see Figure 1).

Not all generated trees have children. For example, the
tree with the seed-genre Groove consists of just the root.
Although Groove co-occurs with R&B, Rock, Funk, and
Soul, the co-occurrence rates with genres other than itself
are all below τ . Even the co-occurrence with itself is low
(0.157). This suggests, that Groove is not really a genre,
but more a property of a genre. Another example for a root-
only tree is Calypso. Here the co-occurrence with itself
is much higher (0.606) and indeed Calypso qualifies as
stand-alone genre that simply does not have any sub-genres
in this database.

Naturally, the generated taxonomies are only simplified
mappings of the more complex relationship graph repre-
sented by C. In reality, genres aren’t necessarily exclusive
members of one tree or another (e.g. fusion genres). An
ontology is the much better construct. But, as we will see,
for the purpose of mapping most sub-genres to their seed-
genre, trees are useful.

Rock

Metal Alternative Punk ...

Pop

Folk Pop Acoustic Pop Top 40 ...

Hip-Hop

East Coast Rap Turntablism ...

RnB

Motown Funk Soul Urban ...

Figure 1. Partial, generated trees for the seed-genres
Rock, Pop, Hip-Hop, and R&B.

2.4 Matching with Million Song Dataset

To create song-level genre annotations for the MSD, we
queried the beaTunes database for songs with artist/title
pairs contained in the MSD and were able to match
677,038 songs. In order to ease the comparison with the
HO and Top-MAGD datasets, we associated each matched
song with the seed-genre of its most often occurring
genre label, taking advantage of the taxonomies created in
Section 2.3. Motown, for example, is represented by its
seed-genre RnB. In many cases, the found seed-genres are
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Co-Occurrence Rank 1. 2. 3. 4.
rock rock (0.128) alternative (0.023) pop (0.021) indie (0.021)
pop pop (0.107) rock (0.037) femalevocalists (0.024) 80s (0.018)

alternative alternative (0.076) rock (0.062) indie (0.037) alternativerock (0.023)
indie indie (0.108) rock (0.045) alternative (0.034) indierock (0.026)

electronic electronic (0.119) dance (0.026) trance (0.021) electronica (0.019)
... ... ... ... ...

Table 3. Tags in the Last.fm dataset and their top four co-occurring labels ordered by relative strength given in parenthesis,
based on the co-occurrence matrix C, computed taking the 1,000 most-used labels into account.

equal to the All Music Guide labels used by Top-MAGD
(Blues, Country, Electronic, International,
Jazz, Latin, Pop Rock, Rap, Reggae, RnB, New
Age, Folk, Vocal). With a few exceptions: In our gen-
erated taxonomy for English users, Blues and Vocal
are not seed-genres, but rather sub-genres of Rock and
Jazz, respectively. Therefore, in these cases we used
the label itself instead. We also translated World to
International, and Pop, Rock, and Pop/Rock to
Pop Rock, and Hip-Hop to Rap. All songs we could not
map to a Top-MAGD label were dropped, leaving us with
609,865 songs—90% of the originally matched songs. We
call this dataset the beaTunes Genre Dataset (BGD).

3. LAST.FM GENRE DATASET

The Last.fm dataset is similar to the beaTunes database,
in that it also contains multiple user-submitted labels per
song which are each associated with a weight. Therefore
we can use the same method to build a co-occurrence ma-
trix and construct genre trees. The main difference lies in
the kind of labels used. While the beaTunes labels are al-
most exclusively genre names, Last.fm tags vary a lot in
content. Many are also genre labels, but others describe a
mood, situation, location, time, or something completely
different. As the dataset contains 522,366 different tags,
it is not feasible to manually extract only the genre related
ones. Therefore we again chose to incorporate the 1,000
most-used tags into computed genre trees. Because a sin-
gle Last.fm song is often associated with many more tags
than a beaTunes song with genre labels, we had to choose
a different τ . Just like for BGD, we wanted to be able to
see genres like Electronic, Jazz, Pop and Rock as
seed-genres and therefore chose τ := 0.040, which allows
for this (see Table 3 for sample co-occurence values).

To create the Last.fm Genre Dataset (LFMGD), we as-
sociated each song with the seed-genre of the strongest
tag that has a seed-genre corresponding to a Top-MAGD
label or already corresponds to one of the Top-MAGD
labels itself. In either case, we adjusted the spelling
suitably. We also translated hiphop to Rap, and
pop, rock, poprock to Pop Rock, and world to
International. Again, all songs not easily mappable
to a Top-MAGD label were removed from the set. This left
us with 340,323 (67.4%) of the 505,216 tracks originally
labeled with at least one tag.

Top-MAGD LFMGD BGD
HO 56.6% 52.7% 54.9%

Top-MAGD - 75.8% 84.1%
LFMGD - - 81.0%

Table 5. Pairwise agreement rates for all four datasets for
136,639 MSD tracks occurring in all sets. The highest
agreement is set in bold, the lowest in italic.

Dataset Top-MAGD LFMGD BGD
Agreement Rate 90.4% 87.2% 95.8%

Table 6. Agreement rates for genre labels in Top-MAGD,
LFMGD, and BGD when compared with the 133,676
tracks in CD1, found by majority voting.

4. CONSTRUCTING GROUND TRUTH

To construct a reliable ground truth, we evaluated agree-
ment rates between the existing and constructed datasets
using the genre labels from Top-MAGD. We then com-
bined the more promising sets (Section 4.1). Because
Top-MAGD labels as the lowest common denominator are
somewhat unsatisfying, we then used just LFMGD and
BGD to construct an additional dataset with finer genre
granularity (Section 4.2).

4.1 Truth by Majority

After removal of duplicates 6 , we found 136,639 tracks oc-
curring in all four datasets Top-MAGD, LFMGD, BGD,
and HO, all labeled with Top-MAGD genres. As a rela-
tive measure of trustworthiness, we calculated their pair-
wise agreement rate (Table 5). While the rates between
Top-MAGD, LFMGD, and BGD are above 75%, those in-
volving HO are below 57%. Unlike the other sets, HO was
created with a combined classifier and is not the result of
crowd-sourcing or any kind of expert annotation. There-
fore a lower agreement rate was to be expected. The al-
most 20 percentage points difference illustrates that HO is
not suitable as ground truth.

Since the other datasets were in relatively high agree-
ment and we did not have a strong reason to believe, that

6 http://labrosa.ee.columbia.edu/millionsong/
blog/11-3-15-921810-song-dataset-duplicates
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Top-MAGD Blues Country Electronic Folk International Jazz Latin New Age Pop Rock Rap Reggae RnB Vocal
Blues 78.1% 0.1% 0.0% 0.4% 0.1% 1.5% 0.0% 0.0% 17.9% 0.0% 0.0% 1.7% 0.0%

Country 0.0% 86.1% 0.0% 2.3% 0.1% 0.2% 0.0% 0.0% 11.4% 0.0% 0.0% 0.0% 0.0%
Electronic 0.0% 0.0% 82.4% 0.0% 0.4% 0.2% 0.1% 0.1% 15.7% 0.9% 0.0% 0.2% 0.0%

Folk 0.0% 0.8% 0.1% 49.2% 14.9% 0.0% 0.2% 0.1% 34.3% 0.0% 0.0% 0.0% 0.3%
International 0.1% 0.0% 7.8% 0.3% 83.6% 0.7% 0.8% 1.2% 4.5% 0.0% 0.0% 0.4% 0.7%

Jazz 0.1% 0.0% 2.2% 0.0% 0.5% 76.2% 1.2% 0.8% 6.5% 0.2% 0.0% 1.5% 10.8%
Latin 0.0% 0.0% 0.3% 0.0% 0.7% 0.3% 95.6% 0.0% 2.5% 0.2% 0.0% 0.0% 0.3%

New Age 0.0% 0.0% 2.7% 0.0% 1.4% 0.9% 0.0% 93.5% 1.5% 0.0% 0.0% 0.0% 0.0%
Pop Rock 0.0% 0.1% 1.0% 0.2% 0.6% 0.1% 0.9% 0.0% 96.0% 0.1% 0.0% 0.8% 0.2%

Rap 0.0% 0.0% 3.0% 0.0% 0.7% 0.0% 0.2% 0.0% 4.5% 91.0% 0.0% 0.4% 0.0%
Reggae 0.0% 0.0% 2.2% 0.0% 1.7% 0.1% 1.0% 0.0% 21.5% 1.2% 72.2% 0.1% 0.0%

RnB 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 3.3% 0.4% 0.0% 95.8% 0.0%
Vocal 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.9% 0.0% 1.3% 0.0% 0.0% 0.0% 95.8%

BGD Blues Country Electronic Folk International Jazz Latin New Age Pop Rock Rap Reggae RnB Vocal
Blues 97.6% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0% 0.0% 1.4% 0.0% 0.0% 0.6% 0.0%

Country 0.1% 97.8% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 0.0% 0.1% 0.0%
Electronic 0.2% 0.0% 91.2% 0.0% 0.4% 0.3% 0.0% 0.6% 6.5% 0.6% 0.1% 0.2% 0.0%

Folk 0.4% 1.8% 0.0% 93.9% 0.2% 0.0% 0.0% 0.1% 3.6% 0.0% 0.0% 0.0% 0.0%
International 0.0% 0.2% 0.7% 0.9% 93.8% 0.5% 0.7% 0.5% 2.2% 0.0% 0.5% 0.0% 0.0%

Jazz 0.1% 0.0% 0.4% 0.0% 0.1% 97.5% 0.2% 0.1% 1.1% 0.1% 0.0% 0.4% 0.0%
Latin 0.1% 0.0% 0.5% 0.3% 1.6% 0.7% 91.3% 0.0% 4.9% 0.2% 0.3% 0.1% 0.0%

New Age 0.1% 0.0% 0.6% 0.1% 0.9% 0.4% 0.0% 97.4% 0.6% 0.0% 0.0% 0.0% 0.0%
Pop Rock 0.3% 0.3% 1.3% 0.6% 0.1% 0.1% 0.2% 0.0% 96.4% 0.1% 0.1% 0.3% 0.0%

Rap 0.1% 0.0% 0.9% 0.0% 0.0% 0.1% 0.0% 0.0% 1.4% 96.5% 0.2% 0.8% 0.0%
Reggae 0.2% 0.0% 0.3% 0.0% 0.2% 0.0% 0.0% 0.0% 0.4% 0.5% 98.3% 0.1% 0.0%

RnB 0.1% 0.0% 0.2% 0.0% 0.1% 0.2% 0.0% 0.0% 3.8% 0.6% 0.0% 94.9% 0.0%
Vocal 1.3% 0.0% 0.0% 0.0% 0.4% 16.3% 0.4% 0.0% 16.3% 0.0% 0.0% 0.4% 64.9%

LFMGD Blues Country Electronic Folk International Jazz Latin New Age Pop Rock Rap Reggae RnB Vocal
Blues 92.3% 0.4% 0.2% 0.2% 0.0% 1.2% 0.0% 0.0% 5.3% 0.1% 0.2% 0.0% 0.0%

Country 0.2% 91.8% 0.0% 1.2% 0.0% 0.2% 0.0% 0.0% 6.4% 0.1% 0.1% 0.0% 0.0%
Electronic 0.0% 0.0% 85.0% 0.1% 0.2% 2.7% 0.1% 0.2% 9.8% 1.1% 0.7% 0.0% 0.1%

Folk 1.3% 3.7% 0.0% 87.6% 0.1% 0.6% 0.0% 0.0% 6.3% 0.0% 0.1% 0.0% 0.2%
International 0.1% 0.2% 2.4% 17.2% 64.7% 3.0% 1.4% 1.2% 7.9% 0.3% 1.4% 0.0% 0.3%

Jazz 0.4% 0.1% 0.5% 0.0% 0.3% 95.1% 0.1% 0.1% 2.8% 0.1% 0.1% 0.0% 0.3%
Latin 0.2% 0.2% 1.6% 1.2% 2.4% 3.8% 59.0% 0.1% 29.6% 0.6% 0.9% 0.0% 0.3%

New Age 0.1% 0.1% 12.1% 2.9% 1.4% 17.6% 0.9% 54.8% 9.8% 0.1% 0.0% 0.0% 0.1%
Pop Rock 1.2% 1.1% 3.4% 2.8% 0.1% 1.0% 0.1% 0.1% 88.9% 0.4% 0.7% 0.1% 0.2%

Rap 0.0% 0.1% 1.4% 0.0% 0.0% 1.2% 0.3% 0.0% 4.0% 92.2% 0.3% 0.4% 0.0%
Reggae 0.0% 0.0% 0.2% 0.0% 0.1% 0.2% 0.1% 0.0% 2.2% 0.3% 96.6% 0.2% 0.0%

RnB 3.2% 0.2% 0.5% 0.1% 0.0% 9.1% 0.1% 0.0% 20.5% 3.9% 0.4% 61.2% 0.7%
Vocal 0.4% 1.7% 0.4% 0.8% 2.1% 16.7% 1.3% 1.3% 25.9% 2.1% 0.0% 0.0% 47.3%

Table 4. Confusion matrices between CD1 and Top-MAGD, BGD, and LFMGD. Values greater 10% are set in bold.

one of them is better than the other, we constructed a Com-
bined Dataset 1 (CD1) from them using unweighted major-
ity voting. CD1 contains only those tracks, that are labeled
exclusively with the Top-MAGD genre set and for which
the majority of labels from Top-MAGD, LFMGD, and
BGD are identical. MSD duplicates were removed. Out
of 136,991 tracks we found a majority genre for 133,676
(97.6% of all), of which 98,149 were found by unanimous
consent (73.4% of majorities). To document ambiguity,
we recorded both the majority decision and the minority
vote, if there was one. This may be used in the evaluation
of MGR systems, e.g. for fractional scores, or as indicator
for uncertainty. The majority genre distribution of CD1 is
shown in Figure 2. Rock Pop is with 59.8% by far the
most dominant genre, Vocal with 0.2% the most under-
represented one.

When comparing Top-MAGD, LFMGD, and BGD to
the majority labels from CD1, we found that BGD matches
best with 95.8%, followed by Top-MAGD with 90.4%,
and LFMGD with 87.2% (Table 6). We believe that the
relatively low agreement rate for LFMGD indicates room
for improvement in the used mapping procedure from
tags to genres, rather then problems with the original
Last.fm dataset. Even though Top-MAGD was derived
from album-level genre labels, it agrees with CD1 remark-
ably well, which attests to the quality of the set. BGD
might be seen as the best of both worlds: its data source

is song-level like LFMGD and at the same time somewhat
limited to a genre vocabulary—more like Top-MAGD than
LFMGD. This means the problematic mapping from free-
form tags to genres is much easier. Overall, one might in-
terpret these numbers as estimates for an upper boundary
of MGR systems that test against a ground truth with only
one genre label per song.

To provide more detail regarding the individual weak-
nesses of the datasets relative to CD1, we created confu-
sion matrices (Table 4). In Top-MAGD the largest mis-
classifications occur for Folk (34.3%), Reggae (21.5%),
Blues (17.9%), Electronic (15.7%), and Country
(11.4%), which are all categorized as Pop Rock. BGD
classifies Vocal relatively poorly: 16.3% are misclassi-
fied as Jazz and 16.3% as Pop Rock. LFMGD tends
to misclassify Latin, RnB, and Vocal as Pop Rock
(29.6%, 20.5%, 25.9%), and Vocal as Jazz (16.7%). In
summary, most errors occur with songs falsely identified
as Rock Pop. Additionally, Vocal tends to be misclas-
sified as Jazz. We suspect this happens mainly, because
Vocal is not seen as a genre, but rather as a style.

4.2 Truth by Consensus

Similar to Top-MAGD, almost 60% of all songs in CD1 are
labeled Pop Rock, Obviously, this rather coarse labeling
is unsatisfying. Therefore we decided to create another
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Figure 2. Majority genre distribution of tracks in CD1.
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Figure 3. Genre distribution of tracks in CD2C.

dataset, Combined Dataset 2 (CD2), which differentiates
between these two genres and adds two additional ones that
are popular among users of beaTunes and Last.fm (Metal
and Punk). Because International is hardly used
in user-submitted tags and thus seems artificial, we used
World instead. We also translated Soul to R&B in order
to group them together, and removed Vocal, because it is
the genre BGD and LFMGD confused most in CD1.

As sources for CD2 we used suitably modified versions
of LFMGD and BGD and found 280,831 songs that both
fit our genre-set, occur in both datasets, and aren’t dupli-
cates. 191,401 (68.2%) of the songs in CD2 have only one
genre label, found by consensus. For convenience, we cre-
ated another dataset called Combined Dataset 2 Consensus
(CD2C) containing just those songs. As shown in Figure 3,
the genre distribution for CD2C is a little more even than
CD1—Rock being represented with a 39.2% share, Pop
with 6.8%, and New Age with 0.6%.

5. BENCHMARK PARTITIONS

Inspired by [10] we provide three kinds of benchmark par-
titions for CD1, CD2, and CD2C in order to promote re-
peatability of experiments beyond x-fold cross validation.
These partitions are:

• “Traditional” splits into training and test sets, with
sizes 90%, 80%, 66%, and 50%; no stratification.

• Splits into training and test sets, with sizes 90%,
80%, 66%, and 50% and genre stratification.

• Splits with a fixed number of training samples per
genre (1,000/2,000/3,000). Genres with fewer songs
than the training size were dropped.

As CD2 songs are not always labeled with a majority
genre, we used the first listed genre for stratification.

6. ADDITIONAL DATA

BGD and LFMGD represent simplified views on reality,
suitable for comparisons with other, similar datasets like
Top-MAGD. They both assign only one genre per song and
the genre labels themselves are very limited. Both simpli-
fications are problematic [9], which is why the combined
datasets presented in this paper contain multiple genre la-
bels where feasible. But for both BGD and LFMGD there
is actually much more information available on a per-song
basis. We are publishing it on our website in the hope that
it proves useful for further research. Specifically, this in-
cludes:

• Multiple genre annotations/tags per song along with
relative strength, and number of user-submissions to
judge reliability.

• Co-occurrence matrices computed as described
in Section 2.3.

• Derived genre taxonomies.

All data can be found at http://www.tagtraum.
com/msd_genre_datasets.html.

7. CONCLUSION AND FUTURE WORK

Reliable and accessible annotations for large datasets are
an important precondition for the development of success-
ful music genre recognition (MGR) systems. Some often-
used reference datasets are either relatively small or suffer
from other deficiencies. To promote the adoption of the
Million Song Dataset (MSD) for MGR research, we both
evaluated existing and created two new genre annotation
datasets for subsets of the MSD. Given that the large sizes
of the datasets render manual validation almost impossi-
ble, we used either majority voting or consensus to vali-
date existing data, and allowed for ambiguity in the cre-
ated ground truths. In direct comparison with the generated
ground truth CD1, 90.4% of the compared Top-MAGD la-
bels were in agreement. To further promote experimen-
tation and comparability, we also provided traditional and
stratified benchmark partitions, as well as most of the data
the combined datasets were derived from. In the process
of creating the new datasets, we used simplifications like
English-only labels and trees instead of graphs. Future
work is needed to overcome these simplifications and bet-
ter model the real world.

We hope the provided datasets prove useful for future
publications in order to create better MGR systems.
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ABSTRACT

Predictive models for music annotation tasks are practi-
cally limited by a paucity of well-annotated training data.
In the broader context of large-scale machine learning, the
concept of “data augmentation” — supplementing a train-
ing set with carefully perturbed samples — has emerged as
an important component of robust systems. In this work,
we develop a general software framework for augmenting
annotated musical datasets, which will allow practitioners
to easily expand training sets with musically motivated per-
turbations of both audio and annotations. As a proof of
concept, we investigate the effects of data augmentation
on the task of recognizing instruments in mixed signals.

1. INTRODUCTION

Musical audio signals contain a wealth of rich, complex,
and highly structured information. The primary goal of
content-based music information retrieval (MIR) is to ana-
lyze, extract, and summarize music recordings in a human-
friendly format, such as semantic tags, chord and melody
annotations, or structural boundary estimations. Model-
ing the vast complexity of musical audio seems to require
large, flexible models with many parameters. By the same
token, parameter estimation in large models often requires
a large number of samples: big models require big data.

Within the past few years, this phenomenon of increas-
ing model complexity has been observed in the computer
vision literature. Currently, the best-performing models for
recognition of objects in images exploit two fundamental
properties to overcome the difficulty of fitting large, com-
plex models: access to large quantities of annotated data,
and label-invariant data transformations [14]. The benefits
of large training collections are obvious, but unfortunately
difficult to achieve for most musical annotation tasks due
to the complexity of the label space and need for expert
annotators. However, the idea of generating perturbations
of a training set — known as data augmentation — can be
readily adapted to musical tasks.
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c© Brian McFee, Eric J. Humphrey, Juan P. Bello.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Brian McFee, Eric J. Humphrey, Juan
P. Bello. “A software framework for musical data augmentation”, 16th
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Conceptually, data augmentation consists of the appli-
cation of one or more deformations to a collection of (an-
notated) training samples. Data augmentation is motivated
by the observation that a learning algorithm may general-
ize better if it is trained on instances which have been per-
turbed in ways which are irrelevant to their labels. Some
concrete examples of deformations drawn from computer
vision include translation, rotation, reflection, and scaling.
These simple operations are appealing because they typi-
cally do not affect the target class label: an image of a cat
still contains a cat, even when it is flipped upside-down.

More generally, deformations apply not only to observ-
able features, but the labels as well. Continuing with the
image example, if an image is rotated, then any pixel-wise
label annotations (e.g., bounding boxes) should be rotated
accordingly. This observation opens up several interesting
possibilities for musical applications, in which the target
concept space typically exhibits a high degree of structure.
A musical analog to the image rotation example would be
time-stretching, where time-keyed annotation boundaries
(e.g., chord labels or instrument activations) must be ad-
justed to fit the stretched signal [16].

Many natural, musically-inspired deformations would
not only change the position of annotations, but the val-
ues themselves. For instance, if a time-stretched track has
tempo annotations, the annotation values should be scaled
accordingly. Similarly, pitch-shifting a track should induce
transpositions of annotated fundamental frequency curves,
and if the transposition is sufficiently large, chord labels or
symbolic annotations may change as well. Because the an-
notation spaces for music tasks often exhibit a high degree
of structure, successful application of data augmentation
may require a more sophisticated approach in MIR than in
other domains.

1.1 Our contributions

In this work, we describe the MUDA software architecture
for applying data augmentation to music information re-
trieval tasks. 1 The system is designed to be simple, mod-
ular, and extensible. The design enables practitioners to
develop custom deformations, and combine multiple sim-
ple deformations together into pipelines which can gener-
ate large volumes of reliably deformed, annotated music
data. The proposed system is built on top of JAMS [12],

1 https://bmcfee.github.io/muda
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which provides a simple container for accessing and trans-
porting multiple annotations for a given track.

We demonstrate the proposed data augmentation archi-
tecture with the application of recognizing instruments in
mixed signals, and show that simple manipulations can
yield improvements in accuracy.

2. RELATED WORK

The first step in developing a solution to an MIR problem is
often to design features which discard information thought
to be irrelevant to the target concept. For example, chroma
features are designed to capture pitch class information and
suppress timbre, loudness, or octave height [18]. Simi-
larly, many authors interested in modeling timbre use Mel-
frequency cepstral coefficients (MFCCs) and discard the
first component to achieve invariance to loudness [19]. This
general strategy makes intuitive sense, but it carries many
limitations. First, it is not necessarily easy to identify all
relevant symmetries in the data: if it was, the modeling
problem would be essentially solved. Second, even if such
properties are easy to identify, it may still be difficult to en-
gineer appropriately invariant features without discarding
potentially useful information. For example, 2-D Fourier
magnitude coefficients achieve invariance to time- and pitch-
transposition, but discard phase coherence [8].

As an alternative to custom feature design, some authors
advocate learning or optimizing features directly from the
data [11]. Not surprisingly, this approach typically requires
large model architectures, and much larger (annotated) data
sets than had previously been used in MIR research. Due
to the high cost of acquiring annotated musical data, it has
so far been difficult to apply these techniques in most MIR
tasks. While some authors have advocated leveraging unla-
beled data to “pre-train” feature representations [6], recent
studies have shown that comparable or better performance
can be achieved with random initialization and fully su-
pervised training [9, 22]. Our goal in this work is to pro-
vide data augmentation tools which may ease the burden
of sample complexity, and make data-driven methodology
more accessible to the MIR community.

Specific instances of data augmentation can be found
throughout the MIR literature, though they are not often
identified as such, nor are they treated systematically in a
unified framework. For example, it is common to apply cir-
cular rotations to chroma features to achieve key invariance
when modeling chord quality [15]. Alternately, synthetic
mixtures of monophonic instruments have been used to
generate more difficult examples when training polyphonic
transcription engines [13]. Some authors even leave the au-
dio content unchanged and only modify labels during train-
ing, as exemplified by the target smearing method of Ull-
rich et al. for training structural boundary detectors [21].

Finally, recent studies have used degraded signals to
evaluate the stability of existing methods for MIR tasks.
The Audio Degradation Toolbox (ADT) was developed for
this purpose, and was used to measure the impact of nat-
uralistic deformations of audio on several tasks, including
beat tracking, score alignment, and chord recognition [16].

Similarly, Sturm and Collins proposed the “Kiki-Bouba
Challenge” as a way to determine whether statistical mod-
els of musical concepts actually capture the defining char-
acteristics of the concept (e.g., genre), or are over-fitting to
spurious correlations [20].

In both of the studies cited above, models are fit to un-
modified data, and evaluated in degraded conditions un-
der the control of the experimenter. Data augmentation
provides the converse of this setting: models are fit to de-
graded data, and evaluated on unmodified examples. The
distinction between the two approaches is critical. The for-
mer attempts to measure the robustness of a system under
synthetic conditions, while the latter attempts to improve
robustness by training under synthetic conditions. Note
that with data augmentation, the evaluation set is left un-
touched by the experimenter, so the resulting comparisons
are unbiased with respect to the underlying distribution
from which the data are sampled. While this does not di-
rectly measure robustness, it has been observed that data
augmentation can improve generalization [10, 14].

3. DATA AUGMENTATION ARCHITECTURE

Our implementation takes substantial inspiration from the
Audio Degradation Toolbox [16]. In principle, the ADT
can be used directly for some forms of data augmentation
simply by applying it to the training set rather than test
set. However, we opted for an independent, Python-based
implementation for a variety of reasons.

First, Python enables object-oriented design, allowing
for structured, extensible, and reusable code. This in turn
facilitates a simple interface shared across all deformation
objects, and makes it easy for practitioners to combine or
extend existing deformations.

Second, we use JAMS [12] both to transport and store
track annotations, and as an internal data structure for pro-
cessing. JAMS provides a unified interface to different an-
notation types, and a convenient framework to manage all
annotations for a particular track. This simplifies the tasks
of maintaining synchronization between audio and annota-
tions, and implementing task-dependent annotation defor-
mations. We also adapt JAMS sandbox fields to provide
data provenance and facilitate reproducibility.

Finally, we borrow familiar software design patterns from
the scikit-learn package [4], such as transformers, pipelines,
and model serialization. These building blocks allow prac-
titioners to quickly and easily assemble complex pipelines
from small, conceptually simple components.

In the remainder of this section, we will describe the
software architecture in more detail. Without loss of gen-
erality, we assume that an annotation (e.g., instrument ac-
tivations) is encoded as a collection of tuples: (time, du-
ration, value, confidence). Note that instantaneous events
can be represented with zero duration, while track-level an-
notations have full-track duration. The value field depends
on the annotation type, and may encode strings, numeric
quantities, or fully structured objects.
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3.1 Deformation objects

At the core of our implementation is the concept of a de-
formation object. We will first describe deformation ob-
jects in terms of their methods and abstract properties. Sec-
tion 3.1.1 follows with a concrete, but high-level example.

A deformation object implements one or more trans-
formation methods, each of which applies to either audio,
meta-data, or annotations. Parameters of the deformation
are shared through a state object S. For example, S might
contain the speed-up factor of a time-stretch, or the number
of semi-tones in a pitch-shift. Each transformation method
takes as input a pair (S, x) and returns the transformed au-
dio, meta-data, or annotation x′. Decoupling the defor-
mation object’s instantiation from its state allows multiple
tracks to be processed in parallel by the same object. More-
over, as described in Section 3.3, state objects are reusable,
which promotes reproducibility.

Data augmentation often requires sampling or sweeping
a set of deformation parameters, and instantiating a sepa-
rate deformation object for each parameterization can be
inefficient, especially when the S contains non-trivial data
(e.g., tuning estimates or noise signals). Instead, a defor-
mation object implements a state generator, which may
execute arbitrary transition logic to produce a sequence of
states (S1, S2, . . . ). This is implemented efficiently using
Python generators.

Finally, deformation objects may register transforma-
tion functions against the type of an annotation, as de-
scribed by regular expressions. This allows different trans-
formation procedures to be applied to different annotation
types. During execution, the JAMS object is queried for
all annotations matching the specified expression, and the
results are processed by the corresponding transformation
method. For example, the expression “.*” matches all
annotation types, while “chord.*” matches only chord-
type annotations. These patterns need not be unique or
disjoint, though care must be taken to ensure consistent
behavior. Deformations are always applied following the
order in which they are registered.

The abstract transformation algorithm is described in
Algorithm 1. For each state S, the input data J is copied,
transformed into J ′, and yielded back to the caller. Each
J ′ can then be exported to disk, provided as a sample to an
iterative learning algorithm, or passed along to another de-
formation object in a pipeline for further processing. When
all subsequent processing of J ′ has completed, Algorithm 1
may resume computation at line 10 and proceed to the next
state at line 2. Note that because deformation objects are
both iterative (per track) and can be parallelized (across
tracks), batches of deformed data can be generated online
for stochastic learning algorithms.

3.1.1 Example: randomized time-stretching

To illustrate the deformation object interface, we will de-
scribe the implementation of a randomized time-stretch de-
formation object. In this case, each state object contains a
single quantity: the stretch factor r. Algorithm 2 illustrates
the state-generation logic for a randomized time-stretcher,

Algorithm 1 Abstract transformation pseudocode
Input: Deformation object D, JAMS object J
Output: Sequence of transformed JAMS objects J ′

1: function D.TRANSFORM(J)
2: for states S ∈ D.STATES(J) do
3: J ′ ← COPY(J)
4: J ′.audio← D.AUDIO(S, J ′.audio)
5: J ′.meta← D.METADATA(S, J ′.meta)
6: for transformations g in D do
7: for annotations A ∈ J ′ which match g do
8: J ′.A← g(S,A)

9: J ′.history← APPEND(J ′.history, S)
10: yield J ′

Algorithm 2 Randomized time-stretch state generator
Input: JAMS object J , number of deformations n, range

bounds (r−, r+)
Output: Sequence of states S

1: function RANDOMSTRETCH.STATES(J, {n, r−, r+})
2: for i in 1, 2, . . . , n do
3: Sample r ∼ U [r−, r+]
4: yield S = {r}

in which some n examples are generated by sampling r
uniformly at random from an interval [r−, r+]. 2

The JAMS object J over which the deformations will
be applied is also provided as input to the state generator.
Though not used in this example, access to J allows the
state generator to pre-compute quantities of interest, such
as track duration — necessary to ensure well-defined out-
puts from target-smearing deformations — or tuning esti-
mates, which are used by pitch-shift deformations to deter-
mine when a shift is large enough to alter note labels.

Once a state S has been generated, the AUDIO() de-
formation method — D.AUDIO(S, J.audio) — applies the
time-stretch to the audio signal, which is stored within the
JAMS sandbox upon instantiation. 3 Similarly, track-level
meta-data can be modified by the METADATA() method. In
this example, time-stretching will change the track dura-
tion, which is recorded in the JAMS meta-data field.

Next, a generic annotation deformation would be reg-
istered to the pattern “.*” and apply the stretch factor to
all time and duration fields of all annotations. This defor-
mation would leave the annotation values untouched, since
not all annotation types have time-dependent values.

Finally, any annotations whose value fields depend on
time, such as tempo, can be modified directly by regis-
tering the transformation function against the appropriate
type pattern, e.g., “tempo”. Other time-dependent type
deformations would be registered separately as needed.

The time-stretching example is simple, but it serves to
illustrate the flexibility of the architecture. It is straight-
forward to extend this example into more sophisticated de-

2 The parameters n, r−, r+ are actually properties of the deformation
object, but are listed here as method parameters to simplify exposition.

3 The sandbox provides unstructured storage space within a JAMS ob-
ject, which is used in our framework as a scratch space for audio signals.
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formations with structured state generators to sweep over
deterministic parameter grids. For example, an additive
background noise deformation could be parameterized by
a collection of noise sources and a range of gain parame-
ters, and generate one example for each unique combina-
tion of source and gain.

3.2 Pipelines and bypasses

Algorithm 1 describes the process by which a deformation
object turns a single annotated audio example into a se-
quence of deformed examples. If we were interested in ex-
perimenting with only a single type of augmentation (e.g.,
time stretching), this would suffice. However, some appli-
cations may require combining or cascading multiple types
of deformation, and we prefer a unified interface that obvi-
ates the need for customized data augmentation scripts.

Here, we draw inspiration from scikit-learn in defin-
ing pipeline objects. The general idea is simple: two or
more deformation objects Di can be chained together, and
treated as a single, integrated deformation object. More
precisely, for a deformation pipelineP composed of k stages:

P = (D1, D2, . . . , Dk),

examples are generated by a depth-first traversal of the
Cartesian product of the corresponding state spaces Σi:

ΣP = Σ1 × Σ2 × · · · × Σk.

One input example therefore produces |ΣP | =
∏k

i=1 |Σi|
outputs. By using generators rather than explicit lists of
states, we ensure that only k + 1 examples (counting the
input) are ever in memory at any time. In most cases, k
is much smaller than |ΣP |, which provides substantial im-
provements to memory efficiency.

Finally, we introduce the bypass object, which is used
to mark individual pipeline stages as optional. Bypasses
are useful when it is difficult to encode a special no trans-
formation state within a deformation object, such as in the
randomized time-stretch example of Algorithm 2. The in-
ternal logic of a bypass object is simple: first, pass the in-
put directly through unmodified, and then generate sam-
ples from the contained deformation object as usual. By-
passes can be used to ensure that the original examples are
propagated through the pipeline unscathed, and the result-
ing augmented data set is a strict superset of the clean data.

3.3 Reproducibility and data provenance

When modifying data for statistical modeling purposes,
maintaining transparency is of utmost importance to en-
sure reproducibility and accurate interpretation of results.
This ultimately becomes a question of data provenance [5]:
a record of all transformations should be kept, preferably
attached as closely as possible to the data. Rather than
force practitioners to handle book-keeping, we automate
the process from within the deformation engine. This is
accomplished at line 9 of Algorithm 1 by embedding the
state object S (and, in practice, the parameters used to con-
struct the deformation object D) within the JAMS object

Table 1. The 15 instrument labels used in our experiments.
Instrument # Tracks # Artists

drum set 65 57
electric bass 64 53
piano 42 23
male singer 38 34
clean electric guitar 37 32
vocalists 27 25
synthesizer 27 21
female singer 25 17
acoustic guitar 24 16
distorted electric guitar 21 20
auxiliary percussion 18 17
double bass 16 13
violin 14 5
cello 11 8
flute 11 6

after each deformation is applied. Each J ′ generated at
line 10 thus contains a full transactional history of all mod-
ifications required to transform J into J ′. For this reason,
stochastic deformations are designed so that all random-
ness is contained within the state generator, and transfor-
mations are all deterministic.

In addition to facilitating reproducibility, maintaining
transformation provenance allows practitioners to compute
a wide range of deformations, and later filter the results to
derive subsets generated by different augmentation param-
eters.

To further facilitate reproducibility and sharing of ex-
perimental designs, the proposed architecture supports se-
rialization of deformation objects and pipelines into a sim-
ple, human-readable JavaScript object notation (JSON) for-
mat. Once a pipeline has been constructed, it can be ex-
ported, edited as plain text, shared, and reconstructed. This
feature also simplifies the process of applying several dif-
ferent sets of deformation parameters, and eliminates the
need for writing a custom script for each setting.

4. EXAMPLE: INSTRUMENT RECOGNITION

We applied data augmentation to the task of instrument
recognition in mixed audio signals. For this task, we used
the MedleyDB dataset, which consists of 122 tracks, span-
ning a variety of genres and instrumentation [3]. Each
track is strongly annotated with time-varying instrument
activations derived from the recording stems. MedleyDB
is a small, but well-annotated collection, which we selected
because it should be possible to over-fit with a reasonably
complex model. Our purpose here is not to achieve the
best possible recognition results, but to investigate utility
of data augmentation for improving generalization. How-
ever, because of the small sample size, we limited the ex-
periment to cover only the 15 instruments listed in Table 1.

For evaluation purposes, each test track is split into dis-
joint one-second clips. The system is then tasked with
recognizing the instruments active within each clip. The
system is evaluated according to the average track-wise
mean (label-ranking) average precision (LRAP), and per-
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instrument F -score over one-second clips.

4.1 Data augmentation

The data augmentation pipeline consists of four stages:

Pitch shift by n ∈ {−1, 0, +1} semitones.

Time stretch by a factor of r ∈
{

2−1/2, 1.0, 21/2
}

.

Background noise (bypass) under three conditions: sub-
way,crowded concert hall,and night-time city noise.
Noise clips were randomly sampled and linearly mixed
with the input signal y using random weights
α ∼ U [0.1, 0.4]:

y′ ← (1− α) · y + α · ynoise.

Dynamic range compression (bypass) under two settings
drawn from the Dolby E standards [7]: speech, and
music (standard).

Pitch-shift and time-stretch operations were implemented
with Rubberband [1], and dynamic range compression was
implemented using the compand function of sox [2]. Note
that the first two stages include null parameter settings n =
0 and r = 1. Bypasses on the final two stages ensure that
all combinations of augmentation are present in the final
set. The full pipeline produces

|ΣP | = 3× 3× (3 + 1)× (2 + 1) = 108

variants of each input track. To simplify the experiments,
we only compare the cumulative effects of the above aug-
mentations. This results in five training conditions of in-
creasing complexity:

• (N) no augmentation,
• (P) pitch shift,
• (PT) pitch shift and time stretch,
• (PTB) pitch shift, time stretch, and noise,
• (PTBC) all stages.

4.2 Acoustic model

The acoustic model used in these experiments is a deep
convolutional network. The input to the network consists
of log-amplitude, constant-Q spectrogram patches extracted
with librosa [17]. Each example spans approximately one
second of audio, corresponding to 44 frames at a hop length
of 512 samples and sampling rate of 22050 Hz. Constant-
Q spectrograms cover the range of C2 (65.41 Hz) to C8
(4186 Hz) at 36 bins per octave, resulting in time-frequency
patches X ∈ R216×44. Instrument activations are aggre-
gated into a single binary label vector, such that an instru-
ment is deemed active if its on-time within the sample ex-
ceeds 0.25 seconds.

Constant-Q representations are linear in both time and
pitch, a property that can be exploited by convolutional
neural networks to achieve translation invariance. Thus a
four-layer model is designed to estimate the presence of

zero or more instruments in a time-frequency patch. For-
mally, an input X , is transformed into an output Z, via a
composite nonlinear function F(·| Θ) with parameters Θ.
This is achieved as a sequential cascade of L = 4 opera-
tions, f`(·| θ`), referred to as layers, the order of which is
given by `:

Z = F(X| Θ) = fL(· · · f2(f1(X| θ1)| θ2)| θL) (1)

The first two layers, ` ∈ {1, 2}, are convolutional, ex-
pressed by the following:

Z` = f`(X`| θ`) = h(W ~X` + b), θ` = [W, b] (2)

Here, the valid convolution, ~, is computed by convolving
a 3D input tensor, X`, consisting of N feature maps, with
a collection of M 3D-kernels, W , followed by an additive
vector bias term, b, and transformed by a point-wise ac-
tivation function, h(·). In this formulation, X` has shape
(N, d0, d1), W has shape (M,N,m0,m1), and the output,
Z`, has shape (M,d0−m0+1, d1−m1+1). Max-pooling
is applied in time and frequency, to further accelerate com-
putation by reducing the size of feature maps, and allowing
a small degree of scale invariance in both time and pitch.

The final two layers, ` ∈ {3, 4}, are fully-connected
matrix products, given as follows:

Z` = f`(X`| θ`) = h(WX` + b), θ` = [W, b] (3)

The input to the `th layer, X`, is flattened to a column
vector of lengthN , projected against a weight matrixW of
shape (M,N), added to a vector bias term, b, of length M ,
and transformed by a point-wise activation function, h(·).

The network is parameterized thusly: `1 uses W with
shape (24, 1, 13, 9), followed by (2, 2) max-pooling over
the last two dimensions, and a rectified linear unit (ReLU)
activation function: h(x) ··= max(x, 0); `2 has filter pa-
rameters W with shape (48, 24, 9, 7), followed by (2, 2)
max-pooling over the last two dimensions, and a ReLU ac-
tivation function; `3 uses W with shape (17280, 96) and
a ReLU activation function; finally, `4 uses W with shape
(96, 15) and a sigmoid activation function.

During training, the model optimizes cross-entropy loss
via mini-batch stochastic gradient descent, using batches
of n = 64 randomly selected patches and a constant learn-
ing rate of 0.01. Dropout is applied to the activations of
the penultimate layer, ` = 3 with dropout probability 0.5.
Quadratic regularization is applied to the weights of the fi-
nal layer, ` = 4, with a penalty factor of 0.02. This helps
prevent numerical instability by keeping the weights from
growing arbitrarily large. The model is check-pointed af-
ter every 1000 batches (up to 50000 batches), and a vali-
dation set is used to select the parameter setting achieving
the highest mean LRAP.

4.3 Evaluation

Fifteen random artist-conditional partitions of the Med-
leyDB collection were generated with a train/test artist ra-
tio of 4:1. For the purposes of this experiment, MusicDelta
tracks were separated by genre into a collection of distinct
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Figure 1. Test-set score distributions (mean track-wise
label-ranking average precision), over all train-test splits.
Mean scores are indicated by •. Boxes cover the 25–75
percentiles, and whiskers cover the 5–95 percentiles.

pseudo-artists. This results in 75 unique artist identifiers
for the 122 tracks. For each train/test split, the training
set was further partitioned into training and validation sets,
again at a ratio of 4:1. To evaluate performance, we com-
pute for each test track the mean label-ranking average pre-
cision (LRAP) over all disjoint one-second patches.

4.3.1 Label ranking results

Figure 1 illustrates the distribution of test-set performance
across splits. Between the no-augmentation condition (N)
and pitch-shifting augmentation (P), there is a small, but
consistent improvement in performance from an average
of 0.655 to 0.677. This is in keeping with the motivation
for this work, and our expectations when training a (pitch)-
convolutional model on a small sample. If the amount of
clean data is too small, the model may easily over-fit by
capturing irrelevant, correlated properties. (For example,
if all of the piano recordings are in one key, the model
may simply capture the key rather than the characteristics
of piano.) Adding pitch-shifted examples should help the
model disambiguate these properties.

Subsequent deformations do not appear to improve over
condition (P). In each case, no significant difference from
the pitch-shift condition could be detected by a Bonferroni-
corrected Wilcoxon signed-rank test. However, all defor-
mation conditions consistently outperform the baseline (N).

Although the difference in average performance is rel-
atively small, the upper and lower quantiles are notably
higher in (P), (PT), and (PTB) conditions. This indicates
a reduction in the tendency to over-fit the relatively small
training sets used in these experiments.

4.3.2 Frame-tagging results

To investigate the effects of augmentation on each instru-
ment class, we computed the F -score of frame-level instru-
ment recognition under each training condition. Results
were averaged first across test tracks in a split, and then
across all splits. Figure 2 depicts the change in F -score
relative to the baseline condition (N): ∆F = (F − FN ).

The trend is primarily positive: in all but three classes,
all augmentation conditions provide consistent improve-
ment. The three exceptions are synthesizer, female singer,
and violin. In the latter two cases, negative change is only
observed after introducing time-stretch deformations, which
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∆F

drum set

electric bass

piano

male singer

clean electric guitar

vocalists

synthesizer

female singer

acoustic guitar

distorted electric guitar

auxiliary percussion

double bass

violin

cello

flute
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Figure 2. Per-class change in mean test-set F -score
for each augmentation condition (F ), relative to the no-
augmentation baseline (FN ).

may unnaturally distort vibrato characteristics and render
these classes more difficult to model. The effect is partic-
ularly prominent for violin, which has the fewest unique
artists, and produces the fewest training examples.

The reduction in F -score for synthesizer in the (PT)
condition may explain the corresponding reduction in Fig-
ure 1, and may be due to a confluence of factors. First,
many of the synthesizer examples in MedleyDB have low
amplitudes in the mix, and may be difficult to model in
general. Second, the class itself may be ill-defined, as syn-
thesizer encompasses a range of instruments and timbres
which may be artist-dependent and idiosyncratic. Simple
augmentations can have adverse effects if the perturbed ex-
amples are insufficiently varied from the originals, which
may be the case here for (P) and (PT). However, the in-
clusion of background noise (PTB) results in a slight im-
provement over the baseline.

5. CONCLUSION

The data augmentation framework provides a simple and
flexible interface to train models on distorted data. The
instrument recognition experiment demonstrates that even
simple deformations such as pitch-shifting can improve gen-
eralization, but that some care should be exercised when
selecting deformations depending on the characteristics of
the problem. We note that these results are preliminary,
and do not fully exploit the capabilities of the augmenta-
tion framework. In future work, we will investigate the
data augmentation for a variety of MIR tasks.
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ABSTRACT

In this paper, a template adaptive drum transcription algo-
rithm using partially fixed Non-negative Matrix Factoriza-
tion (NMF) is presented. The proposed method detects per-
cussive events in complex mixtures of music with a minimal
training set. The algorithm decomposes the music signal
into two dictionaries: a percussive dictionary initialized
with pre-defined drum templates and a harmonic dictionary
initialized with undefined entries. The harmonic dictionary
is adapted to the non-percussive music content in a standard
NMF procedure. The percussive dictionary is adapted to
each individual signal in an iterative scheme: it is fixed
during the decomposition process, and is updated based on
the result of the previous convergence. Two template adap-
tation methods are proposed to provide more flexibility and
robustness in the case of unknown data. The performance
of the proposed system has been evaluated and compared
to state of the art systems. The results show that template
adaptation improves the transcription performance, and the
detection accuracy is in the same range as more complex
systems.

1. INTRODUCTION

Being one of the most intensively researched areas in Music
Information Retrieval (MIR), automatic music transcrip-
tion is often considered the core technology that would
enable high-level representations of music signals with the
potential of improving virtually any MIR system. A com-
plete transcription system comprises many sub-tasks such
as multi-pitch detection, onset detection, instrument recog-
nition, and rhythm extraction [2]. While the main focus
is mostly on pitched instruments, a considerable amount
of publications deal with the transcription of percussive
sounds in mixtures of tonal and percussive instruments.
The drum track in popular music conveys information about
tempo, rhythm, style, and possibly the structure of a song.
A drum transcription system enables applications in ac-
tive listening [27], music education, and interactive music
performance.

c© Chih-Wei Wu, Alexander Lerch.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Chih-Wei Wu, Alexander Lerch. “Drum Tran-
scription Using Partially Fixed Non-Negative Matrix Factorization with
Template Adaptation”, 16th International Society for Music Information
Retrieval Conference, 2015.

This study explores the application of the popular tran-
scription method NMF for drum transcription in polyphonic
music. A standard NMF approach for music transcription
decomposes a signal into a dictionary matrix, which con-
sists of multiple pre-defined templates, and an activation
matrix, which contains the activity of the corresponding
templates. In this paper, we propose to transcribe drum
events using a signal-adaptive method based on NMF.

The paper is structured as follows: Section 2 provides
an overview of the research in this area. In Section 3 we
present our approach; evaluation results are being presented
and discussed in Section 4. Section 5 provides a summary,
conclusion, and directions of future work.

2. RELATED WORK

Drum transcription is a task that requires instrument iden-
tification and onset detection for percussive sounds. To
transcribe signals containing only drum sounds, standard
approaches with a feature extractor and a subsequent clas-
sifier are able to produce results with high accuracy [11].
For most use cases, however, a drum transcription system
is expected to work on mixtures of percussive and har-
monic sound sources. Gillet and Richard propose to cat-
egorize automatic drum transcription systems into three
categories:(i) segment and classify [4, 7, 22], for which
the audio signal is segmented into a series of events us-
ing onset detection, and each event is classified based the
extracted temporal or spectral features, (ii) separate and de-
tect [1,6,15,17], which assumes music to be a superposition
of different sound sources; by decomposing the signal into
source templates with corresponding activation functions,
the content can be transcribed by analyzing the activities of
each template, and (iii) match and adapt [28, 29], identify-
ing the drum events using a template matching method in
which the templates are searched for the closest match and
adapted in an iterative process.

Methods extended from these three types of approaches
have been presented as well. Paulus and Klapuri proposed
to use Hidden Markov Models (HMM) for drum transcrip-
tion [16]. This method models temporal connections be-
tween drum events and detect the drum based on the prob-
abilistic model. However, the method needs to train on
multiple drum sequences, thus, a large dataset is needed to
obtain a generic model. Another recent approach is to use
bar information to classify the audio signal into different
predefined drum patterns [23]. This approach requires addi-
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tional information of the bar locations and a large dictionary,
which can be impractical in some use cases.

Among the above mentioned methods, the second type
of approaches (separate and detect), frequently using NMF-
related methods, has the advantage of joint estimation of
multiple instruments and easy interpretation of the results.
However, when NMF is applied to the task of drum tran-
scription, the following challenges have to be faced:

First, the number of sound sources and notes within a
music recording is usually unknown. To optimally decom-
pose a signal, this number is necessary for determining the
rank r of the dictionary. This problem would be less severe
when the sound sources of the target signal are given [14].
However, in most cases, this prior information is difficult to
acquire. One solution is to build a dictionary that contains
more source templates than the target signal. Benetos et
al. used a probabilistic extension of NMF (Probabilistic
Latent Component Analysis, PLCA) to jointly transcribe
pitched and unpitched sounds in polyphonic music with a
relatively large pre-trained dictionary [3]. Although this
method can provide harmonic and percussive contents of
the music simultaneously, its robustness against unknown
sources still needs to be evaluated.

Second, without any prior knowledge, it can be hard to
identify the corresponding instrument of every template in
the dictionary matrix [26]. This problem becomes more
severe when the rank is selected too high or too low. Helen
and Virtanen trained an SVM to separate drum templates
from harmonic templates; the rank number was derived
empirically during the factorization process [10]. The iden-
tified drum templates and their corresponding activation
could later be used to reconstruct the drum signal, resulting
in a system for drum source separation. Their approach
requires a significant amount of training data for the clas-
sifier and, more importantly, the results can be expected
to be very susceptible to choice of rank. Yoo et al. pro-
posed a co-factorization algorithm [26] to simultaneously
factorize a drum track and a polyphonic signal. They used
the dictionary matrix from the drum track to identify the
drum templates in the polyphonic signal. This approach
ensures that the drum templates in both dictionary matrices
are estimated only from the drum track, resulting in proper
isolation of the harmonic templates from the drum tem-
plates. Since their system aims at drum separation, they can
work at higher ranks. For drum transcription, however, this
approach is not directly applicable because the correspond-
ing instrument of the templates in the dictionary matrix is
unknown.

Third, a suitable penalty term or sparsity constraint for
detecting percussive instruments still needs to be investi-
gated. In general, these constraints are the additional terms
in the NMF cost function that will facilitate the different
properties (e.g., the sparseness) in the resulting activation
matrix. Virtanen proposed to use constraints for temporal
continuity and sparseness [24]. He reported that by using
the temporal continuity criterion, the detection accuracy
and SNR of the pitched sounds can be improved in the
source separation task, whereas no significant improvement

Music  
Signals TranscriptionPFNMF Onset 

Detection

Drum  
Signals STFT Template 

Extraction

STFT Template 
Adaptation

Figure 1. Flowchart of the drum transcription system

is shown with the sparseness constraint.
Another issue is the adaptability of the extracted tem-

plates. When using supervised NMF, the algorithm loses
its adaptability and might fail when the target signal is very
different from the pre-trained dictionary. Dittmar and Gart-
ner proposed to use semi-adaptive bases during the NMF
decomposition process [5]. However, their results indicate
that the semi-adaptive process did not improve the perfor-
mance of the transcription accuracy compared to fixed bases.
Furthermore, no results were reported for the transcription
performance in polyphonic mixtures.

3. METHOD

3.1 Implementation

Figure 1 shows the flow chart of the implemented system.
The STFT of the signals will be calculated using a Hann
window with a window length and a hop size of 2048 and
512, respectively, and the sample rate is 44.1 kHz. The
resulting magnitude spectrogram is used as the input rep-
resentation. A pre-trained dictionary matrix WD will be
constructed from the training set, which consists of isolated
drum sounds. Next, the initial drum dictionary will be used
in the partially fixed NMF (PFNMF) process and updated
by the selected template adaptation methods described in
Section 3.3. Finally, the activation matrix HD is processed
to determine the onset positions and their corresponding
classes.

The initial drum dictionary matrixWD is generated from
a subset of the ENST dataset, which contains audio tracks
of 5 to 6 single hits for each drum, performed by three
drummers. For every drum class, one track per drummer is
collected as training data. The onset position of these single
hits was determined using the annotated ground truth. The
template spectrum is a median spectrum of all individual
events of one drum class in the training set. The templates
are extracted for the three classes: Hi-Hat (HH), Bass Drum
(BD) and Snare Drum (SD).

High values in the activation matrix HD indicate the
presence of a drum event. More specifically, the activity
difference of each row of the activation matrix could be
considered as the onset novelty function of each individual
drum. We use a median filter as a standard approach to
create a signal-adaptive threshold for peak picking [13]. In
this paper, the window length and the offset coefficient λ of
the median adaptive threshold are set to be 0.1 s and 0.12 for
every track. The Matlab implementation of the presented
system is available online. 1

1 https://github.com/cwu307/NmfDrumToolbox
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V = WD AWH

m × n
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Figure 2. Illustration of the factorization process. W :
dictionary matrix, H: activation matrix; Subscript D: drum,
subscript H: harmonic components. A is the weighting
matrix.

3.2 Algorithm Description

The basic concept of NMF can be expressed as V ≈WH
with non-negativity constraints, in which V is a m × n
matrix, W is a m× r dictionary matrix, and H is a r × n
activation matrix, with r being the rank of the NMF decom-
position. In most audio applications, V is the spectrogram
with m frequency bins and n frames, W contains the mag-
nitude spectra of the salient components, and H indicates
the activation of these components with respect to time [20].
The matrices W and H are estimated through an iterative
process that minimizes a distance measure between the
target spectrogram V and its approximation [12].

In this paper, we propose a signal adaptive method to
transcribe drum events in polyphonic signals. The idea of
using NMF with prior knowledge of the target source within
the mixture has been applied to source separation tasks
[21] and multipitch analysis [18]. The method described
here is based on similar ideas but with different emphasis:
(i) we focus on a real world scenario in which users only
have limited amount of training samples that are slightly
different from the target source, (ii) we propose to use a
small dictionary matrix which is both efficient and easily
interpretable, and (iii) the proposed method is able to adapt
to different content in the polyphonic mixtures.

PFNMF [25] is a method inspired by [26] for drum tran-
scription task. Figure 2 visualizes the concept: the matrices
W and H are split into the matrices WD and WH, and HD

and HH, respectively. Instead of using co-factorization, the
algorithm initializes the matrix WD with drum templates
and does not modify it during the factorization process. The
matrices WH, HH, and HD are initialized randomly. The
rank rD of WD and HD depends on the number of tem-
plates (i.e., instruments) provided, and the rank rH can be
arbitrarily chosen. The total rank r = rD + rH. A is a
r × r diagonal weighting matrix, which contains weighting
coefficients for every template to balance the drum and har-
monic dictionaries in the NMF cost function (as discussed
in Section 4.3.1). In our experiment, the coefficients are
set to be α = (rD + rH)/rD for each drum template and
β = rH/(rD + rH) for each harmonic template. This set-
ting is to increase the weighting of drum templates and
slightly decrease the weighting of harmonic templates as
rH becomes larger. When rH = 0, the algorithm reduces to
the original NMF.

The distance measure used is KL-divergence, in which
DKL(x | y) = x · log (x/y) + (y − x). The NMF cost
function as shown in Eq. (1) is minimized by applying

gradient decent and multiplicative update rules.

J = DKL(V | αWDHD + βWHHH) (1)

The matrices WH, HH, and HD will be updated accord-
ing to Eqs. (2)–(4):

HD ← HD
WT

D (V/(αWDHD + βWHHH))

WT
D

(2)

WH ← WH
(V/(αWDHD + βWHHH))H

T
H

HT
H

(3)

HH ← HH
WT

H (V/(αWDHD + βWHHH))

WT
H

(4)

To summarize, the presented method before template
adaptation consists of the following steps:

1. Construct a m× rD dictionary matrix WD, with rD
being the number of drum components to be detected.

2. Given a pre-defined rank rH, initialize a m × rH
matrix WH, a rD×n matrix HD and a rH×n matrix
HH.

3. Normalize WD and WH.
4. Update HD, WH, and HH using Eqs. (2)–(4).
5. Calculate the cost of the current iteration using Eq. (1).
6. Repeat step 3 to step 5 until convergence.

The time positions of the drum events can then be extracted
by applying a simple onset detection on the rows of matrix
HD.

3.3 Template Adaptation

Previous approaches to include template adaptation in drum
transcription process can be found in [5, 29]. These ap-
proaches usually start with seed templates and gradually
adapt them to the optimal templates. In this paper, we
propose two methods for template adaptation with PFNMF.
Both methods have the same criterion to stop iterating when
the error between two consecutive iterations changes by less
than 0.1% or the number of iterations exceeds 20. How-
ever, the adaptation process typically converges after 5–10
iterations.

3.3.1 Method 1: Complementary Update

In the first method (referred to as AM1), the drum dictio-
nary WD is updated based on the cross-correlation between
the activations HH and of each individual drum in HD.
PFNMF starts by randomly initializing a WH with rank rH.
AlthoughWH tends to adapt to the harmonic content, it may
still contain entries that belong to percussive instruments
due to a mismatch between the initialized drum templates
and the target sources. This will result in cross-talk (si-
multaneous activation) between HH and HD and generate
a less pronounced activation. However, these harmonic
templates may also provide complementary information to
the original drum templates. To identify these entries, the
normalized cross-correlation between HH and HD for each
individual drum is computed using Eq. (5)

ρx,y =

∑n
j=1 x(j) · y(j)
‖x‖2 · ‖y‖2

, (5)
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where x and y represent different activation vectors, and n
is the number of samples in the activation vectors. A thresh-
old ρthres is defined for identification of related entries, and
the drum template WD can be updated using Eq. (6), where
W

(i)
H (i = 1, ..., S) are the entries with their corresponding

ρx,y higher than ρthres, and S is the number of the selected
entries. Since a low ρthres can introduce too much adapta-
tion and vice versa, a ρthres = 0.5 is chosen heuristically.
The amount of adaptation also depends on the coefficient
γ = 1

2k
, which decreases as iteration number k increases.

W ′
D = (1− γ)WD + γ

1

S

S∑

i=1

(
ρ(i)W

(i)
H

)
(6)

3.3.2 Method 2: Alternate Update

In the second method (referred to as AM2), the drum tem-
plate WD is adapted by alternatively fixing WD and HD

during the decomposition process. The adaptation process
starts by fixing WD, and PFNMF will try to fit the best
activation HD to approximate the drum part in the music.
Once HD is determined, a new iteration of PFNMF can be
started by fixing HD and allow WD, WH and HH to update.
This constraint will guide the algorithm to fit better drum
templates based on the detected activation HD. The update
rule for WD is shown in Eq. (7).

WD ←WD
(V/(αWDHD + βWHHH))H

T
D

HT
D

(7)

4. EVALUATION

4.1 Dataset Description

The experiments have been conducted on two different
datasets. The first one is the minus one subset from the
ENST drum dataset [8]. This dataset consists of recordings
from three different drummers performing on their own
drum kits. The set for each drummer contains individual
hits, short phrases of drum beats, drum solos, and short ex-
cerpts played with accompaniments. The minus one subset
has 64 tracks of polyphonic music, and the sampling rate
of every track is 44.1 kHz. Each track in this subset has
a length of approximately 70 s with varying style. More
specifically, the subset contains various drum playing tech-
niques such as ghost notes, flam, and drag; these techniques
are considered difficult to identify with existing drum tran-
scription systems [9]. The accompaniments are mixed with
their corresponding drum tracks using a scaling factor of
1/3 and 2/3 in order to reproduce the evaluation settings as
used in [16].

The second dataset, used for cross-dataset validation, is
IDMT-SMT-Drums [5]. This dataset consists of 95 drum
loop recordings from three drum kits (RealDrum, Wave-
Drum and TechnoDrum). The sampling rate of every track
is 44.1 kHz, and the total duration of the dataset is approxi-
mately two hours. This dataset also contains isolated drum
hits for training. However, in our experiments, the isolated
sounds are not used.

4.2 Evaluation Procedure

We evaluate the proposed system for both monophonic
(drum only) and polyphonic mixtures. The same set of
audio tracks is used with and without accompaniments. A
three-fold cross-validation is applied to the evaluation pro-
cess. Single drum hits collected from two drummers are
used to train the system, and complete mixtures from the
third drummer are used to test the system. The process re-
peats three times to test every drummer in the dataset. This
process is the same as described in [16], and the purpose
is to prevent the system from seeing the test data. Note
that the training data used in the system are single drum
hits, and the number of onsets is significantly fewer than
the test data. Typically, the training data only consists of 10
to 12 single hits for each drum class. This is similar to the
real-world use case, where the users may have access only
to a limited number of training samples.

The evaluation metrics follow the standard calculation
of the precision (P), recall (R), and F-measure (F). To be
consistent with [9], an onset is considered to be a match
with the ground truth if the time deviation in between is less
or equal to 50 ms. It should be noted that some authors use
more restrictive settings, compare e.g. the 30 ms as used
in [16].

4.3 Evaluation Results

4.3.1 Rank Independence

In an initial test to determine the rank rH of the PFNMF,
rH = 5, 10, 20, 40, 80, 160 have been tested in polyphonic
signals with and without a weighting matrix. As shown in
Figure 3, a general trend of decreasing performance can
be observed when rH > 5 without a weighting matrix.
With a weighting matrix, however, the performance slightly
increases for both HH and SD, and slightly decreases for BD
as the rH increases. The results demonstrate the robustness
of the proposed system against the rank selection when a
weighting matrix is introduced.

By increasing the rank rH, a largerWH will be initialized
to better adapt to the target signal, however, this unbalanced
increase in templates would also decrease the weight of the
drum templates in the optimization process, thus reducing
the impact of the percussive templates on the NMF cost
function. This effect is reduced by the weighting matrix A
which balances the weights between drum and harmonic
templates.

4.3.2 Threshold Selection

The transcription results can be obtained after applying
onset detection on each drum activation (see Section 3.1).
However, the performance varies according to the selection
of the signal-adaptive threshold. To evaluate the influence
of different thresholds, the average F-measure of all drums
with different offset coefficient λ on IDMT-SMT-Drums
dataset is shown in Figure 4. A general trend of parabolic
curve can be observed. This is in agreement with the find-
ings of Dittmar et al. [5]. One major difference is that in
most regions of the curve, both AM1 and AM2 outperform
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Figure 3. Average F-measure versus harmonic rank rH in
(Top) without weighting matrix (Bottom) with weighting
matrix

Figure 4. Evaluation results for IDMT-SMT-Drums dataset
using (a) PFNMF (Solid circle) (b) AM1 (Dash diamond)(c)
AM2 (Dotted square)

PFNMF. This verifies that template adaptation process does
help the algorithm in the case of the unknown sounds (tem-
plates and the test signals are from two different datasets).
The overall performance is slightly lower than [5] due to the
mismatch in templates and target signals. However, the F-
measures of AM1 can reach 74.0%, 93.2% and 73.4% for
HH, BD, SD, respectively, which indicates the applicability
of the proposed method across datasets.

4.3.3 Results

Table 1 shows the evaluation results on ENST drum dataset
minus one subset without accompaniments. For comparison,
we also list the results of Gillet et al. [9] and Paulus et
al. [16]. All the compared methods use the same dataset
with identical mixing settings (1/3 for accompaniments and
2/3 for drum tracks). Since the target signals contain only
drum sounds, the rank rH can be small. In this experiment,
rH is set to 10 for absorbing drum sounds other than HH,
BD and SD. The results show that our proposed method is
able to transcribe drum events with an average F-measure
of 77.9% using AM2. This result is higher than the 73.8%
reported in [9], and at the same level as reported in [16].

Table 2 shows the evaluation results on ENST drum
dataset minus one subset with accompaniments. The com-
pared methods are the same as described above. Since the
target signals contain both percussive and harmonic parts,
rH is set to 50. The results show that our proposed method
achieves an average F-measure = 72.2% using AM2, which
is higher than 67.8% [9] and at a similar range as the 72.7%,
reported in [16].

In general, our methods outperform [9] for all instru-
ments except the snare drum. The possible reason is that
many of the playing technique variations are applied to the
snare (e.g., ghost note, rim shot, with/without snare on),
and a single snare drum template cannot cover all the pos-
sibilities even with template adaptation. In the polyphonic
dataset, our proposed methods perform better on BD and
SD but slightly worse on HH compared to the HMM based
method [16]. Since Paulus et al. [16] trained and tested their
system using the same ENST dataset, the music played by
all three drummers is highly correlated because of the same
accompaniments used. This may lead to a tendency of over-
fitting the transition probability in this dataset. For all the
methods, the performances drop from the monophonic to
the polyphonic dataset, especially for BD and SD. This is
an unsurprising trend. The less prominent decrease for HH
might be due to the fact that the typical frequency range of
HH is more separated from other instruments than BD and
SD, thus is more robust against the presence of tonal sounds.
In the case of template adaptation, a general trend of in-
crease in precision and decrease in recall can be observed.
One explanation is that once a better representation of the
drum templates is found, the system might become more
selective, leading toward a reduction in both false positives
and true positives.

AM1 seems to perform better than AM2 on BD in both
monophonic and polyphonic dataset. One possible expla-
nation is that bass drum usually appears on the downbeats,
which tends to have higher correlation with other entries in
harmonic activation matrix. This means BD has a higher
chance of being adapted to better templates using AM1.
AM2 uses a more generalized adaptation process and per-
forms better on HH and SD. However, it is more computa-
tionally demanding since it adapts the templates constantly,
whereas AM1 only adapts when the correlation is above the
threshold. To sum up, both template adaptation methods
perform at the similar level, and the best fit of either method
for specific types of music still needs to be investigated.

5. CONCLUSION

We have presented a drum transcription system for both
monophonic and polyphonic music using partially fixed
NMF with template adaptation. The system is robust against
rank changes, and the evaluation results show that the two
presented template adaptation methods improve the preci-
sion of the system, leading toward better performance. The
proposed method is able to achieve average F-measures of
77.9% and 72.2% in monophonic and polyphonic music
respectively for detecting 3 classes of drums.

The presented method has the following advantages:
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Method Metric HH BD SD Mean

PFNMF
P 0.918 0.886 0.825 0.876
R 0.705 0.938 0.453 0.698
F 0.797 0.911 0.585 0.764

AM1
P 0.909 0.955 0.837 0.900
R 0.682 0.927 0.473 0.694
F 0.779 0.940 0.604 0.774

AM2
P 0.928 0.914 0.854 0.898
R 0.703 0.927 0.483 0.704
F 0.799 0.920 0.617 0.779

Gillet et al. [9]
P 0.736 0.798 0.710 0.748
R 0.865 0.700 0.642 0.735
F 0.795 0.745 0.674 0.738

Paulus et al. [16]
P 0.838 0.941 0.750 0.806
R 0.849 0.921 0.567 0.843
F 0.843 0.930 0.645 0.779

Table 1. Evaluation results for ENST drum dataset minus one subset without accompaniments

Method Metric HH BD SD Mean

PFNMF
P 0.902 0.714 0.684 0.766
R 0.706 0.862 0.464 0.677
F 0.792 0.781 0.552 0.708

AM1
P 0.904 0.781 0.758 0.814
R 0.679 0.856 0.45 0.661
F 0.775 0.816 0.564 0.719

AM2
P 0.908 0.774 0.726 0.802
R 0.694 0.855 0.466 0.671
F 0.786 0.812 0.567 0.722

Gillet et al. [9]
P 0.702 0.744 0.619 0.688
R 0.818 0.653 0.552 0.674
F 0.755 0.695 0.583 0.678

Paulus et al. [16]
P 0.847 0.802 0.663 0.770
R 0.826 0.815 0.453 0.698
F 0.836 0.808 0.538 0.727

Table 2. Evaluation results for ENST drum dataset minus one subset with accompaniments

First, the system only requires a few training samples for
template extraction, and these templates can adapt toward
the target sources gradually. This makes the system more
applicably to the real world use case. Second, adjustment
of the parameter rH allows the algorithm to work with poly-
phonic music, and the use of a weighting matrix prevents
the performance from dropping as rH increases. Third, the
cross-dataset evaluation results indicate a robustness against
template mismatches, possibly allowing the application in
situations with minimum prior knowledge. Last but not
least, the evaluation results indicate that the F-measure of
the proposed methods is at the same level as state-of-the art
systems with a lower model complexity.

Possible directions for future work include the automatic
estimation of rH for any given signal using a probabilistic
approach similar to [19]; this might be a solution for the
system to optimally select the rank. Furthermore, a more
detailed analysis of playing techniques might be necessary
toward a more complete drum transcription system. Finally,
different penalty terms for the NMF cost function, such as
sparsity, temporal continuity [24], or rank rH might be taken
into account for better adjustment of the current method.
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scription and Separation of Drum Recording Based on
NMF Decomposition. In Proc. of the International Con-
ference on Digital Audio Effects (DAFX), pages 1–8,
2014.

[6] Derry FitzGerald, Bob Lawlor, and Eugene Coyle.
Drum transcription in the presence of pitched instru-
ments using prior subspace analysis. In Proc. of the

262 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Irish Signals & Systems Conference (ISSC), Limerick,
2003.
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ABSTRACT

Computational analysis of the rhythmic/metrical structure
of music from recorded audio is a hot research topic in
music information retrieval. Recent research has explored
the explicit modeling of characteristic rhythmic patterns as
a way to improve upon existing beat-tracking algorithms,
which typically fail on dealing with syncopated or poly-
rhythmic music. This work takes the Uruguayan Candombe
drumming (an afro-rooted rhythm from Latin America) as
a case study. After analyzing the aspects that make this
music genre troublesome for usual algorithmic approaches
and describing its basic rhythmic patterns, the paper pro-
poses a supervised scheme for rhythmic pattern tracking
that aims at finding the metric structure from a Candombe
recording, including beat and downbeat phases. Then it
evaluates and compares the performance of the method
with those of general-purpose beat-tracking algorithms
through a set of experiments involving a database of an-
notated recordings totaling over two hours of audio. The
results of this work reinforce the advantages of tracking
rhythmic patterns (possibly learned from annotated music)
when it comes to automatically following complex rhythms.
A software implementation of the proposal as well as the
annotated database utilized are available to the research
community with the publication of this paper.

1. INTRODUCTION

Meter plays an essential role in our perceptual organiza-
tion of music. In modern music theory, metrical structure
is described as a regular pattern of points in time (beats),
hierarchically organized in metrical levels of alternating
strong and weak beats [15, 16]. The metrical structure
itself is not present in the audio signal, but is rather in-
ferred by the listener through a complex cognitive process.
Therefore, a computational system for metrical analysis
from audio signals must, explicit or implicitly, make im-
portant cognitive assumptions. A current cognitive model
proposes that, given a temporal distribution of events, a

c© Leonardo Nunes, Martı́n Rocamora, Luis Jure, Luiz W.
P. Biscainho. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Leonardo Nunes, Martı́n
Rocamora, Luis Jure, Luiz W. P. Biscainho. “Beat and Downbeat Track-
ing Based on Rhythmic Patterns Applied to the Uruguayan Candombe
Drumming”, 16th International Society for Music Information Retrieval
Conference, 2015.

competent listener infers the appropriate metrical structure
by applying two sets of rules: Metrical Well-Formedness
Rules (MWFR), which define the set of possible metrical
structures, and Metrical Preference Rules (MPR), which
model the criteria by which the listener chooses the most
stable metrical structure for a given temporal distribution
of events [15]. While not strictly universal, most of the
MWFR apply for a variety of metric musics of different
cultures [23]; MPR, on the other hand, are more subjective
and, above all, style-specific. A listener not familiar with
a certain type of music may not be able to decode it prop-
erly, if its conventions differ substantially from usual tonal
metrical structures.

This is why the computational analysis of rhythmic/met-
rical structure of music from audio signals remains a dif-
ficult task. Most generic algorithms follow a bottom-up
approach with little prior knowledge of the music under
analysis [6,7,13], often including some kind of preference
rules—e.g. by aligning beats with onsets of stronger and/or
longer events [15]. Therefore, they usually fail on process-
ing syncopated or polyrhythmic music, for instance, that
of certain Turkish, Indian or African traditions [22].

For this reason, other approaches prefer a top-down pro-
cess guided by high-level information, such as style-specific
characteristics [11]. Given that listeners tend to group mu-
sical events into recurrent rhythmic patterns which give
cues for temporal synchronization, the explicit modeling
of rhythmic patterns has recently been proposed as a way
to improve upon existing beat-tracking algorithms [14, 24,
25]. The identification of challenging music styles and the
development of sytle-specific algorithms for meter analy-
sis and beat-tracking is a promising direction of research
to overcome the limitations of existing techniques.

In this work, an afro-rooted rhythm is considered as a
case of study: the Candombe drumming in Uruguay. Moti-
vated by the fact that some characteristics of Candombe are
challenging for most of the existing rhythm analysis algo-
rithms, a supervised scheme for rhythmic pattern tracking
is proposed, aiming at finding the metric structure from an
audio signal, including the phase of beats and downbeats.
The performance of the proposed method is assessed over
a database of recordings annotated by an expert.

The next section provides a brief description of the Can-
dombe rhythm. Then, the proposed method for rhythmic
pattern matching is presented in Section 3. Experiments
and results are described in Section 4. The paper ends with
some critical discussion and directions for future research.
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2. AFRO-URUGUAYAN CANDOMBE

2.1 Candombe drumming in context

Candombe is one of the most characteristic features of Uru-
guayan popular culture, practiced by thousands of people.
Its rhythm influenced and was incorporated into various
genres of popular music. However, little known abroad, it
may be difficult to understand for unfamiliar listeners.

Although originated in Uruguay, Candombe has its roots
in the culture brought by the African slaves in the 18th cen-
tury. It evolved during a long historical process, gradually
integrating European immigrants and now permeating the
whole society [1, 8]. Candombe drumming, with its dis-
tinctive rhythm, is the essential component of this tradi-
tion. Its most characteristic manifestation is the llamada
de tambores, a drum-call parade, when groups of players
meet at specific points in the city to play while marching
on the street (Figure 1).

Figure 1. Group of Candombe drummers.

The instrument of Candombe is called tambor (“drum”
in Spanish), of which there are three different sizes: chico
(small), repique (medium) and piano (big). Each type has
a distinctive sound (from high to low frequency range) and
its own specific rhythmic pattern. All three are played with
one hand hitting the skin bare and the other with a stick,
which is also used to hit the shell when playing the clave
pattern. The minimal ensemble of drums (cuerda de tam-
bores) must have at least one of each of the three drums;
during a llamada de tambores it usually consists of around
20 to 60 drums. While marching, the players walk for-
ward with short steps synchronized with the beat or tactus;
this movement, while not audible, is very important for the
embodiment of the rhythm. Figure 1 shows in the first row,
from the front backwards, a repique, a chico and a piano.

2.2 Rhythmic patterns and metrical structure

The Candombe rhythm or ritmo de llamada results from
the interaction between the patterns of the three drums. An
additional important pattern is the clave, played by all the
drums as an introduction to and preparation for the rhythm
(see Figure 2 1 ).

The pattern of the chico drum is virtually immutable,
and establishes the lowest level of the metrical structure

1 Lower and upper line represent hand and stick strokes respectively.

chico

clave

repique

piano

Figure 2. Interaction of main Candombe patterns, and the
three levels of the resulting metric structure. Repique and
piano patterns are shown in a simplified basic form.

(tatum). The period of the pattern is four tatums, conform-
ing the beat or tactus level in the range of about 110 to 150
beats per minute (BPM). The interaction of chico and clave
helps to establish the location of the beat within the chico
pattern (otherwise very difficult to perceive), and defines a
higher metric level of four beats (sixteen tatums).

The resulting metrical structure is a very common one:
a four-beat measure with a regular subdivision in 16 tatums.
However, two characteristic traits link the rhythmic con-
figuration of Candombe with the Afro-Atlantic music tra-
ditions, differentiating it from usual tonal rhythms: 1) the
pattern defining the pulse does not articulate the tatum that
falls on the beat, and has instead a strong accent on the
second; 2) the clave divides the 16-tatum cycle irregularly
(3+3+4+2+4), with only two of its five strokes coinciding
with the beat. This makes the Candombe rhythm difficult
to decode for both listeners not familiar with it and generic
beat-tracking algorithms (see Table 1). The strong phe-
nomenological accents displaced with respect to the metric
structure add to the difficulty.

The repique is the drum with the greatest degree of free-
dom. During the llamada it alternates between the clave
pattern and characteristically syncopated phrases. Figure 2
shows its primary pattern, usually varied and improvised
upon to generate phrases of high rhythmic complexity [12].
The piano drum has two functions: playing the base rhythm
(piano base), and occasional more complex figurations akin
to the repique phrases (piano repicado). The pattern in Fig-
ure 2 is a highly abstracted simplification of the piano base.
It can be seen that it is essentially congruent with the clave
pattern, and when correctly decoded it permits the infer-
ence of the whole metric structure. In real performances,
however, much more complex and varied versions of this
pattern are played. It has been shown [21] that the anal-
ysis of piano patterns may elicit the identity of different
neighborhoods (barrios) 2 and individual players.

3. RHYTHMIC PATTERN MATCHING

In this section, a rhythmic/metric analysis algorithm that
matches a given rhythmic accentuation pattern to an audio
signal is described. It tries to find the time of occurrence

2 The three more important traditional styles are Cuareim (or barrio
Sur), Ansina (or barrio Palermo) and Gaboto (or barrio Cordón).
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of each tatum knowing its expected accentuation inside the
pattern, thus being able to track not only the beat but also
other metrical information. Initially, a tempo estimation
algorithm is employed to obtain the beat period (tempo),
assumed to be approximately stable throughout the signal.
Then, the main algorithm is used to find the phase of the
accentuation pattern within the observed signal.

3.1 Audio feature extraction

For audio feature extraction, this work adopts a typical ap-
proach based on the Spectral Flux. First, the Short-Time
Fourier Transform of the signal is computed and mapped to
the MEL scale for sequential windows of 20 ms duration in
hops of 10 ms. The resulting sequences are differentiated
(via first-order difference) and half-wave rectified.

For tempo estimation, the feature values are summed
along all MEL sub-bands, in order to take into account
events from any frequency range.

Since its pattern is the most informative on both tactus
beat and downbeat locations, the rhythmic pattern tracking
is tailored towards the piano (i.e. the lowest) drum. There-
fore, the accentuation feature used for pattern matching is
obtained by summing the Spectral Flux along the lowest
MEL sub-bands (up to around 200 Hz) only. This function
is normalized by the 8-norm of a vector containing its val-
ues along ±2 estimated tatum periods around the current
frame. The resulting feature value is expected to be close
to one if a pulse has been articulated and close to zero oth-
erwise. In addition, it also carries some information on the
type of articulation. For instance, an accented stroke pro-
duces a higher feature value compared to a muffled one,
since in the former case the spectral change is more abrupt.

3.2 Tempo Estimation

For tempo estimation, this work adopts a straightforward
procedure based on locating the maximum of a suitably
defined similarity function. As proposed in [20], the ba-
sic function is the product between the auto-correlation
function and the Discrete Fourier Transform of the features
computed for the whole signal. The result is weighted by
the function described in [17]. The period associated with
the largest value in this weighted similarity function is se-
lected as the tempo of the signal. After the tempo is ob-
tained, the tatum period used for pattern tracking can be
computed just by dividing the beat period by 4. This tatum
period is then used to define the variables in the pattern
tracking algorithm as described in the next sections.

3.3 Variables definition

In order to perform its task, the algorithm employs two dis-
crete random variables. The first one, called tatum coun-
ter, ck, counts how many frames have passed since the last
tatum has been observed at frame k. Assuming an esti-
mated tatum period of τ frames, then ck ∈ {0, 1, . . . , τ −
1 + σc}, where σc is a parameter that allows for possible
timing inaccuracies in the tatum. The second, called pat-
tern index, ak, indicates the position inside a given rhyth-

mic pattern at frame k in the range {0, 1, . . . ,M − 1},
where M is the length of the rhythmic pattern in tatums.
The rhythmic pattern will be expected to define a series of
accents or lacks of accent in the tatums. Time evolution of
these two variables will be described in the next section,
where it is assumed that the sampling rate of the feature
(typically less than 100 Hz) is much lower than that of the
original signal (usually 44.1 kHz). The model describes
the accentuation feature extracted at frame k as a random
variable, yk, with actual observed (extracted) value yk.

3.4 State Transition

In this section, the probabilities of each value for the two
random variables at frame k given past frames are described.
A first-order Markov model will be assumed for the joint
distribution of the random variables, i.e., the probability of
each possible value of a random variable at frame k de-
pends only on the values assumed by the variables at the
previous frame k − 1. Using this assumption, the two ran-
dom variables will constitute a Hidden Markov Model [18].

The tatum counter variable, as previously mentioned,
counts how many frames have passed since the last tatum.
The state ck = 0 is considered the “tatum state” and in-
dicates that a tatum has occurred at frame k. This random
variable is closely related to the phase state proposed in [5]
for beat tracking. Only two possible transitions from frame
k − 1 to frame k are allowed: a transition to the “tatum
state” or an increment in the variable. The transition to the
“tatum state” depends on both the past value of the vari-
able and the (known) tatum period. The closer the value
of the variable is to the tatum period, the more probable
is the transition to the “tatum state.” Mathematically, it is
possible to write

pck
(ck|ck−1)=





h[ck−1 − τ ], if ck=0

1− h[ck−1 − τ ], if ck=ck−1 + 1

0, otherwise,

(1)

where h[.] is a tapering window with h[n] = 0 for |n| > σc
that models possible timing inaccuracies on the tatum, and∑
n h[n] = 1. Currently, a normalized Hann window is

employed to penalize farther values. The value σc = 2
was set for the reported experiments, indicating that inac-
curacies of up to 50 ms are tolerated by the algorithm.

Since the accentuation pattern is defined in terms of the
tatum, its time evolution will be conditioned by the pattern
evolution. Assuming that the pattern indicates the expected
accentuation of the next tatum, the variable should only
change value when a “tatum state” has been observed, in-
dicating that a different accentuation should be employed
by the observation model (described in the next section).
Hence, mathematically

pak
(ak|ck−1, ak−1) =




1, if (ak = ak−1 ⊕ 1) ∧ (ck−1 = 0)

1, if (ak = ak−1) ∧ (ck−1 6= 0)

0, otherwise,

(2)
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where ∧ is the logical AND, ⊕ denotes a modulo-M sum-
mation, andM is the length of the accentuation pattern. As
can be gathered, given the previous tatum counter value,
the pattern index becomes deterministic, with its next value
completely determined by its value at the previous frame
and the value of the tatum counter. The transitions for this
variable are inspired on the ones used in the family of al-
gorithms based on [24] (i.e. [2,10,14]), except for defining
the pattern in terms of tatums instead of an arbitrary unit.

3.5 Observation Model

This section describes the likelihood of ck and ak given an
observed accentuation yk in the signal. The main idea is to
measure the difference between the expected accentuation
(provided by the rhythmic pattern) and the observed one.
The larger the difference, the less probable the observation.

If the accentuation pattern is a vector A ∈ RM×1 con-
taining the expected feature values, then at frame k the
likelihood for ck = 0 (“tatum state”) can be defined as

pyk
(yk|ck, ak) = Nσt

(yk −Aak), (3)

where Nσt(.) is a Gaussian function with zero mean and
variance σ2

t used to model possible deviations between ex-
pected and observed accents. For ck 6= 0, the likelihood is
given by:

pyk
(yk|ck, ak) = Nσd

(yk), (4)

where Nσd
is a zero-mean Gaussian with variance equal to

σ2
d. Hence, the closer to zero the feature, the more proba-

ble the observation. This is similar to the non-beat model
adopted in [5], and is not found in [14, 24].

In the reported experiments, σt = σd = 0.5, thus allow-
ing for a reasonable overlap between expected and actual
observed values.

3.6 Inference

A summary of the proposed model for rhythmic pattern
tracking can be viewed in Figure 3, where the statistical
dependencies among the variables are explicited. Differ-
ent inference strategies can be employed to find the most
probable pattern index and tatum counter values given the
observed accentuation [18]. In this work, the well-known
Viterbi algorithm [18, 24] is employed to find the most
probable path among all possible combinations of values
of each random variable given the observed features yk.

ak�1

yk�1

ak

yk

ck�1 ck

Figure 3. Graphical representation of the statistical depen-
dency between random variables and observations.

At last, a uniform prior is chosen for c0 and a0 indi-
cating that the counter and the pattern can start with any
possible value in the first frame.

4. EXPERIMENTS AND RESULTS

A set of experiments was devised to assess the performance
of the proposed rhythmic pattern tracking system with re-
spect to the problems of estimating the rate and phase of
beats and downbeats, using a database of manually labeled
Candombe recordings. Four state-of-the-art beat-tracking
algorithms [6, 7, 13, 19] were included in the experiments
in order to evaluate how challenging the rhythm at hand is
for typical general-purpose approaches.

Two different strategies are explored: the rhythmic pat-
terns to follow are either informed to the algorithm based
on a priori musical knowledge about the rhythm, or learned
from the labeled database itself.

4.1 Dataset

A dataset of Candombe recordings, totaling over 2 hours
of audio, was compiled and annotated for this work and it
is now released to the research community. 3 It comprises
35 complete performances by renowned players, in groups
of three to five drums. Recording sessions were conducted
in studio, in the context of musicological research over the
past two decades. A total of 26 tambor players took part,
belonging to different generations and representing all the
important traditional Candombe styles. The audio files are
stereo with a sampling rate of 44.1 kHz and 16-bit preci-
sion. The location of beats and downbeats was annotated
by an expert, adding to more than 4700 downbeats.

4.2 Performance measures

Since tempo estimation is only an initialization step of the
rhythmic pattern tracking task, whose overall performance
will be examined in detail, it suffices to mention that the
estimated tempo was within the interval spanned by the an-
notated beat periods along each of the files in the database,
thus providing a suitable value for the respective variable.

Among the several objective evaluation measures avail-
able for audio beat tracking [4] there is currently no con-
sensus over which to use, and multiple accuracies are usu-
ally reported [2, 3]. In a recent pilot study, the highest cor-
relation between human judgements of beat tracking per-
formance and objective accuracy scores was attained for
CMLt and Information Gain [3].

In this work CMLt, AMLt and F-measure were adopted,
as their properties are well understood and were consid-
ered the most suitable for the current experiments. The
non-inclusion of Information Gain was based on the ob-
servation that it yielded high score values for estimated
beat sequences that were definitely not valid. Specifically,
in several instances when the beat rate (or a multiple of
it) was precisely estimated, even if the beat phase was re-
peatedly misidentified, the Information Gain attained high
values while other measures such as CMLt or F-measure
were coherently small. In the following, a brief description

3 Available from http://www.eumus.edu.uy/candombe/
datasets/ISMIR2015/.
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of the adopted metrics 4 is provided (see [4] for details),
along with the values selected for their parameters.

The CMLt measure (Correct Metrical Level, continu-
ity not required) considers a beat correctly estimated if
its time-difference to the annotated beat is below a small
threshold, and if the same holds for the previous estimated
beat. Besides, the inter-beat-interval is required to be close
enough to the inter-annotation-interval using another thresh-
old. The total number of correctly detected beats is then
divided by the number of annotated beats and expressed
as a percentage (0-100 %). Both thresholds are usually set
to 17.5 % of the inter-annotated-interval, which was also
the value adopted in this work. The AMLt measure (Al-
lowed Metrical Levels, continuity not required) is the same
as CMLt but does not take into account errors in the metri-
cal level and phase errors of half the period.

The F-measure (Fmea) is the harmonic mean of preci-
sion and recall of correctly detected beats, where preci-
sion stands for the ratio between correctly detected beats
and the total number of estimated beats, while recall de-
notes the ratio between correctly detected beats and the to-
tal number of annotated beats. A beat is considered cor-
rectly detected if its time-difference to the annotation is
within ±70 ms; this tolerance was kept in this work.

Only CMLt and F-measure were used for assessing the
downbeat, since the loosening of metrical level and phase
constraints in AMLt was considered inappropriate.

4.3 Experiments with informed rhythmic patterns

In the first type of experiment, the pattern to track A is in-
formed to the algorithm based on musical knowledge about
the rhythm, without any training or tuning to data. On one
hand, this has a practical motivation: even when no labeled
data is available one could take advantage of the technique.
On the other hand, it gives a framework in which musical
models can be empirically tested. In short, an informed
rhythmic pattern based on musical knowledge is nothing
but a theoretical abstraction, and this type of experiment
could provide some evidence of its validity.

To that end, based on the different ways the piano pat-
tern is notated by musicology experts, a straightforward
approach was adopted. Firstly, the piano pattern as in-
troduced in Figure 2 (usually regarded as the piano in its
minimal form) was considered. A binary patternA was as-
sembled by setting a value of 1 for those tatums which are
expected to be articulated and 0 otherwise. Then, a more
complex pattern was considered by adding two of the most
relevant articulated tatums which were missing, namely the
6th and 15th, and also building the corresponding binary
pattern. Hence, the binary informed patterns proposed are
Pattern 1: A = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]
Pattern 2: A = [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0].

This is certainly an oversimplification of the real rhyth-
mic patterns, since it does not take into account the ac-
cented and muffled strokes that are an essential trait of a

4 Computed with standard settings using code at https://code.
soundsoftware.ac.uk/projects/beat-evaluation/.

piano performance. It would be possible to encompass dy-
namic variations into the informed pattern by considering
distinct quantized values of the feature for different type
of strokes. However, the binary patterns were favoured for
the sake of simplicity and as a proof of concept.

Table 1 5 compares 4 general-purpose beat-tracking al-
gorithms with the proposed algorithm using the binary in-
formed patterns, and also (for conciseness) the experiments
discussed in the next section. Results are averaged over the
whole database and weighted by the number of beats and
downbeats of each audio file. Although the beat rate (or a
multiple) is sometimes precisely estimated by the general-
purpose beat-tracking algorithms, the correct metrical level
and/or the phase of the beat is usually misidentified.

BEAT DOWNBEAT

CMLt AMLt Fmea CMLt Fmea

General-purpose
Ellis [7] 44.2 63.0 43.8 – –
Dixon [6] 13.9 14.9 22.7 – –
IBT [19] 9.1 27.6 16.7 – –
Klapuri [13] 28.8 35.5 29.3 36.6 13.2

Informed patterns – Section 4.3
Pattern 1 80.2 80.5 81.3 84.7 79.1
Pattern 2 79.0 81.0 79.8 81.2 77.5

Learned patterns – Section 4.4 (leave-one-out)
Median 79.9 79.9 80.8 82.4 76.9
K-means 2 81.7 81.7 82.6 84.4 79.3
K-means 5 82.5 82.5 83.6 85.2 80.6

Table 1. Performance of the different algorithms considered.

4.4 Experiments with learned rhythmic patterns

The labeled database allows the study of the rhythmic pat-
terns actually present in real performances. There are dif-
ferent possible approaches to extract a single rhythmic pat-
tern to track from the annotated data. For each tatum-grid
position in the bar-length pattern, all the feature values in
the dataset can be collected, and their distribution can be
modeled, e.g. by a GMM as in [14]. The distribution of
feature values in the low-frequency range will be domi-
nated by the base patterns of the piano drum, albeit there
will be a considerable amount of repicado patterns [21]. In
order to cope with that, a simple model was chosen: the
median of feature values for each tatum beat, which is less
influenced by outliers than the mean.

The problem with the median pattern is that it models
different beat positions independently. A better suited ap-
proach is to group the patterns based on their similarity
into a given number of clusters, and select the centroid of
the majority cluster as a good prototype of the base pat-
tern. This was applied in [21] to identify base patterns

5 Additional details can be found in http://www.eumus.edu.
uy/candombe/papers/ISMIR2015/.

268 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



of the piano drum in a performance, and similarly in [10]
to learn rhythmic patterns from annotated data to adapt
a beat-tracking model to specific music styles. Figure 4
shows the patterns learned from the whole database, us-
ing the median and the centroid of the majority cluster ob-
tained with K-means for 2 and 5 clusters. It is remark-
able that the differently learned patterns are quite similar,
exhibiting the syncopated 4th tatum beat as the most ac-
cented one. The locations of articulated beats for the in-
formed patterns of the previous section are also depicted,
and are consistent with the learned patterns. The K-means
approach turned out to be little sensitive to the number of
clusters, yielding similar patterns from 1 to 6.

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.40

1

COMPARISON OF RHYTHMIC PATTERNS
Pattern1
Pattern2
Median
K-means2
K-means5

Figure 4. Comparison of the different patterns considered.
(Median and K-means learned from the whole database.)

For testing the performance of the learning approach a
leave-one-out scheme was implemented and the results are
detailed in Table 1. Not surprisingly, performance is al-
most the same for the different rhythmic patterns. Consid-
ering different feature values instead of binary patterns did
not yield any notable performance increase.

A detailed inspection of the performance attained for
each recording in the database, as depicted in Figure 5,
shows there is still some room for improvement, given that
about half-a-dozen files are definitely mistracked. This
may indicate that the pattern A to track simply does not
properly match the given performance. To check this hy-
pothesis, a K-means (K=2) clustering was carried out only
with the candidate patterns found within each target record-
ing, whose tracking was then performed using the centroid
of the majority cluster as A. Table 2 shows the new results
obtained for the files with lower performance (CMLt<50%)
in the dataset. Except for the first one, performance was
(sometimes notably) improved when the informed rhyth-
mic pattern is the one that better matches the recording.
Therefore, modeling several rhythmic patterns as in [10]
can potentially improve the current results.

0

50

100 BEAT TRACKING PERFORMANCE

CMLt

Fmea

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435
0

50

100 DOWNBEAT TRACKING PERFORMANCE

CMLt

Fmea

Figure 5. Leave-one-out performance for each recording
of the database using the K-means pattern with K=2.

BEAT DOWNBEAT

Recording # CMLt Fmea CMLt Fmea

15 34.1 32.8 32.7 7.2
16 95.6 98.0 96.3 97.1
26 40.2 36.9 42.9 22.2
31 71.3 69.9 78.3 67.8
32 55.7 54.1 59.6 44.7
34 60.9 60.0 62.7 51.7

Table 2. Scores attained when tracking the centroid of the
majority cluster for each of the low performing files.

5. DISCUSSION AND FUTURE WORK

This paper tackled the problem of automatic rhythmic anal-
ysis of Candombe audio signals. A study of the rhythmic
structure of Candombe was described, along with a pat-
tern tracking algorithm that could deal with the particular
characteristics of this rhythm. From the rhythm descrip-
tion and the presented experiments, it becomes clear that
typical assumptions of general-purpose beat-tracking algo-
rithms (such as strong events at beat times) do not hold,
which hinders their performance. In order to overcome
this problem, the proposed algorithm tracks a rhythmic pat-
tern that informs when a beat with or without accentuation
is expected to occur, which eventually can determine the
complete metric structure. Indeed, experiments employing
both rhythmic patterns based on musical knowledge and
others learned from a labeled database, showed that the
proposed algorithm can estimate the beat and downbeat
positions for Candombe whereas traditional methods fail
at these tasks. The attained CMLt score of about 80 % for
beat tracking is approximately what one can expect from
a state-of-the-art algorithm in a standard dataset [2,9], and
what is reported in [10] for a Bayesian approach adapted to
a culturally diverse music corpus. The present work gives
additional evidence of the generalizability of the Bayesian
approach to complex rhythms from different music tra-
ditions. The analysis of examples with low performance
scores indicates that tracking several rhythmic patterns si-
multaneously, as proposed in [10], is a promising alterna-
tive for future work. Surely taking into account the timbre
characteristics of different drums can be profitable.

Along with the annotated database employed, a soft-
ware implementation of the proposal is being released with
the publication of this paper to foster reproducible research
(the first available implementation of the Bayesian approach
for beat tracking, to the best of our knowledge). 6
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ABSTRACT

In this paper, we propose a new method suitable for the
automatic analysis of microtiming played by drummers in
jazz recordings. Specifically, we aim to estimate the drum-
mers’ swing ratio in excerpts of jazz recordings taken from
the Weimar Jazz Database. A first approach is based on
automatic detection of ride cymbal (RC) onsets and eval-
uation of relative time intervals between them. However,
small errors in the onset detection propagate considerably
into the swing ratio estimates. As our main technical con-
tribution, we propose to use the log-lag autocorrelation
function (LLACF) as a mid-level representation for esti-
mating swing ratios, circumventing the error-prone detec-
tion of RC onsets. In our experiments, the LLACF-based
swing ratio estimates prove to be more reliable than the
ones based on RC onset detection. Therefore, the LLACF
seems to be the method of choice to process large amounts
of jazz recordings. Finally, we indicate some implications
of our method for microtiming studies in jazz research.

1 Introduction

Jazz drummers usually keep time by using the ride cymbal
(RC) and hi-hat (HH), especially in styles with so-called
“swing feel” [2]. They commonly emphasize the “back-
beat,” i.e., the metric-harmonically unaccented beat, on
the HH while playing typical patterns on the RC. Accord-
ing to [21, p. 248], this supports the “light” character of
jazz rhythm. Instead of playing the beat in a steady man-
ner, variations and additional “offbeat” strokes are usually
added on the RC as well as on other drum parts. These
variations differ from drummer to drummer and from per-
formance to performance [2, pp. 617-629].
The most common time-keeping pattern played on the RC
is shown in Figure 1. In addition to conventional drum
notation in the top row, we show a corresponding time-
domain signal at 240 BPM with overlaid amplitude en-
velope (bold black curve) and the so-called novelty curve

© Christian Dittmar, Martin Pfleiderer, Meinard Müller.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Christian Dittmar, Martin Pfleiderer,
Meinard Müller. “Automated Estimation of Ride Cymbal Swing Ratios
in Jazz Recordings”, 16th International Society for Music Information
Retrieval Conference, 2015.

(thin black curve). We color-code the relevant beats and
subdivisions thereof as follows. The sequence starts with
the so-called “downbeat” quarter note (light blue), followed
by the backbeat eighth note (light green), and the offbeat
eighth note (light red) before starting over again with the
downbeat. We will refer to this prototype sequence of on-
sets as RC pattern.
The so-called swing ratio expresses the beat subdivision
and relates to the phrasing of the eighth notes in the RC
pattern. Swinging eighth notes are typically played in dif-
ferent ratios, ranging continuously from straight eighths
(1 : 1), over triplet eighths (2 : 1), to dotted eighths
(3 : 1), or more extreme ratios. The swing ratio is reported
to be tempo dependent [4, 9, 15], cf. Section 2.1. In Fig-
ure 1, the color-coded tone durations show how the back-
beat duration grows with increasing swing factor, while the
complementing offbeat duration shrinks. In Figure 1(a),
backbeat and offbeat have equal duration, corresponding
to straight eighths as given in the drum notation. In Fig-
ure 1(b), the RC pattern is notated as tied-triplets. In Fig-
ure 1(c), the backbeat duration equals a dotted eighth. Con-
sequently, the offbeat duration equals that of a sixteenth
note as shown in the drum notation.
There are several case studies concerning the swing ratio in
jazz (cf. [21, pp. 262-273], and Section 2.1). While most
of the studies examine swing ratios of soloists, it is widely
acknowledged that the swing ratio of the RC pattern cru-
cially contributes to the “swinging” character of the music.
Most of the studies are based on manual transcription of
onsets, often by visual inspection of the amplitude enve-
lope of jazz excerpts. Few studies specifically examine the
RC pattern [15] and its interaction with the soloist’s tim-
ing [9]. This inspired us to develop and to evaluate meth-
ods for automated swing ratio estimation from RC patterns
in jazz recordings. For sure, an automated generation of
large amounts of reliable swing ratio data is essential for
meaningful and more differentiated research on microtim-
ing in jazz. Besides onset-based swing ratio estimation,
our main approach is a log-lag variant of a local autocor-
relation function (ACF) applied to onset-related novelty
functions (see Sections 3.3). We refer to this representa-
tion as log-lag ACF (LLACF) and show its applicability to
swing ratio estimation in Section 3.4.
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Figure 1. Illustration of prototypical RC patterns as drum notation (top), time-domain signal (mid), and LLACF (bottom).
(a): Swing factor of sr = 1 corresponding to straight eighth notes. (b): Swing factor of sr = 2 corresponding to the
idealized “tied-triplet feel”. (c): Swing factor sr = 3, where the duration of the backbeat equals a dotted eighth note.

2 Related Work

A number of papers are concerned with systematic stud-
ies on swing ratio in jazz music. Since most of the studies
use comparably small data sets and manual annotation, we
think that swing ratio estimation is a suitable task to ap-
ply automatic methods from Music Information Retrieval
(MIR) research in order to enable analysis of larger music
data sets.

2.1 Jazz Microtiming Analysis

An early attempt to analyze swing ratios in jazz recordings
is described in [17]. The author relies on visual inspection
of spectrograms but does not report quantitative results.
In [22], the swing ratios in the analyzed jazz recordings
are reported to range from 1.48 to 1.82. Rose [23] reports
an average swing ratio of 2.38 measured from amplitude
envelopes. In [7], an average swing ratio of 1.75 is mea-
sured using a MIDI wind controller played by saxophon-
ists. In [19], the analysis focuses on the RC and swing
factors between 1.0 and 3.3 are reported without detail-
ing the measurement method. In [6], an average swing ra-
tio of 1.6 is measured using amplitude envelopes. Friberg
and Sundström [9] annotated RC onsets in spectrograms of
jazz excerpts. They report trends indicating a high negative
correlation between the tempo and the swing ratio which
seems to be valid across different drummers. In [3], an av-
erage swing ratio of 2.45 is measured in the performances
of pianists playing a MIDI piano. In [1], comparably low
swing ratios in the range between 0.9 to 1.7 are measured
from amplitude envelopes. Honing and de Haas [15] con-
ducted experiments with professional jazz drummers per-
forming on a MIDI drum kit. Besides further evidence for
the tempo dependency of swing ratios, the results show that
jazz drummers have enormous control over their timing.

2.2 Rhythmic Mid-Level Features

Motivated by the need to design specialized mid-level fea-
tures for music similarity estimation, several authors pro-
posed conceptually similar, tempo-independent represen-
tations of rhythmic patterns. The basic observation is, that
rhythmic patterns that are perceived as similar by human
listeners may not be judged as similar by automatic meth-
ods. One of the main reasons is that the patterns are typi-
cally played in different tempi, which makes them unsuited
for direct comparison. Therefore, Peeters [20] used tempo
normalized spectral rhythm patterns to automatically clas-
sify ballroom dance styles. Holzapfel and Stylianou [13,
14] proposed to apply the scale transform to periodicity
spectra to enable the use of conventional distance mea-
sures between rhythmic patterns despite tempo differences.
Around the same time, the LLACF was proposed in [12] as
well as the tempo-insensitive representation used for clas-
sification of ballroom dances in [16]. The LLACF was re-
ported to be favorable over the scale transform for classifi-
cation of Latin American rhythm patterns in [24]. The tem-
pogram as described in [11] is based on similar ideas and
additionally features a cyclic post-processing to remedy
the problem of octave ambiguity. Marchand and Peeters
[18] revisited the scale transform and applied it to modula-
tion spectra as tempo-independent feature, again for clas-
sification of ballroom dances. Eppler et al. [8] used peak
ratios in the LLACF as features for detecting the swing feel
but did not explicitly try to estimate swing ratios.

3 Method

In this section, we describe our approaches to automatic
swing ratio estimation from excerpts of jazz recordings
with swing feel. The first variant relies on peak-picking
in an onset-related novelty curve (Section 3.1). The sec-
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Figure 2. A four seconds excerpt from the 1979 recording of “Anthropology”, performed by Art Pepper playing solo
clarinet, with Charlie Haden on bass and Billy Higgins on drums. The bold black curve depicts the novelty function ∆, the
thin black curve shows the RC related threshold H. Automatically detected RC onsets are marked by the bold black crosses,
colored crosses represent the four onset triples accepted for swing ratio estimation. The note durations are color-coded in
the same way as in Figure 1.

ond approach relies on computation of the LLACF from
the novelty curve (Section 3.3) and comparison to proto-
type LLACFs. As will be explained in Section 4.1, we have
a rough tempo estimate τe ∈ R>0 available for each jazz
excerpt. Let δb, δo ∈ R>0 be the tone duration of the back-
beat and the offbeat in an RC pattern as shown in Figure 1.
They relate to the tempo by τe ≈ (δb + δo)

−1 ≈ δ−1, with
the beat (quarter note) duration δ ∈ R>0. The targeted
swing ratio is given by:

sr =
δb
δo

(1)

Consequently, δb = δ · sr · (1 + sr)
−1 yields the tone du-

ration of the backbeat and δo = δ · (1 + sr)
−1 yields the

tone duration of the offbeat.

3.1 Ride Cymbal Onset Detection

With regard to Eqn (1), we aim to measure δb and δo
from the jazz excerpts under analysis. One possibility is
to search for RC onsets and use the time differences be-
tween consecutive onsets as estimate for note durations.
To this end, we compute a time-frequency (TF) represen-
tation of an excerpt using the short-time Fourier trans-
form (STFT) with blocksize w and hopsize r given in sec-
onds. Let X (m, k) with m ∈ [1 : M ], k ∈ [0 : K] be a
complex-valued STFT coefficient at the mth time frame
and kth spectral bin. Here, the interval [1 : M ] repre-
sents the time axis and K corresponds to the Nyquist fre-
quency. Following the approaches in [10, 11], we com-
pute a novelty curve ∆ : [1 : M ] → R as follows. First,
we derive the logarithmically compressed magnitude spec-
trogram Y(m, k) := log (1 + γ · |X (m, k)|) for a suitable
constant γ ≥ 1. Then, the novelty function is given as

∆(m) :=
K∑

k=0

|Y(m+ 1, k)− Y(m, k)|≥0 , (2)

where |·|≥0 denotes half-wave rectification. The resulting
∆ exhibits salient peaks at frames corresponding to tone
onsets. Inevitably, spurious peaks may occur in ∆ that
could be mistaken for RC onsets. Thus, we derive an RC

related threshold function as

H(m) :=

K∑

k=k0

|X (m, k)| , (3)

where the bin k0 corresponds to the lower cutoff frequency.
Figure 2 shows an example of ∆ as bold black curve and
the corresponding H as thin black curve. For the sake of
visibility, both curves are normalized to unit maximum in
the plot. We take the average value of H as threshold crite-
rion and only accept peaks from ∆ in frames where H ex-
ceeds this value (indicated by the white background). The
N = 18 local maxima accepted as RC onsets are marked
by bold crosses. Multiplication of the corresponding frame
indices with the hopsize r yields a set of strictly mono-
tonically increasing onset times B = {b1, b2, . . . , bN} for
onset-based swing ratio estimation.

3.2 Onset-Based Swing Ratio Estimation

Once we obtained a sequence B of RC onsets, we esti-
mate sr in a tempo-informed manner. Assuming a roughly
constant tempo τe throughout the excerpt, the time interval
δ = τ−1

e between two consecutive beats should be close
to δb + δo. To account for small deviations from the ideal
beat period δ, we introduce a tolerance α ≥ 1. Now, we
go through every previously detected RC onset and test the
hypothesis that it could be the first in a series of three con-
secutive onsets (backbeat, offbeat, downbeat). We denote
this sub-sequence as Bn = {bn, bn+1, bn+2} , Bn ⊂ B
and refer to it as onset triple. From all possible triples
Bn, n ∈ [1 : N − 2] we accept the ones that fulfill the cri-
terion

(bn+2 − bn) < α · δ (4)

as instances of triples embedded in an RC pattern. The
swing ratio is estimated from a valid onset triple by setting
δb = bn+1 − bn and δo = bn+2 − bn+1 in Eqn (1). In
Figure 2, we illustrate this procedure. All RC onset candi-
dates are marked by black crosses but only the triples that
fulfill the constraint in Eqn (4) are marked with different
colors. Above the third triple (blue note symbols) we de-
pict the extent of the search range α · δ that covers both
δb and δo. As indicated in the plot, we try to find multiple
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occurrences of the RC pattern triples per excerpt, so we
can obtain a more robust estimate for the swing ratio by
averaging over the individual sr-values computed for each
triple. For that reason, we also accept variations of the RC
pattern where the offbeat impulse occurs in succession to
the downbeat instead of the backbeat. As will be explained
in Section 4.4, there are situations where estimation of sr

from RC onsets may deliver erroneous results. To obtain
more robust estimates, we introduce LLACF-based swing
ratio estimation in the next two sections.

3.3 LLACF Mid-Level Representation

We propose to employ the LLACF as a tempo-normalized
mid-level representation capturing the swing ratio that is
implicitly encoded in the peaks of ∆. Using the LLACF,
we can circumvent the selection of onset candidates and
instead transform the complete ∆ into a phase-invariant,
tempo-normalized representation. Swing ratio estimation
then boils down to matching this representation to LLACFs
with known swing ratios (see Section 3.4). To this end, we
first compute a normalized ACF from the novelty function
∆ as:

R∆∆(`) =

∑M−`
m=1 ∆(m)∆(m− `)
∑M
m=1 ∆(m)2

, (5)

where we only consider the positive lags ` ∈ [0 : M − 1].
Note that R∆∆(`) = R∆∆(−`) due to symmetry. More-
over, R∆∆(0) = 1 and R∆∆(`) < 1 for ` ∈ [1 : M − 1].
Each lag can be expressed as tempo value by the relation
τ = 60

r·` . We now define a logarithmically spaced tempo
(log-tempo) axis, that has equal distance q between tempo
octaves and has the reference tempo τr at a defined posi-
tion. After correction for the ratio between the excerpt’s
tempo estimate τe and the reference tempo τr, we use lin-
ear interpolation to warp R∆∆ onto this axis, yielding our
tempo-normalized LLACF A. Despite using a log-tempo
axis, we stick to the term log-lag ACF since the inverse
relation ` = 60

r·τ retains the logarithmic spacing, just in op-
posite direction.
In the bottom row of Figure 1, we show the LLACFs cor-
responding to the prototypical RC patterns. Variation of sr

gives an intuition how the salience of different periodici-
ties in the RC pattern is represented by the LLACF. Since
τr is constant, all three LLACFs have clear peaks at the
beat periodicity (240 BPM) and its integer subdivisions.
For sr = 1 in Figure 1(a), there is a strong peak at 480
BPM (corresponding to the straight eighth notes). With in-
creasing swing ratio, this peak diverges into two lobes that
move to other periodicities. In Figure 1(c), the first peak
resides at 960 BPM (offbeat equals a sixteenth note) and
the second peak is at 320 BPM (backbeat equals a dotted
eight note).

3.4 LLACF-Based Swing Ratio Estimation

In order to estimate a swing ratio from the shape of A, we
construct a set Asr , sr ∈ R with 1 ≤ sr ≤ 4 of prototype
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Figure 3. Evolution of the LLACF computed from RC
patterns with increasing swing ratio. (a): LLACFs de-
rived from novelty functions of idealized prototype RC
patterns at a reference tempo τr of 240 BPM. (b): LLACFs
extracted from our test corpus that have been warped to
match τr.

LLACFs. They are extracted from novelty functions
of idealized RC patterns with fixed reference tempo τr
and varying swing ratio sr (cf. the time-domain plots in
Figure 1). In Figure 3(a) we show the complete set of
prototype LLACFs with the log-tempo axis in BPM and
the swing ratio increasing from bottom to top. Darker
shade of gray corresponds to higher periodicity salience.
One can clearly see how the offbeat-related peaks change
their periodicity with the swing ratio while the peaks
related to the beat (and subdivisions thereof) reside at the
same periodicity.
Now, our approach to swing ratio estimation is to compare
the extracted A to each of these prototype LLACFs and
to select the swing ratio corresponding to the best match.
For the comparison, we employ Pearson’s correlation
coefficient. We have to take into account that the tempo
estimate τe used for warping the LLACF to the reference
log-tempo axis underlying Asr may be slightly inaccurate.
As a consequence, the resultingAmight exhibit a constant
offset with respect to the prototypeAsr . Thus, we shift the
A against the log-tempo axis of each Asr in a restricted
interval [−q · log2(α) : +q · log2(α)] to find the best
alignment. Finally, the sr corresponding the maximum
correlation coefficient over all entries in Asr is selected.

4 Evaluation

In this section, we describe the setup, metrics, and results
of the experiments we conducted in order to compare man-
ual, onset-based, and LLACF-based swing ratio estima-
tion. In addition, some trends visible in the data are dis-
cussed.
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Figure 4. Comparison of the swing ratios estimated from
ground truth RC onsets, automatically detected RC onsets
and LLACF analysis.

4.1 The Weimar Jazz Database

The Weimar Jazz Database 1 consists of 299 (as in July
2015) transcriptions of instrumental solos in jazz record-
ings performed by a wide range of renowned jazz musi-
cians. The solos have been manually annotated by musi-
cology and jazz students at Liszt School of Music Weimar
as part of the Jazzomat Research Project. 2 Several mu-
sic properties are annotated, most notably the pitch, onset
and offset of all tones played by the soloists, as well as
a manually tapped beat grid, chords, form parts, phrase
boundaries, and articulation. For our work, we only use
the beat grid. From the complete Weimar Jazz Database,
we automatically selected a subset of 921 excerpts that had
been labeled with swing feel. Because we will compare the
swing ratios of drummers and soloists in our future work,
the excerpts had to contain at least 5 consecutive eighth
notes played by the soloists. The total playtime of the se-
lected excerpts amounts to roughly 50 minutes (out of 8
hours), their average duration is 3.3 seconds.

4.2 Evaluation Setting

A subset of 42 excerpts have been manually annotated for
RC onsets in order to create a ground truth for swing ra-
tio estimation. The reference onsets were transcribed by
two experienced student assistants of the Jazzomat Re-
search Project using the software Sonic Visualiser [5]. The
ground truth subset was split in two, approximately equal
parts and each part was given to one of the annotators. In
total, 834 RC onsets were manually annotated. In our eval-
uation (cf. Sections 4.3, 4.4, and 4.5), we used the well-
known metrics recall, precision and F-measure for quan-
titative evaluation. In order to count an onset candidate
as true positive, we allowed a maximum deviation of ±30
ms to the ground truth onset time. Furthermore, we used
Pearson’s correlation coefficient as a means to quantify the
agreement between reference swing ratios and automati-
cally estimated swing ratios. We fixed the following ex-
traction parameters for the automatic estimation of swing

1 http://jazzomat.hfm-weimar.de/dbformat/
dboverview.html

2 http://jazzomat.hfm-weimar.de/

ratios: The STFT blocksizew was appr. 46 ms and the hop-
size r was appr. 5.8 ms. The compression-constant γ was
1000, the lower cutoff k0 was set to equal appr. 12.9 kHz,
the reference tempo τr was 240 BPM, the LLACF octave-
resolution q was 36. The tolerance α for tempo deviations
was 1.2.

4.3 Cross-Validation

At first, we are interested in the agreement between our
human annotators, since we suspect that there may be am-
biguous cases where it is not clear where an RC onset is
exactly located in time or if there is an onset at all. Thus,
we selected a small subset of 11 excerpts for which the an-
notators created a cross-validation transcription. Running
these against the larger set, we receive an F-measure of
appr. 0.96. The average absolute time difference between
matched onsets in the reference and the cross-validation set
amounts to 7.8 ms.

4.4 Onset-Based Evaluation

Next, we used the previously validated ground truth an-
notations as reference to assess the performance of our
automated RC onset detection described in Section 3.2.
In this scenario, we received an F-measure of appr. 0.93
and an average onset deviation of 2.5 ms. Since these re-
sults seem surprisingly good, we wanted to quantify how
much potential onset detection errors would propagate into
the swing ratio estimation. Using the procedure described
in Section 3.2, we determined ground truth swing ratios
for all manually annotated excerpts. When we compared
these to the swing ratios estimated from automatically de-
tected RC onsets, we yielded a correlation coefficient of
appr. 0.66 (see Figure 4). With regard to the compara-
bly high F-measure obtained for the onset detection, this
unsatisfactory result may seem surprising at first, but can
be explained using the example in Figure 2. There, we
see that only 12 out of 18 RC onsets are considered for
swing ratio estimation. Intuitively, small deviations in the
detected onset times can lead to under- or overestimation
of the swing ratio, especially for fast tempi, where subtle
timing differences may get lost due to the coarse sampling
of the analysis frames. Even worse errors may be caused
by spurious onsets that fulfill the threshold criterion but are
actually not RC patterns. This is the case for the sixth ex-
cerpt in Figure 4, where some sort of RC swell is mistaken
for an onset triple, leading to a overestimation of sr.

4.5 LLACF-Based Evaluation

Since we found the correlation between ground truth swing
ratios and onset-based swing ratios to be unsatisfactory, we
repeated the comparison with respect to swing ratios esti-
mated from the LLACF as described in Section 3.3. This
time, we received a correlation coefficient of appr. 0.9. In
Figure 4, one can see that both methods behave similar
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Figure 5. Scatter plots showing the relationship of tempo vs. (a): swing ratio and (b): offbeat duration. Each marker
corresponds to one jazz excerpt. We only show the 10 most frequently represented drummers.

but the onset-based swing ratios exhibit some pronounced
outliers. Moreover, Figure 3 shows that the prototypical
LLACFs in Asr correspond quite well to the LLACFs ex-
tracted from our test corpus. Both plots depict the LLACFs
ordered by the corresponding swing ratio. The typical
structure of periodicity peaks is clearly visible, although
the LLACFs extracted from the jazz excerpts are much
more noisy than the idealized LLACFs. This leads us to
the conclusion that the LLACF-based swing ratio estima-
tion is a reliable method that should be preferred over the
onset-based swing ratio estimation.

4.6 Comparison to Friberg and Sundström

In Section 1, we already indicated our aim to re-examine
the findings of Friberg and Sundström [9] on a larger scale.
As can be seen in Figure 5(a), our automatically estimated
swing ratios show similar trends as the manually annotated
data used in the original paper. However, while Friberg
and Sundström only had around 40 excerpts from various
pieces of four drummers, we are able to study several hun-
dreds of RC patterns played by a wide range of drummers
due to our automated method (three among them—Tony
Williams, Jack DeJohnette, and Jeffrey Watts—were ex-
amined by Friberg and Sundström, too).
In Figure 5, we show the results obtained for the 10 drum-
mers represented with the most excerpts. Each point in the
scatterplots is placed according to (a) sr vs. τe and (b) δo
vs. τe. In general, the negative correlation of swing ratio
and tempo is clearly discernable—for the whole data set
as well as for certain drummers like Elvin Jones or Billy
Higgins, who vary their swing ratio from appr. 2.5 around
150 BPM to appr. 1.5 at 250 BPM, and in the case of Jones
even to around 1.0 at 300 BPM. However, there are also
drummers who seems to keep almost the same swing ratio
at different tempi, e.g., Art Taylor or Carl Allen.
Additionally, Friberg and Sundström report the duration
between the offbeat impulse and the next beat to be roughly
constant at 100 ms for all tempi faster than 150 BPM
(cf. [9, p. 337]). In general, this finding is supported by

our data (see Figure 5(b)), but the offbeat durations have a
wider range from 110 ms to 80 ms and even 70 ms.

5 Conclusions and Future Work

In this paper, we presented a microtiming study conducted
on a subset of the publicly available Weimar Jazz Database.
Future work will be directed towards extending our method
to more drummers and other recordings as well as to the
comparison between RC patterns and soloists. Exact onset
times of all tones of the soloists, and thus their microtim-
ing and swing ratio, are at hand within the Weimar Jazz
Database. A comparison between drummers’ and soloists’
microtiming will allow for a larger scale re-examination
of one of the central findings in [9]: The swing ratio of
soloists is in general lower then the swing ratio of the ac-
companying drummer since soloists deliberately play be-
hind the beat while synchronizing the offbeat with the
drummer. They do so, because, as Friberg and Sund-
ström claim, “delayed downbeats and synchronized off-
beats may create both the impression of the laid-back
soloist, which is often strived for in jazz, and at the same
time an impression of good synchronization” [9, p. 345].
Therefore, using microtiming data from the Weimar Jazz
Database as well as automatically estimated swing ratios
of RC patterns may lead to new insights in the interactive
art of improvising together in a professional jazz ensemble.
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ABSTRACT

Musical offset detection is an integral part of a music sig-
nal processing system that requires complete characteriza-
tion of note events. However, unlike onset detection, off-
set detection has seldom been the subject of an in-depth
study in the music information retrieval community, possi-
bly because of the ambiguity involved in the determination
of offset times in music. This paper presents a preliminary
study aiming at discussing ways to annotate and to evaluate
offset times for pitched non-percussive instruments. More-
over, we conduct a case study of offset detection in vio-
lin recordings by evaluating a number of energy, spectral
flux, and pitch based methods using a new dataset cover-
ing 6 different violin playing techniques. The new dataset,
which is going to be shared with the research community,
consists of 63 violin recordings that are thoroughly anno-
tated based on perceptual loudness and note transition. The
offset detection methods, which are adapted from well-
known methods for onset detection, are evaluated using an
onset-aware method we propose for this task. Result shows
that the accuracy of offset detection is highly dependent
on the playing techniques involved. Moreover, pitch-based
methods can better get rid of the soft-decaying behavior of
offsets and achieve the best result among others.

1. INTRODUCTION

In the literature, offset detection has been frequently men-
tioned in the context of performance analysis [14], auto-
matic music transcription (AMT) [4, 13, 21, 24, 29], note
segmentation [10, 15, 18, 26], and computational auditory
scene analysis (CASA) [19]. In these systems, offset detec-
tion is required for complete measurements of duration, in-
tonation, vibrato, dynamics, and other kinds of note-based
properties of music [14]. However, to date, offset detec-
tion is mostly treated as a component in a large system.
Few studies, if any, are dedicated to offset detection.

The challenges of offset detection can be illustrated by
the attack-decay-sustain-release (ADSR) model of music
signals. First, consider the ADSR envelope of a plucked

c© Che-Yuan Liang, Li Su, Yi-Hsuan Yang, Hsin-Ming Lin.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Che-Yuan Liang, Li Su, Yi-Hsuan
Yang, Hsin-Ming Lin. “Musical Offset Detection of Pitched Instruments:
The Case of Violin”, 16th International Society for Music Information
Retrieval Conference, 2015.

(a) Plucked string

(b) Bowed string

Figure 1. The ADSR envelops of a plucked string (upper)
and a bowed string signal (lower). The gray blocks show
the ambiguity of onset (dark) and offset (light) due to the
variation of hearing threshold. The bold-line segments of
the envelopes are the possible regions to detect an offset.

string signal in Figure 1(a). The envelope of such signals
usually consists of a short attack, unobservable sustain, and
a gradual decay right before the release. Due to the dif-
ference in hearing threshold among human listeners, the
possible region of perceptual offset time (i.e. medium gray
region) can be fairly wide due to the gentle slope of the
release. Because of this, offset detection may slip into the
game of comparing the subjective listening thresholds. In
contrast, there is little ambiguity associated with the onset
time (i.e. dark gray region) due to the short attack.

Figure 1(b), on the other hand, shows the possible ADSR
envelope of a bowed string signal, which contains four dis-
cernible parts. Because the release time is shorter, the tem-
poral uncertainty of the perceptual threshold of such sig-
nals should be less than that of plucked string signals. In
practice, however, computationally estimating the percep-
tual threshold in bowed string signals may not be easy, due
to the similar shapes of the decay and the release parts.
Things are more complicated in real-world signals that con-
tain rich variation in the employed instruments and playing
techniques, which would shape the ADSR envelope in to-
tally different ways. Indeed, the challenges of offset detec-
tion can be attributed to the gentle slope of the release part
and the rich variation in timbre in music signals.
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This paper presents a preliminary attempt focusing on
musical offset detection. Specifically, this paper discusses
various aspects of offset detection research, from building
a dataset, designing an algorithm informed by the afore-
mentioned challenges, to evaluating the performance of
offset detection. We restrict our discussion on the violin,
and investigate the offset detection of its six different play-
ing techniques. This way, we exclude musical signals with
very long releases, such as the pedaled piano.

Specifically, we discuss possible approaches to manu-
ally annotating offset times in music and then propose a
new one (see Section 3). The proposed approach is adopted
to construct a new offset detection dataset, which we have
made available to the research community online. 1 With
the new dataset, we present and evaluate a number of off-
set detection algorithms based on the spectral flux, energy
and pitch attributes of music (see Section 4). To investigate
the effect of playing techniques, an in-depth technique-by-
technique discussion is also presented (see Section 5). As
another contribution of this paper, a new evaluation mea-
sure for offset detection is also proposed and discussed.

2. RELATED WORK

Most of the offset detection algorithms are implemented in
two main directions: thresholding on energy salience, and
thresholding on pitch salience. The energy salience can be
the physical, perceptual or pitch-wise sound levels [15,16,
20]. The thresholding on pitch salience is often seen in the
context of AMT [13, 24], where the offset can be regarded
as the falling position of a pitch salience function for a spe-
cific pitch. In Non-negative matrix factorization (NMF)-
based AMT, the offset is usually determined by a thresh-
old on the activation matrix [29]. Other approaches, such
as novel features like correntropy [10], data-driven models
such as the hidden Markov models (HMM) [4, 14], sup-
port vector machines (SVM) [18], have also been applied
to offset detection. Spectral flux-based approaches (i.e.
using temporal difference of spectrum-based representa-
tions) [3, 6, 7, 28], despite being a conventional method in
onset detection, are rarely used in offset detection except
for some studies [19, 21, 26]. Post-processing with known
onset information is sometimes used [10, 15].

3. DATASET CONSTRUCTION

3.1 Annotating the Offset

There are several possible ways to annotate the offset of
musical notes and build a dataset, depending on the data
format of the music content. For example, one can take
the timestamps of note-off message in MIDI as the ground
truth for offset. Although audio data for experiments can
be generated by MIDI efficiently, this method cannot ac-
curately indicate the perceptual offset time in many cases.
For example, a control message “sustain pedal” makes the
synthesizer prolong the amplitude envelope even after the

1 http://mac.citi.sinica.edu.tw/offset_
detection/

note-off message. In this case, the perceptual offset can
fall far behind the note-off message. Alternatively, one
can also construct a music dataset from video recordings.
Video can plausibly provide visual clues to a performer’s
movement which are sometimes helpful to estimate the
offset time. Inaccuracy, however, may result from audio-
visual asynchrony and low frame rates.

Another useful way to specify the offset times is to an-
notate on the spectrogram of waveform with the aid of au-
dio visualization and musical signal analysis tools such as
Sonic Visualiser. This method, however, may not be re-
liable due to the mismatch between the physical and per-
ceptual offset. For example, human has varied audibility
threshold in different pitch frequency ranges. Perceptual
limitations, such as simultaneous masking and temporal
masking, may also affect. Therefore, a more practical way
is to incorporate visualization software and the hearing per-
ception of musicians, despite the cost may be higher. Since
their is no procedure for such a perception-based offset an-
notation, we propose a new one below.

3.2 Proposed Offset Annotation Procedure

Considering the perceptual aspects of pitched instruments,
the validity of our annotation is based on two assumptions:
First, if a note onset and its fundamental frequency (F0) are
both retrieved, its offset time is the first moment when the
sound intensity level is below the auditory threshold for a
certain period of time. Second, for continuous notes, the
sound intensity level may always be above the threshold.
Therefore, the offset time of preceding note should be ex-
actly or very close to the onset time of the subsequent note
unless there are polyphnic notes.

With the aid of a visualization tool such as the Audacity,
we propose the following steps for annotating offset times.

1. Remove DC offset (bias) and normalize maximum
amplitude to -1.0 dB (software default value). This
is done by the “normalize” function in Audacity.

2. Transcribe all identifiable pitches, excluding unsta-
ble overtones and unidentifiable sound resulting from
playing faults or specific playing techniques (e.g. fla-
geolet or sul ponticello).

3. Carefully and repeatedly listen to a short part of sound
sample as well as zoom in the display of waveform
in order to catch the onset position.

4. Identify the position within a pitch where we find the
start of “attack” of amplitude envelope in the wave-
form. The timestamp corresponds to the note onset.

5. Catch the first perceived disappearance (i.e. below
the audibility threshold) of that given pitch. The cor-
responding timestamp is the note offset time.

6. For continuous notes, we simply find consequent note
onset time and use it as the preceding note offset
time. However, in case of a clear note overlapping,
we annotate the onset and the offset independently.

7. If the time is still not assured, we play the sound at
slower speeds and repeats steps 3–6. This is helpful
in estimating note onset or offset precisely.
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Technique # of clips # of offsets
Pizzicato 13 144
Spiccato 5 168
Sordino 10 539
Flageolet 8 48
Sul tasto 12 140
Sul ponticello 15 187
Total 63 1,226

Table 1. Detailed information of the proposed dataset.

3.3 Proposed Dataset

The dataset contains 63 violin solo excerpts with a total of
1,226 notes derived from the YouTube video clips in [27]
and several sound clips from the website “CompositionTo-
day.com” [1]. This dataset, however, does not include in-
formation about music score, fingering, dynamics, vibrato,
recording environment acoustics, etc. The excerpts covers
6 playing techniques, namely flageolet (harmonic), pizzi-
cato (pluck the string), sordino (mute), spiccato (bounce
the bow), sul ponticello (bow nearing the bridge) and sul
tasto (bow nearing the fingerboard), all of which are widely
used in orchestration [2]. These techniques produce var-
ious patterns of temporal envelopes, thereby providing a
practical reference set for evaluating offset detection algo-
rithms. Detailed information about the number of clips and
notes for each playing techniques is listed in Table 1. We
consider these techniques because the dataset is intended
to be used as an extension of our previous work [27]. For
more comprehensive experiments, people need to include
more playing techniques such as legato and detache.

We hired a professional musician to annotate the dataset.
The musician has profession-level training in music school
and has more than 20 years of experience in playing musi-
cal instruments. He also has long experience in composing
string quartet and orchestral work, and in sound mixing
and recording technology. From the musician’s feedback,
finishing a precise note annotation and double-check costs
1 to 2 minutes through the above process.

4. METHOD

In our study, features are extracted from three different as-
pects of music, including fundamental frequency, energy
envelope and magnitude spectrum. We evaluate the three
aspects separately to investigate their feasibility for offset
detection. Revising a few previous approaches for onset
detection based on these aspects, we discuss five possible
offset detection algorithms in the following subsections.

4.1 Fundamental frequency

In what follows, we denote f0n as the fundamental fre-
quency at the frame index n. The corresponding MIDI
number mn can be obtained by the relation mn = b12 ·
log2(f0n/440)e+ 69.

We adopt the spectral-domain YIN algorithm [9] to es-
timate the fundamental frequency. The algorithm reduces

the computation complexity of the original, time-domain
YIN algorithm [12], and can produce efficient and robust
estimate of fundamental frequency. It estimates the funda-
mental frequency by finding the minimum of the tapered
square difference function dn(τ) below a certain thresh-
old. The function dn(τ) is formulated as:

dn(τ) =
2

N

N/2+1∑

k=0

|(1− e2jπkτ/N )Xn (k) |2 , (1)

where τ is the time lag, and Xn (k) is the short-time Fourier
transform (STFT) spectrum at frame index n. The window
size of STFT is set to N = 2048 in our implementation.

The minimum of Eq.(1) indicates the periodicity. The
smaller the dn(τ) is, the higher the confidence that the in-
put signal has a fundamental frequency at 1/τ . Conversely,
if dn(τ) is too high then the input signal is considered non-
pitched. The fundamental frequency f0 is represented as:

f0n =

(
arg min

τ
dn(τ)

)−1
s.t. 1− dn(τ) > δc . (2)

We consider the term cn = 1 − min dn(τ) as the pitch
confidence; as it measures whether an input is periodic and
therefore can determine whether it is a pitch signal [9, 25].
In our implementation, we set the pitch to zero (i.e. mn =
0) if the confidence is below a threshold δc. We set δc =
0.7 empirically.

4.1.1 Pitch change

Pitch change has been known as a useful onset detector
for pitched non-percussive instruments like bowed strings,
where the input signal is usually excited constantly and
exhibits no obvious amplitude or phase variation [11, 17].
Pitch change is a clear indicator of a note transition, which
typically contains an offset of the previous note and the
onset of the latter note. When the pitch contour changes
from one pitch to another, we expect that there should be
one note ending and another note starting. We note that the
limitation of this idea is that it cannot deal with the case of
repeating notes.

Based on the above observation, we propose the fol-
lowing offset detection method using pitch change infor-
mation. We consider there is an offset event at frame n, if
the following two rules are satisfied:

mod12(mn −mn−1) ≥ 1 ∧ cn − cn−1 < 0 . (3)

Similar to the onset detector proposed in [17], the mod-
ulo operator in the first rule is applied to prevent octave
errors, although it also hinders the detection of transitions
of octave(s). Because mn = 0 when cn ≤ δc, the first
rule also captures voice/unvoice transition. We also ob-
serve that the falling moment of confidence function can
indicate the chance of a stable pitch fading that enables us
to distinguish offset from onset.

4.1.2 Pitch confidence

Another perspective is to directly use the pitch confidence
function as an offset detector. In this case, errors of pitch
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detection would not influence the performance. The ba-
sic idea is that the time instant when the pitch confidence
changes from pitched to non-pitched is considered as the
offset time. Therefore, this method searches for the mo-
ment that the pitch confidence falls below the threshold. In
other words, there is an offset event at n, if the following
conditions meet:

cn−1 > δc ∧ cn < δc . (4)

Please note that this method is conceptually similar to
the way many NMF-based automatic transcription algo-
rithms detect offsets: they usually detect offsets by thresh-
olding on the activation matrix [29]. While our method
uses cn to measure pitch confidence, NMF-based methods
use the value of activation to measure pitch confidence.

4.2 Energy envelope

The energy envelope as used by the human auditory sys-
tem [6] has been proven to be a robust feature in many on-
set detection tasks [7, 8, 22]. Here we compute the energy-
like temporal envelope based on this feature. The pre-
processing step starts from raw STFT spectra with frame
size 2048, then map into 141 sub-bands by a set of trian-
gular filter bank equally spaced in log-scale ranging from
30 Hz to 17000 Hz. Then, the feature is scaled by the log-
arithm x 7→ log(1 + x). Finally, the energy-like envelope
is formulated as: En =

∑
k |X̄n(k)|2 , where X̄n(k) is

the pre-processed spectra magnitude of bin k. Since the
perceptual offset is a subjective threshold lies between the
decaying phase of energy envelope, and in most cases note
offset is interrupted by succeeding onset, that make the
setting an absolute thresholding infeasible. Therefore, we
employ the relative threshold peak-picking algorithm [5]
to find the valley of energy envelope as offset.

4.3 Spectral flux

Spectral flux is one of the most common, easy-to-implement
yet powerful methods for onset detection [3, 7]. It can
be formulated as: SFn =

∑
kH(|X̄n(k)| − |X̄n−1(k)|),

where H(x) = |x|+x
2 is the rectifier function, and the pre-

processed spectral bins X̄n(k) are the ones that are de-
scribed in Section 4.2.

We are interested in whether the idea of spectral flux
can be adopted for offset detection. Two reversed variants
of spectral flux are considered:

• Reverse rectification (SFrr): The rectifier function
H in onset detection selects only the positive flux
while suppresses the negative flux. Conversely, for
offset detection,H is replaced byH ′ = |x|−x

2 , which
suppress all the positive flux.

• Reverse coding (SFrc): The other setting is to com-
pute spectral flux in the opposite direction, i.e., from
the future to the past:

∑
kH(|X̄n(k)|−|X̄n+3(k)|),

to reverse the raw audio signal, and apply the normal
spectral flux method to the reversed signal as look-
ing for onset in the opposite direction.

Offset annotation
Onset annotation

i ii iii

Figure 2. A case when an offset and its succeeding onset
are very close, the right margin of the tolerance window
for offset (the solid line) might fall behind the right margin
of the tolerance window for onset (the dash line) of onset.
Regions i–iii are all within the tolerance window for offset,
while region ii is within the tolerance window for onset.

5. EVALUATION

5.1 Onset-aware evaluation metric

We employ the standard measures for evaluation: preci-
sion, recall and F-score. In evaluation, the offset estimate
that falls within a tolerance window of length 2δtolerance of
the groundtruth offset time is considered to be a true posi-
tive. Moreover, the estimate and the groundtruth can only
be matched at most once, based on maximum cardinality
bipartite matching [23]. The remaining estimates are con-
sidered false positives. The tolerance window (centered
at the groundtruth annotation) can be written as ∆W =
[−δtolerance, +δtolerance]. This is referred to as the conven-
tional tolerance window.

A typical problem of this evaluation method is depicted
in Fig. 2. As mentioned in Section 1, the tolerance win-
dow for offset detection is often set to be wider than that
for onset detection in most previous work. 2 In Fig. 2, the
right margin of the tolerance window for offset of the cur-
rent note (i.e. the solid line in Fig. 2) falls behind the right
margin of the tolerance window for onset of the succeeding
note (i.e. the dash line in Fig. 2). Such a situation occurs
for more than 80% of notes in our dataset, when δtolerance is
set to 100ms. If the offset is annotated given the transition
offset annotation rule that we suggest, region iii should not
be considered as a possible true positive area.

In light of this observation, we further define a new
tolerance window by ∆W ′ = [−δtolerance,+δpost tolerance],
making δpost tolerance dependent on the succeeding onset. In
this paper, we set δpost tolerance = min(δt+50ms, δtolerance),
where δt denotes the timestamp of the next onset, and 50ms
is a commonly adopted value for δtolerance for onset.

To give a deep insight of the onset-aware tolerance win-
dow, let’s first consider this: if the offset and succeeding
onset are located far apart, the post tolerance would be the
same as the conventional tolerance, so the evaluation re-
sult will be the same as the result of the conventional met-
ric. But, as the distance becomes closer, post tolerance will
shrink to the tolerance of succeeding onset when they are
fully overlapped, resulting in a shortened tolerance win-

2 http://www.music-ir.org/mirex/wiki/2014:
Multiple_Fundamental_Frequency_Estimation_\%
26_Tracking
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Playing technique Performance Pitch confidence Pitch change Energy SFrc SFrr

measure MA MB MA MB MA MB MA MB MA MB

Pizzicato

F-score

0.689 0.671 0.578 0.557 0.695 0.695 0.576 0.556 0.587 0.567
Spiccato 0.778 0.724 0.740 0.687 0.759 0.759 0.610 0.308 0.584 0.271
Sordino 0.727 0.718 0.701 0.686 0.555 0.512 0.650 0.598 0.652 0.596
Flageolet 0.381 0.381 0.321 0.301 0.414 0.402 0.292 0.262 0.290 0.254
Sul tasto 0.531 0.522 0.544 0.524 0.463 0.433 0.448 0.433 0.440 0.424
Sul ponticello 0.522 0.518 0.44 0.434 0.338 0.309 0.314 0.302 0.310 0.299

Overall
Precision 0.688 0.673 0.514 0.498 0.422 0.398 0.364 0.326 0.361 0.320

Recall 0.623 0.609 0.669 0.648 0.639 0.604 0.758 0.677 0.759 0.674
F-score 0.654 0.640 0.582 0.563 0.508 0.480 0.492 0.440 0.489 0.434

Table 2. Comparison of evaluation metrics to offset detection methods. MA: the conventional evaluation metric. MB : the
proposed onset-aware evaluation metric.

/
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Figure 3. Comparison of evaluation using conven-
tional metric (solid line) and proposed onset-aware metric
(dash line) on two offset detection methods. Horizontal
axis shows the tolerance δtolerance (ranging from 50ms to
150ms), and vertical axis shows average F-score.

dow without region iii. In other words, the right margin of
the tolerable window for offset would not exceed the right
margin of the tolerable window for the succeeding onset.

5.2 Experiment result

Table 2 shows the evaluation of detection algorithms per-
formed by both metrics. First of all, we see that pitch-
based methods significantly outperform the others in the
overall result according to both metrics. This is perhaps
not surprising, given that pitch-based methods have been
shown effective for onset detection for notes with slow at-
tack phase. For example, Holzapfel et al. [17] have shown
that pitch-based methods work much better than SF-based
methods for onset detection for bow-string instrument and
wind instrument. The decaying phase exhibits similar sig-
nal characteristics as soft onsets when “looking reversely”
from the end of the signal. This may explain why pitch-
based methods also work better than SF-based methods for
offset detection.

We expect that the result of onset-aware evaluation (us-
ing ∆W ′) would be equal or less than conventional metric
(using ∆W ). The interesting finding is that, while most
methods we considered have similar result for the two eval-
uation metrics, the result of SF-based methods degrades a
lot when the onset-aware metric is adopted. For the overall
result, the result of the two SF methods decreases by 11%
and 13%, respectively. The most severe degradation is seen

in spiccato. This result indicates that SF-based methods
may be prone to produce many estimations within region
iii of Fig. 2.

Fig. 3 compares the result of the pitch confidence method
and the SFrr methods using the two metrics. As it will be
shown later in Section 5.3, spectral flux exhibits temporal
alignment issues while the pitch confidence method does
not. It can be seen that the pitch confidence method does
not suffer from the penalty of proposed metric while SFrr

does. We note that the bipartite matching mechanism we
adopted may have also avoided some of the estimation in-
side region iii of Fig. 2. But, by using the proposed metric,
we can ensure region iii is fully eliminated. This is im-
portant because the conventional metric may give us over-
optimistic result.

Another important finding is that the pitch confidence
method consistently outperforms the pitch change method,
when the onset-aware metric is adopted. Results show
that the pitch change method has higher recall but much
lower precision, possibly due to the fluctuation of confi-
dence above and below threshold causes some false alarms.
It is possible to mitigate the issue by proper post-processing,
such as by padding the continuous note or using median fil-
ter, but if the pitch confidence method is employed we do
not have to deal with such an issue.

5.3 Illustration

The upper part of Fig. 4 shows the spectrogram and the off-
set detection functions of pizzicato and spiccato. 3 Though
both techniques produce sound by pulse-like excitation, we
can see the envelope of spiccato is much smoother than
spiccato in terms of attack and decay phase possibly, be-
cause of the elasticity of bow cause the striking contacts
the string slightly longer (i.e. leading to longer sustain)
than the plucking string. SF based methods typically take
the the beginning of decay as the offset position, as shown
in Fig. 2, while the estimates of other methods appear to
be closer to the ground truth. SF-based methods are prone
to produce temporal detection errors largely in pizzicato
and spiccato, making the conventional evaluation metric
for onset less appropriate for evaluate the result for offset.
However, some estimations of pizzicato is a lot earlier than

3 We only put one of the spectral flux based methods due to their high
similarity of detection curve.
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(a) Pizzicato (pluck the string) (b) Spiccato (bounce the bow)

(c) Con sordino (mute) (d) Sul tasto (bow nearing the fingerboard)

(e) Sul ponticello (bow nearing the bridge) (f) Flageolet (harmonic)

Figure 4. Comparison of the signal characteristic of six playing techniques. From top to bottom are spectrogram, spectral
flux, energy envelope, and pitch-based offset detection curves. The right-pointing triangle denotes the onset annotation and
the left-pointing triangle denotes the offset annotation.

spiccato that it is even located within the onset tolerance
(i.e. region ii). In that extreme situation, we may have to
shorten the onset tolerance by a few milliseconds in our
evaluation metric.

The low part of Fig. 4 shows the other four bowing tech-
niques. For the lower two techniques, all of the detection
functions exhibit the fluctuating curve due to the noise-like
overtones, leading to inferior result for sul ponticello and
flageolet. In such case, energy relatively remains in the the
same level of performance. On the other hand, from the
middle part of Fig. 4, we can see the pitch confidence is
still a good indicator of offset for con sordino and sul tasto.

6. CONCLUSION

In this paper, we have discussed the challenges of offset
detection, the methodology of constructing an offset de-
tection dataset, some detection algorithms, and a few con-
siderations in evaluation. Based on the newly constructed

violin dataset, we have firstly investigated the behaviors of
musical offsets in the signals generated by various kinds
of mechanism. We find that, in general, the pitch con-
fidence based offset detection function outperforms algo-
rithms based on energy and spectral flux. For the playing
techniques having sharp envelopes such as pizzicato and
spiccato, energy-based method can be competitive. We
have also proposed an onset-aware evaluation metric that is
more reliable than the conventional ones in avoiding over-
estimation of true positives. We hope that these findings
can contribute to the advance of research on automatic mu-
sic transcription and melody tracking.
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[8] Sebastian Böck and Florian Krebs. MIREX onset detection
task. In Music Information Retrieval Evaluation eXchange,
2012. [Online] http://www.music-ir.org/mirex/
abstracts/2012/BK2.pdf.

[9] P. M. Brossier. Automatic annotation of musical audio for in-
teractive applications. PhD thesis, Queen Mary, University
of London, 2006.

[10] S. Chang and K. Lee. A pairwise approach to simultaneous
onset/offset detection for singing voice using correntropy. In
Proc. IEEE Int. Conf. Acoust. Speech Signal Proc., pages
629–633. IEEE, 2014.

[11] N. Collins. Using a pitch detector for onset detection. In Proc.
Int. Soc. Music Information Retrieval Conf., pages 100–106,
2005.
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ABSTRACT 

Specter combines music information retrieval (MIR) with 
sound spatialization to provide a simple, yet versatile en-
vironment to experiment with sound spatialization for 
music composition and live performance. Through vari-
ous interfaces and sensors, users may position sounds at 
arbitrary locations and trajectories in a three-dimensional 
plane. The system utilizes the JythonMusic environment 
for symbolic music processing, music information re-
trieval, and live audio manipulation. It also incorporates 
Iannix, a 3D graphical, open-source sequencer, for real-
time generation, manipulation, and storing of sound tra-
jectory scores. Finally, through Glaser, a sound manipula-
tion instrument, Specter renders the various sounds in 
space. The system architecture supports different sound 
spatialization techniques including Ambisonics and Vec-
tor Based Amplitude Panning.  Various interfaces are dis-
cussed, including a Kinect-based sensor system, a Leap-
Motion-based hand-tracking interface, and a smartphone-
based OSC controller.  Finally, we present Migrant, a 
music composition, which utilizes and demonstrates 
Specter’s ability to combine MIR techniques with sound 
spatialization through inexpensive, minimal hardware. 

1. INTRODUCTION 

Spec•ter (ˈspɛk təәr) 
n. 
1. a visible incorporeal spirit, esp. one of a terrifying na-
ture; ghost; phantom; apparition. 
2. some object or source of terror or dread. 
Also, esp. Brit., spectre. 
[1595–1605; < Latin spectrum; see spectrum] 
(http://www.thefreedictionary.com) 
 
Sound spatialization offers the ability to composers and 
performers to specify how sounds are positioned in the 
listener’s audio field.  Most consumer-quality audio sys-
tems allow for stereo fields (i.e., the ability to pan sound 
from left to right channel), becoming a standard house-
hold item in the 1970s.  Around the same time, quadro-
phonic systems were introduced (i.e., making use of 4 

channels), but did not meet with much commercial suc-
cess, due to the industry’s indecision to create a standard. 
Within the 1980s and 1990s, surround sound was intro-
duced into the consumer market with Cinema 5.1 (6 
channels), and 7.1 (8 channels), e.g., DTS, Dolby Digital, 
etc.  Still, these systems have proprietary formats, they 
require specialized software and hardware, and are not as 
readily available (as stereo systems).  Additionally, vari-
ous research techniques for sound spatialization were de-
veloped during this time, including Ambisonics and Vec-
tor Based Amplitude Panning (VBAP), which have not 
yet received commercial acceptance. 

We present Specter, an open-source, scalable, easy to 
customize and deploy sound spatialization system, devel-
oped to facilitate music composition and live perfor-
mance.   

Specter was initially developed in the context of Time 
Jitters, a four-projector interactive installation (see Figure 
1), designed by Los-Angeles-based visual artist Jody 
Zellen for the Halsey Institute of Contemporary Art in 
Charleston, SC, USA.1  Time Jitters includes two walls 
displaying looping video animation, and two walls with 

                                                             
1 See a video of Time Jitters, http://goo.gl/TIfpPl 

 
Figure 1. Specter system deployment at Time Jitters 
exhibit. Photo shows two people moving through the 
installation. Two of the four speakers are visible (top-
left and center).  Also visible is one of the two Kinect 
sensors used in the installation (top right), and one of 
the four projectors (each projecting to one of the four 
walls enclosing the installation). 

 © Bill Manaris and Seth Stoudenmier. 
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interactive elements. The concept is to create an immer-
sive experience for participants, which confronts them 
with a bombardment of visual and sound elements.  As 
participants enter the space, images and sounds are as-
signed to them.  As participants move freely through the 
space, these images and sounds follow them. The result is 
an immersive, dynamic experience that unfolds in real-
time as different people navigate the space.  Several indi-
viduals contributed to this installation (including visual 
materials and overall concept design, interaction design, 
and sound design).  In this paper, we focus on the design 
and implementation of Specter.  Other aspects of this in-
stallation are presented elsewhere (e.g., [1, 2]). 

Specter was designed to offer composers and perform-
ers a simple, expandable, and versatile environment to 
experiment with sound spatialization for music composi-
tion and live performance. It combines music information 
retrieval (MIR) with minimal hardware through the Open 
Sound Control (OSC) protocol to produce a low-cost, 
easily configurable and transportable system. Through 
various interfaces, users may position sounds at arbitrary 
locations and trajectories on a three-dimensional plane.   

The system incorporates JythonMusic, an environment 
for symbolic music processing, music information re-
trieval, and live audio manipulation.  It also utilizes 
Iannix, a graphical open-source sequencer for digital art 
for real-time generation, manipulation, and storing of 
sound trajectory scores. Finally, it uses Glaser, a sound 
manipulation instrument to render the various sounds in 
space by quickly manipulating their attributes.   

The rest of the paper is organized as follows:  Section 
2 describes related background in sound spatialization.  
Section 3 defines the Specter system architecture; this 
includes a description of JythonMusic, the underlying 
music programming environment, used to implement 
Specter; Iannix, a graphical open-source sequencer for 
digital art, utilized to represent Specter trajectory scores; 
and Glaser, a sound rendering instrument.  Section 4 pre-
sents a case study utilizing an MIR approach to generate 
a musical composition involving sound spatialization, 
which includes both static (pre-composed) and dynamic 
(interactive) sound trajectories, rendered with Specter.  
Finally, section 5 provides concluding remarks. 

2. BACKGROUND 

Although sound spatialization is a very promising field 
for developing new music and related composition tech-
niques, it is highly underutilized (versus, say, timbre 
composition) because of the difficulty in exploring pos-
sibilities and performing existing compositions. 

 While there is much development already in timbre 
technologies for both analog and digital timbre, spatial 
computer music is being held back because composers 
have limited access to performance techniques and spaces 
with installed multi-channel systems [3].   

Additionally, the software tools for spatial composi-
tion are few, compared to those for symbolic music, and 
for timbre compositions.  Moreover, there is not a stand-
ard high-level format for representing spatial composi-
tions or storing spatial recordings.  As a result, spatial 
compositions may loose integrity and content as they are 
transferred from one technology to another, in order to be 
performed, given that the available performance spaces 
for spatial music are few, quite expensive to set up and 
maintain, have different architectures, and support differ-
ent formats [4].  

Nevertheless, sound spatialization is a rich field with 
many decades of research and development.  Johnson et 
al. [5] provide a thorough overview of the early history of 
the field, starting with Schafer and Henry, who in 1951 
performed the first pre-composed electroacoustic piece of 
music with dynamic spatialization at performance time.  
This was accomplished through a special interface con-
trolling gain of individual speakers on a tetrahedral 
speaker array.  Other important examples include con-
struction of expensive performance spaces, during the 
1970s and 1980s, such as the GRM Acousmonium, 
IMEB’s Gmebaphone, and the Univ. of Birmingham’s 
BEAST.  Additionally, various spatialization algorithms 
have been developed for creating dynamic trajectories, 
and for spatial rendering for diffusion performance.  They 
can be classified into two general categories:  

(a) room-based diffusion, which involves program-
ming autonomous spatial trajectories and complex 
spatial distribution patterns, through large numbers 
of speakers; one popular approach is Higher Order 
Ambisonics, e.g., see [6], and 

(b) phantom-source positioning, which places less 
emphasis on amount of speakers, and focuses more 
on improving accuracy of sound object placement 
in the sound field, providing more control of sound 
trajectory rendering through better algorithms and 
data structures, and provision of interactive tech-
niques for improved dynamic control of sound tra-
jectories at performance time; one popular ap-
proach is Vector Based Amplitude Panning 
(VBAP), e.g. see [7].  

Our system’s high-level architecture supports both ap-
proaches. 

Lopez-Lezcano [8] discusses development of open, 
general-purpose sound diffusion systems.  He identifies 
several important characteristics of such systems, in order 
for them to be more usable than the current state-of-the-
art.  These characteristics include simplicity, transparen-
cy, versatility, using commodity hardware, using free 
software, and having a small footprint.  Our system is de-
signed with these characteristics in mind, as described in 
the next section. 

A significant research trend in sound spatialization in-
volves gestural control (e.g., [9-12]) at composition time 
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(such as through algorithms exploring dynamical sys-
tems, e.g., swarms and boids), but also at performance 
time (through specialized interfaces, such as data gloves, 
Kinect, and LeapMotion sensors, among others).  Specter, 
through the underlying JythonMusic environment pro-
vides similar capabilities (a) through development of ar-
bitrary algorithms to drive (or guide aspects of) music 
composition, and (b) through a variety of devices that can 
communicate with it via MIDI or OSC protocols. 

3. SPECTER ARCHITECTURE 

Specter incorporates three major components, 
JythonMusic, Iannix, and Glaser – all communicating via 
OSC to pass data and synchronize / coordinate their ac-
tions.  The following sections describe each of the sub-
systems, and how they are combined to provide an envi-
ronment to experiment with sound spatialization for mu-
sic composition and live performance.  

Through various interfaces and sensors, users may po-
sition sounds at arbitrary locations and trajectories on a 
two- or three-dimensional plane.  

3.1 Music Information Retrieval 

MIR functionality is available to Specter through 
JythonMusic, an environment for music analysis, com-
position and performance (see http://jythonmusic.org).  

JythonMusic provides libraries for music making, im-
age manipulation, building graphical user interfaces 
(GUIs), and for connecting computers to external MIDI 
and OSC devices, such as digital pianos, smartphones, 
and tablets. 

JythonMusic is an outcome of a decade-long project 
exploring various aspects of music information retrieval, 
including investigation of fractals in music, and their rela-
tionship to human aesthetics (e.g., [13]).  This on-going 
project explores Zipf’s Law (and related power laws) in 
music data mining, in music recommendation, and in mu-
sic analysis, composition, and performance [14-16]. 

JythonMusic incorporates the following libraries.  
Primitives from each of these libraries are used in con-
junction with Specter (as explained below) to create 
sound spatialization trajectories and related processes: 

• Music library - provides primitives for creating music 
notes, phrases, parts, and scores, and for playing them 
live, as well as reading and writing them as MIDI or 
XML files. 

• Audio library - provides primitives for loading and 
looping audio files, and for recording and looping live 
audio. 

• Zipf library - provides primitives for extracting meas-
urements from musical data (e.g., [13]). 

• MIDI library - provides primitives for loading and 
looping MIDI files, and for connecting to external 
MIDI devices (e.g., pianos, guitars, synthesizers, etc.). 

• OSC library - provides primitives for connecting to 
other devices via Open Sound Control (e.g., 
smartphones, tablets, computers, synthesizers, etc.). 

Additionally, JythonMusic provides libraries for graph-
ical interactivity, image manipulation and sonification, 
and event scheduling.  Finally, it encapsulates various 
cross-platform libraries for MIR and music / sound ma-
nipulation, such as jMusic and jSyn.   

In summary, JythonMusic provides the glue code 
through which Specter is implemented, and, through its 
libraries facilitates arbitrary possibilities for data map-
ping, sonification, and interaction.   

3.2 Sound Spatialization Trajectories 

Sound spatialization trajectories in Specter are modeled 
via Iannix, an open-source, a 3D graphical sequencer for 
real-time generation, manipulation, and storing of musi-
cal and other scores (see http://www.iannix.org).  As 
shown in Figure 2, Iannix scores consist of: 
• Curves, which define spatial trajectories.  These tra-

jectories support cursors and triggers.  Curves can be 
circular, straight lines, Bézier curves, free-form curves 
(drawn via mouse), or prescribed through math equa-
tions.   

• Cursors, which follow the trajectories defined by 
curves, moving at a constant speed, when the score is 
played.  Cursors report (via MIDI or OSC messages) 
their current coordinates in XYZ space (as defined by 
the Iannix score); also they can be set externally (via 
MIDI or OSC messages). 

• Triggers, which report (again, via MIDI or OSC) 
when a cursor crosses them. 

Additionally, through JythonMusic arbitrary math func-
tions and algorithms may be implemented (such as boids, 
swarms, and other dynamic particle systems), which may 

     
 
Figure 2. Example of an Iannix score consisting of 
three curves, each with a cursor and a trigger, drawn 
in 3D space.  When such a score is played, cursors 
move automatically on prescribed trajectory, continu-
ously reporting their XYZ coordinates, and when they 
cross triggers (via OSC and MIDI protocols). 
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provide Specter with 3D trajectory information.  This in-
formation may be stored as an Iannix score, or used in 
real-time to render sound spatialization trajectories.  

3.3 Audio Rendering 

Audio rendering in Specter is done through the Glaser 
subsystem.  Glaser is an audio rendering instrument im-
plemented using JythonMusic.  It was developed for the 
TimeJitters exhibit (see section 1), and has been adapted 
to implement the functionality needed by Specter. 

Glaser, in its basic form, allows exploring various 
sounds for sound design by manipulating their attributes 
(frequency, volume, and spatialization).  It consists of 
three GUI displays with several sliders each, one per au-
dio file. Through these, it allows a sound designer, com-
poser, or performer to interactively control volume, fre-
quency, and spatialization of an arbitrary number of audio 
files simultaneously. 

Within Specter, the Glaser architecture has been ex-
tended to support both the Ambisonics and Vector Based 
Amplitude Panning approaches (e.g., see [6, 7]).  This 
allows taking into account the spatial configuration 
(number of individual channels available) and geometry 
of the space, through existing algorithms, such as the 
ones used in [17]. 

3.4 Music Representation 

Specter, through JythonMusic, utilizes a common-
practice-based notation to represent audio to be rendered.  
This notation consists of: 

• Notes, which specify pitch, duration, dynamic, and 
panning. For stereo, panning ranges from 0.0 to 1.0 
(where 0.0 is left, 0.5 is center, and 1.0 is right of ste-
reo field).  Panning values greater than 1.0 are treated 
as identifiers for Iannix trajectories, which are used 
when the corresponding note is rendered).  Pitches are 
used for sound frequency shifting (sounds are as-
signed a default / reference pitch, i.e., A4), durations 
are in seconds, and volume ranges from 0 to 127, fol-
lowing the MIDI standard. 

• Phrases, which serve as containers for sequences of 
notes. 

Additional, higher-level containers include parts and 
scores (again, see http://jythonmusic.org).  

3.5 Expandable Architecture 

The design concept behind Specter allows using easily 
accessible, low-cost equipment to render multi-channel 
audio, in an expandable architecture.  This is facilitated 
by computer programming to account for the modular 
architecture. 

Through the use of audio aggregates and low-cost, 2-
channel USB audio interfaces, such as the Behringer 
UCB222 (approx. $30, at the time of this writing), it is 
possible to assemble a wide variety of sound spatializa-

tion architectures (e.g., obviously stereo, quadrophonic, 
9-channel, 16-channel, and so on).  Theoretically, any 
number of speakers / channels is possible for arbitrary 
sound spatialization installations.  

3.6 Interfaces for Sound Spatialization  

Given the underlying functionality provided to Specter 
via JythonMusic, a wide variety of interfaces may be 
used (or developed) to generate and/or capture sound tra-
jectories.  These trajectories may be stored (in a Iannix 
score) for later use in audio rendering, or be used imme-
diately for real-time sound placement (this is exemplified 
in the case study presented in section 4).  Possible inter-
faces include: 

• Kinect motion sensor: Utilizing Kinect sensors with 
JythonMusic has already been implemented in the 
context of Kuatro, a motion-based framework for de-
veloping interactive music installations [1]. 

• LeapMotion:  We have also developed a LeapMotion 
interface to capture fine movement of both hands. 
This inexpensive sensor, and its versatile API, allow 
for a wide variety of interfaces and associated gestures 
to be developed for natural, intuitive control of sound 
spatialization.  

• Smartphone: Using smartphone sensors, e.g., gyro 
and accelerometer readings, one may develop various 
programs to control aspects of musical performance.  
One such example is presented in the next section. 

Various other possibilities exist, utilizing any type of sen-
sor that supports MIDI and OSC protocols. 

4. MIGRANT - A CASE STUDY 

Migrant is a cyclic piece for piano and computer, origi-
nally composed for Undomesticated, a public-art installa-
tion by Vassiliki Falkehag at Moore Farms Botanical 
Gardens, in the context of ArtFields 2015, held in Lake 
City, SC, USA (http://www.artfieldssc.org).  

It is used here as an example of combining music in-
formation retrieval techniques and sound spatialization 
for music composition and live performance. 

Migrant is part of the ISMIR 2015 music program to 
be performed on Wednesday, October 28, 2015 at the Sa-
la Unicaja de Conciertos María Cristina in Málaga, Spain. 

4.1 Composition Techniques 

In terms of composition, Migrant integrates data sonifica-
tion, interactivity, and sound spatialization.   

The data used in the piece comes from migrant worker 
statistics, including migration patterns, age, wages, fami-
ly dependents, and other elements of the migrant life ex-
perience. This data was collected from 56,976 in-person 
interviews with hired crop farm workers.  The interviews 
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were conducted in 545 US counties and 43 states during 
fiscal years 1989-2012.2  

Each note in the piece represents a single person.   
Melody, harmony and dynamic are all driven by the 

data.  Data from 120 people were randomly selected.  
Notes were carefully spatialized – set to "fly around" to 
reflect the nomadic lifestyle.  Different timescales were 
combined.  A few notes were manually adjusted by the 
composer to reflect his own aesthetic and migrant experi-
ence.  Figures 3a and b show photos used by the compos-
er to provide aesthetic inspiration for composing the soni-
fication scheme.   

The composition makes use of the golden ratio to af-
fect the piece’s harmonic density (e.g., see Figure 4).   
The sonification code was written in JythonMusic using 
ideas presented in [20].  

A preview of the piece (one cycle, mixed for two 
speakers) is available here – http://goo.gl/iYOVmY . 

The composition employs interactivity to control tem-
po and spatialization of notes, via a smartphone-based 
controller manipulated by one of the performers.  This 
controller sends gyro readings via OSC to a JythonMusic 
program, similar to this – http://goo.gl/dsTWFM . 

4.2 Performance Needs 

In terms of performance, the piece requires one piano, 
one computer, a video projector, two (or more) speakers 
(as described above), and a smartphone. 

The original composition envisioned eight pianos ar-
ranged in 45-degree increments, with the audience seated 
in the middle.  For ISMIR 2015, in order to demonstrate 
Specter, a single piano and a computer with sound spati-
alization are used. 

Ideally, four speakers in a square configuration (as 
seen in Figure 5) allow the audience to fully experience 
the “flying around” of notes.  However, two speakers in a 
stereo configuration work also, albeit losing one of the 
sound spatialization dimensions; in this case, the outcome 
is similar to the preview of the piece above. 

4.3 Performance Instructions 

Migrant is a cyclic piece for piano and computer, using a 
smartphone-based OSC controller, during the perfor-
mance, to send these notes “flying around” in the sound 
field.  

Each cycle of the piece lasts 4 minutes and 52 seconds.  
It is meant to be played in a continuous loop - minimally 
two times.  For the ISMIR 2015 performance, the piece 
will be cycled exactly twice, for a total duration of 9 
minutes and 44 seconds.  

During the first cycle, the pianist plays the notes in the 
score verbatim.  The computer layers identical notes in a 
computer-enhanced timbre and diffuses them in a circular 

                                                             
2 See National Agricultural Workers Survey, Public Access Data, Octo-
ber 1, 1988 to September 30, 2012 – http://goo.gl/xWsQe8  

pattern (or left-to-right pattern, for 2 speakers), thus gen-
erating a “flying-around” of notes. 

The computer also displays images (using precise, 
scripted timings), via the video projector (again, see the 
piece preview provided here –  http://goo.gl/iYOVmY).   

During the second cycle, the computer plays the com-
plete first cycle (i.e., both the notes originally played by 
the pianist, as well as the enhanced timbres spatialized in 
the sound field). 

The pianist is instructed to improvise additional notes, 
guided by the score notes.  The only constraint is that an 
A natural minor scale is used.  No constrains are given in 
terms of note start times, durations, or harmony.  The pi-

   
 
Figure 3a. One of several photos used by the composer to 
provide aesthetic inspiration for composing the sonfication 
scheme.  Photo Credit: Dorothea Lange (1936), “Destitute 
pea pickers in California. Mother of seven children. Age 
thirty-two. Nipomo, California” [18].  
 

 

     
 

Figure 3b. Another of the photos used by the composer to 
provide aesthetic inspiration for composing the sonfication 
scheme.  Photo Credit: Dorothea Lange (1938), “Aban-
doned farm with windmill and farm equipment. Dalhart, 
Texas. June 1938” [19].  
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anist is encouraged to create a musical narrative (to the 
best of their musical abilities – a challenge!), which aes-
thetically complements the sonified “narratives” of the 
people / notes in the data.  In essence, this provides an 
opportunity for the pianist to interweave his or her own 
experience, aesthetic, and improvisatory skills into the 
piece.  

During this, the computer performer utilizes the 
smartphone-based OSC controller to affect timing and 
spatialization of the computer-generated notes.  This way, 
he or she controls aspects of the musical expression of the 
combined performance, through the following gestures: 

• Ready Position:  Smartphone is held facing up, paral-
lel with the floor. 

• Controlling Tempo: The phone is used in a percus-
sive gesture (moving downward) to play the next note.  
When the phone pitch (see Figure 6) crosses the neu-
tral (parallel to the floor) position, the next note is 
played. 

• Controlling Volume:  Device shake corresponds with 
loudness of notes. The more intensely one shakes or 
vibrates the phone as notes are generated, the louder 
the notes are. 

• Controlling Spatialization:  The yaw of the phone 
corresponds to placement of notes on the periphery of 
the sound field. (System is calibrated before the per-
formance so magnetic north corresponds with Spec-
ter’s virtual north, as far as sound placement is con-
cerned). 

The interactive aspects of Migrant allow both human 
performers to musically interact with each other, and to-
gether, to interact with the musical “narrative” generated 
from the data.   

5. CONCLUSION 

Sound spatialization / diffusion systems normally require 
expensive, specialized equipment, which is usually hard 
to transport.  We presented Specter, a simple, yet versa-
tile environment to experiment with sound spatialization 
for music composition and live performance.  By com-
bining readily available hardware and software, through a 
simple, customizable architecture, we offer an inexpen-
sive alternative to existing sound spatialization systems.   

Specter may be used by MIR practitioners, as well as 
music composers and artists to explore and experiment 
with sound spatialization / diffusion more easily. Addi-
tionally, this project may facilitate development of inno-
vative art installations, as well as new gaming experienc-
es.  Through the underlying JythonMusic system, devel-
opers may connect various MIR techniques to music 
composition and sound spatialization, open the door for 
new sonification applications, and develop innovative, 
immersive interactive applications (e.g., [21]). 
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Figure 4. Pianoroll excerpt of the piece demonstrating 
result of sonification and use of the golden ratio to affect 
harmonic density. 

 

 
 

Figure 5. Migrant performance 4-channel speaker ar-
rangement.  Audience is seated in the middle.  However, 
a regular two-speaker (stereo) setup is possible (for con-
venience). 

 

 
 

Figure 6. Smartphone Pitch, Roll, and Yaw directions. 
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ABSTRACT

Although content is fundamental to our music listening
preferences, the leading performance in music recommen-
dation is achieved by collaborative-filtering-based methods
which exploit the similarity patterns in user’s listening his-
tory rather than the audio content of songs. Meanwhile,
collaborative filtering has the well-known “cold-start” prob-
lem, i.e., it is unable to work with new songs that no one
has listened to. Efforts on incorporating content informa-
tion into collaborative filtering methods have shown suc-
cess in many non-musical applications, such as scientific
article recommendation. Inspired by the related work, we
train a neural network on semantic tagging information as
a content model and use it as a prior in a collaborative fil-
tering model. Such a system still allows the user listening
data to “speak for itself”. The proposed system is evalu-
ated on the Million Song Dataset and shows comparably
better result than the collaborative filtering approaches, in
addition to the favorable performance in the cold-start case.

1. INTRODUCTION

Music recommendation is an important yet difficult task
in music information retrieval. A recommendation system
that accurately predicts users’ listening preferences bares
enormous commercial value. However, the high complex-
ity and dimensionality of music data and the scarcity of
user feedback makes it difficulty to create a successful mu-
sic recommendation system.

Two primary approaches exist in recommendation: col-
laborative filtering and content-based methods. For mu-
sic, the state-of-the-art recommendation results have been
achieved by collaborative filtering methods, which requires
only information on users’ listening history rather than the
musical content for recommendation. The central assump-
tion of this model is that a user is likely to accept a song
that is liked by users who have similar taste. A major cate-
gory of collaborative filtering approaches is based on latent

c© Dawen Liang, Minshu Zhan, Daniel P. W. Ellis.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Dawen Liang, Minshu Zhan, Daniel
P. W. Ellis. “Content-Aware Collaborative Music Recommendation Us-
ing Pre-trained Neural Networks”, 16th International Society for Music
Information Retrieval Conference, 2015.

factor model. It assumes that a low-dimensional represen-
tation exists for both users and songs such that the compat-
ibility between a user and a song, modeled as their inner
product in this latent space, predicts the user’s fondness of
the song. In the case that user feedback is implicit (e.g.,
whether or not the user has listened to a particular song),
the weighted matrix factorization from Hu et al. [6] works
particularly well. Details regarding collaborative filtering
will be further discussed in Section 2.1.

On the other hand, modeling musical content for the
purpose of taste prediction is difficult due to the structural
complexity present in music data which is hard to capture
by simple models. Deep learning has shown its power in
various pattern recognition tasks with its capability of ex-
tracting hierarchical representations from raw data. In mu-
sic recommendation, van den Oord et al. [13] have experi-
mented with neural networks on predicting the song latent
representation from musical content.

It is natural to combine collaborative filtering and con-
tent models in recommendation to utilize different sources
of information. A successful attempt from Wang and Blei
[14], which joins a content model on article with collab-
orative filtering, achieves good performance on scientific
article recommendation.

Inspired by these mentioned above, we create a content-
aware collaborative music recommendation system. As the
name suggests, the system has two components: the con-
tent model and the collaborative filtering model. To obtain
a powerful content model, we pre-train a multi-layer neu-
ral network to predict semantic tags from vector-quantized
acoustic feature. The output of the last hidden layer is
treated as a high-level representation of the musical con-
tent, which is used as a prior for the song latent represen-
tation in collaborative filtering. We evaluate our system
on the Million Song Dataset and show competitive perfor-
mance to the state-of-the-art system.

2. RELATED WORK

In this section we review important relevant work. First
we give an overview of matrix factorization model for rec-
ommendation, especially for implicit feedback. Then we
describe two models which are closely related to ours: col-
laborative topic model for article recommendation and deep
content-based music recommendation.
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2.1 Recommendation by matrix factorization

A widely used approach to recommendation is collabora-
tive filtering, where items are recommended to a user based
on other users with similar patterns of item consumption.
Matrix-factorization-based latent factor models [6, 8] are
among the most successful collaborative filtering methods.

In a matrix factorization recommendation model, we
represent both users and items in a shared low-dimensional
space of dimensionK, where user u is represented by a la-
tent factor θu ∈ RK and item i is represented by a latent
factor βi ∈ RK . To make a prediction about the prefer-
ence of user u on item i, we simply take the dot product
between the two r̂ui = θTuβi. To estimate user and item
factors, we can minimize the squared loss between the es-
timated preference and actual responses

∑
u,i(rui− r̂ui)2,

with `2 regularization on the factors to prevent overfitting.
Alternating least squares (ALS) can be employed for effi-
cient optimization. Equivalently, we can formulate a prob-
abilistic matrix factorization model [12] with the following
generative process:

• For each user u, draw user latent factor:

θu ∼ N (0, λ−1θ IK),

• For each item i, draw item latent factor:

βi ∼ N (0, λ−1β IK),

• For each user-item pair (u, i), draw feedback:

rui ∼ N (θTuβi, c
−1
ui ),

and obtain the same estimates via maximum a posteriori.
Here cui represents our confidence on the corresponding
response rui, i.e., larger value of cui indicates that there
is less uncertainty about the response rui, and vice versa.
This is especially crucial in the case of implicit feedback
(e.g., whether user u listened to song i), because of its
noisy nature. Hu et al. [6] propose a simple heuristic for
setting the values of cui for implicit feedback 1 :

cui = 1 + α log(1 + rui/ε)

where α and ε are tunable hyperparameters. This method
achieves the state-of-the-art recommendation performance
in the implicit feedback case.

2.2 Collaborative topic model

Due to its content-free nature, collaborative filtering ap-
proaches can be applied in a wide range of domains. They
perform well on what is called in-matrix predictions, i.e.,
recommending items that have been consumed by some
users. However, this approach suffers from the well-known
problem that it is unable to recommend new items that no
user has consumed, or making out-of-matrix predictions,

1 In [6], the observational model is on the binary indicator variable
pui=1{rui > 0} rather than rui, i.e., pui ∼ N (θT

u βi, c
−1
ui ). How-

ever, in this paper the response rui is itself binary, indicating whether
user u has listened to song i. Thus we treat rui and pui interchangeably.

where content-based models are better suited. Many ef-
forts have been made to incorporate content into collabora-
tive filtering. Wang and Blei [14] propose the collaborative
topic regression (CTR) model for scientific article recom-
mendation, which is particularly relevant to our proposed
method.

There are two components in CTR: a matrix factoriza-
tion collaborative filtering model (as described in Section
2.1) and a latent Dirichlet allocation (LDA) article content
model. LDA [2] is a mixed-membership model on docu-
ments. Assuming there are K topics Φ = φ1:K , each of
which is a distribution over a fixed set of vocabulary, LDA
treats each document as a mixture of these topics where
the topic proportion πi is inferred from the data. One
can understand LDA as representing documents in a low-
dimensional “topic” space with the topic proportion being
their coordinates. With this interpretation, the generative
process of CTR is as follows:

• For each user u, draw user latent factor:
θu ∼ N (0, λ−1θ IK),

• For each document i,

– Draw topic proportion πi ∼ Dirichlet(α) 2 ,
– Draw latent factor βi ∼ N (πi, λ

−1
β IK),

• For each user-document pair (u, i), draw feedback:

rui ∼ N (θTuβi, c
−1
ui ).

We can see CTR differs from [6] in that CTR assumes
that the item latent factor βi is close to the topic propor-
tion πi but could deviate from it if necessary. This allows
the user-item interaction data to “speak for itself”. An at-
tractive characteristic of CTR is its capability of making
out-of-matrix predictions. This is done by using the topic
proportion πi alone as the item latent factor: r̂ui = θTuπi,
which is not possible in the traditional collaborative filter-
ing model.

Although CTR achieves better recommendation perfor-
mance than pure collaborative filtering, it does not scale
well with large data. Since the model is not condition-
ally conjugate: the prior on βi comes from a Dirichlet-
distributed random variable πi, topic proportion πi cannot
be updated analytically and slower numerical optimization
method is required. To address this problem, Gopalan et
al. [5] propose the collaborative topic Poisson factoriza-
tion (CTPF). This model replaces the Gaussian likelihood
and Gaussian prior in CTR with Poisson likelihood and
gamma prior, thus becoming conditionally conjugate with
closed-form updates. Experiments on large-scale scientific
article recommendation demonstrate that CTPF performs
significantly better than CTR.

The main difference that sets our method apart from
collaborative topic model is the content model. As a fea-
ture extractor, LDA can only produce linear factors due to
its bilinear nature. On the other hand, multi-layer neural
network used by in our system is capable of capturing the
non-linearities in the feature space.

2 The generative process for words is omitted for brevity throughout
the paper. Please refer to [14] for details.

296 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



2.3 Deep content-based music recommendation

Previous attempts on content-based music recommenda-
tion have achieved promising results. van den Oord et
al. [13] utilize a neural network to map acoustic features
to the song latent factors learned from the weighted ma-
trix factorization [6]. As a result, given a new song that
no one has ever listened to, a latent factor can still be pre-
dicted from the network and recommendation can be done
in the same fashion as with a regular collaborative filtering
model.

Our method is very similar to this approach, but we will
point out two major differences:

• First, the neural network is used for different pur-
poses. We use it as a content feature extractor, just
like LDA in the collaborative topic model. The neu-
ral network in [13] maps content directly to the la-
tent factors learned from pure collaborative filtering,
and the resulting model is expected to operate simi-
larly to collaborative filtering even when usage data
is absent.

• Since the neural network is trained to map content
to the latent factors learned from the weighted ma-
trix factorization, the performance of [13] is unlikely
to surpass that of the weighted matrix factorization.
What we propose in this paper, on the other hand,
uses content as an addition to the weighted matrix
factorization, in a similar manner as the collabora-
tive topic model described in Section 2.2. As we
show in the experiment, we are able to achieve better
result than the weighted matrix factorization when
we only have limited amount of user feedback.

Other approaches that hybridize content and collabora-
tive models include Yoshii et al. [17], McFee et al. [11],
and Wang and Wang [15]. [17] train a three-way proba-
bilistic model that joins user, item, and content by a latent
“topic” variable; the model focuses on explicit feedback
(user ratings). [11] take a similar approach to [13] and learn
a content-based similarity function from collaborative fil-
tering via metric learning. [15] also use a neural network
to incorporate music content into the collaborative filtering
model. The major difference is that in [15] the output of the
neural network is treated as item factor and the neural net-
work is trained to minimize a collaborative-filtering-based
loss function. Therefore the content model itself does not
have explicit musicological meaning.

3. PROPOSED APPROACH

Adopting the same structure as that of CTR, our system
consists of two components: a content model which is
based on a pre-trained neural network and a collaborative
filtering model based on matrix factorization.

3.1 Supervised pre-training

Inspired by the success of transfer learning in computer
vision which exploits deep convolutional neural networks

[9], in our system we pre-train a multi-layer neural network
in a supervised semantic tagging prediction task and use it
as the content model.

Our training data comes from Liang et al. [10] which
consists of 370K tracks from the Million Song Dataset
and the pre-processed last.fm data with a vocabulary of
561 tags, including genre, mood, instrumentation, etc. We
use the Echonest’s timbre feature, which is very similar to
MFCC. To get the song-level features, we vector-quantize
all the timbre features following the standard procedure:
We run the k-means algorithm on a subset of randomly se-
lected training data to learn J = 1024 cluster centroids
(codewords). Then for each song, we assign each segment
(frame) to the cluster with the smallest Euclidean distance
to the centroid. We aggregate the VQ feature of song i
(xi ∈ RJ+) by counting the number of assignments to each
cluster across the entire song and then normalize it to have
unit `1 norm to account for the various lengths.

We treat music tagging as a binary classification prob-
lem: For each tag, we make independent predictions on
whether the song is tagged with it or not. We fit the output
of the network f(xi) ∈ R561 into logistic regression clas-
sifiers. Therefore, given tag labels yit ∈ {−1, 1} for song i
and tag t, the network is trained to minimize the following
loss:

Ltag =
∑
i,t log(1 + exp(−yitft(xi))

Here we use a network with three fully-connected hid-
den layers and ReLU activations with dropout. Each layer
has 1,200 neurons. Stochastic gradient descent with mini-
batch of size 100 is used with AdaGrad [3] for adjusting
the learning rate 3 . We notice that both dropout and Ada-
Grad are crucial for getting the good performance. The
tagging performance is reported in Section 4.1.

3.2 Content-aware collaborative filtering

We can interpret the output of the last hidden layer hi ∈
RFh (here Fh = 1200) as a latent content representation
of song i. Because of the way the network is trained,
this latent representation is supposed to be highly corre-
lated to the semantic tags (“topics” of music). Therefore,
we can take a similar approach to the collaborative topic
model and use this representation in a collaborative filter-
ing model.

The generative process for the proposed model is as fol-
lows:

• For each user u, draw user latent factor:

θu ∼ N (0, λ−1θ IK).

• For each song i, draw song latent factor:

βi ∼ N (Whi, λ
−1
β IK).

• For each user-song pair (u, i), draw implicit feed-
back (whether user u listened to song i):

rui ∼ N (θTuβi, c
−1
ui ).

3 The source code for training the neural network is available at:
https://github.com/dawenl/deep_tagging
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Here the weight matrixW ∈ RK×Fh transforms the learned
content representation from the neural networks into the
collaborative filtering latent space via Whi. The precision
parameter λβ balances how the song latent vector βi devi-
ates from the content feature. We set the confidence cui in
the same way as in Section 2.1.

We want to emphasize that our proposed model is content-
aware instead of content-based. Just like collaborative topic
model, our proposed model is still fundamentally based on
collaborative filtering. The content model is only used as a
prior and can be deviated if the model thinks it is necessary
to explain the data.

For notational convenience, we define the concatenated
user latent factors matrix Θ

4
= [θ1| · · · |θU ] ∈ RK×U and

song latent factors matrix B
4
= [β1| · · · |βI ] ∈ RK×I . We

estimate the model parameters {Θ, B,W} via maximum a
posteriori.

The complete log-likelihood is written as:

L =−
∑

u,i

cui
2

(rui − θTuβi)2 −
λθ
2

∑

u

θTu θu

− λβ
2

∑

i

(βi −Whi)T (βi −Whi)

Take the gradient of the complete log-likelihood with re-
spect to the model parameters and set it to 0, we can obtain
the following closed-form coordinate updates:

θu ← (BCuB
T + λθIK)−1BCuru (1)

βi ← (ΘCiΘ
T + λβIK)−1(ΘCiri + λβWhi) (2)

WT ← (HTH + λW IFh
)−1HTBT (3)

where Cu ∈ RI×I is a diagonal matrix with cui, i =
1, · · · , I as its diagonal elements, and ru ∈ RI is the feed-
back for user u. Ci and ri are similarly defined. H ∈
RI×Fh is the concatenated output from the last hidden layer
[h1| · · · |hI ]T . When updating W , we add a small ridge
term λW to the diagonal of the matrix to regularize and
avoid numerical problems when inverting. Alternating be-
tween updating Θ, B, and W , we are guaranteed to reach
a stationary point of the complete log-likelihood.

The same technique used in [6] to speed up computation
can be applied here. This enables us to apply our model to
large-scale music corpus and user-item interaction, which
is not possible for CTR.

After the model is trained, we can make in-matrix pre-
diction by r̂ui = θTuβi. Similar to the collaborative topic
model, we can also make out-of-matrix prediction for songs
that no one has listened to by only using the content r̂ui =
θTu (Whi).

4. EVALUATION

We first evaluate our system on the pre-training tag predic-
tion task to ensure the quality of the extracted features, and
then measure its recommendation performance in compar-
ison with related models 4 .

4 https://github.com/dawenl/content_wmf contains the
source code for training the proposed model and reproducing the experi-

Model Prec Recall F-score AROC MAP
SPMF 0.127 0.146 0.136 0.712 0.120
NNet 0.184 0.207 0.195 0.781 0.178

Table 1: Annotation and retrieval performance on the Mil-
lion Song Dataset from Poisson matrix factorization with
stochastic inference (SPMF) [10] and the pre-trained neu-
ral network (NNet) described in Section 3.1. The standard
error is on the order of 0.01, thus not included here.

4.1 Tag prediction

Evaluation tasks and metrics We evaluate the pre-trained
neural network on semantic tags with an annotation task
and a retrieval task. We use the same dataset in Liang et al.
[10] from the Million Song Dataset [1] and compare with
their result which, to our knowledge, is the state-of-the-art
performance on large-scale tag prediction. Note that we
only use tag prediction as a proxy to measure the quality
of the content model and do not argue for our approach as
an optimal one to automatic music tagging.

For the annotation task we seek to automatically tag un-
labeled songs. To evaluate the model’s ability to annotate
songs, we compute the average per-tag precision, recall,
and F-score on the held-out test set. For the retrieval task,
given a query tag we seek to provide a list of songs which
are related to that tag. To evaluate retrieval performance,
for each tag in the vocabulary we ranked each song in the
test set by the predicted probability. We then calculate the
area under the receiver-operator curve (AROC) and mean
average precision (MAP) for each ranking.

Tagging performance and discussion The results are re-
ported in Table 1, which show that the pre-trained neu-
ral network performs significantly better than the Poisson-
factorization-based approach. This is not surprising for
two reasons: 1) Here we treat tag prediction as a super-
vised task and train a multi-layer neural network, while
in [10] the problem is formulated as an unsupervised learn-
ing task to account for the uncertainty in the user-generated
tags (which incidentally can be considered as a typical ex-
ample of implicit feedback). 2) Similar to LDA, Poisson
factorization can only capture linear factor, whose expres-
sive power is much weaker than that of a multi-layer neural
network.

Nevertheless, the results confirm that our pre-trained
neural network can be considered as an effective content
feature extractor and we will use the output of the last hid-
den layer as the content feature.

Note that our neural network is relatively simple and
does not directly use raw acoustic features (e.g., log-mel
spectrograms) as input. It is reasonable to believe that with
a more complex network structure and low-level acoustic
feature, we should be able to achieve better tagging per-
formance and obtain a more powerful content feature ex-
tractor, which could further boost the performance of our
proposed recommendation method.

mental results for recommendation in Section 4.2.
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Model R@40 R@80 R@120 R@160 R@200 NDCG
PMF [4] 0.1021 0.1533 0.1908 0.2206 0.2456 0.2419
CTPF [5] 0.1031 0.1511 0.1861 0.2138 0.2370 0.2395
WMF [6] 0.1722 0.2367 0.2803 0.3133 0.3397 0.2881

CF + shallow 0.1724 0.2368 0.2803 0.3131 0.3396 0.2883
CF + deep 0.1722 0.2365 0.2800 0.3129 0.3394 0.2882

Table 2: In-matrix performance on the DEN subset with proposed and competing methods.

4.2 Recommendation

Data preparation We use the Taste Profile Dataset which
is part of the Million Song Dataset to evaluate the recom-
mendation performance. It contains listening history in the
form of play counts from one million users with more than
40 million (user, song, play count) triplets. We first bina-
rize all the play counts 5 and create two complementary
subsets (denoted as DEN and SPR):

For the DEN subset, we intend to create a reasonably
dense subset so that the traditional collaborative filtering
model will have good performance. We remove the users
who have less than 20 songs in their listening history and
songs that are listened to by less than 50 users, obtaining a
subset with 613,682 users and 97,414 songs with more than
38 million user-song pairs (sparsity level 0.064%). For the
SPR subset, on the contrary, we only keep the users who
have less than 20 songs in their listening history and songs
that are listened to by less than 50 users, yielding a highly
sparse (0.002%) subset with 564,437 users and 260,345
songs.

We select 5% of the songs from DEN (4,871) for out-
of-matrix prediction. For both subsets we split 20% and
10% as test and validation sets, respectively. Validation
set is used to select hyperparameters, as well as monitor
convergence by computing predictive likelihood.

Competing methods We compare our proposed method
(denoted as CF + deep) with weighted matrix factorization
(WMF) [6], as well as the following three methods:

CF + shallow: A simple baseline where we directly use
the normalized VQ feature xi in place of the feature ex-
tracted from the neural network hi. This baseline is mainly
used to demonstrate the necessity of an effective feature
extractor for out-of-matrix prediction.

Poisson matrix factorization (PMF) [4]: Just like WMF,
PMF is a matrix factorization model for collaborative fil-
tering. Instead of Gaussian likelihood and priors on the la-
tent factors, it utilizes Poisson likelihood model and gamma
priors. The biggest advantage of PMF is computational.
As shown in [4], the inference algorithm has complexity
that scales linearly with the number of non-zero entries in
the user-item matrix.

Collaborative topic Poisson factorization (CTPF) [5]:
This model incorporates the content information into PMF
in the same way as CTR. Additionally, it is conditionally
conjugate with closed-form updates and enjoys the same

5 In practice, we find that the performances using actual play counts
and binarized indicators are very close for our model.

computational efficiency as PMF. Therefore, it can be ap-
plied to large-scale dataset without delicate engineering.

Based on our argument in Section 2.3, we do not di-
rectly compare with [13] because it is sufficient to compare
with WMF. For out-of-matrix recommendation evaluation,
we can only compare with CTPF and CF + shallow. In
all the experiments, the dimensionality of the latent space
K = 50. We select α = 2 and ε = 10−6 to compute the
confidence cui. For WMF, CF + shallow, and CF + deep,
the model parameters Θ, B and W (if any) are initialized
to the same values.

Evaluation metrics To evaluate different algorithms, we
produce a ranked list of all the songs (excluding those in
the training and validation sets) for each user based on the
predicted preference r̂u.

Precision and recall are commonly used evaluation met-
rics. However, for implicit feedback, the zeros can mean
either the user is not interested in the song or more likely,
the user does not know the song. This makes the precision
less interpretable. However, since the non-zero rui’s are
known to be true positive, we instead report Recall@M ,
which only considers songs within the topM in the ranked
list. For each user, the definition of Recall@M is

Recall@M =
# songs that the user listened to in top M

total # songs the user has listened to
.

In addition to Recall@M , we also report (untruncated)
normalized discounted cumulative gain (NDCG) [7]. Un-
like Recall@M which only focuses on top M songs in the
predicted list, NDCG measures the global quality of rec-
ommendation. In the meantime, it also prefers algorithms
that place held-out test items higher in the list by applying
a discounted weight. Given a ranked list of songs from the
recommendation algorithm, for each user NDCG can be
computed as follows:

DCG =
I∑

i=1

2reli − 1

log2(i+ 1)
; NDCG =

DCG
IDCG

.

Given our binarized data, the reverence reli is also binary:
1 if song i is in the held-out user listening history and 0
otherwise. IDCG is the optimal DCG score where all the
held-out test songs are ranked top in the list. Therefore,
larger NDCG values indicate better performance.

Results on the DEN subset The model hyperparameters
λθ = λW = 10 and λβ = 100 are selected from the valida-
tion set based on NDCG. The in-matrix and out-of-matrix
performances are reported in Table 2 and 3, respectively.
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Model R@40 R@80 R@120 R@160 R@200 NDCG
CTPF [5] 0.0256 0.0700 0.1440 0.1869 0.2086 0.1271

CF + shallow 0.0503 0.0894 0.1218 0.1514 0.1778 0.1429
CF + deep 0.0910 0.1461 0.1881 0.2241 0.2550 0.1605

Table 3: Out-of-matrix performance on the DEN subset with proposed and competing methods.

Model R@40 R@80 R@120 R@160 R@200 NDCG
WMF [6] 0.1137 0.1286 0.1378 0.1449 0.1505 0.1415

CF + shallow 0.1138 0.1286 0.1377 0.1449 0.1504 0.1416
CF + deep 0.1140 0.1289 0.1378 0.1451 0.1507 0.1417

Table 4: In-matrix performance on the SPR subset with proposed and competing methods.

All the metrics are averaged across 612,232 users in the
held-out test user-item pairs.

We can see that with sufficient amount of user feedback,
there is almost no difference in performance among WMF,
CF + shallow, and CF + deep 6 – there is not a single model
which is consistently better. This is understandable, since
both CF + shallow and CF + deep are fundamentally col-
laborative filtering models. With enough user feedback,
the model is able to produce meaningful recommendation
without resorting to the content features. Moreover, CF
+ shallow, which has access to more content information,
does slightly better than CF + deep.

One observation from Table 2 is that adding content fea-
tures does not necessarily improvement the performance.
Unlike CF + deep, CTPF falls behind its content-free coun-
terpart PMF on both Recall@M and NDCG. This is pos-
sibly due to the insufficient feature extraction capability of
the topic model (LDA) on the rich musical data.

The superiority of CF + deep is more obvious on the
out-of-matrix predictions performance shown in Table 3.
We can see a larger margin between CF + deep and CF
+ shallow, as compared to their close performance on in-
matrix predictions. This suggests the importance of a pow-
erful feature extractor in the absence of usage data. Even
a simple linear LDA model in CTPF can be more effec-
tive than CF + shallow at predicting songs that the users
listened to in the held-out test set.

Results on the SPR subset We repeat the in-matrix eval-
uation on the highly sparse SPR subset. The model hyper-
parameters λθ = λW = 10−2 and λβ = 1 are selected
from the validation set. The performance is reported in Ta-
ble 4. All the metrics are averaged across 564,437 users in
the held-out test user-item pairs.

Again, the overall differences among all three methods
are relatively minor. However, with very limited user feed-
back, both CF + shallow and CF + deep outperform the
content-free WMF. More importantly, CF + deep consis-
tently improves over CF + shallow, which indicates the
importance of an effective feature extractor.

6 There is little point in arguing for the statistical significance of the
difference, since given the number of users to average over, the standard
error is vanishingly small.

5. CONCLUSION

In this paper we present a content-aware collaborative mu-
sic recommendation system that joins a multi-layer neu-
ral network content model with a collaborative filtering
model. The system achieves the state-of-the-art perfor-
mance in music recommendation given content and im-
plicit feedback data.

A possible future direction is to incorporate ranking-
based loss function, e.g., the weighted approximate-rank
pairwise (WARP) loss in [16] into the collaborative fil-
tering model. We normally evaluate recommendation al-
gorithms using ranking-based metrics (e.g. Recall@M
and NDCG), but the model is trained using squared loss
function. It would be more natural to directly optimize a
ranking-based loss function.
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ABSTRACT

Traditionally, the computer-assisted comparison of mul-
tiple performances of the same piece focused on perfor-
mances on single instruments. Due to data availability,
there also has been a strong bias towards analyzing piano
performances, in which local timing, dynamics and artic-
ulation are important expressive performance features. In
this paper, we consider the problem of analyzing multiple
performances of the same symphonic piece, performed by
different orchestras and different conductors. While dif-
ferences between interpretations in this genre may include
commonly studied features on timing, dynamics and ar-
ticulation, the timbre of the orchestra and choices of bal-
ance within the ensemble are other important aspects dis-
tinguishing different orchestral interpretations from one
another. While it is hard to model these higher-level as-
pects as explicit audio features, they can usually be noted
visually in spectrogram plots. We therefore propose a
method to compare orchestra performances by examining
visual spectrogram characteristics. Inspired by eigenfaces
in human face recognition, we apply Principal Compo-
nents Analysis on synchronized performance fragments to
localize areas of cross-performance variation in time and
frequency. We discuss how this information can be used
to examine performer differences, and how beyond pair-
wise comparison, relative differences can be studied be-
tween multiple performances in a corpus at once.

1. INTRODUCTION

A written notation is not the final, ultimate representa-
tion of music. As Babbitt proposed, music can be rep-
resented in the acoustic (physical), auditory (perceived)
and graphemic (notated) domain, and as Wiggins noted,
in each of these, projections are observed of the abstract
and intangible concept of ‘music’ [29]. In classical mu-
sic, composers usually write down a notated score. Subse-
quently, in performance, multiple different musicians will
present their own artistic reading and interpretation of it.

c© Cynthia C. S. Liem, Alan Hanjalic.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Cynthia C. S. Liem, Alan Hanjalic.
“Comparative analysis of orchestral performance recordings: an image-
based approach”, 16th International Society for Music Information Re-
trieval Conference, 2015.

Nowadays, increasing amounts of digital music record-
ings become available. As a consequence, for musical
pieces, an increasing amount of (different) recorded per-
formances can be found. Therefore, in terms of data
availability, increasing opportunities emerge to study and
compare different recordings of the same piece. Beyond
the Music Information Retrieval (Music-IR) domain, this
can serve long-term interests in psychology and cogni-
tion on processes and manifestations of expressive playing
(e.g. [6, 21, 26]), while the analysis of performance styles
and schools also is of interest to musicologists [5, 16].

In this paper, we mostly are interested in the analysis
of multiple performances of the same piece from a search
engine and archive exploration perspective. If one is look-
ing for a piece and is confronted with multiple alterna-
tive performances, how can technology assist in giving
overviews of main differences between available perfor-
mances? Given a corpus, are certain performances very
similar or dissimilar to one another?

In contrast to common approaches in automated analy-
sis of multiple performances, we will not depart from ex-
plicit modeling of performance parameters from a signal.
Instead, we take a more holistic approach, proposing to
consider spectrogram images. This choice has two rea-
sons: first of all, we are particularly interested in finding
methods for comparative analysis of orchestra recordings.
We conjecture that the richness of orchestra sounds is bet-
ter captured in spectrogram images than in mid-level audio
features. Secondly, as we will demonstrate in this paper,
we believe spectrogram images offer interpretable insights
into performance nuances.

After discussing the state of the art in performance anal-
ysis in Section 2, in Section 3, we will further motivate
our choice to compare performances through visual com-
parison of spectrogram images. Subsequently, Section 4
details our chosen comparison method, after which we
present the experimental setup for this paper in Section 5.
We will then illustrate our approach and its outcomes
through a case study in Section 6, with a detailed discus-
sion of selected musically meaningful examples. This is
followed by a discussion on how our method can assist
corpus-wide clustering of performances in Section 7, af-
ter which the Conclusion will be presented.
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2. STATE-OF-THE-ART REVIEW

A lot of work exists on analyzing musical performance
expressivity. In several cases, establishing models for
computer-rendered expressive performances was the ulti-
mate goal (e.g. see [10,11]). Other works focused on iden-
tifying reasons behind performance expressivity, including
lower-level perceptual processes [21]; varying score edi-
tions, individual treatments of ornamentation and pedaling,
and music-theoretic notions of expectation and tension-
relaxation [20]; generative rules, emotional expression,
random variability, motion principles and stylistic unex-
pectedness [14]; and musical structure [9, 13, 20]. His-
torically, the analysis of musical performance strongly fo-
cused on expressivity in piano playing (e.g. [6, 20–22]).
The few exceptions to this rule focused on violin perfor-
mance (e.g. [4]), movement in clarinet players (e.g. [8]),
and performance of trained and untrained singers (e.g. [7],
inspired by [26]), but to the best of our knowledge, no sys-
tematic comparative studies have been performed consid-
ering larger ensembles.

A reason for the general bias towards piano perfor-
mance may be that digital player pianos (e.g. the Yamaha
Disklavier) allow a very precise recording of mechanical
performance parameters. When such parameters are avail-
able, inter-onset-intervals (IOIs), expressing the time be-
tween subsequent onsets, are frequently studied. Other-
wise, performance parameters have to be extracted or an-
notated from the audio signal. As a piano has a discrete
pitch set and percussive mechanics, expressive possibil-
ities for a pianist are restricted to timing, dynamics and
articulation. As a consequence, audio-based performance
analysis methods usually focus on local timing and dynam-
ics. Since it is not trivial to find a suitable time unit for
which these parameters should be extracted, supervised or
semi-supervised methods often have been applied to ob-
tain this, e.g. by departing from manually annotating beat
labels (e.g. [24, 25]). However, it is hard (if not infeasi-
ble) to realize such a (semi-)supervised approach at scale.
Therefore, while a very large corpus of recorded Chopin
Mazurkas exists, in practice only the Mazurkas for which
annotated beat information exists have been studied in fur-
ther depth (e.g. [15, 19, 24, 25]).

Alternatively, in [17, 18] an unsupervised approach for
comparing Mazurka recordings was proposed which does
not rely on explicitly modeled higher-level performance
parameters or semantic temporal units, but rather on align-
ment patterns from low-level short-time frame analyses.
As such, this approach would be scalable to a larger cor-
pus. Furthermore, while the choice of not adopting explicit
performance parameters makes evaluation of a clear-cut
ground truth less trivial, at the same time it allows for any
salient variations to emerge automatically from the analy-
sis. The work of this paper follows a similar philosophy.

3. MOTIVATION FOR SPECTROGRAM IMAGES

In this paper, we focus on the comparative analysis of or-
chestra recordings. An orchestra involves a mix of many

(a) Georg Solti, Chicago Symphony Orchestra, 1973.

(b) Nikolaus Harnoncourt, Chamber Orchestra of Europe, 1990.

Figure 1. Beethoven’s Eroica symphony, 2nd movement,
spectrogram of bars 56-60 for two different interpretations.

instruments. Hence, the overall orchestral sound is richer
than that of a piano, although individual beat placings and
note onsets will be much smoother. Given the multitude
of involved players, an orchestra needs guidance by a con-
ductor. Due to this coordinated setup, there is less room
for individual freedom in both local dynamics and tempo
than in Romantic piano music repertoire. Thus, while lo-
cal tempo deviations still occur in orchestral recordings,
one cannot expect these to reflect performer individuality
as strongly as for example in the case of Chopin Mazurkas.

At the same time, in terms of timbre, balance and phras-
ing articulation, a conductor has a much richer palette than
isolated instruments can offer. These aspects are not trivial
to explicitly model or interpret from audio signals. How-
ever, relevant information may be reflected in recording
spectrograms, as illustrated in Figure 1. While it is hard
to point out individual instruments, a spectrogram can vi-
sually reveal how rich the overall sound is, where signal
energy is concentrated, and if there are any salient sound
quality developments over time, such as vibrato notes.

Indeed, spectrograms are commonly used in audio edit-
ing tools for visualization, navigation and analysis pur-
poses. In an ethnographic study of musicologists studying
historical recordings, it further was shown that examina-
tion of the spectrogram helped musicologists in discover-
ing and listening to performance nuances [1]. Therefore,
regarding potential end users of performance analysis and
exploration tools, spectrogram images may be more fa-
miliar and interpretable than reduced mid-level represen-
tations such as chroma.

4. METHOD

Our proposed analysis method for spectrogram images
is inspired by the eigenfaces method of Turk and Pent-
land [27], which was originally proposed in the context
of human face recognition. Since human faces share
many common features, by applying Principal Compo-
nents Analysis (PCA) on a dataset of aligned facial im-
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ages, a set of basis images (‘eigenfaces’) can be found,
explaining most of the variability found in the face dataset.
While PCA has previously been applied as a tool in musi-
cal performance analysis [23], this analysis was performed
on annotation-intensive IOI data. In contrast, our analy-
sis considers information which only requires alignment
of different fragments (as will described in Section 5), but
no further manual annotation effort.

We apply the same principle to a set of N spectrogram
images for a time-aligned music fragment, as represented
by N different recordings. Each spectrogram image x is
(i · j) pixels in size. We treat each pixel in the image as a
feature; as such, x is a vector of length i · j. We collect all
spectrogram images in an (N × (i · j)) matrix X.

By applying PCA, we decompose X into an (N × N)
matrix of principal component loadings W and an ((i ·
j) ×N) matrix of principal components scores T. X can
be reconstructed by performing X = T ·WT .

Since the PCA is constructed such that principal com-
ponents are ordered in descending order of variance, di-
mension reduction can be applied by not using the full T
and W, but only the first L columns of both.

The component scores in T can now be interpreted and
visualized as basis images, each representing a linear com-
ponent explaining part of the variability in the dataset.

5. EXPERIMENTAL SETUP

Unfortunately, no standardized corpora on multiple per-
formances of the same orchestra piece exist. 1 Further-
more, no clear-cut ground truth exists of performance sim-
ilarity. We therefore consider a dataset collected for the
PHENICX 2 project, consisting of 24 full-length record-
ings of Beethoven’s Eroica symphony, as well as 7 record-
ings of the Alpensinfonie by Richard Strauss. In the
Beethoven dataset, 18 different conductors and 10 orches-
tras are featured (with a major role for the recording cat-
alogue of the Royal Concertgebouw Orchestra (RCO)),
meaning that the same conductor may conduct multiple or-
chestras, or even the same orchestra at different recording
moments. While metadata and audio content are not fully
identical, in two cases in the dataset (Harnoncourt, Cham-
ber Orchestra of Europe (COE) 1990 and 1991; Haitink,
London Symphony Orchestra (LSO) 2005 (× 2)), there
are suspicions that these near-duplicates pairs consider the
same original recording. In the Strauss dataset, 6 con-
ductors and 6 orchestras are featured: Haitink conducts
both the RCO and LSO, and the RCO is represented once
more with Mariss Jansons as conductor. The oldest (Men-
gelberg, RCO, 1940) and newest (Fischer, RCO, 2013)
recordings are both featured in the Beethoven dataset.

We will demonstrate insights from the PCA spectro-
gram analysis in two ways: (1) by highlighting several
analysis examples in detail in Section 6, based on manual
selection of musically relevant fragments and (2) by dis-
cussing generalization opportunities in Section 7, based on

1 While a dataset of orchestral recordings with multiple renditions of
the same piece was used in [2], these recordings are not publicly available.

2 http://phenicx.upf.edu

Figure 2. Eroica 1st movement, score bars 3-10.

aggregation of 4-bar analysis frames.
In both cases, a similar strategy is taken: first, a mu-

sical fragment is designated, for which all recordings of
the piece should be aligned. Alignment is performed au-
tomatically using the method described in [12]. Then, the
audio fragments, which are all sampled at Fs = 44.1 kHz,
are analyzed using a Hann window of 1024 samples and
a hop size of 512, and the corresponding magnitude spec-
trum is computed using the Essentia framework [3]. Com-
bining the spectra for all frames results in a spectrogram
image. To ensure that all images have equal dimensions, a
constant heigth of 500 pixels is imposed, and the longest
fragment in terms of time determines a fixed width of the
image, to which all other spectrograms are scaled accord-
ingly. While all recordings are offered at 44.1 kHz, the
original recordings sometimes were performed at a lower
sampling rate (particularly in more historical recordings).
Therefore, a sharp energy cut-off may exist in the higher
frequency zones, and for analysis, we try to avoid this as
much as possible by only considering the lower 90% of
the image. In general, by using raw spectrogram images, a
risk is that recording quality is reflected in this spectrum;
nonetheless, in the next sections we will discuss how mu-
sically relevant information can still be inferred.

6. CASE STUDY

In this case study, to illustrate the information revealed
by PCA analysis, we will look in detail at information
obtained on two selected fragments: the start of the first
movement of the Eroica symphony, first theme (bars 3-15),
and the ‘maggiore’ part of the Eroica symphony, second
movement (bars 69-104).

6.1 Eroica first movement, bars 3-15

A score fragment for bars 3-10 of the first movement of
the Eroica is given in Figure 2. In our case, we consider
the full phrase up to bar 15 in our analysis.

The first three basis images (component scores) result-
ing from PCA analysis are shown in Figure 3. The first
component of the PCA analysis gives a smoothed ‘basic’
performance version of the fragment. For this very gen-
eral component, it is rather hard to truly contrast perfor-
mances. However, a more interesting mapping can be done
in higher-order components. As an example, Figure 4 dis-
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(a) First component (b) Second component (c) Third component

Figure 3. Eroica, 1st movement, 1st theme start (bars 3-15); first three principal component basis images.
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Figure 4. 2nd and 3rd PCA component scatter plot for Eroica 1st movement, bars 3-15.

(a) Fisher, RCO, 2013 (b) Haitink, RCO, 1987

Figure 5. Spectrogram image examples for Fisher and Haitink interpretations of Eroica 1st movement, bars 3-15.

plays a scatter plot of the second and third principal com-
ponent loadings for this fragment.

While as expected, several historical (and acoustically
noisy) recordings cause outliers, by comparing the com-
ponent scores and loadings to corresponding data samples,
we still note interpretable differences. For example, the
RCO recordings of Fischer and Haitink, of which respec-
tive spectrogram images for the excerpt are shown in Fig-
ure 5, have contrasting loadings on the third PCA com-
ponent. Judging from the principal component image in
Figure 3, this component indicates variability at the start of
the fragment (when the celli play), and in between the frag-
ments highlighted by the second component; more specif-

ically, a variability hotspot occurs at the sforzato in bar
10. When contrasting two opposite examplars in terms
of scores, such as Fischer and Haitink, it can be heard
that in the opening, Haitink emphasizes the lower strings
more strongly than Fischer, while at the sforzato, Haitink
strongly emphasizes the high strings, and lets the sound de-
velop over the a-flat played by violin 1 in bar 10. Fischer
maintains a ‘tighter’ sound over this sforzato.

6.2 Eroica second movement, maggiore

To illustrate findings on another manually selected (and
slightly longer) relevant fragment, we also consider the
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Figure 6. 3rd and 4th PCA component scatter plot for Eroica 2nd movement, maggiore. Jochum’s 1969 and 1978 record-
ings occur within the marked rectangular border.

‘maggiore’ part of the second movement of the Eroica.
Analyses of scatter plots and component images show that
the second principal component is affected by historical
recording artefacts. However, this is less so for the third
and fourth component, of which the scatter plot is dis-
played in Figure 6. It can be seen that the suspected near-
duplicates of Harnoncourt’s two COE recordings have
near-identical loadings on these components. Next to this,
another strong similarity is noted between the recordings
of Jochum with the RCO in 1969 and 1978. While these
both recordings acoustically are clearly different and also
seem to be explicitly different interpretations, there still are
consistencies in Jochum’s work with the same orchestra for
these two recordings.

7. CORPUS-WIDE CLUSTERING

As demonstrated in the previous section, PCA analysis
can be used as an exploratory tool to reveal differences
between selected fragments in recordings. However, se-
lecting incidental manual examples will not yet allow for
scalable analysis of information over the full timeline of
a piece. To do this, instead of pre-selecting designated
fragments, we perform a 4-bar sliding window PCA anal-
ysis on full synchronized recordings, where bar bound-
aries are obtained through the score-to-performance map-
ping obtained in the alignment procedure. Instead of ex-
amining individual component images, in each 4-bar anal-
ysis frame, we consider vectors of component loadings
for the minimum amount of components required to ex-
plain 95% of the variance observed. From these compo-
nent loading vectors, we compute the Euclidean distance
between recordings within a frame, and aggregate these at
the recording track level. 3

3 Note that component loadings obtained for different frames cannot
be directly averaged, as the components are different per frame. How-
ever, observed distances between recordings still remain valid and can be
aggregated.

Based on distances found between performances, clus-
tering can be performed. This reveals whether stable per-
former clusters can found for different movements within
a piece, and to what extent clusterings found in local frag-
ments match those found for a full piece.

Regarding the first question, for each of the Eroica
movements, we calculated the average between-performer
distances per movement, and then made 5 clusters of per-
formers based on Ward’s linkage method [28]. While
space does not allow a full cluster result report, several
clusters co-occur consistently:

• The two Harnoncourt COE recordings consistently
form a separate cluster. These are highly likely to be
duplicate recordings.

• Haitink’s two LSO recordings also consistently co-
occur, and like Harnoncourt are highly likely to be
duplicate recordings. However, Bernstein’s 1978 Vi-
enna Philharmonic recording co-occurs with these
two Haitink recordings in the first three Eroica
movements, and thus may be similar in terms of in-
terpretation. It is striking that Haitink’s 1987 record-
ing with the RCO never co-occurs in this cluster.

• In the first three movements, a consistent cluster oc-
curs with recordings by Klemperer (Philharmonia
Orchestra, 1959), Toscanini (NBC Symphony Or-
chestra, 1953) and Van Beinum (RCO, 1957). While
this may be due to recording artefacts, other histor-
ical recordings (e.g. Kleiber, RCO 1950 / Vienna
Philharmonic 1953) do not co-occur.

• Surprisingly, Gardiner’s historically informed
recording with the Orchestre Révolutionaire et
Romantique (1993) clusters with Kleiber’s 1950
RCO recording for the first and last movement of
the Eroica. Upon closer listening, Gardiner’s choice
of concert pitch matches the pitch of Kleiber’s
recording, and the sound qualities of the orchestras
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(a) ‘Sonnenaufgang’ fragment (bars 46-63).
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(b) Average over full Alpensinfonie.

Figure 7. Dendrogram images for performer distances in
the Alpensinfonie.

are indeed similar (although in case of Kleiber, this
is caused by recording artefacts).

• The 1969 and 1978 Jochum recordings with the
RCO always co-occur, though in the largest cluster
of recordings. As such, they are similar, but no clear
outlier pair compared to the rest of the corpus.

Regarding consistent clusterings over the course of a
piece, we further illustrate an interesting finding from
the Alpensinfonie, in which we compare a clustering ob-
tained on 18 bars from the ‘Sonnenaufgang’ movement to
the clustering obtained for average distances over the full
piece, as visualized in the form of dendrograms in Fig-
ure 7. As can be noted, the clusterings are very close, with
the only difference that within the ‘Sonnenaufgang’ move-
ment, Karajan’s interpretation is unusually close to Järvi’s
interpretation, while Haitink’s interpretation is unusually
different.

8. CONCLUSION

In this paper, we proposed to analyze differences between
orchestral performance recordings through PCA analysis
of spectrogram images. As we showed, PCA analysis is
capable of visualizing areas of spectral variation between
recordings. It can be applied in a sliding window setup
to assess differences between performers over the timeline

of a piece, and findings can be aggregated over interpre-
tations of multiple movements. While spectrograms in-
evitably have sensitivity to recording artefacts, we showed
that near-duplicate recordings in the corpus could be iden-
tified, and historical recordings in the corpus do not con-
sistently form outliers in the different analyses.

While certain interesting co-occurrences were found
between recordings, no conclusive evidence was found re-
garding consistent clustering of the same conductor with
different orchestras, or the same orchestra with different
conductors. This can either be due to interference from
artefacts and different recording setups, but at the same
time may suggest that different conductors work differ-
ently with different orchestras.

Several directions of future work can be identified. First
of all, further refinement regarding the generation and anal-
ysis of the spectrogram images should be performed. At
the moment, given the linear way of plotting and high
sample rate, the plain spectrogram may be biased towards
higher-frequency components, and risks to be influenced
by sharp frequency cut-offs from lower original recording
sample rates.

Furthermore, it would be interesting to study more
deeply if visual inspection of spectrograms can indeed as-
sist people in becoming more actively aware of perfor-
mance differences. While the spectrogram images are ex-
pected to already be understandable to potential end-users,
appropriate techniques should still be found for visualiz-
ing differences between multiple performers in a corpus.
In the current paper, this was done with scatter plots and
dendrograms, but for non-technical end-users, more intu-
itive and less mathematically-looking visualizations may
be more appropriate.

One concern that may come up with respect to our
work, is that it may be hard to fully associate our reported
findings to expressive performance. As indicated, record-
ing artefacts are superimposed on the signal, and effects
of different halls and choices of orchestra instruments and
concert pitch may further influence acoustic characteris-
tics, which will in turn influence our analysis. Further-
more, since we are dealing with commercial recordings,
we are dealing with produced end results which may have
been formed out of multiple takes, and as such do not re-
flect ‘spontaneous’ performance.

However, our main interest is not in analyzing per-
formance expressivity per se, but in providing novel
ways for archive and search engine exploration, and
making general sense of larger volumes of unannotated
performance recordings. In such settings, the data under
study will mostly be produced recordings with the above
characteristics. For this, we believe our approach is
useful and appropriate, offering interesting application
opportunities.
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ABSTRACT

In this paper, we evaluate the usefulness of several monau-
ral blind source separation (BSS) algorithms in the context
of vocal detection (VD). BSS is the problem of recovering
several sources, given only a mixture. VD is the problem of
automatically identifying the parts in a mixed audio signal,
where at least one person is singing. We compare the re-
sults of three different strategies for utilising the estimated
singing voice signals from four state-of-the-art source sep-
aration algorithms. In order to assess the performance of
those strategies on an internal data set, we use two differ-
ent feature sets, each fed to two different classifiers. After
selecting the most promising approach, the results on two
publicly available data sets are presented. In an additional
experiment, we use the improved VD for a simple post-
processing technique: For the final estimation of the source
signals, we decide to use either silence, or the mixed, or the
separated signals, according to the VD. The results of tra-
ditionally used BSS evaluation methods suggest that this is
useful for both the estimated background signals, as well
as for the estimated vocals.

1. INTRODUCTION

Monaural Blind Source Separation (BSS) is a technique for
the separation of at least two components from a single-
channel signal without using additional information, like
the instrumentation or the notation of a musical piece. It is
extremely challenging, since we have to deal with the fact,
that less mixtures than sources are at hand.

The result of BSS could be useful for many tasks like
remixing, creating karaoke songs, manipulate isolated in-
struments, and so on. Certain Music Information Re-
trieval (MIR) tasks could also benefit from a BSS as a pre-
processing step, e.g. vocalist similarity, pitch detection, au-
tomatic transcription, keyword spotting, . . .

Unfortunately, it is hard to estimate the usefulness of
a certain BSS algorithm for a specific task beforehand.
Metrics usually used for evaluating BSS (see Section 4.1)

c© Bernhard Lehner, Gerhard Widmer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Bernhard Lehner, Gerhard Widmer.
“Monaural Blind Source Separation in the context of Vocal Detection”,
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2015.

are certainly useful for comparison purposes, but have
only limited meaningfulness when it comes to the ultimate
question if BSS is actually useful for a specific task.

To give an example, Schuller et al. had no success with
achieving better results for tempo and key detection by util-
ising drum beat separation in [20], despite the fact that the
audible results seemed good enough to be used for music
remixing. On the other hand, Weninger et al. achieved a
significant performance gain in the 3-class task of detect-
ing singing voice segments and simultaneously recognis-
ing the vocalist gender in [21].

Therefore, we evaluate the usefulness of several state-
of-the-art BSS algorithms in the context of vocal detec-
tion (VD), also referred to as singing voice detection. For
this task, usually several features are extracted frame-wise
from the audio signal and fed to a classifier [9, 13, 14, 19,
21,22], or even to a speech-recogniser [1] in order to obtain
the vocal/non-vocal decision. Given this use case, we are
mainly interested in separating the signal into two sources:
vocals and background. In order to find the best usage of
the BSS results, we discuss the outcome of three different
strategies.

Furthermore, we investigate if the quality of the sep-
arated sources can be improved by using VD as a post-
processing technique: For the estimated vocals we mute
the parts which are not classified as such by our VD to re-
duce non-voiced artifacts. For the estimated background,
we replace the parts which are classified as non-vocal by
our VD with the original mixed audio signal.

2. SELECTED BSS ALGORITHMS

We selected four state-of-the-art BSS algorithms, all of
them were already used to extract the singing voice from
a mixed audio signal, and reference implementations are
provided by the authors. Due to limited space, we can dis-
cuss the methods only briefly, and refer to the original pa-
pers.

The adaptive REpeating Pattern Extraction Technique
(aREPET) is a method, where repeating patterns (back-
ground) are identified and used to separate non-repeating
(foreground) elements. Those elements are often the vary-
ing vocals, and it was shown in [18], that this technique
can be used for Music/Voice Separation. There are sev-
eral variants of the REPET algorithm [11,16–18], whereas
according to the results from Liutkus et al. in [12] the
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aREPET yielded the best ∆SDR for vocals out of three vari-
ants. Therefore, we consider the aREPET the most promis-
ing variant and choose this for our comparison.

The FASST toolbox by Ozerov et al. [15] allows to
specify prior information and implement arbitrary sepa-
ration problems. Therefore, it is not merely a method,
but more a general framework. However, a baseline im-
plementation is included in the toolbox, which separates
a song into the four sources drums, bass, main melody,
and the rest. It comes with pre-trained models for several
sources, incl. singing voice, which is in our case used to
extract the main melody source.

The Kernel Additive Modelling (KAM) approach [10,
12] uses source-dependent proximity kernels to describe
local dynamics like periodicity (similar to REPET),
smoothness, stability over time or frequency, and more.
The different sources are then separated by an algorithm
called iterative kernel backfitting.

Huang et al. use in [8] Robust Principal Component
Analysis (RPCA) for the separation of singing voice. Their
basic assumptions are, that singing voice is relatively
sparse within songs, and accompaniment is in a low-rank
subspace due to its repetitive structure. Their method uses
solely the spectrogram as input, and neither training nor
particular features are required.

Another interesting approach, which we didn’t include
in our experiments (because of the results reported in [12]),
is suggested by Durrieu et al. in [3], where a source-filter
model is used for the vocals, and non-negative matrix fac-
torisation (NMF) for the background.

3. EXPERIMENTS

In this Section, we discuss the outcome of three different
strategies to utilise the results of the selected BSS algo-
rithms.

3.1 Internal Data Set

For the first experiments, we use a set of 149 annotated
rock songs by 149 different artists. All songs are recorded
at a sampling rate of 22 kHz with 16-bit resolution and
converted to mono. Background and vocal tracks are sepa-
rately available to allow for a more complex evaluation of
the results. Approximately 52% of the frames are anno-
tated as vocal, and the amount of pure singing, i.e. with-
out instrumental accompaniment, is negligible. This set is
split into a 75 song train set, and a 74 song test set, ap-
proximately 5h each. It is challenging for BSS algorithms,
because it contains lots of guitar soli, where singing voice
characteristics are mimicked.

3.2 Feature Sets and Classifier

For the following experiments we choose the features from
[9], which we refer to as IC14 for the remainder of this pa-
per. The IC14 feature vector comprises 116 attributes in
total. This method was already compared to several oth-
ers in [9], and turned out to deliver the best VD results in
almost every testing scenario.

For new insights, we compare this feature set to the
one used by Weninger et al. in [22], henceforth referred
to as OS11. This feature vector comprises 46 attributes. It
was used along with a BLSTM-RNN classifier to achieve
state-of-the-art performance for several singing voice re-
lated classification tasks, among them gender recognition
and VD.

In our implementation, both feature sets are extracted
with a fixed frequency of five observations per second (200
ms frames). Therefore, the units of audio to be classified
are 200 ms frames. In the original implementation of OS11
in [22], the features were extracted beat-wise, hence using
a variable framesize. As classifier, we choose the Random
Forest (RF) as well as the Support Vector Machine (SVM)
implementations of the Weka toolkit [7]. To be able to
focus on the performance of feature set and classifier, no
post-processing is applied.

3.3 Foreground Separation Evaluation

In this Section we present the results of the first strategy,
were we extract the features (IC14 from [9], OS11 from
[22]) from just the separated foreground audio signals.

The results are presented in Table 1, where we first see
the performance of a model trained from the original audio,
and tested with the original audio (row MIX). To simulate
a perfect BSS, we additionally extract the features from the
real vocal track (containing only vocals and silence) of the
song, and test with the same model as before (row VOC).
Clearly, the results improve by just using pure vocals as test
data, e.g. from 83.7% to 91.6% accuracy for the IC14 fea-
ture set and the Random Forest (col. RF-accuracy-IC14).

For the upcoming results, we use the placeholder
METHOD to refer to the four BSS algorithms {aREPET,
FASST, KAM, RPCA} in general. For METHODmix clas-
sification, we always use the model trained from the mixed
audio signals. For METHODsep classification, we use the
model trained from the separated vocal signals to incorpo-
rate BSS characteristics.

The test data presented to the classifier is extracted from
the separated vocals. As can be seen in Table 1, con-
sistently and regardless of the feature set and classifier,
both accuracy and F-measure improve when the model is
trained with the separated vocals instead of the mixed au-
dio data.

Nevertheless, there is quite some room for improve-
ment, since all methods show a substantial performance
decrease relative to testing with pure vocals (row VOC).

Compared to the results of training and testing with
the mixed audio data (row MIX), only the aREPETsep and
RPCAsep methods, where both training and testing is done
with the separated foreground, yields slightly better results
(e.g. for RF-accuracy-IC14: 83.7% vs. 84.1% and 84.5%
respectively).

Interestingly, the feature set from [22] in combination
with the SVM (col. SVM-accuracy-OS11) is only in the
pure vocals scenario (row VOC) superior to the feature set
from [9] (col. SVM-accuracy-IC14) (94.9% vs. 93.9% ac-
curacy). It seems that the feature set from [22] is quite ca-
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Internal Data Set (framesize=200ms)
RF SVM

accuracy F-measure accuracy F-measure
IC14 OS11 IC14 OS11 IC14 OS11 IC14 OS11

MIX .837 .795 .846 .814 .855 .807 .863 .819
VOC .916 .910 .920 .905 .939 .949 .943 .951
aREPETmix .768 .756 .800 .781 .783 .742 .797 .789
aREPETsep .841 .796 .850 .810 .861 .811 .866 .822
FASSTmix .732 .670 .682 .603 .751 .711 .756 .686
FASSTsep .826 .778 .835 .795 .845 .791 .854 .803
KAMmix .752 .736 .773 .738 .631 .577 .728 .709
KAMsep .826 .786 .835 .798 .849 .805 .855 .815
RPCAmix .752 .691 .788 .763 .620 .563 .704 .703
RPCAsep .845 .797 .851 .809 .861 .820 .867 .828

Table 1. Results of Foreground Separation. F-measure re-
lates to the class vocal. MIX: trained and tested with mixed
audio; VOC: trained with mixed audio, tested with pure vo-
cals. METHODmix: trained with mixed audio, tested with
separated vocals; METHODsep: trained and tested with
separated vocals. The columns IC14 and OS11 refer to
the feature sets used in [9] and [22].

pable to model singing voice, but less robust to background
noise.

Generally, comparing the performance of the classifiers,
SVM delivers better results than the Random Forest. Re-
garding the feature set, IC14 seems to be the better choice.
This can also be observed in the following experiments.

3.4 Foreground Concatenation Evaluation

Here, we concatenate the features extracted from the mix
to the features extracted from the separated foreground into
a single feature vector, hence doubling its size.

In Table 2 we can see that this strategy leads to bet-
ter results regardless of BSS method, classifier and feature
set. In order to assess the upper bound of this strategy,
we include the results when using the real vocals also (row
MIX+VOC), simulating perfect separation. Similar to Sec-
tion 3.3, the results from utilising RPCA are the best, even
though the absolute differences between the BSS methods
are within 1 percentage point (ppt).

Compared to the previous strategy (see Section 3.3), the
computational effort is much higher. This is especially true
for training the SVM, due to the increased size of the fea-
ture vector. Therefore, we evaluate another strategy in the
next Section, where the size of the feature vector stays the
same instead of being doubled.

3.5 Foreground Enhancement Evaluation

In this Section we present the results of the third strategy to
improve VD. In order to enhance the vocals (i.e. increase
the SNR), we remix the separated foreground with the orig-
inal signal. The mixes were made with different levels of
the separated track, ranging from −6 dB to 6 dB in 3 dB
steps. The results from 0 dB indicate, that the remix was
done without any gain changes.

Training as well as testing was done by using the fea-
tures extracted from the remixed signals. Again, we in-
clude the results when using the real vocals also. In Ta-
ble 3 we can see that different gain changes for remixing
do not make a big difference for the results, regardless of

Internal Data Set (framesize=200ms)
RF SVM

accuracy F-measure accuracy F-measure
IC14 OS11 IC14 OS11 IC14 OS11 IC14 OS11

MIX .837 .795 .846 .814 .855 .807 .863 .819
MIX+VOC .960 .985 .962 .986 .976 .984 .977 .985
MIX+aREPET .845 .800 .853 .817 .865 .825 .872 .834
MIX+FASST .842 .798 .850 .816 .863 .825 .871 .835
MIX+KAM .844 .800 .853 .815 .871 .830 .877 .839
MIX+RPCA .850 .806 .858 .822 .870 .833 .877 .841

Table 2. Results of Foreground Concatenation. MIX:
trained and tested with mixed audio. For training and test-
ing of the methods aREPET, FASST, KAM, and RPCA,
the classifier is given a double-sized vector containing the
features from the mixed and the separated audio signal.
MIX+VOC: concatenating features from the real vocals to
simulate perfect separation.

the BSS method, classifier and feature set, except when
using the real vocals (rows VOC). However, only the fea-
ture set from [9] allows for results at least as good as for
the previous experiment in Section 3.4. Since those results
are achieved without the additional computational burden
due to a two-fold feature extraction, and the increased size
of the feature vector, the enhancing-by-remixing strategy
seems to be the best choice.

Again, RPCA based results are slightly better compared
to the other source separation methods.

3.6 Final Method

Considering the results from the previous experiments,
we choose the following setting for the upcoming ex-
periments: For source separation, we choose the RPCA
method, and we use the result to enhance the singing voice
by remixing it with the original signal with an increased
gain of 6 dB. The 116-attribute feature set IC14 as sug-
gested in [9] is used, and fed to a SVM classifier with a
radial basis function (RBF) kernel (C = 2, γ = 0.35). The
remixed audios are used both for training and testing.

A very simple post-processing, where we use a median
filter (order=5) for majority voting is also applied, which
improves the results slightly from 87.3% to 87.8% accu-
racy.

3.7 Results on Public Data Sets

In this Section we compare the results of our suggested
method as described in Section 3.6 to previously published
results.

3.7.1 Jamendo

In [19], the authors presented results on a precisely defined
split of the Jamendo data set, where the training set com-
prises 61 songs, and validation and test sets comprise 16
songs each. This allows for a fair comparison.

Table 4 lists the results reported by Lehner et al. in [9],
compared with our new method. While the untouched out-
put of the classifier (col. NEW) is on par with the (post-
processed) baseline (col. LEH), the simple post-processing
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Internal Data Set (framesize=200ms)
RF SVM

accuracy F-measure accuracy F-measure
IC14 OS11 IC14 OS11 IC14 OS11 IC14 OS11

MIX .837 .795 .846 .814 .855 .807 .863 .819
VOC −6dB .880 .861 .886 .868 .907 .869 .911 .874
VOC −3dB .895 .883 .900 .888 .922 .888 .925 .892
VOC 0dB .909 .905 .914 .907 .937 .907 .939 .911
VOC 3dB .923 .926 .926 .927 .949 .927 .951 .929
VOC 6dB .937 .943 .940 .944 .960 .945 .961 .946
aREPET −6dB .844 .792 .852 .809 .862 .807 .869 .818
aREPET −3dB .843 .792 .852 .809 .863 .807 .871 .818
aREPET 0dB .845 .794 .853 .811 .865 .809 .872 .820
aREPET 3dB .845 .795 .854 .811 .866 .812 .873 .822
aREPET 6dB .845 .799 .854 .813 .867 .813 .874 .823
FASST −6dB .844 .795 .852 .812 .861 .805 .868 .817
FASST −3dB .842 .796 .851 .813 .862 .807 .870 .819
FASST 0dB .844 .799 .852 .816 .864 .809 .871 .820
FASST 3dB .843 .799 .851 .816 .865 .811 .872 .822
FASST 6dB .844 .799 .852 .815 .864 .811 .871 .822
KAM −6dB .845 .801 .854 .816 .866 .815 .873 .825
KAM −3dB .846 .803 .855 .817 .868 .818 .874 .827
KAM 0dB .847 .804 .855 .817 .868 .819 .874 .828
KAM 3dB .846 .803 .855 .816 .870 .820 .875 .829
KAM 6dB .845 .803 .854 .816 .870 .821 .876 .829
RPCA −6dB .847 .803 .855 .817 .868 .817 .874 .826
RPCA −3dB .848 .805 .856 .819 .870 .818 .876 .827
RPCA 0dB .851 .806 .858 .819 .871 .819 .877 .828
RPCA 3dB .850 .807 .858 .819 .872 .820 .877 .829
RPCA 6dB .850 .809 .858 .821 .873 .821 .878 .829

Table 3. Results of Foreground Enhancement. MIX:
trained and tested with mixed audio. For training and test-
ing of the methods aREPET, FASST, KAM, and RPCA,
the classifier is given the features extracted from a signal,
where the separated vocals are remixed with the original
audio signal. VOC: using the real vocals instead of the
separated.

LEH NEW NEW+
accuracy .882 .882 .896
recall .862 .873 .892
precision .880 .872 .884
F-measure .871 .873 .888

Table 4. Jamendo corpus results. LEH: results reported
in [9]. NEW: our new classifier (SVM) with RPCA based
vocal enhancement. NEW+: incl. post-processing with
median filter.

(see Section 3.6) helps to reach better results, with an ac-
curacy of 89.6% (col. NEW+).

3.7.2 RWC

In [13], Mauch et al. report 87.2% accuracy with a 5-fold
cross validation (CV) on a 102 song data set that is com-
posed of 90 songs from the RWC music database [5], and
12 additional songs. Since we had just access to the 100
RWC songs, our results are only comparable to a certain
extent. Therefore, we also include the (post-processed) re-
sults reported from Lehner et al. in [9] (col. LEH), where
we could use exactly the same splits for the 5-fold CV.

In Table 5 we can see an improvement of 2.3 ppt accu-
racy by comparing LEH and NEW (87.5% vs. 89.8%), de-
spite the lack of any post-processing. The post-processing
(col. NEW+) did not improve the accuracy on this data set.
However, the increased recall (0.928 vs. 0.939) could still
be desired for certain use cases, even when it comes with
reduced precision (0.905 vs. 0.898).

MODE MAUCH MODE LEH NEW NEW+
accuracy .654 .872 .604 .875 .898 .898
recall 1.00 .921 1.00 .926 .928 .939
precision .654 .887 .604 .875 .905 .898
F-measure .791 .904 .753 .900 .917 .918

Table 5. Results on the RWC data set. MAUCH: results re-
ported in [13]. NEW: our new classifier (SVM) with RPCA
based vocal enhancement. NEW+: incl. post-processing
with median filter. LEH and NEW were trained on the 100
RWC songs, MAUCH on 90 RWC + 12 additional (un-
known) songs. MODE: baseline achievable by always pre-
dicting the majority class (vocals); MODE of classification
accuracy thus tells the percentage of vocals in the data set.

4. IMPROVING BACKGROUND AND VOCAL
ESTIMATES

In this Section, we discuss the results of BSS algorithms
in more detail regarding the amount of non-vocal artifacts
in the estimated vocals, and vocal artifacts in the estimated
background.

All of the four presented BSS methods have one char-
acteristic in common: they do not incorporate VD results.
In [18], the authors even state that their REPET method
does not require any explicit handling of singing voice seg-
ments. Although, by listening to the results of all presented
BSS algorithms in this paper, we believe there is neverthe-
less room for improvement. Our internal data set contains
a lot of instrumental soli, played by a guitarist. Consider-
ing the basic principle of e.g. the REPET method, it comes
as no surprise that the estimates of the vocals have pas-
sages containing those solo instruments only, and no vocals
whatsoever. This is especially troublesome for use cases
like artist recognition. On the other hand, the estimates of
the instrumental background often contain artifacts from
the singing voice. This is problematic for tasks like auto-
matic karaoke track creation.

In [2, 16], the vocal frames were already successfully
used to improve the results of the source separation, but
according to the annotated ground truth, and not to an au-
tomatic classification. Therefore, we investigate the im-
pact of VD on the results of the BSS with respect to met-
rics traditionally used to evaluate BSS algorithms. Even
though we consider only RPCA henceforth, the remaining
three BSS methods show a very similar characteristic in
that matter. Concerning the VD, we use the one improved
by RPCA as described in Section 3.6.

We suggest a simple post-processing strategy to im-
prove the estimates: Regarding the estimated vocals, we
simply filter out (i.e. mute) the non-vocal frames. In other
words, for the final estimates of the separated vocals, we
decide whether to use the vocal estimates from RPCA or
silence – according to our VD.

Figure 1 illustrates this principle, where we can see in
the upper plot a time signal of vocals (dark) embedded in
the mixture (bright). The lower plot shows the estimated
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Figure 1. Example of RPCA separated singing voice. In
the upper subplot we can see the mixed signal (bright) and
the embedded singing voice (dark). In the lower subplot
we can see the result from RPCA (bright) and the same re-
sult combined with singing voice detection (dark). Clearly,
the latter approach is closer to the true singing voice.

vocals (bright) from the RPCA method, and the vocals af-
ter the VD based post-processing (dark). Obviously, the
amount of non-vocal artifacts in the vocal estimate is re-
duced by applying this simple post-processing.

The same principle is applied in order to improve the
estimates of the background. Here, we decide for the final
estimates, whether to use the separated background or the
original mix. This means, the separated background is only
chosen, where the VD classifies the audio signal as vocal.

Nevertheless, it is not certain, if metrics traditionally
used to evaluate BSS algorithms also reflect any improve-
ment. A recall of vocals below an unknown – depending on
the current situation – threshold would cause too much of
the vocal estimates to be muted. At the same time, the esti-
mated background would suffer from too much presence of
vocals, since we would often wrongly opt for the original
mixture instead of the separated background. Therefore, a
thorough evaluation of the aforementioned post-processing
is necessary in order to shed light on how useful it actually
is.

4.1 Evaluation Metrics

In order to get meaningful evaluation results, we use the
measurements proposed by Gribonval et al. in [6], where
the overall estimation error is decomposed into target dis-
tortion, interference, and artifacts. Based on this compo-
nents, the following energy ratios are defined: source Im-
age to Spatial distortion Ratio (ISR), Source to Interference
Ratio (SIR), and Source to Artifacts Ratio (SAR). Source
to Distortion Ratio (SDR) is based on the three aforemen-
tioned measures, and serves as a global measure of distor-
tion. For all metrics applies, that higher values indicate
better performance.

Additionally, a set of measures that was proposed by
Emiya et al. in [4] is used. Compared to the previously
presented set, they better correlate with the perceived audio
quality judged by human listeners. The overall distortion
is also decomposed into the same three components, and
based on them, the following measures are defined: Target-

related Perceptual Score (TPS), Interference-related Per-
ceptual Score (IPS), and Artifacts-related Perceptual Score
(APS). The Overall Perceptual Score (OPS) is based on the
three aforementioned scores, and serves as a global mea-
sure of perceived audio quality. Similar to the aforemen-
tioned metrics, higher values indicate better performance.
All measures were extracted with the PEASS toolkit [4].

4.2 Evaluation Results

In this Section, we present box plots of the evaluation
results on our internal data set (see Section 3.1) regard-
ing the VD based post-processing method, which we de-
scribed in Section 4. Audio examples are available at
http://www.cp.jku.at/misc/ismir2015bss.

4.2.1 Background

In Figure 2, we can see the evaluation results of the back-
ground, separated with RPCA. For each metric, we can see
three results: raw RPCA output (A), RPCA output post-
processed with VD (B), and RPCA output post-processed
with ground-truth annotations (C). By adding the results
from a ground-truth based post-processing, we assess the
potential benefit of the suggested post-processing method,
and how far away we are from this optimum.

Compared to the raw RPCA outputs A, the post-
processed results B and C improve for all metrics, except
IPS. The median of the global measure of distortion (SDR)
improves by 2 dB for post-processing B, and 1.9 dB for
post-processing C (A: 1.3 dB, B: 3.3 dB, C: 3.2 dB). This
suggests, that our VD performs on par with using ground-
truth.

The median of the global measure of perceived audio
quality (OPS) improves by 6.5 points for post-processing
B, and 8.3 points for post-processing C (A: 26.5, B: 33.0,
C: 34.8). Even though the median OPS is approximately
the same for post-processing B and C, we can see still room
for improvement, since the distribution of the ground-truth
based results C has a tendency towards higher values.

Interestingly, compared to the raw RPCA output A, the
median of the IPS results drops for both post-processing
methods. For the VD based results B, we assume, this is
due to some missed vocals, where the original mix is cho-
sen instead of the separated background. This causes the
vocals to be moved back into the final background estima-
tion, and deteriorates the result. For the ground-truth based
results C we assume, this is due to the fact, that the vocal
track that we use for evaluation, contains not complete si-
lence, but rather some noise. But our final estimation of
the vocals replaces non-vocal segments with silence.

Based on the results, we consider it useful to incorpo-
rate VD in order to yield better estimations of the back-
ground. This could be especially useful for generating
karaoke tracks, where for the non-vocal segments the orig-
inal mixture can be used, without any loss in quality due to
BSS characteristics. Obviously, for songs with high vocal
content, the impact will be rather small.
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Figure 2. RPCA background estimation evaluation results.
A: raw RPCA output; B: VD post-processed output; C:
post-processed using ground truth. Higher values indicate
better performance. In general, the performance increases
for all metrics, except IPS. We assume, this is due to some
missed vocals from our VD, where the original mix (incl.
vocals) is chosen instead of the separated background.

4.2.2 Vocals

In Figure 3, we can see the evaluation results of the vo-
cals, separated with RPCA. Compared to the raw RPCA
outputs A, the median of SDR indicate better performance
for the post-processed output B (-7.2 dB vs. -4.9 dB), and
no improvement comparing post-processing B to C.

The impact of silencing all non-vocal segments for the
final vocal estimates can be seen in the interference re-
lated SIR (A: -2.0 dB, B: 0.2 dB, C: 0.6 dB). The per-
ceptually motivated IPS reveals this relationship even bet-
ter, where we can see an improvement of 11.2 points for
post-processing B and 12.5 points for post-processing C
(A: 41.2, B: 52.4, C: 53.7).

The median of the OPS improves by 8.3 points for post-
processing B, and 9.7 points for post-processing C (A:
10.9, B: 19.2, C: 20.6).

Similar to the background estimates, the results of
the metrics indicate improvement, when VD based post-
processing is applied. Especially for tasks like artist recog-
nition it could be useful to only use the parts which are
classified as vocals, even when some are missed by the VD.

5. CONCLUSION AND OUTLOOK

In this paper we first presented the outcome of three strate-
gies of utilising different monaural BSS techniques to im-
prove VD: foreground separation, foreground concatena-
tion, and foreground enhancement. According to the re-
sults on an internal data set, foreground enhancement is
the best strategy. The difference of the usefulness between
the four techniques aREPET, FASST, KAM, and RPCA is
relatively small, and the latter usually performs best. We
compared the results achieved with the best approach on
publicly available data sets, and could show an improve-
ment of 2.3 ppt relative to the baseline, reaching an accu-
racy of 89.8% on the RWC data set. Compared to the same

Figure 3. RPCA vocal estimation evaluation results.
A: raw RPCA output; B: VD post-processed output; C:
post-processed using ground truth. The global measures
SDR and OPS indicate better performance for the post-
processed output. The higher performance regarding in-
terferences SIR and IPS are caused by the parts, that are
muted, when our VD classifies them as non-vocal.

baseline, the results on the Jamendo data set have also im-
proved by 1.4 ppt, with an accuracy of 89.6%. However,
approximately half of the improvement is due to using a
SVM instead of a Random Forest. Depending on the use
case, the effort of employing a BSS might therefore not
always be justified. Nevertheless, by adding the results ob-
tained by using the real vocals, we could show that VD
would principally benefit from better separation results.

Our second contribution addressed the issue, that all
of the four separation techniques produce vocal estimates,
where many segments contain only instrumental back-
ground, and no singing voice at all. We suggested to use
the results of the VD to simply mute the non-singing parts.
Regarding the vocal estimates, we could see an improve-
ment of 2.3 dB SDR when applying this post-processing
(-7.2 dB vs. -4.9 dB).

For the final background estimates, we suggested to use
the original mixed audio signal, where the VD classifies
the signal as non-vocal. Regarding the background esti-
mates, we could see an improvement of 2.0 dB SDR when
applying this post-processing (1.3 dB vs. 3.3 dB).

We think it is safe to conclude that VD based post-
processing improves the results of BSS vocal and back-
ground estimates, although not by much regarding tradi-
tional evaluation metrics. However, in the context of vocal-
ist recognition, it could be helpful to only use the classified
vocal parts, especially when solo instruments like guitars
cause the BSS algorithm to produce lots of non-vocal arti-
facts in the vocal estimates. As one of the next steps, we
plan to investigate the usefulness of our approach in this
topic.
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DETECTION OF COMMON MISTAKES IN NOVICE VIOLIN 
PLAYING 

ABSTRACT 

Analyzing and modeling playing mistakes are essential 
parts of computer-aided education tools in learning musi-
cal instruments. In this paper, we present a system for 
identifying four types of mistakes commonly made by 
novice violin players. We construct a new dataset com-
prising of 981 legato notes played by 10 players across 
different skill levels, and have violin experts annotate all 
possible mistakes associated with each note by listening 
to the recordings. Five feature representations are gener-
ated from the same feature set with different scales, in-
cluding two note-level representations and three segment-
level representations of the onset, sustain and offset, and 
are tested for automatically identifying playing mistakes. 
Performance is evaluated under the framework of using 
the Fisher score for feature selection and the support vec-
tor machine for classification. Results show that the F-
measures using different feature representations can vary 
up to 20% for two types of playing mistakes. It demon-
strates the different sensitivities of each feature represen-
tation to different mistakes. Moreover, our results suggest 
that the standard audio features such as MFCCs are not 
good enough and more advanced feature design may be 
needed. 

1. INTRODUCTION 

With advances in music technology, the development of 
computer-aided music learning and automatic scoring 
systems has attracted wide attention. Such systems pro-
vide self-learning experiences to users through computer-
aided platforms. Despite numerous efforts have been 
made, however, the performance of current systems still 
leaves plenty of space for improvement. A review of the 
music learning system and the main challenge can be 
found in [1]. 

  For a novice player, three common basic aspects, into-
nation, rhythm and timbre, are often used to evaluate 
his/her performance [2]. Intonation refers to the pitch of 
the tone, rhythm specifies the duration of the tone, and 
timbre characterizes the overall quality of the tone. Con-

ventionally, a novice player uses a tuner for correcting 
the intonation and a metronome for following the rhythm 
during the practice. In traditional music education,  there 
is no hardware device capable of automatically evaluating 
the timbre quality. 

  Up to date, most of the computer-aided music learning 
systems also focus on intonation and rhythm only [1]. 
These studies mainly coped with learning intonation and 
rhythm in music in the context of automatic music tran-
scription (AMT). For example, the pitch played by the 
violin learner was automatically detected and visually 
presented to evaluate the pitch intonation [3]. A fusion of 
audio and video cues improved the onset detection of 
non-percussive instruments, such as violin, and thereby 
enhanced the performance of AMT [4]. Automatic sing-
ing quality assessment is achieved by measuring the dis-
similarity between singing voices of beginners and of 
trained singers [5]. Besides intonation and rhythm, timbre 
plays an essential role in identifying the skill (or profi-
ciency) level of a player but has not attracted much atten-
tion in computer-aided music learning platforms. Some 
timbre-related research studies considered instrumental 
expression to recognize the techniques in playing musical 
notes by violin [6] and by electric bass guitar [7], respec-
tively. Other studies aimed to evaluate the played notes, 
for example, using spectral parameters from long tones to 
evaluate the technical level of saxophone players [8]. Re-
cently, a hierarchical approach combining deterministic 
signal processing and deep learning was employed to 
identify different common mistakes made by novice flute 
players [9]. Machine learning techniques were also 
adopted to distinguish good trumpet tones from bad ones 
[10]. The first attempt to detect bad violin playing in [11] 
is the most relevant work to the proposed study. One of 
the two tasks conducted in [11] classifies violin tones into 
binary clusters, i.e., good or bad, using k-nearest neigh-
borhood algorithm. The other task examined the promi-
nent feature sets for detecting individual playing mistakes. 
Similarly, in this paper, we explore the capability of tim-
bre in detecting playing mistakes produced by novice vi-
olin players during practice. However, since the dataset 
and the algorithm codes in [11] are not publicly available, 
it is difficult to compare our approach with the approach 
in [11].  
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  The first contribution of this paper is to build and re-
lease a new dataset1 for such a research problem. To be as 
realistic as possible, we recorded four successive legato 
notes, which require smooth, round and continuous flow 
of tones [12], as a unit and then trimmed it into individual 
notes rather than simply recording single note at a time as 
in [11]. The resulting dataset comprises of 981 individual 
legato notes played by several players across different 
skill levels. The playing mistakes associated with each 
note were annotated by violin experts using the following 
four pre-defined classes: scratching bow, crooked bow, 
bouncing bow, and inappropriate arm height. More de-
tails of the annotations and dataset are elaborated in Sec-
tions 2 and 3, respectively.  

  The second contribution of this paper is to evaluate a 
number of features capturing the acoustic characteristics 
of different segments of a musical note for the task of au-
tomatic playing mistake classification. A set of spectral 
features is extracted from either the whole note or the 
segment of onset, sustain and offset, partitioned using the 
output of an optical sensor installed on the violin. The 
approach leads to five different feature representations: 
Note, Onset, Sustain, Offset and Cascade. They refer to 
features extracted from the whole note, from the corre-
sponding segments only and the concatenation of seg-
ment-level features, respectively. More details about the 
partitioning method and feature extraction can be found 
in Sections 3 and 4, respectively.  

  In our approach, the Fisher score is used for feature se-
lection and the support vector machine (SVM) is used for 
classification. Feature selection is done as a preprocess-
ing step of classification. The performance of classifica-
tion is assessed in terms of the F-measure. Experimental 
details are presented in Section 5. Exploration of insights 
to link specific feature representations to playing mis-
takes is presented in Section 6, before we conclude the 
paper in Section 7. 

2.  VIOLIN PLAYING MISTAKES 

We defined four common playing mistakes made by vi-
olin novices. These mistakes are mainly related to the 
bow arm and the bow hand which dominantly control vi-
olin timbre for novice players and cause most of the trou-
ble for violinists [2]. 

2.1 Scratching Bow (SB) 
The pressure of the bow applied on the string can either 
come from the weight of the bow, arm and hand, from 
controlled muscular action, or from a combination of the-
se factors [2]. Excessive bowing pressure without enough 
bowing speed to complement with can hinder the vibra-
tions of the string and produce coarse sound with inferior 
quality. Without the support of bowing speed, extreme 

                                                             
1 The audio clips and annotations of playing mistakes can 
be found in http://perception.cm.nctu.edu.tw/sound-demo/. 

pressure of the bow on the string results in sound with 
scratching effect. 

2.2 Crooked Bow (CB) 
Drawing a straight bow from the frog to the tip is the 
foundation of the bowing technique [2]. If the bow is 
crooked, not parallel to the bridge, the sound quality will 
vary due to change of the contact position of the bow on 
the string. Severe inclination even causes sudden dis-
placement of the bow from the bridge and produces 
sound with skating effect.  

2.3 Bouncing Bow (BB) 
Lack of muscular control of either the bow arm or the 
bow grip reduces strength to the bow. It might prevent the 
bow from properly laying on the string, thereby the bow 
bounces naturally due to its elasticity. 

2.4 Inappropriate Arm Height (IAH) 
Appropriate tilt of the arm relative to the bow is required 
in order to play on each string without touching the other 
strings. With inconsistent height or tilt of the arm when 
drawing the bow across the string, pitch produced by ad-
jacent string might be heard. 

3. DATASET 

All notes in the dataset were played by ten players across 
different skill levels using the same violin in a semi-
anechoic chamber. Four players are relatively more ex-
perienced in violin or similar string instruments such as 
cello, while the other six players have learned to play vi-
olin for less than one month. Each player was asked to 
play four successive notes as a clip at the speed of 60 
beat-per-minute (BPM). Each clip was directed to start 
with down-bow and end with up-bow. In total, 26 clips 
containing 104 legato notes were played by each player. 
This style of successive playing is more similar to actual 
practicing than the style of playing an individual note at 
once. In our recordings, analysis of transition between 
notes is also feasible though we leave it as future work. 
We limit the study to consider legato notes only because 
legato is the essence of all cantabile playing [12] and one 
can hardly master other advanced techniques before 
playing it well. 

  Segmentation between notes and within each note was 
achieved using a photo resistor and four rings of surface-
mounted light-emitting diodes (SMD LEDs) installed 
respectively underneath the violin bridge and on the bow 
stick. Two of the four rings were installed at the posi-
tions close to the frog and the tip on the bow stick, while 
the other two were placed at both ends of the middle of 
the bow. Segmenting a violin note can benefit the analy-
sis, as the time domain signal varies in characteristic 
over a bow draw. The purpose of installing the optical 
sensor was to segment the time domain signal in a more 
direct way rather than the approach in [13]. When a lega-
to note was played, the optical sensor was capable of 
marking the time instants, at which those ring-located 
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positions of the bow stick passed through the violin 
bridge, without influencing playing. As our main pur-
pose was to simply divide the bow draw into three seg-
ments, we can tolerate the small accuracy errors of the 
sensors on the longitudinal bow position [13]. 

  Based on the marked time instants, we divided each clip 
into four individual notes and segmented each note into 
three different segments, i.e., onset, sustain and offset, as 
playing mistakes can occur at any instant of the drawing. 
The two ends of each clip, the start of the first note and 
the end of the fourth note, were manually determined by 
an energy threshold. The edges between successive notes 
and within each individual note were automatically de-
fined by the marked time instants. At the end, we col-
lected 981 notes in total and the corresponding segments 
after discarding notes containing accidently made dis-
tinct noise during the recording.  

  We employed the hardware-assisted approach instead 
of automatic approaches proposed in the literature [14, 
15] because automatic approaches usually segment an 
individual musical note according to the temporal evolu-
tion of amplitude envelope and spectral centroid [14, 15]. 
Since we are dealing with notes produced by the violin 
novices, the algorithms developed for well-played musi-
cal notes are not applicable in our case. For instance, 
simply dividing the note into three equal-duration seg-
ments would not produce same results as our hardware-
assisted approach since novice players cannot draw the 
bow with a constant speed. Therefore, without the assis-
tance of the optical sensors, automatic segmentation of 
violin notes performed by novice players should be a dif-
ficult task, which is beyond the scope of this paper and 
deserves further research in the future. 

  The notes were then annotated by violin experts using 
the four pre-defined mistakes. Note that a single note 
could possess multiple playing mistakes. Fig. 1 shows 
the duration distributions of notes and the corresponding 
segments. One can observe that although players were 
asked to play each note at the speed of 60 BPM, begin-
ners, especially those who lack of musical background, 
weren’t necessarily able to perform accurately. Table 1 
summarizes the numbers of instances of the playing mis-
takes in the first row. Dividing the first row by the total 
number of the collected notes gives the percentages in 
the second row.  

4. METHOD 

4.1 Preprocessing 

 All of the notes in the dataset were resampled to 44.1 
kHz and saved in the mono-channel WAV format. Before 
feature extraction, each time domain signal was first 
normalized to zero mean and unit variance and then di-
vided into three segments as described in Section 3 for 
further analysis. 

 

Figure 1. Duration distributions of 981 notes (the first 
column), the corresponding onset, sustain and offset 
segments (the second to the last column). 

Table 2. The number of instances of each mistake and 
the corresponding percentage. 

 

4.2   Feature Extraction 

A set of 30 frame-level spectral features, including high 
frequency content (HFC) [16], 13 Mel-frequency cepstral 
coefficients (MFCCs), spectral centroid, spectral crest, 
spectral flatness, spectral flux, spectral roll-off, de-
scriptors of spectral distribution (i.e., spectral variance, 
skewness and kurtosis), tristimulus [17], odd-to-even 
harmonic energy ratio (OER) [18], the estimated pitch, 
zero crossing rate and the instant power, were extracted 
from either the waveform or the spectrum using the ES-
SENTIA open-source library (version 2.0.1) [19]. The 
feature extraction was performed in each Hanning-
windowed frame with the frame duration of 46 ms and 
the frame shift of 50%. These features are capable of 
characterizing timbre and regularly employed in audio 
signal processing applications [20]. The six temporal 
functionals, including mean, variance, skewness, kurtosis, 
mean and variance of the derivative, of all the frame-level 
features were derived to generate clip- or segment-level 
features. The outcome of the feature extraction stage is a 
feature vector of 180 dimensions. 

  The feature extraction process was done on different 
segments of notes resulting in five feature representations: 
Note, Onset, Sustain, Offset and Cascade. The Note rep-
resentation was extracted from each intact note while the 
Onset, Sustain and Offset representations were extracted 
from corresponding segments of each note. These four 
representations consist of feature vectors of 180 dimen-
sions. The Cascade representation was produced by con-
catenating the Onset, Sustain and Offset representations 

 SB CB BB IAH 
Numbers 265 133 154 53 

Percentage 27.0% 13.6% 15.7% 5.4% 
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to give a 540-dimentional feature vector for each note. 
All feature representations were derived from 981 record-
ed notes and used for the task of playing mistake classifi-
cation. 

4.3   Feature Selection and Classification 

The Fisher score was considered for selecting prominent 
features in a pre-processing step prior to classification to 
reduce amounts of computation [21]. It is defined as [22]  

𝐹 𝑖 ≡
(𝑥𝑖
(+)−𝑥𝑖)

2
+(𝑥𝑖

(−)−𝑥𝑖)  
2

1
𝑛(+)−1

(𝑥𝑘,𝑖
(+)−𝑥𝑖

(+))
2𝑛+

𝑘=1 + 1
𝑛(−)−1

(𝑥𝑘,𝑖
(−)−𝑥𝑖

(−))
2𝑛+

𝑘=1

 , 

where 𝑛(!) and 𝑛(!) are the numbers of positive and neg-
ative instances, respectively; 𝑥!, 𝑥!(!), 𝑥!(!) are the aver-
ages of  the 𝑖th feature over the whole, positive, and 
negative instances, respectively; 𝑥!,!

(!) is the 𝑖th feature of 

the 𝑘th positive instance, and 𝑥!,!
(!) is the 𝑖th feature of the 

𝑘th negative instance. 

  We followed the framework in [22] which selects fea-
tures with high Fisher scores and uses the support vector 
machine (SVM), implemented by LIBSVM [23], for 
classification. The performance was evaluated in terms of 
the averaged F-measure, which is the harmonic mean of 
precision and recall, for each mistake using each feature 
representation with 100 repetitions of stratified five-fold 
cross-validation (CV). 

5. EXPERIMENTS 

The goal of the experiments is to investigate the capabil-
ity of used features to detect playing mistakes and bridge 
the relation between playing mistakes and feature repre-
sentations from different segments of notes.  

  Detection experiments were carried out through all fea-
ture representations after completing feature extraction. 
Following the procedures in [22], we first adopted a nest-
ed stratified five-fold CV to find the best percentage 
threshold to retain features based on Fisher scores, and 
then used the selected features for grid searching the op-
timized hyper-parameters C and γ, from the choices of 
{10-6, 10-5, 10-4, 10-3} and {1, 10, 100, 1000} respectively, 
of the radial-basis function (RBF) kernel based SVM. Fi-
nally, the selected threshold and the hyper-parameters 
were fed into another stratified five-fold CV. The overall 
performance was evaluated by averaging the F-measures 
of 100 repetitions of the final CV. Note that the above 
experiments were conducted for each feature representa-
tion and for each mistake. In other words, we trained M 
binary SVMs on each feature representation, where M is 
the number of types of playing mistakes. 

  To further have subset analysis, the experiments were 
conducted using three sets of data: All, Down-bow, and 
Up-bow, which respectively refer to the full data set of 

981 notes, the set of 480 notes played with down-bow 
and the set of 481 notes played with up-bow. Moreover, 
we performed the same experiment on the 570 notes rec-
orded by the six beginners who have played violin less 
than one month. Experiment results on these subset data 
and related discussions will be given in the next section.  

6. RESULTS 

The averaged F-measure using each feature representa-
tion for identifying each playing mistake in the All dataset 
is shown in Fig. 2. One can see that Cascade performs 
slightly better than Note in terms of the F-measure across 
all the mistakes, which is verified by the two-tailed t-test 
(p<0.01). It is probably because Cascade contains more 
detailed information of each individual segment. Except 
for the BB mistake, Cascade performs better than each of 
its constituents, i.e., Onset, Sustain and Offset. Note that 
the F-measures of the playing mistakes by the random 
guess would be 35.0%, 21.3%, 23.7% and 9.7%, respec-
tively, equivalent to the prior probabilities p(m) of the 
mistake m as shown in the second row of Table 1 divided 
by p(m) + 0.5. It is because we preserved the prior distri-
bution of the dataset in all partitions during the stratified 
five-fold CV procedures for each playing mistake. For 
comparison, we show in Fig 3 the performance of using 
the original 180 features without feature selection. Simi-
lar results between Figs. 2 and 3 suggest that the selected 
features sufficiently capture information embedded in the 
original 180 features for our experiments. 
  To explore more connections between playing mistakes 
and feature representations, one can re-arrange the F-
measures of Onset, Sustain and Offset against mistakes as 
in Table 2.  Results in Table 2 show that Onset has ad-
vantage in detecting SB over the others. It means that the 
onset segment is more sensitive for detecting SB, which 
somehow implies that the 10 players tended to have ex-
cessive bow pressure at the beginning of the bow draw. In 
contrast, Sustain surpasses the others in both CB and BB 
by up to 8% and 20%, respectively, which suggests CB 
and BB have higher chance to emerge during the middle 
of a drawing bow. Lastly, Offset dominates the IAH mis-
take. Such “favor” of a specific playing mistake in a par-
ticular segment of a note reveals the tendency of players 
to make that mistake at certain moment of a bow draw. 
This kind of information is helpful to novice players dur-
ing their practice. 
  As shown in Table 2, SB and BB are prone to happen in 
the onset segment and sustain segment, respectively. Fur-
thermore, it is commented by violin experts that such 
“favor” of SB and BB would be even more obvious in 
down-bow notes based on their teaching experiences. 
Figs. 4 and 5 compare the F-measures between the Up-
bow and Down-bow subsets for the SB and BB mistakes, 
respectively. Obviously, these two figures indicate the 
down-bow notes are more associated with the mistakes 
than the up-bow notes, which is consistent with experi-
ences of the violin experts. 
  Moreover, Fig. 6 shows the results on notes only played 
by the six beginners. It shows better overall performance 
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than results in Fig. 2, which suggests notes played by the 
beginners reveal more obvious characteristics of mistakes 
than the ones played by experienced players. In other 
words, the adopted features might be incapable of captur-
ing slight mistakes made by experienced players. 
  The inferior performance in classifying the IAH mistake, 
as shown in Figs. 2 and 6, might result from the severe 
imbalance of the dataset. In addition, pitch-related fea-
tures are overwhelmed by timbre-related features in our 
adopted feature set. If more pitch features are considered, 
it is possible to further improve the performance for IAH 
detection, since it is about the mistake of playing unde-
sired pitch.  
 

 
Figure 2. Averaged F-measures of playing mistake clas-
sification on all recorded notes using different feature 
representations.  
 

 
Figure 3. Average F-measures of playing mistake classi-
fication on all recorded notes using different feature rep-
resentations from the original 180 features. 
 

 
Table 2.  Averaged F-measures (in %) of Onset, Sustain 
and Offset. The feature representation with the highest F-
measure for each mistake is highlighted.  
 

 
Figure 4. Averaged F-measures of the playing mistake 
‘scratching bow’ (SB) using different feature representa-
tions within the up-bow and down-bow subsets. 
 

 
Figure 5. Averaged F-measures of the playing mistake 
‘bouncing bow’ (BB) using different feature representa-
tions within the up-bow and down-bow subsets.  
 

 
Figure 6. Averaged F-measures of playing mistake clas-
sification on notes played by beginners using different 
feature representations. 
 

7. CONCLUSION AND FUTURE WORK 

In this study, we first recorded a new dataset of violin 
legato notes played by novice players. Then we defined 
four common playing mistakes mainly made by bow arm 

 SB CB BB IAH 
Onset 53.4 36.1 39.2 16.5 
Sustain 45.0 44.3 52.9 24.4 
Offset 47.6 38.8 37.9 33.5 
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and performed automatic playing mistake classification 
using spectral and temporal features extracted from dif-
ferent segments of the notes. 
  Our evaluation on different feature representations sug-
gests concatenation of segment-level features provides 
more information than the note-level features in identify-
ing playing mistakes. Furthermore, by exploring connec-
tions between playing mistakes and feature representa-
tions, we found SB, CB, BB, and IAH mistakes are prone 
to happen in the onset, sustain, sustain, and offset seg-
ments, respectively. These findings would serve pedagog-
ical purpose and benefit novice violin players. Our future 
work will focus on improving the overall classification 
performance by enriching the dataset and seeking more 
relevant features, using either feature design or feature 
learning techniques [24, 25]. 
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ABSTRACT

Probabilistic methodologies provide successful tools for
automated music composition, such as melodic harmoni-
sation, since they capture statistical rules of the music id-
ioms they are trained with. Proposed methodologies fo-
cus either on specific aspects of harmony (e.g., generat-
ing abstract chord symbols) or incorporate the determina-
tion of many harmonic characteristics in a single proba-
bilistic generative scheme. This paper addresses the prob-
lem of assigning voice leading focussing on the bass voice,
i.e., the realisation of the actual bass pitches of an abstract
chord sequence, under the scope of a modular melodic har-
monisation system where different aspects of the genera-
tive process are arranged by different modules. The pro-
posed technique defines the motion of the bass voice ac-
cording to several statistical aspects: melody voice con-
tour, previous bass line motion, bass-to-melody distances
and statistics regarding inversions and note doublings in
chords. The aforementioned aspects of voicing are mod-
ular, i.e., each criterion is defined by independent statisti-
cal learning tools. Experimental results on diverse music
idioms indicate that the proposed methodology captures
efficiently the voice layout characteristics of each idiom,
whilst additional analyses on separate statistically trained
modules reveal distinctive aspects of each idiom. The pro-
posed system is designed to be flexible and adaptable (for
instance, for the generation of novel blended melodic har-
monisations).

1. INTRODUCTION

In melodic harmonisation systems harmony is expressed
as a sequence of chords, but an important aspect is also
the relative placement of the notes that comprise chord se-
quence, which is known as the voice leading problem. As
in many aspects of harmony, in voice leading there are cer-
tain sets of diverse conventions for different music idioms

c© Dimos Makris, Maximos Kaliakatsos-Papakostas, Emil-
ios Cambouropoulos.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Dimos Makris, Maximos Kaliakatsos-
Papakostas, Emilios Cambouropoulos. “Probabilistic modular bass voice
leading in melodic harmonisation”, 16th International Society for Music
Information Retrieval Conference, 2015.

that need to be taken under consideration. Such rules have
been hand-coded by music experts for the development of
rule-based melodic harmonisation systems (see [15] for a
review of such methods). Similarly, such hand-coded rules
have been utilised as fitness criteria for evolutionary sys-
tems (see [4, 18] among others). However, the specifica-
tion of rules that are embedded within these systems are
very complex with many variations and exceptions. Ad-
ditionally, the formalisation of such rules has not yet been
approached for musical idioms that have not hitherto been
thoroughly studied. Most of the works so far, have focused
on either finding a satisfactory chord sequence for a given
melody (performed by the soprano voice), or on complet-
ing the remaining three voices that constitute the harmony
for a given melodic or bass line (known as the “four-part
harmony” task) [5, 14, 18, 24]. Experimental evaluation
of methodologies that utilise statistical machine learning
techniques demonstrated that an efficient way to harmonise
a melody is to add the bass line first [22]. To this end, the
motivation behind the work presented in the paper at hand
is further enforced by the findings in the aforementioned
paper.

This study, is based on the following underlying melodic
harmonisation strategy: 1) analyse a give melody in terms
of segmentation, scale/pitch hierarchy, harmonic/embellish-
ment notes, harmonic rhythm (this can be achieved auto-
matically or, at this stage, manually), 2) assign abstract
chords to the given melody from learned first-order chord
transition tables, 3) select concrete pitches from abstract
chords for the bass-line based on learned melody-to-bass-
line movement (discussed in this paper), 4) select concrete
pitches for inner voices (steady or varied number of notes
per chord). This scheme would seem to be adequate for a
large body of non-monophonic music, but not all. For in-
stance, even the mere concept of chords (with inversions)
is rather controversial in European music before the mid-
eighteenth century and in other traditional polyphonic mu-
sics; more so, the idea of melody with chords and func-
tional bass line is untenable in such music.

However, as the aim of this project is not individual
fully-fleshed harmonic models of different idioms, but rather
a general-as-possible method to ‘extract’ basic components
of harmonic content in various harmonic textures, it is pos-
sible to employ the above strategy in any non-monophonic
texture. It is known that outer voices tend to stand out per-
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ceptually (e.g. in [6]); additionally, note simultaneities can
be encoded in a more abstract manner (e.g., GCT represen-
tation). Employing a computational methodology based
on such generic concepts, can enable the construction of a
‘generic’ melodic harmoniser that can use harmonic com-
ponents from various idioms, without claiming to emulate
the idioms themselves.

This paper proposes a modular methodology for deter-
mining the bass voice leading, to be integrated in a melodic
harmonisation system under development. The effective-
ness of the proposed methodology that performs bass voice
leading according to statistics describing the overall voic-
ing layout (i.e. arrangement of pitches) of given chord se-
quences in the General Chord Type (GCT) [2] represen-
tation is examined. This methodology is extending the
bass voice leading scheme presented in [12], by harnessing
voicing layout information through additional voicing lay-
out statistical, independently trained, modules concerning
the chords that constitute the harmonisation. Those charac-
teristics include distributions on the distance between the
bass and the melody voice and statistics regarding the in-
versions and doublings of the chords in the given chord
sequence. By training these modules on multiple diverse
idioms, a deeper study is pursued within the context of
the COINVENT project [20], which examines the devel-
opment of a computationally feasible model for conceptual
blending. Thereby, blending different modules from dif-
ferent idioms will expectedly lead to harmonisations with
blended characteristics.

2. PROBABILISTIC MODULAR BASS VOICE
LEADING

Given the fact that a melody is available in systems that
perform melodic harmonisation, the methodology presented
in [12] derives information from the melody voice in or-
der to calculate the most probable movement for the bass
voice, named as the bass voice leading (BVL). This ap-
proach, in combination with information regarding the voice
layout (Section 2.2), is incorporated into a larger mod-
ular probabilistic framework. In the integrated modular
melodic harmonisation system under development, the se-
lection of chords (in GCT form [2]) is performed by an-
other probabilistic module [10] not discussed in this pa-
per. Therefore, the herein discussed modules have been
developed to provide indications about possible movement
of the bass as well as to define specific notes for the bass
voice, providing a first step to complete information re-
garding specific voices from the chords provided by the
chord selection module.

To this end, both the bass and the melody voice steps
are represented by abstract notions that describe general
quantitative information on pitch direction. In [12] sev-
eral scenarios for voice contour refinement were exam-
ined, providing different levels of accuracy for describ-
ing the bass motion in different datasets. In the paper at
hand, the selected methodology is the one with the great-
est level of detail, i.e. the scenario where the melody and
bass note changes are divided in seven steps, as exhibited

in Table 1. While different range schemes could have been
selected, the rationale behind the utilised one is that the
perfect fourth is considered as a small leap and the perfect
fifth as a big leap.

refinement short name range (semitones)
steady voice st v x = 0

step up s up 1 6 x 6 2

step down s down −2 6 x 6 −1
small leap up sl up 3 6 x 6 5

small leap down sl down −5 6 x 6 −3
big leap up bl up 5 < x

big leap down bl down x < −5

Table 1. The pitch step and direction refinement scale con-
sidered for the development of the utilised bass voice lead-
ing system.

2.1 The hidden Markov model module

The primary module for defining bass motion functions
under the first order Markov assumption in combination
with the fact that it depends on the piece’s melody. To
this end, the next step of the bass voice contour (bass di-
rection descriptor) is dependent on the previous one and
on the current melody contour (melody direction descrip-
tor). This assumption, based on the fact that a probabilistic
framework is required for the harmonisation system, mo-
tivates the utilisation of the hidden Markov model (HMM)
methodology. According to the HMM methodology, a se-
quence of observed elements (melody direction descrip-
tor) is given and a sequence of (hidden) states (bass di-
rection descriptor) is produced as output. The “order” of
the HMM utilised in the presented work, i.e. how many
previous steps are considered to define the current, is 1.
In melodic harmonisation literature different orders have
been examined, e.g. [19], where it is shown that order 1
might not be the most efficient. In the context of the pre-
sented work, this investigation is part of future research.

The HMM training process extracts four probability val-
ues for each bass motion: 1) to begin the sequence, 2) to
end the sequence, 3) to follow another bass motion (transi-
tion probability) and 4) to be present given a melody step
(observation probability). The probabilities extracted by
this process for each possible next bass motion is denoted
with a vector of probabilities ~pm (one probability for each
possible bass motion step) and will be utilised in the prod-
uct of probabilities from all modules in Equation 1.

2.2 The voicing layout information module

In order to assign a bass voice to a chord, additional in-
formation is required that is relevant to the chords of the
harmonisation. The voicing layout statistics that are con-
sidered for the modules of the presented methodology are
the inversions and the doublings of chords. The inver-
sions of a chord play an important role in determining how
eligible is a chord’s pitch class to be a bass note, while
the doublings indicate if additional “room” between the
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bass and the melody is required to fit doublings of spe-
cific pitch classes of the chords. For instance, the chord
with pitch classes [0, 4, 7] has three inversions, with each
one having a bass note that corresponds to a different pitch
class, e.g. [60, 64, 67], [64, 67, 72] or [67, 72, 76], while,
by considering the inversion prototype [60, 64, 67] of the
[0, 4, 7] chord, there are four scenarios of single note dou-
blings: [60, 64, 67, 72], [60, 64, 67, 76], [60, 64, 67, 79] and
[60, 64, 67] (no-doubling scenario).

The voicing layout module of the harmonic learning
system regarding chord inversions and note doublings, is
trained through extracting relevant information from every
(GCT) chord in pieces from a music idiom. Specifically,
consider a GCT chord in the form g = [r, ~t], where r is
the root of the chord in relation to the root of the key and ~t
is the vector describing the type of the chord. For instance,
the I chord in any key is expressed as g = [0, [0, 4, 7]] in
the GCT representation, where 4 denotes the major third
and 7 the perfect fifth. This GCT type is a set of integers,
~t = [t1, t2, . . . , tn], where n is the number of type ele-
ments, that can be directly mapped to relative pitch classes
(PCs). The statistics concerning chord inversion are ex-
pressed as the probability that each type element in g is the
bass note of the chord, or

pi = (v1, v2, . . . , vn),

where vi, i ∈ {1, 2, . . . , n}, is the probability that the ele-
ment ti is the bass note. Similarly, probabilities about note
doublings are expressed through a probability vector

pd = (d1, d2, . . . , dn, s),

where di, i ∈ {1, 2, . . . , n}, is the probability that the pitch
class ti gets doubled, while there is an additional value,
s, that describes the probability that there is no doubling
of pitch classes. Table 2 exhibits the extracted statistics
for inversions and note doublings for the most often met
chords of the major Bach Chorales.

2.3 The melody-to-bass distance module

An important aspect of voice layout has to do with abso-
lute range of chords in the chord sequences of an idiom,
i.e. the absolute difference between the bass voice and the
melody. Different idioms encompass different constraints
and characteristics concerning this voicing layout aspect,
according to several factors, e.g., the utilised instruments’
range. The proposed methodology addresses this voicing
layout aspect by capturing statistics about the region that
the bass voice is allowed to move according to the melody.
Therefore, histograms are extracted that describe the fre-
quency of all melody-to-bass intervals found in a training
dataset, as illustrated by the bars in the example in Fig-
ure 1.

However, interval-related information in the discussed
context are used only as approximate indicators about the
expected pitch height of the bass voice, while the exact
intervals (bars in Figure 1) are referring to specific inter-
vals and, additionally, they are scale-sensitive, e.g. differ-

Figure 1. Histogram of pitch interval distances between
melody and bass for a set of major Bach Chorales.

ent scales potentially produce different distributions of me-
lody-to-bass intervals. Therefore, the “expected” bass pitch
height is approximated by a normal distribution that is ad-
justed to fit the distribution of the melody-to-bass intervals
observed in the dataset. Figure 1 illustrates the normal dis-
tribution that is approximates the distributions of intervals
for a collection of major Bach Chorales.

2.4 Combining all modules

The probabilities gathered from all the modules described
hitherto are combined into a single value, computed as the
product of all the probabilities from all the incorporated
modules. To this end, for each GCT chord (C) in the com-
position every possible scenario of chord inversions, dou-
blings and bass note pitch height, denoted by an index x,
is generated. For each scenario (x), the product (bx(C))
of all the modules discussed so far is computed, i.e. the
bass motion (pmx

(C)), the inversions (pix(C)), doublings
(pdx(C)) and melody-to-bass interval phx(C):

bx(C) = pmx
(C) pix(C) pdx

(C) phx
(C). (1)

Therefore, the best scenario (xbest) for the bass voice of
chord C is found by: xbest = argmaxx(bx(C)). The bass
note motion probability is obtained by the HMM module
analysed in Section 2.1 and it takes a value given by the
vector ~pm according to the bass step it leads to.

3. EXPERIMENTAL RESULTS

The aim of the experimental process is to evaluate whether
the proposed methodology efficiently captures the bass voice
leading according to several factors related to the voice lay-
out characteristics of each training idiom. Additionally, it
is examined whether the separate trained modules, which
constitute the overall system, statistically reveal aspects of
each idiom that are more distinctive. A collection of eight
datasets has been utilised for training and testing the capa-
bilities of the proposed methodology, exhibited in Table 3.

These pieces are included in a music database with many
diverse music idioms and it is developed for the purposes

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 325



GCT chord relative PC inversions doublings
[0, [0, 4, 7]] [0, 4, 7] [0.74, 0.23, 0.02] [0.68, 0.15, 0.08, 0.09]

[7, [0, 4, 7]] [7, 11, 2] [0.78, 0.22, 0.00] [0.83, 0.02, 0.09, 0.06]

[5, [0, 4, 7]] [5, 9, 0] [0.65, 0.34, 0.01] [0.46, 0.30, 0.11, 0.13]

Table 2. Probabilities for chord inversion (pi) and note doublings (pd) in the three most frequently used chords in the major
Chorales of Bach.

Name (number) Description
Bach Chorales (35) a set of Bach chorales

Beatles (10) set of songs from the band Beatles
Epirus (29) traditional polyphonic songs from

Medieval (12) fauxbourdon and organum pieces
Modal chorales (34) 15th-16th century modal chorales

Rembetika (22) folk Greek songs
Stravinsky (10) pieces composed by Igor Stravinsky

Tango (24) pieces of folk tango songs

Table 3. Dataset description.

of the COINVENT project. For the presented experimen-
tal results, each idiom set includes from around 50 to 150
phrases. The Bach Chorales have been extensively utilised
in automatic probabilistic melodic harmonisation [1, 7, 13,
16], while the polyphonic songs of Epirus [9,11] and Rem-
betika [17] constitute datasets that have hardly been used
in studies.

3.1 Cross-entropies for training and testing in all
idiom combinations

The cross-entropy tests include the statistical modules that
are independent of the GCT chords, i.e. HMM model and
the melody-to-bass distance fitted distribution (will hereby
be symbolised as mbd). Additionally, to examine the ef-
fect of the transition and the observation probabilities, the
probabilities related to transitions of the bass (states transi-
tions and will hereby be symbolised as tr) and the melody
voice (observation transitions and will hereby be symbol-
ised as mel) will be examined separately. The statisti-
cal combinations examined during the experimental eval-
uation process are: 1) the HMM model and the melody-
to-bass distance fitted distribution probabilities (M all), 2)
only the bass voice transition probabilities from the HMM
(M tr), 3) only the melody observation probabilities from
the HMM (Mmel) and 4) only the Melody-to-bass distance
distributions (Mmbd).

Each idiom’s dataset is divided in two subsets, a training
and a testing subset, with a proportion of 90% to 10% of
the entire idiom’s pieces. The training subset of an idiom
X is utilised to train the aforementioned modules, form-
ing the trained model MX , while the testing subset of the
same idiom will be hereby denoted as DX . For instance,
the HMM trained with the Bach Chorales will be symbol-
ised as MBach while its testing pieces will be symbolised
as DBach. The evaluation of whether a model MX predicts
a subset DX better than a subset DY is achieved through
the cross-entropy measure. The measure of cross-entropy
is utilised to provide an entropy value for a sequence from
a dataset, {Si, i ∈ {1, 2, . . . , n}} ∈ DX , according to the

context of each sequence element, Si, denoted as Ci, as
evaluated by a model MY . The value of cross-entropy un-
der this formalisation is given by

− 1

n

n∑

1

log PMY
(Si, Ci,MY

), (2)

where PMY
(Si, Ci,MY

) is the probability value according
to the examined scenarios of probabilities.

By comparing the cross-entropy values of a sequenceX
as predicted by two models, DX and DY , we can assume
which model predicts S better: the model that produces the
smaller cross entropy value [8]. Smaller cross entropy val-
ues indicate that the elements of the sequence S “move on
a path” with greater probability values. Tables 4 exhibits
the cross-entropy values produced by the proposed model
for the examined scenarios. The presented values are av-
erages across 100 repetitions of the experimental process,
with different random divisions in training and testing sub-
sets (preserving a ratio of 90%-10% respectively for all
repetitions). In every repetition the average cross entropy
of all the testing sequences is calculated. The effective-
ness of the combined proposed modules is indicated by the
fact that most of the minimum values per row are on the
main diagonal of the upper part of the matrix, i.e. where
model M all

X predicts DX better than any other DY . A 10-
fold cross-validation routine was also tested for splitting
the dataset, however, replications of the experiment where
different pieces in training and testing sets were used, gave
considerably different results. The utilised experimental
setup was providing similar results in several replications
of the experiment.

It is evident that each module isolated does not produce
lower values in the diagonal. Among the clearest isolated
characteristics is the melody observations part of the HMM
(Mmel), where 5 out of 8 diagonal elements are the lowest
in their row. Thereby, these results indicate that the com-
bination of all modules is a vital part for achieving better
results.

3.2 Diversity in inversions and doublings of GCT
chords

A straightforward comparison in statistics related to inver-
sions and doublings between GCTs of different idioms is
not possible for all idioms and all GCTs, since this infor-
mation is harnessed on GCT sets that are in many cases
different for different idioms. The differences in character-
istics about voicing layout between different sets of GCTs
that could be envisaged, relate to the diversity of the voic-
ing layout scenarios that are used across different idioms.
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DBach DBeattles DEpirus DMedieval DModal DRembetika DStravinsky DTango

M all
Bach 7.17 11.07 15.75 10.79 7.41 9.77 11.86 8.88

M all
Beattles 9.75 7.82 15.97 14.86 9.77 8.27 7.64 9.01

M all
Epirus 16.64 19.62 6.99 10.54 13.11 14.30 16.11 16.46

M all
Medieval 10.96 17.56 7.68 7.47 8.49 12.46 16.18 12.63

M all
Modal 9.27 15.94 15.04 10.96 8.39 10.89 15.32 10.72

M all
Rembetika 8.73 8.56 13.65 11.79 8.22 7.11 7.80 8.29

M all
Stravinsky 14.19 10.82 17.45 19.88 15.84 10.99 9.76 13.88

M all
Tango 8.27 8.78 14.62 11.33 7.98 7.62 9.35 7.70

M tr
Bach 2.09 2.61 3.16 2.25 2.24 2.99 2.97 2.62

M tr
Beattles 3.51 2.33 2.47 3.30 2.88 1.82 2.28 2.20

M tr
Epirus 5.39 3.17 2.04 4.90 4.31 2.06 2.64 3.78

M tr
Medieval 2.73 2.92 1.97 2.33 2.33 2.49 2.74 3.11

M tr
Modal 2.87 2.92 2.82 2.41 3.32 2.79 2.73 3.07

M tr
Rembetika 4.11 2.66 1.90 3.53 3.21 1.67 1.88 2.62

M tr
Stravinsky 5.44 3.98 2.51 4.51 4.73 2.63 3.50 4.50

M tr
Tango 3.11 2.16 2.82 2.98 3.02 1.88 2.55 2.12

Mmel
Bach 1.79 2.14 2.28 1.95 1.85 2.34 2.44 2.15

Mmel
Beattles 2.34 1.92 2.09 2.26 1.93 1.65 1.87 1.86

Mmel
Epirus 2.72 2.43 1.42 2.21 2.43 1.72 1.74 2.59

Mmel
Medieval 2.54 3.32 2.15 2.13 2.50 2.36 2.51 3.04

Mmel
Modal 2.68 2.60 2.57 2.64 2.36 2.12 2.55 2.59

Mmel
Rembetika 2.81 2.13 1.86 2.39 2.20 1.37 2.17 2.00

Mmel
Stravinsky 3.77 3.12 2.29 3.85 3.39 2.83 2.53 3.77

Mmel
Tango 2.33 1.86 1.94 2.36 1.90 1.48 2.17 1.72

Mmbd
Bach 3.58 6.51 10.50 6.77 3.55 4.45 5.65 4.25

Mmbd
Beattles 4.90 4.24 12.17 10.13 5.63 4.72 3.90 5.38

Mmbd
Epirus 9.03 14.89 3.51 4.14 6.83 10.31 12.04 10.34

Mmbd
Medieval 6.10 13.05 3.77 3.93 4.57 7.72 10.82 7.15

Mmbd
Modal 4.44 11.53 10.35 6.48 3.47 6.18 9.70 5.63

Mmbd
Rembetika 3.79 4.80 10.59 6.80 3.92 4.11 4.32 4.20

Mmbd
Stravinsky 5.87 4.56 12.91 12.08 8.00 6.18 4.67 6.73

Mmbd
Tango 3.64 5.35 10.38 6.56 3.70 4.12 4.78 4.19

Table 4. Mean values of cross-entropies for all pairs of datasets, for all the combination of all probabilities, as well as in
isolation concerning previous bass motion, melody motion and bass-to-melody distance.

Along these lines, the question would be: are there more
diverse chord expressions regarding inversions and dou-
blings – regardless of which chords (GCTs) – in the chorales
of Bach, than in the modal chorales? The diversity in a dis-
crete probability distribution (like the ones displayed in the
examples of Table 2) is measured by the Shannon informa-
tion entropy [21] (SIE). The SIE reflects the diversity in
possibilities described by discrete probability distribution,
with higher SIE values indicating a more random distribu-
tion with more diverse / less expectable outcomes. There-
fore, by measuring the SIE values of all GCTs and com-
paring them for every pair of idioms, it can be concluded
whether some idioms have richer possibilities for the voic-
ing layouts of chords than others.

Table 5 exhibits the results of a test in the statistical
significance in differences between the SIE values in ev-
ery pair of idioms. The upper-diagonal elements concern
inversions, while lower-diagonal elements doublings. A
value of +1 indicates that the GCTs in the idiom of the row
are statistically significantly more diverse in their voicing
layout – according to the mean SIE values – than the ones
in the idiom of the column. A −1 value indicates the op-
posite, while a 0 value indicates no statistically significant

difference. The statistical significance is measured through
a two–sided Wilcoxon [23] rank sum test, which is applied
on the SIE values of all GCT voicing layout distributions
for every idiom. The statistical significance test in statistics
related to voice layout reveal that few datasets are signifi-
cantly superior or inferior regarding their diversity.

3.3 Example compositions

The proposed bass voice leading methodology was utilised
in an “off-line” mode to produce two examples. The term
“off-line” indicates the fact that the system was used to
generate a single description for the bass voice leading on a
given set of chords (in GCT representation [2] produced by
a probabilistic chord-generation model [10]). This means
that if no inversion of the predetermined chord can satisfy
the requirements of the bass voice leading, then the system
simply selected the most probable inversion of this chord,
regardless of the bass voice leading indication. The bass
voice for the generated examples was selected using the
argmax function mentioned in Section 2.4, which allows
the reflection of some typical idiom characteristics, even
though such an approach does not necessarily guaranty in-
terestingness [3] (since the most “expected” scenario is fol-
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SBach SBeattles SEpirus SMedieval SModal SRembetika SStravinsky STango

SBach 0 1 1 −1 1 1 1 1

SBeattles 0 0 0 −1 0 0 0 0

SEpirus 0 0 0 −1 0 0 0 0

SMedieval −1 −1 −1 0 1 1 1 1

SModal 0 0 0 1 0 1 1 0

SRembetika 0 −1 0 1 0 0 0 0

SStravinsky 0 0 1 0 1 1 0 0

STango 0 0 0 1 0 0 0 0

Table 5. Statistical significance of differences in the diversity of inversions (upper diagonal) and doublings (lower diago-
nal). Statistically significant superiority of diversity in the row dataset is exhibited with a +1, of the column dataset with
−1, while 0 indicates no statistical significance in diversity differences.

lowed). The intermediate voices where manually adjusted
by a music expert.

The presented examples (Figure 2) include two alterna-
tive harmonisations of a Bach Chorale melody with both
the chord generation and the bass voice leading systems
trained on sets of (a) the Bach Chorales and (b) polyphonic
songs from Epirus. In the case of the Bach chorale, the sys-
tem made erroneous bass voice assignments in the second
bar that create consecutive anti-parallel octaves between
the outer voices (due to the chord incompatibility problem
discussed above) 1 . The harmonisation in the style of the
polyphonic songs from Epirus indeed preserves an impor-
tant aspect of these pieces: the drone note.

(a) Bach Chorale style

(b) Polyphonic Epirus songs style

Figure 2. Harmonisation examples in two different styles.
Chord sequences in the GCT representation were previ-
ously produced by another probabilistic system.

4. CONCLUSIONS

This paper presented a modular methodology for determin-
ing the bass voice leading in automated melodic harmoni-
sation given a melody voice and a sequence of chords. In
this work it is assumed that harmony is not solely the ex-
pression of a chord sequence, but also of harmonic move-
ment for all voices that comprise the harmonisation. The
presented work focuses on generating the bass voice on a
given sequence of chords by utilising information from the

1 Another voice-leading issue occurs at the first beat of the 3rd bar,
where the D in the 2nd voice is introduced as unprepared accented disso-
nance. Note that the parenthesised pitches in the 3rd voice (bar 2) were
introduced manually (not by the system) to create imitation.

soprano /melody voice and other statistics that are related
to the layout of the chords, captured by different statisti-
cal modules. Specifically, a hidden Markov model (HMM)
is utilised to determine the most probable movement for
the bass voice (hidden states), by observing the soprano
movement (set of observations), while additional voicing
layout characteristics of the incorporated chords are con-
sidered that include distributions on the distance between
the bass and the melody voice and statistics regarding the
inversions and doublings of the chords in the given chord
sequence.

Experimental results evaluate that the learned statisti-
cal values from an idiom’s data are in most cases effi-
cient for capturing the idiom’s characteristics in compar-
ison to others. Additionally, similar tests were performed
for each statistical module of the model in isolation, a pro-
cess that revealed whether some characteristics of the ex-
amined idioms are more prominent than others. Further-
more, preliminary music examples indicate that the pro-
posed methodology indeed captures some of the most promi-
nent characteristics of the idioms it is being trained with,
despite the fact that further adjustments are required for its
application in melodic harmonisation.

5. ACKNOWLEDGEMENTS

This work is founded by the COINVENT project. The
project COINVENT acknowledges the financial support of
the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research
of the European Commission, under FET-Open grant num-
ber: 611553. The authors would like to thank Costas Tsougras
for his assistance in preparing the presented musical exam-
ples.

6. REFERENCES

[1] Moray Allan and Christopher K. I. Williams. Harmon-
ising chorales by probabilistic inference. In Advances
in Neural Information Processing Systems 17, pages
25–32. MIT Press, 2004.

[2] Emilios Cambouropoulos, Maximos Kaliakatsos-
Papakostas, and Costas Tsougras. An idiom-
independent representation of chords for compu-

328 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



tational music analysis and generation. In Proceeding
of the joint 11th Sound and Music Computing Confer-
ence (SMC) and 40th International Computer Music
Conference (ICMC), ICMC–SMC 2014, 2014.

[3] Tom Collins. Improved methods for pattern discovery
in music, with applications in automated stylistic com-
position. PhD thesis, The Open University, 2011.

[4] Patrick Donnelly and John Sheppard. Evolving four-
part harmony using genetic algorithms. In Proceed-
ings of the 2011 International Conference on Applica-
tions of Evolutionary Computation - Volume Part II,
EvoApplications’11, pages 273–282, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[5] Kemal Ebcioglu. An expert system for harmonizing
four-part chorales. Computer Music Journal, 12(3):43–
51, 1988.

[6] David Huron. Voice denumerability in polyphonic mu-
sic of homogeneous timbres. Music Perception, pages
361–382, 1989.

[7] Michael I. Jordan, Zoubin Ghahramani, and
Lawrence K. Saul. Hidden markov decision trees.
In Michael Mozer, Michael I. Jordan, and Thomas
Petsche, editors, NIPS, pages 501–507. MIT Press,
1996.

[8] Dan Jurafsky and James H. Martin. Speech and lan-
guage processing. Prentice Hall, New Jersey, USA,
2000.

[9] M. Kaliakatsos-Papakostas, A. Katsiavalos,
C. Tsougras, and E. Cambouropoulos. Harmony
in the polyphonic songs of epirus: Representation,
statistical analysis and generation. In 4th International
Workshop on Folk Music Analysis (FMA) 2014, June
2011.

[10] Maximos Kaliakatsos-Papakostas and Emilios Cam-
bouropoulos. Probabilistic harmonisation with fixed
intermediate chord constraints. In Proceeding of the
joint 11th Sound and Music Computing Conference
(SMC) and 40th International Computer Music Con-
ference (ICMC), ICMC–SMC 2014, 2014.

[11] Kostas Liolis. To Epirótiko Polyphonikó Tragoúdi
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ABSTRACT

This article presents a novel iterative algorithm based on
Non-negative Matrix Factorisation (NMF) that is partic-
ularly well suited to the task of automatic music tran-
scription (AMT). Compared with previous NMF based
techniques, this one does not aim at factorizing the time-
frequency representation of the entire musical signal into a
combination of the possible set of notes. Instead, the pro-
posed algorithm proceeds iteratively by initially decom-
posing a part of the time-frequency representation into a
combination of a small subset of all possible notes then re-
investing this information in the following step involving a
large subset of notes. Specifically, starting with the lowest
octave of notes that is of interest, each iteration increases
the set of notes under consideration by an octave. The res-
olution of a lower dimensionality problem used to properly
initialize matrices for a more complex problem, results in
a gain of some percent in the transcription accuracy.

1. INTRODUCTION

The term Automatic Music Transcription (AMT) refers to
the task of designing a system that automatically trans-
poses an acoustic signal into a written format that can be
read by a musician e.g. sheet music. In Western music, the
basic unit of this transposition is the note, which is partly
defined by its duration and its pitch. When more than one
note can occur at the same time, the music is said to be
polyphonic. Further, each instrument has its own harmonic
pattern that is time-dependent for each of its notes. Indeed,
the spectral content during the onset part of a note is differ-
ent from the one during the sustain or fading parts. AMT
of polyphonic musics amounts to tracking the fundamental
frequencies among a mixture of musical events with pos-
sibly overlapping harmonics. Many approaches have been
proposed but the results are still unsatisfactory compared
to what can be achieved by a human expert [5]. Lately,
techniques like NMF [17] [16] [7] and Probabilistic Latent

c© Anis Khlif, Vidhyasaharan Sethu.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Anis Khlif, Vidhyasaharan Sethu.
“An Iterative Multi Range Non-Negative Matrix Factorization algorithm
for polyphonic music transcription”, 16th International Society for Music
Information Retrieval Conference, 2015.

Component Analysis (PLCA) [4] [18] have gained great
interest since they have proved very efficient in bringing
forward the underlying structure of musical data. Both are
conceptually linked and have been shown equivalent un-
der certain formulations [8]. They provide a framework
under which the transcription can be formulated as a cost-
function minimization problem, which are deeply studied
problems and many algorithms exist to solve them. How-
ever, these algorithms (such as gradient descent, expecta-
tion maximization, alternating least-squares, etc...) suffer
from major flaws. They offer no guarantees of finding a
global minimum (if any) in general, and can easily get
stuck in local ones. On top of this, they are highly sensitive
to initial conditions and an improper initialization can lead
to bad results [6] [1]. These issues are great liabilities for
AMT because the intricate nature of harmonically related
sounds results in the existence of many local minima which
in turn increases the chance of an incorrect transcription.

In this paper we present an NMF-based algorithm tai-
lored for the task of AMT, showing increased robustness
with respect to the issues of finding proper initialization
parameters and avoiding irrelevant local minima.

2. THE NMF FRAMEWORK

2.1 General overview

The different steps of the algorithm are presented in Fig-
ure 1. First, the time-frequency representation of the sig-
nal (spectrogram) is computed by applying a Constant Q
Transform (CQT) on successive time windows. Then the
proposed IMRNMF algorithm is applied to the spectro-
gram to produce a matrix representing the activation of
each note accross time. This matrix is then post-processed
to extract chunks representing potential notes which are
then weighted before being truly acknowledged as a note
and transcribed.

NMF aims at representing a non-negative signal as an
additive synthesis of events taken from a finite dictionary.
The original signal is then represented by the activation at
each time of a subset of these events. If the signal lends
itself to such description, the decomposition will likely be
meaningful in the sense that it will bring out some of the
underlying structure. In the case of AMT, the decompo-
sition of the music into events that can be assimilated to
notes, would be most desirable. A time-frequency repre-
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Figure 1: Overall algorithm.

sentation, like the spectrogram (which is a matrix contain-
ing the amplitude spectrum for a sequence of time win-
dows) is an example of additive data where the sources
would be constituted by the amplitude spectra of the dif-
ferent notes composing it. As mentioned, we will con-
sider that the time-frequency representation is obtained via
a CQT, which allows all frequencies of interest for all notes
to be contained in the same number of frequency bins (in
the time frequency representation) regardless of the octave
or the note unlike the standard Discrete Fourier Transform.

More formally, given the spectrogram Y ∈ RN×T
+ , where

N is the number of frequency bins and T the number of
temporal frames, and given K ≤ N,T ; find W ∈ RN×K

+

the spectral dictionary matrix, and H ∈ RK×T
+ such that

Y ≈WH (1)

Where, Y denotes the spectrogram obtained from the
CQT, and which is decomposed into weighted sums of a
finite set of notes whose spectra constitute the columns of
W.

This decomposition does not have an exact solution and
consequently the typical approach is to find a solution that
minimises a suitable cost function, CY (W,H) with the con-
strainsts that the elements of W and H are positive. Histor-
ically, as introduced by Paatero [15] the canonical norm
of the matrices difference: ‖Y − WH‖ was taken as a
cost function. Incidently, a factorization is inherently de-
pendent on the cost function used to weight the reconsti-
tution. As a result, the choice of a relevant cost function
to increase the accuracy of the decomposition has been
largely studied and yielded significant increases in the re-
sults. In the next section we review some of the key prin-
ciples driving current efforts to enhance the transcription
through NMF related techniques.

2.2 Achieving a good factorization

The best factorization we could hope for, would express Y
as the activation of spectral templates that correspond ex-
actly to the ones of the notes present in the excerpt. That
implies especially, that no existing note be expressed as the

sum of two or more elements (columns) of the dictionary
W, (no false detection), or that no combination of two or
more notes be expressed by a single element (no deletion).
Such issues are referred to as cross-row talk. A common
response to cross-row talk is to try to increase the sparsity
of the decomposition matrices, and especially the columns
of H . (A vector is said to be sparse when most of its ele-
ments are zeros). The energy is concentrated in a few units
which are used to represent typical data vectors. Having
a control over sparsity provides more robustness in ”real-
life” situations where the number of sources is not known
by advance and a higher rank than needed is fixed for the
decomposition matrix.

Controlling the sparsity is mainly achieved by choosing
a suitable cost function CY and estimation methods that
allow desirable properties to be enforced onW andH . Al-
though, the task of finding a minimum for CY is not easy
since the problem is often ill-posed, the reformulation of
the factorization problem in terms of approaches such as
Convex Quadratic Programming [7] [19] [11] provides el-
egant frameworks to naturally introduce new cost functions
(with regularization parameters), or enforce relevant con-
straints on W and H .

The control over sparsity can be explicit. In [12], Hoyer
develops algorithm to enforce constant predefined sparsi-
ties sw, sh over W and H . Such conditions are not real-
istic in real-life situations for audio data since the degree
of polyphony can evolve throughout the excerpt. In [11],
Heiler and Schnörr, give a formulation of the factorization
as a second order cone programming problem, enabling
them to enforce only boundary conditions on the sparsi-
ties. In [1], an adaptation of the ALS algorithm called
Alternating Hoyer-Constrained Least Squares is proposed.
However, this way of enforcing sparsity is often too re-
strictive in the case of musical data where the degree of
polyphony is free to evolve during time, on top of the fact
that we do not have prior knowledge on it. Consequently,
we would prefer a softer, implicit control over sparsity. In
such cases, it is often achieved through cost functions that
are expressed in a form where the variation of a parameter
provides an input to indirectly affect sparsity. In [7] the
cost function is defined by

Cy =
1

2
‖Y −WH‖22 + λ1‖H‖1 +

λ2
2
‖H‖22 (2)

The coefficient λ1 weights the importance given to sparse
vectors against a good reconstitution, and λ2 is a Tikhonov
regularization parameter. Other successful approaches have
considered a class of divergences called β-divergences as
cost functions [10], which were successfully applied to
AMT in [7]. dβ(Y |W,H) is defined by:

dβ(Y |W,H) =





Y ⊗ log Y
WH − Y +WH β = 1

Y
WH − log Y

WH − 1 β = 0
1

β(β−1) (Y
β + (β − 1)(WH)

β − βY ⊗ (WH)
β−1

) else

(3)

Where the divisions, the logarithm and the powers have
to be understood element-wise,⊗ is the element-wise prod-
uct, and 1 the matrix containing only ones. The choice
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of β provides an indirect control over sparsity. It can be
noted that in the case of β = 2 it reduces to the Euclidean
distance, and in the case β = 1 to the KL-div KL diver-
gence, which has been found to promote sparsity [17]. The
minimization of both those cost functions can be achieved
through multiplicative update rules given in [10] and [7].
This is the cost function which has been adopted in the
proposed method.

Finally, all the algorithms mentioned are highly sensi-
tive to initial conditions and perform poorly when dimen-
sion and the density of local minima increase. In the case
of AMT, initializing the spectral dictionary matrix W so
that the elements (columns) are structurally relevant, im-
proves the factorization a great deal. In [16], the columns
of W are initialized with one for each note at harmonic
positions and zeros elsewhere. It makes W relevant for
the transcription and straightforward to associate to a note.
While it is not too difficult to see how W can be intitial-
ized, it is much less obvious for H .

In the next section, we present a versatile algorithm to
perform the factorization which can be used with any up-
date rules, enhances the sparsity and gives element of an-
swer as to how initializeH leading to increased robustness.

3. THE PROPOSED FACTORIZATION
ALGORITHM

3.1 Principle

The proposed algorithm performs an iterative factorization
of the spectrogram by initially starting with a single oc-
tave of notes prior to incrementing it by an octave in each
subsequent iteration. The algorithms performs by starting
from the lowest octave, and by including one higher oc-
tave at each step until the whole range of note is covered.
Let S = {n0, ..., nK−1} ∈ NK be an interval of integers
containing the midi notes considered. The i-th range is the
subset of S defined by ri = {n0, ..., n12i−1}.

Figure 2: Cutting of the midi scale in ranges.

Only considering the notes lying in this range comes
down to focusing on subregions, in terms of frequency and
notes, of the decomposition matrices defined as follows.

Y (i) ≈W (i)H(i) (4)

with:
Y (i) = Y[lb,ui

b],• (5)

W (i) =W[lb,ui
b],[ls,u

i
s]

(6)

The columns of W and the rows of H , indexed by the
sources, are restricted to the subset {ls, ..., uis} where ls
denotes the source of the lower note and uis the source
of the higher note of the i-th range. We have the follow-
ing equalities: ls = n0 and uis = n12i−1. The rows of
W and Y representing the frequency bins are restricted to
the subregion {lb, ..., uib} where lb designs the lower fre-
quency bin associated with the fundamental frequency of
the lower note in the range, and uib the upper bound for the
frequency bins associated with the fundamental frequency
of the higher note in the i-th range. As previously men-
tioned, the spectrogram is computed with a CQT, therefore
we can note that the semitone resolution, b, i.e., the number
of bins associated with a single semitone is a constant. The
superscript (i) denotes the restriction of a matrix to the i-th
range. With this notation, we can express the boundaries
as: lb = b(n0−1)+1 and uib = b(n12i−1). All the tempo-
ral frames are considered at each step of the factorization,
this is noted •.

As it has been said, any multiplicative update rule can
be used with this approach. Specifically, in the work re-
ported in this paper, the update rules (8) and (9) for the
KL divergence are applied as follows to H(i) and the sub-
matrix W (i).

H(i) ← H(i) ⊗
tW (i)(Y (i) ⊗ (W (i)H(i)).β−2)

tW (i)(W (i)H(i)).β−1
(7)

W (i) ←W (i) ⊗ (Y (i) ⊗ (W (i)H(i)).β−2)tH(i)

(W (i)H(i)).β−1tH(i)
(8)

Then H(i+1) is initialized as follows (see 3):




H
(i+1)
[ls,ui

s],•
= H(i)

H
(i+1)

[ui
s,u

i+1
s ],• = random positive matrix

(9)

Figure 3: Initialization of H(i+1) from H(i).

Figures depicting the evolution of the activation matrix
throughout the different steps are shown in section 5.

3.2 Motivation and advantages

This method has been designed as a way to compensate
for some of the weaknesses of NMF applied to AMT, prin-
cipally being having to use more potential sources than
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strictly necessary in the decomposition (which can cause
confusion in the factorization, hence the necessity of en-
forcing sparsity), and the high spectral similarity between
certain combination of harmonically related notes, which
added to the high number of sources is likely to increase
the probability of falling into a local minimum. Starting
from the lowest octave, helps secure a sound bass-line and
avoid confusing notes with weak fundamental with their
upper octave counterpart (octave problem); as it is likely to
happen in the usual implementation since low notes often
have a weak fundamental. Incrementing the set of notes by
a single octave is also a step in this direction, in order to
limit as much as possible the risks of mistaking a note for
one of its harmonically related counterparts. Beside, lim-
iting the number of sources reduces the dimension of the
problem and heuristically, the risks of falling into a local
minimum. Re-investing knowledge in the next steps of the
factorization helps converge toward a better minimum by
ensuring convergence on growing subspaces, where confu-
sion is less likely. The resulting activation matrix is much
sparser, and much easier to post-process because of the
more distinct activation peaks.

An additional advantage of the proposed method is that
it allows for different treatments on the parts of the spectro-
gram that are factorized. For instance, it allows for the defi-
nition of octave-based tolerance thresholds in terms of am-
plitude or spatial repartition (peaks with a maximum value
under a threshold or ranging on less than a given number
of frames will be discarded). Various works in the fields
of psychoacoustics and acoustic signal processing showed
that such treatment is of the utmost importance in order to
reliably weight and perform competitive selection between
acoustic events distributed across a large frequency span
and with different amplitudes [13] [20] [14].

4. BACK-END TRANSCRIPTION

The back-end transcription limits itself to the mere detec-
tion of activation events in H , since the initialization of W
made straightforward the association between events and
notes. H having previously been normalized we applied
a threshold-based onset detection, allowing to debit acti-
vation matrix rows into chunks that can further along be
weighted and sieved before being labelled as note. Those
chunks are bits of the activation matrix defined by: the midi
note (the row number), the onset time and the offset time.
The computation of the onsets is performed by applying an
adaptive thresholding on the first order differential vector
of each row of H as suggested in [2]. The thresholding
value is based on the mean of the half-wave rectified first
order differential signal on the 100 neighbouring frames.
The onset is defined as the first frame for which the am-
plitude is superior than 0.2 times the thresholding value (it
has experimentally been found as a good value).

A score on the chunks was defined in order to perform
a post-selection of the chunk and screen out the ones that
are very likely false positives. This cost function is based
on features of the chunks considered as indicators of the

probability of this chunk to represent a true positive. This
features are: the length of the chunk l, the maximum value
of the amplitude within this chunk m, the value of the first
order differential of the signal at the onset time (represent-
ing the steepness of the onset) d, and the energy of the
signal e within the chunk against the cumulated energy of
the signal of lower harmonics during the same time range
el. The score of a chunk is defined as:

S = (1− exp(
−l
c1

))(1− exp(
−m
c2

))

(1− exp(
−d
c3

))(1− exp(
−e
c1el

)) (10)

where c1, c2, c3, and c4 are arbitrary constants. For the
tests we used (c1, c2, c3, c4) = (8, 0.1, 0.03, 0.66) and only
chunks with a score higher than 0.2 were kept. These
values were experimentally determined as reasonable and
were kept fixed for the totality of our test. No music-
specific fine-tuning was performed.

5. EXPERIMENTAL RESULTS

Tests were performed on the MAPS ENSTDkCl
database [9] which is composed exclusively of piano
recordings with a wide variety of polyphony, genre,
tempo, and rhythm. The set of notes taken into account
ranges between the midi notes 21 and 108. The spectro-
gram is computed by a CQT algorithm with sixty bins
per octave to be robust to frequency shifts around the
theoretical peak position. beta divergence cost function,
with β = 1 (KL-divergence) was chosen for all matrix
factorisations. The matrix W is kept fixed during the step-
by-step factorization then, an additional standard NMF is
performed with initialization from previous results. Our
Iterative Multi Range Non-negative Matrix Factorization
(IMRNMF) system is compared against an NMF-based
system without the range-by-range factorization but the
same back-end transcription algorithm; and the winning
algorithm of the MIREX 2013 competition in Multi-F0
note tracking and Multi-F0 note estimation based on
Shift Invariant Probabilistic Latent Component Analysis
(SI PLCA) [3]. The matrix W is initialized offline using
the array provided with the SI PLCA source code which
consists of pre-extracted and pre-shifted spectral templates
for various instruments. An onset-based metric is used
with a 50 ms tolerance.

The transcription is performed on the first 30 seconds
of each track in the database. The thresholding and weigh-
ing constants used in the back-end transcription as well as
in the IMRNMF are kept fixed during the whole test in-
dependently of the extract being processed, and even bet-
ter results can be achieved with a case-by-case fine tun-
ing of these constants, based on parameters such as genre
and tempo. Below are shown illustrative examples of the
evolution of the activation matrix on the MAPS MUS-
schu 143 3 ENSTDkCl track.
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Method Accuracy F-measure
NMF 0.38 0.55

SI PLCA 0.37 0.53
IMRNMF 0.52 0.69

Table 1: Comparative results on the MAPS ENSTDkCl
database.

Figure 4: H(2) after the first 2 steps

Figure 5: H(4) after the first 4 steps

Figure 6: H(6) after the first 6 steps

Figure 7: Final output of the factorization

Figure 8: H obtained with SI PLCA

Figure 9: Backend transcription output

6. CONCLUSION AND FUTURE WORK

A novel Iterative Multi-Range Non-negative Matrix
Factorisation (IMRNMF) based algorithm for automatic
music transcription is presented in this paper. At the
cost of increased computational requirements, though
still perfectly accessible, the proposed system leads to
an increase in transcription accuracy compared to the
top-performing existing algorithms. This increase may be
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better explained by the increased sparsity of the activation
matrix. The improved sparsity is most likely due to the
proposed algorithm finding better local minima to the cost
function when compared to the traditional NMF. While
a number of parameters in the proposed systems are em-
pirically determined at this stage (thresholding constants,
weighting parameters, chunk-wise cost function in the
final decision process...), a more data-driven approach to
estimating them may lead to even better performance and
will be addressed in future work.
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ABSTRACT

Speech recognition in singing is a task that has not been
widely researched so far. Singing possesses several charac-
teristics that differentiate it from speech. Therefore, algo-
rithms and models that were developed for speech usually
perform worse on singing.
One of the bottlenecks in many algorithms is the recogni-
tion of phonemes in singing. We noticed that this reco-
gnition step can be improved when using singing data in
model training, but to our knowledge, there are no large
datasets of singing data annotated with phonemes. Howe-
ver, such data does exist for speech.
We therefore propose to make phoneme recognition mo-
dels more robust for singing by training them on speech
data that has artificially been made more “song-like”. We
test two main modifications on speech data: Time stret-
ching and pitch shifting. Artificial vibrato is also tested.
We then evaluate models trained on different combinations
of these modified speech recordings. The utilized mode-
ling algorithms are Neural Networks and Deep Belief Net-
works.

1. INTRODUCTION

Automatic speech recognition has been a field of research
for more than 30 years now and encompasses a large va-
riety of research topics. However, speech recognition al-
gorithms have so far only rarely been adapted to singing.
One of the reasons for this seems to be that most of these
tasks get harder when using singing because singing data
has different characteristics, which are also often more va-
ried than in pure speech [13]. For example, the typical
fundamental frequency for women in speech is between
165 and 200Hz, while in singing it can reach more than
1000Hz. Other differences include harmonics, durations,
pronunciation, and vibrato.
Speech recognition in singing has many interesting prac-
tical applications, such as automatic lyrics-to-music ali-
gnment, keyword spotting in songs, language identification
of musical pieces or even full lyrics transcription.
A first step in many of these tasks is the recognition of

c© Anna M. Kruspe.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Anna M. Kruspe. “Training phoneme
models for singing with “songified” speech data”, 16th International So-
ciety for Music Information Retrieval Conference, 2015.

phonemes in the audio recording. We showed in [12]
that phoneme recognition tends to act as a bottleneck in
tasks such as language identification and keyword spot-
ting in singing. Other publications also demonstrate that
phoneme recognition on singing is more difficult than on
speech [15] [6] [13]. This is further compounded by the
models which have usually been trained on pure speech
data.
As shown on a small scale in [6] and [12], recognition gets
better when singing is used as part of the training data. The
big problem with this is the lack of phoneme-annotated sin-
ging data sets.
When there is a scarcity of suitable training data, attempts
are often made to generate such data artificially. For exam-
ple, this is often done when models for noisy speech are
required [11] [7]. In this paper, we therefore propose to
make existing speech data sets more “song-like” and use
these modified datasets to train models for phoneme reco-
gnition in singing. We test this procedure with the com-
monly used TIMIT speech dataset [10] and train Neural
Networks (NNs) and Deep Belief Networks (DBNs) on
modified versions of it. We then test the models’ perfor-
mances on an unaccompanied singing dataset and on the
test section of TIMIT.
This paper is structured as follows: We first give an intro-
duction to the state of the art in section 2 and describe the
datasets in section 3. We then present our new approach
in section 4. Section 5 contains our experiments and their
results. Finally, we give a conclusion in section 6 and sug-
gest future work in section 7.

2. STATE OF THE ART

As described in [13] and in [12], there are significant diffe-
rences between speech and singing data, such as pitch and
harmonics, vibrato, phoneme durations and pronunciation.
This makes phoneme recognition on singing harder than
on speech.
Several approaches to this task have been published. In [5],
Gruhne et al. describe a classical approach that employs
feature extraction and various machine learning algorithms
to classify singing into 15 phoneme classes. It also inclu-
des a step that removes non-harmonic components from
the signal. The best result of 58% correctly classified fra-
mes is achieved with Support Vector Machine (SVM) clas-
sifiers. The approach is expanded upon in [17].
Fujihara et al. describe an approach using Probabilistic
Spectral Templates to model phonemes in [4]. The pho-
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neme models are gender-specific and only model five vo-
wels, but also work for singing with instrumental accompa-
niment. The best result is 65% correctly classified frames.
Mesaros presented a complex approach that is based
on Hidden Markov Models which are trained on Mel-
Frequency Cepstral Coefficients (MFCCs) and then adap-
ted to singing using three phoneme classes separately [15]
[14]. The approach also employs language modeling and
has options for vocal separation and gender and voice ad-
aptation. The achieved phoneme recognition rate (accu-
racy) on unaccompanied singing is −6.4% without adap-
tation and 20% with singing adaptation using 40 phonemes
(the negative value is equivalent to a Levenshtein distance
of 1.064, which means that there were more insertion, de-
letion, or substitution errors than phoneme instances). The
results also improve when using gender-specific adaptation
(to an average of 18.75%) and even more when language
modeling is included (to 33.4%).
Finally, Hansen presents a system in [6] which combi-
nes the results of two Multilayer Perceptrons (MLPs), one
using MFCC features and one using TRAP (Temporal Pat-
tern) features. Training is done with a small amount of
singing data. Viterbi decoding is then performed on these
posterior probabilities. On a set of 27 phonemes, this ap-
proach achieves a recall of up to 48%.
It should be obvious from this overview that comparing
these approaches is not easily possible. Each one uses
a different dataset, a different phoneme set, and different
evaluation measures.

3. DATASETS

3.1 Speech data

For training our phoneme recognition models, we used the
well-known TIMIT speech dataset [10]. Its training sec-
tion consists of 4620 phoneme-annotated English utteran-
ces spoken by native speakers. Each utterance is a few
seconds long.
The test section of TIMIT contains similar 1680 similarly
phoneme-annotated utterances. We used it to test the ge-
neral performance of our models.

3.2 Singing data

To test the performance on singing data, we used the data
set previously presented in [6] and [12]. It consists of the
vocal tracks of 19 commercial pop songs in studio quality.
We use unaccompanied singing to avoid a possible source
of interference. They do not contain background music,
but have been post-processed (e.g. EQ, compression,
reverb). Some of them contain choir singing. Of these
19 songs, 12 were annotated with time-aligned phonemes
and could therefore be used for our phoneme recogni-
tion experiments. We split these 12 songs into 562 clips,
each of which roughly represents a line of the songs’ lyrics.

4. PROPOSED APPROACH

An overview of our approach is shown in figure 1. We first
generate five variants of the TIMIT speech dataset (training
set). MFCC features are then extracted from these new da-
tasets and used to train two models per dataset: A Neural
Network and a Deep Belief Network.
Similarly, MFCCs are extracted from the TIMIT Test set
and from the singing dataset. The ten previously trained
models are used to recognize phonemes on these test da-
tasets. Viterbi decoding can then be used to generate pho-
neme sequences. Finally, the results are evaluated.

4.1 Training data modifications

In order to make the training data more “song-like”, we
developed several variants of this dataset. Table 1 shows
an overview over the five datasets generated from TIMIT
using three modifications. DatasetN is the original TIMIT
training set. For dataset P , four of the eight blocks of TI-
MIT were pitch-shifted. For dataset T , five blocks were
time-stretched and vibrato was applied to two of them. In
dataset TP , the same is done, except with additional pitch-
shifting. Finally, dataset M contains a mix of these modi-
fied blocks.
In detail, the modifications were performed in the follo-
wing way:

Time stretching For time stretching, we used the phase
vocoder from [3], which is an implementation of
the Flanagan/Dolson phase vocoder [9] [2]. This
algorithm works by first performing a Short-Time
Fourier Transform (STFT) on the signal and then
resampling the frames to a different duration and
performing the inverse Fourier transform.
As demonstrated in [12], time variations in singing
are mainly performed on vowels and are often much
longer than in speech. We therefore used the TI-
MIT annotations to only pick out the vowel seg-
ments from the utterances. They were modified ran-
domly to a duration between 5 and 100 times the
original duration and then re-inserted into the ut-
terance. This effectively leads to more vowel frames
in the training data, but since there is already a large
amount of instances for each phoneme in the origi-
nal training data, the effects of this imbalance should
be negligible.

Pitch shifting To pitch-shift the signal, we used code
from the freely available Matlab tool AutoTune Toy
[1] which also implements a phase vocoder. In this
case, the fundamental frequency is first detected au-
tomatically. The signal is then stretched or expanded
to obtain the new pitch and interpolated to retain the
original duration.
Using the TIMIT annotations, we split the utterance
up into individual words, then generate a pitch-
shifted version of each word and concatenate the re-
sults. Pitches are randomly selected from a range
between 60% and 120% of the original pitch.
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Figure 1: Overview of our phoneme recognition system

N P T TP M
DR1 N N N N N
DR2 N N N N N
DR3 N N N N P
DR4 N N T TP TV
DR5 N P T TP TPV
DR6 N P T TP TV
DR7 N P TV TPV P
DR8 N P TV TPV TPV

Table 1: The five TIMIT variants that were used for trai-
ning (rows are TIMIT blocks, columns are the five data-
sets). Symbols: N - Unmodified; P - Pitch-shifted; T -
Time-stretched; V - Vibrato

Vibrato The code for vibrato generation was also taken
from AutoTune Toy. It functions by generating a sine
curve and using this as the trajectory for the pitch
shifting algorithm mentioned above. We used a sine
of amplitude 0.2 and frequency 6Hz.
In singing, vibrato is commonly done on long so-
unds, which are usually vowels. Since spoken vo-
wels are usually very short, vibrato cannot be per-
ceived on them very well. We therefore only applied
vibrato when time stretching was also applied. Vi-
brato was then added to the extracted and stretched
vowels.

4.2 Models

Using the generated data, we trained models using two
machine learning algorithms: Classical Neural Networks
(NNs) and Deep Belief Networks (DBNs). Both were im-

plemented using the Theano framework for Python 1 . In
both cases, we first extracted Mel-Frequency Cepstral Co-
efficients (MFCCs) and retainen the first 13 plus their del-
tas and double-deltas as features. We also expanded the
training data to use 9 context frames. The output layer re-
presents the 39 phonemes of the CMU Sphinx phoneme
set 2 . To make the training more exact, these phonemes
were split into triphones, making the dimension of the out-
put layer 117.
Our first models are traditional Neural Networks with two
layers of 200 units each.
In recent publications, DBNs have been used very success-
fully for phoneme recognition (e.g. [16]). We therefore
also trained DBNs on the speech data. We chose an archi-
tecture with three hidden layers and 300 units each. The
first hidden layer is a Gaussian RBM.
Both models are used to generate posterior phoneme pro-
babilities. The results for the triphone states of each pho-
neme are summed up into one probability for the phoneme.
We then run a simple Viterbi decoding on these posteriors
to generate phoneme sequences. In this decoding, all pho-
nemes have equal transition probabilities, only the inser-
tion penalty is variable (i.e., the transition probability to
another phone). No language models are employed. We
keep this post-processing simple on purpose so that the re-
sults of the various models are easily comparable.

4.3 Evaluation measures

As described in section 2, there is no single common eva-
luation measure for phoneme recognition in singing. We
decided to compare our results using three measures:

1 http://www.deeplearning.org, last checked 04/29/15
2 http://cmusphinx.sourceforge.net/, last checked

04/29/15
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Percentage of correct frames This measure describes
the percentage of correctly classified frames. Cor-
rect in this case means that the exact phoneme was
chosen for this frame during Viterbi decoding. A si-
milar measure was used by Fujihara [4] and Gruhne
[5].

Phoneme error rate This is the most commonly used
evaluation measure in phoneme recognition for
speech. It is equal to the Levenshtein distance nor-
malized by the length of the ground truth phoneme
sequence:

PER =
D + I + S

N
(1)

where D are deletions, I are insertions, and S are
substitutions of phonemes and N is the length of the
sequence.
The accuracy measure used by Mesaros [15] [14] is
the same as 1− PER.

Weighted phoneme error rate Mesaros also uses a mea-
sure called correct which ignores insertions. This
makes sense if we assume that the phoneme results
are used afterwards by an algorithm that is tolerant
to insertions. We decided to go one step further and
assume that if algorithms are tolerant to insertions,
they can also be somewhat tolerant to deletions. For
cases like this, Hunt suggested a weighted error rate
that punishes insertions and deletions less heavily
than substitutions [8]:

PERHunt =
0.5D + 0.5I + S

N
(2)

5. EXPERIMENTS

We performed our experiments by training a set of models
on all five TIMIT variants where all other parameters were
left equal. We then classified two sets of data with these
models: The unmodified “Test” part of the TIMIT speech
dataset (which was not used in training) and our singing
dataset. On these phoneme posterior probabilities, we ran
the described simple Viterbi algorithm. The insertion pen-
alty was optimized to generate phoneme strings who were
closest in length to the ground truth phoneme strings. The
three evaluation measures described in 4.3 were then cal-
culated on the result of the Viterbi decoder.
We tested two machine learning algorithms: Neural Net-
works and Deep Belief Networks.

5.1 Neural Network models

Figure 2 shows the results of the Neural Network models.
As figure 2a demonstrates, results for singing are generally
worse than for speech. The base result for singing is a per-
centage of correct frames of 14.9% (model trained on the
original TIMIT dataset which is denoted as N here). When
comparing the models trained on the various TIMIT mo-
difications, a slight improvement is observed for the T and
M variants. For the T dataset, which includes randomly
time-stretched vowels, the result improves to 15.4%. This

is a very small improvement, but it is still interesting to
note. In contrast, none of the modifications improved the
result on the speech data at all. The base result here is 30%.
(It should be noted that much higher figures can be found
in literature, but we have not yet tested improvements like
language models or adaptations. Our focus for now was to
compare the different TIMIT modifications).
When looking at the phoneme error rate in figure 2b ins-
tead of the pure frame accuracy, the results become more
visible. The base phoneme error rate for singing is 1.16,
but falls to 1.07 for the TP and M modifications. For
speech, it rises from 0.6 to 0.68 (TP) and 0.66 (M) instead.
The P and T modifications form a middle ground here. The
P variant (randomly pitch-shifted words) does not change
the results very much in either direction: It decreases the
error rate on singing by 0.03 and increases it on speech
by less than 0.01. The T variant (randomly time-stretched
vowels) decrease the error on singing by just 0.02, but in-
crease it on singing by 0.07.
If we weight insertions and deletions lower than modifica-
tions, the phoneme error rates decrease generally (see fi-
gure 2c). The described effects are still active when using
this evaluation measure. The error rate falls from 0.88 to
0.83 on singing, and rises from 0.48 to 0.54 on speech.
The tendency for P and T is similar here.

5.2 Deep Belief Network models

Figure 3 shows the same evaluation measures for the Deep
Belief Networks. In general, the results are better and the
effect of the various training sets is similar, but more pro-
nounced.
The base percentage of correct frames is 14% here and ri-
ses to 19% when training on the randomly timed dataset T.
On speech data, the best result is 38% for models trained
on the original TIMIT data and falls for all other variants.
The phoneme error rate falls from 1 to 0.91 on the singing
data. Again, the results are best when the models are trai-
ned on the TP or M datasets, with the model trained on T
performing just slightly worse. The lowest error rate on
speech is 0.41 with the N model.
The weighted phoneme error rate sinks from 0.77 to 0.71
on the singing data.

5.3 Confusion of Deep Belief Networks

After evaluating the general performance of the Deep Be-
lief Networks, we examined the results in detail. As an
example, table 2 shows the phoneme-wise results for the
singing data. The first two columns lists the frame-wise
precisions and recalls when using the N model, the two
columns after that show the same values for the M model,
and the last column lists the three phonemes with which
the concerned phoneme is confused most frequently when
using the M model (except sil). This leads to several in-
teresting discoveries.
It turns out that the precisions of long vowels such as aa,
iy, or oy improve when using the M model for recogni-
tion, but some consonant accuracies become worse. This
makes sense since the M modifications place an emphasis
on vowels by randomly stretching them. The consonant
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(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 2: Evaluation measures for the results obtained with Neural Network models on singing data (Acap) and on speech
data (Timit). The models were trained with the five different Timit variants (different colors).

(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 3: Evaluation measures for the results obtained with Deep Belief Network models on singing data (Acap) and on
speech data (Timit). The models were trained with the five different Timit variants (different colors).

results may become worse because the training data also
contains randomly pitch-shifted versions, which may not
be a natural modification (this can be verified by looking
at the results of the T model). Consonants generally seem
harder to recognize since they are shorter than vowels and,
for the most part, are less static over their duration. Some
very bad consonant results can also be explained because
they occur very rarely in the singing dataset (e.g. zh, oy).
The most frequent confusion for most phonemes occurs
with the sil state, which serves as the general “non-pho-
neme” state. This confusion is not displayed here.
Consonants are often confused with similar consonants
(e.g. m/n) or with softer consonants that can be extended
over a longer duration (e.g. s, f). This may be related
to singing technique. However, they are also frequently
confused with some vowels, particularly uh and iy. This
might be caused by slight timing inaccuracies in the trai-
ning annotations which become exaggerated by the time-
stretching, or even by some merging of neighboring pho-
nemes by the speaker.
Longer vowels are almost exclusively confused with other
long vowels. This poses a contrast to speech, where they
are usually confused with similar short vowels (e.g. aa→
ah).
This becomes more conclusive when considering the con-
fusions of short vowels. In the singing data, short vowels
are very often confused with similar long vowels (e.g. eh
→ ae). When stretching out such short vowels in singing,
singers will automatically change to such a longer vowel.
Additionally, some vowels are confused with more “open”
vowels (e.g. ey → ae). This is also caused by singing
technique. These two very interesting effects could be ex-

ploited to improve phoneme recognition on singing in the
future.

6. CONCLUSION

In this paper, we evaluated phoneme models trained on va-
rious artificially “songified” variants of the TIMIT speech
dataset. The reason for this is the lack of phoneme-
annotated singing datasets. We generated five such vari-
ants by randomly time-stretching vowels, randomly pitch-
shifting words, and by adding vibrato to long vowels.
MFCC features were extracted from these datasets and
then used to train two models each: A Neural Network and
a Deep Belief Network. We then used these models to re-
cognize phonemes in singing data and in unrelated speech
data. No additional mechanics were used to improve the
results, such as language modeling or gender or speaker
adaptation.
In general, the results are not as good as the state of the art
for the speech data. For the singing data, it is very hard
to compare the results to the state of the art because other
publications use different datasets, phoneme sets, and eva-
luation measures. However, this was not necessarily our
goal - we were mainly interested in the comparative per-
formance of the various models.
As expected, recognizing phonemes in speech seems to be
much easier than in singing. Deep Belief Models perfor-
med better than their Neural Network counterparts in all
test cases. For speech, the models trained on the unmodi-
fied TIMIT dataset always performed best. The best result
is 38% correctly classified frames, a phoneme error rate of
0.41, and a weighted phoneme error rate of 0.32.
For singing, the models trained on the modified TIMIT da-
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Ph. Prec. Rec. Prec. Rec. Conf.
N N M M M

aa 0.18 0.08 0.35 0.09 ao, ay, ow
iy 0.33 0.27 0.43 0.25 ey, uh, ae
ch 0.0 0.02 0.01 0.03 s, sh, iy
zh 0.26 0.02 0.0 0.0 iy, y, sh
eh 0.06 0.11 0.13 0.15 ae, ey, aa
ah 0.0 0.35 0.03 0.23 aa, er, ae
ao 0.39 0.17 0.25 0.14 aa, ow, l
ih 0.01 0.08 0.05 0.11 ey, iy, ae
ey 0.36 0.17 0.26 0.2 iy, ae, ay
aw 0.1 0.07 0.08 0.09 aa, ae, ay
ay 0.27 0.44 0.23 0.44 aa, ae, iy
ae 0.38 0.16 0.4 0.16 aa, ay, aw
er 0.22 0.1 0.19 0.08 aa, ae, eh
ng 0.07 0.16 0.06 0.11 n, uh, iy
sh 0.58 0.05 0.51 0.09 s, jh, z
th 0.0 0.0 0.0 0.0 dh, er, ey
oy 0.0 0.0 0.0 0.0 ao, ay, aa
dh 0.04 0.14 0.04 0.08 er ,iy ,uh
ow 0.07 0.23 0.16 0.25 ae, ae, aa
hh 0.14 0.09 0.09 0.15 iy, uh, sh
jh 0.07 0.08 0.12 0.07 y, z, sh
b 0.13 0.19 0.09 0.24 ey, m, iy
d 0.02 0.19 0.02 0.1 iy, n, er
g 0.04 0.36 0.03 0.32 y, ow, n
f 0.02 0.13 0.02 0.5 s, er, iy
k 0.02 0.37 0.05 0.31 iy, y ,uh
m 0.26 0.24 0.13 0.22 uh, n, er
l 0.1 0.14 0.11 0.15 ao, er, ow
n 0.18 0.28 0.2 0.25 uh, er, uw

uh 0.23 0.02 0.15 0.02 er, ih, eh
p 0.01 0.15 0.01 0.1 er, iy, l
s 0.41 0.41 0.44 0.46 z, iy, er
r 0.16 0.24 0.17 0.18 er, aa, ao
t 0.0 0.29 0.0 0.42 s, sh, iy
w 0.24 0.26 0.19 0.2 ao, l, uw
v 0.0 0.02 0.0 0.25 er, aa, m
y 0.31 0.08 0.16 0.12 iy , y, uh
z 0.28 0.18 0.28 0.17 s, iy, n

uw 0.13 0.35 0.12 0.33 uh, er, iy

Table 2: Results per phoneme (singing data): Precision
and recall with the N and M models, and most frequent
confusions with M model (except sil)

taset produced better results. The best result is for singing
is 18% correctly classified frames, a phoneme error rate
of 0.91, and a weighted phoneme error rate of 0.71. The
improvement over the models trained on the unmodified
TIMIT data is 6% for the correctly classified frames, 0.09
for the phoneme error rate, and 0.06 for the weighted pho-
neme error rate.
The models trained on data that was only pitch-shifted only
showed a very slight difference when compared to the ori-
ginal data. MFCCs are supposed to be pitch-invariant, and
pitch-shifting therefore does not seem to make a big dif-
ference. This modification might be useful when using

other features, though. A bigger improvement on sin-
ging data was achieved when training the models on time-
stretched speech data. In fact, this dataset generated the
highest percentage of correctly classified frames. In this
time-stretched dataset, we also applied vibrato to the stret-
ched vowels, which happens naturally in singing. Howe-
ver, since the effect of pitch-shifting seemed to be small,
we assume that vibrato did not have a big effect either.
There were also two datasets where both modifications
(time-stretching and pitch-shifting) were mixed. Both pro-
duced the best phoneme error rates in singing.
The results were also analyzed on a phoneme-wise basis. It
turned out that vowels were recognized more exactly with
the modified models, while consonants were recognized
somewhat worse. This may be caused by the emphasis of
the generated data on longer vowels.
The most interesting effect seen in the confusion matrices
is the confusion of short vowels with similar longer vowels.
This has a foundation in singing technique and would be
interesting to further explore to improve phoneme recogni-
tion in singing.
In general, we showed that phoneme recognition in sin-
ging can be improved when training models on artificial
singing data. This finding can now be used to improve
other approaches. For example, it can be combined with
the techniques described in [15].

7. FUTURE WORK

As described in section 5.3, many phoneme confusions
may arise from inexact or unnatural time stretching on the
speech recordings. A more natural approach to this is re-
quired and we need to make sure that stretched vowels do
not “leak” into neighboring consonants. We also noticed
that short vowels in singing often shift towards their long
versions. We will exploit this interesting effect in future
phoneme recognition approaches, e.g. by allowing these
confusions or composing vowels of several states.
In this paper, we tried to apply three characteristics of sin-
ging to speech recordings, but there are more, such as diffe-
rent pronunciations and different forming of sounds. Such
other characteristics could also be tested in a similar way.
Conversely, we could also attempt to make our features and
models more robust to these variations. In the past, this has
often been done by adapting models trained on speech to
singing in some way (also see section 2). Adaptations to
gender or voice also proved helpful.
We kept the approach fairly simple for now, but the results
could be improved by employing language modeling in the
recognition process. We will implement this in future ver-
sions.
A possible alternative would be creating a dataset from po-
lyphonic music data by using the lyrics and force-aligning
them.
Finally, it will be interesting to see how the results of this
phoneme recognition approach can be applied to practical
tasks, such as lyrics-to-music alignment, keyword spotting,
and language identification. For these purposes, the algo-
rithm must also be tested on accompanied singing data.
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ABSTRACT

We present a system that interprets the notated rhythm ob-
tained from optical music recognition (OMR). Our approach
represents the notes and rests in a system measure as the
vertices of a graph. We connect the graph by adding voice
edges and coincidence edges between pairs of vertices, while
the rhythmic interpretation follows simply from the con-
nected graph. The graph identification problem is cast as
an optimization where each potential edge is scored ac-
cording to its plausibility. We seek the optimally scor-
ing graph where the score is represented as a sum of edge
scores. Experiments were performed on about 60 score
pages showing that our system can handle difficult rhyth-
mic situations including multiple voices, voices that merge
and split, voices spanning two staves, and missing tuplets.

1. INTRODUCTION

Past decades have seen a number of efforts on the problem
of Optical Music Recognition (OMR)with overviews of the
history and current state of the art found at [2, 3, 8, 14].
OMR can be divided into two subproblems: identifying the
music symbols on the page and interpreting these symbols,
with most efforts devoted to the former problem [7,13,16].
However, the interpretation problem is also important for
generating meaningful symbolic representations. In this
paper, we focus on the rhythm interpretation of musical
symbols, which appears to be the most challenging inter-
pretation problem.

Many OMR systems [11] perform some sort of rhythm
interpretation in order to play back and verify the recog-
nized music symbols. When there are not enough notes
or too many notes to match the meter of the measure, the
OMR system often “flags” the measure to suggest that there
is something wrong, alerting the user to correct the mea-
sure. In this way, rhythm interpretation is used as a check-
ing tool for correcting recognized scores.

There are a few research efforts that correct recogni-
tion results automatically. Droettboom [6] proposed met-
ric correction as part of an OMR system. Using the fact

c© Rong Jin, Christopher Raphael.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Rong Jin, Christopher Raphael.
“Graph-Based Rhythm Interpretation”, 16th International Society for
Music Information Retrieval Conference, 2015.

Figure 1. Three system measures from Rachmaninoff Pi-
ano Concerto No.2 showing some of the difficulties in in-
terpreting rhythm. All three measures are in 4/4 time.

Figure 2. Two system measures from Rachmaninoff Pi-
ano Concerto No.2 showing some of the difficulties in in-
terpreting rhythm. Both are in 4/4 time.
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that rhythmically coincident notes are usually aligned ver-
tically, this work applies different corrections on inconsis-
tent notes. Church [5] proposed a rhythmic correction with
a probabilistic model that converts the rhythm of a suspi-
cious measure to the most similar measure in the piece.
Byrd [4] proposed improving OMR with multiple recog-
nizers and sequence alignment.

The approaches mentioned above work for simpler sit-
uations such as monophonic music or measures without
complex tuplets. However, some music scores, especially
those for piano, are filled with rhythmically challenging
situations such as missing tuplets or voices that come and
go within a measure. Simple approaches are likely to fail
on a significant proportion of these measures.

Our paper differs from other work we know by address-
ing the most challenging examples using complete infor-
mation (the system measure), instead of trying to correct
the misrecognized symbols. Our research questions are:
given perfect symbol recognition is the system able to un-
derstand rhythm as a human would? When there are multi-
ple voices interwoven in one measure, can the system sep-
arate the voices? When there are implicit symbols such
as omitted rests and missing tuplets, can the system still
interpret correctly?

Figures 1 and 2 show some challenging examples that
illustrate the problem we address. The left measure in Fig-
ure 1 shows an example using multiple voices. When mul-
tiple voices are present it is nearly impossible to interpret
rhythm without identifying these voices as such. In an ef-
fort to avoid overlapping symbols, some notes in the mea-
sure that ideally should align vertically do not. The mid-
dle measure in Figure 1 shows an example of missing tu-
plets (tuplets are not labeled). What is most unusual, and
would likely go unnoticed by anyone other than an OMR
researcher, is that these beamed groups would normally be
written with two beams rather than one, though the mean-
ing is still clear. In addition, the 9-tuplet is not explicitly
indicated with a numeral — a common notational conven-
tion.

The right measure in Figure 1 shows another example
of missing triplet for the 3 beamed eighth notes in the first
staff, as well as a quarter note plus an eighth note pair in the
second staff. A further complication is that this measure
is, in some sense, incomplete, as the voice in the second
staff jumps onto the first staff on the second quarter and
then jumps back on the third quarter. The left measure
in Figure 2 demonstrates an example of special beaming
of a sextuplet where the first eighth note is separate from
five beamed eighth notes. The right measure in Figure 2
demonstrates an example where all four beamed groups
are triplets while the voice jumps back and forth between
the two beamed groups.

The examples all seem innocent until one considers the
assumptions on rhythm notation that must underlie an in-
terpretation engine. One quickly comes to see that typical
in vivo notation contains a fair amount of “slang” that may
be readily understood by a person familiar with the idiom,
but is much harder for the machine. [9] has more demon-

strations of such ”slang” in music scores.
In this paper we present an algorithm that is generally

capable of correctly interpreting notation such as the ex-
amples we have discussed. In our presentation, Section 2
introduces our rhythm graph and optimization on the graph
score. In Section 3, we present our experiments on three
scores and discuss the results.

2. METHODS

2.1 Input

We first perform optical music recognition with our Ceres
[12] OMR system taking the score image as input. The
output is stored as a collection of labeled primitive sym-
bols such as solid note head, stem, beam, flag, and etc.,
along with their locations. The user deletes or adds prim-
itive symbols using an interactive interface. Editing sym-
bols at the primitive level allows us to keep useful infor-
mation such as stem direction and beaming as well as the
exact primitive locations which are important for rhythm
interpretation.

After this correction phase, we assemble the primitive
symbols into meaningful composite symbols (chords and
beamed groups). This step is done in a simple rule-based
method. Each note or rest is assigned to the staff measure
it belongs to.

2.2 Rhythm Graph

We form a graph of the rhythmically relevant symbols for
each system measure. The set of vertices of the graph,
which we denote as V , are the notes, rests, and bar lines
belonging to the system measure. All vertices are given
a nominal duration represented as a rational number. For
example, a dotted eighth would have nominal length 3/16,
while we give the bar lines duration 0. Sometimes the ac-
tual vertex duration can differ from the nominal length, as
with missing tuples. In these cases, we need to identify
which symbols are tuplet symbols in order to interpret the
rhythm correctly.

Vertices can be connected by either voice or coinci-
dence edges, as shown in Figure 3. Voice edges, which
are directed, are used for symbols whose position is under-
stood in relation to a “previous” symbol, as in virtually all
monophonic music. That is, the onset time of a symbol on
the “receiving” end of a voice edge is the “preceding” sym-
bol’s onset time plus duration. Coincidence edges link ver-
tices that share the same onset time, as indicated by their
common horizontal location. Using these edges we can in-
fer the onset time of any note or rest connected to a bar
line. We denote by E the complete collection of all possi-
ble edges.

We formulate the rhythm interpretation problem as con-
strained optimization. Given the set of vertices,V , and pos-
sible edges, E, we seek the subset of E, E∗, and the label-
ing of V that maximizes

H =
∑

e∈E∗

φ(e) +
∑

v∈V
ϕ(l(v)) (1)
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where function φ(e) represents how plausible each edges
is according to the music rules, l labels vertex v as tuplet or
non-tuplet, and function ϕ(l) penalizes labeling vertices as
tuplet so as to favor simple interpretations whenever pos-
sible. The subset E∗ and labeling are constrained to con-
struct a consistent and connected graph.

2.3 Constructing edges

We construct the graph beginning with the left bar line
(which has an onset time of 0), by iteratively connecting
new vertices to the current graph with voice and coinci-
dence edges until all vertices form a single connected com-
ponent. More specifically, we connect the current vertex
with a voice edge to a previously visited vertex. This vertex
has to be either a bar line or a vertex in the same staff mea-
sure. (Piano staves are treated as one staff because voices
often move between left and right hand parts.) This new
voice edge defines a unique onset for the current vertex.
Then we add coincidence edges between the current ver-
tex and all past vertices so that both have nearly the same
horizontal position and have the same onset time. We may
also add coincidence edges between the incoming vertex
and a past vertex having a different onset time, leading to a
conflict that must be resolved, as discussed in Section 2.4.
Different combinations of edges give different onset times
to the vertices.

As an edge e is introduced to the graph we score it ac-
cording to its plausibility φ(e). There are different kinds
of musical knowledge [15] we hope to model in comput-
ing these scores, as follows.

1. The left bar line has an onset time of 0. The right bar
line has an onset time of the measure’s meter. No
vertices can have onset times greater than the meter.

2. The onset times must be non-decreasing in the hor-
izontal positions of the symbols in the image. That
is, if vertex A lies to the left of vertex B it cannot
have an onset that is after that of vertex B.

3. A vertex has a unique onset time. Thus, if multiple
paths connect a vertex to the graph they must give
the same onset time.

4. Vertices connected by coincidence edges should have
the same approximate horizontal position in the im-
age. Vertices with the same horizontal image posi-
tions should should have the same onset time.

5. Vertices in a beamed group note are usually con-
nected by voice edges, while we penalize voices that
exit a beamed group before it is completed.

6. Vertices connected by a voice edge usually have the
same stem direction and tend to appear at similar
staff height.

The first two rules above are hard constraints that must
be followed. When they are violated our algorithm sim-
ply will not add the offending edge. The other rules can
be violated for different reasons. For example, symbols

having the same onset time may not align in the image be-
cause one is moved to avoid overlap with other symbols, or
because the image is skewed or rotated through the scan-
ning process. Such violations lead to penalties of the edge
scores.

2.4 Conflict Resolution by Reinterpretation

If we disregard the right bar line and construct a spanning
tree from the remaining vertices we are guaranteed that ev-
ery vertex can be reached through a unique path starting
from the left bar line, thus giving each vertex a unique on-
set time. While this approach has the compelling appeal
of simplicity, it would fail in any case where the nominal
note length is not the correct interpretation, as with miss-
ing tuplets. Instead, we identify such cases by allowing
multiple paths to a vertex, and thus multiple rhythmic in-
terpretations. When the result of these multiple paths gives
conflicting onset positions for a vertex we consider reinter-
preting some notes in terms of missing tuplets to resolve
the conflict. In such a case we treat the earlier onset time
as the correct one, while reinterpreting the path leading to
the later onset time. This is because the nominal length of
a tuplet note is usually greater than the true length. While
there are exceptions to this rule, as with duplets in triple
meter, we do not treat such cases in the current work.

As an example, consider the situation in Figure 3. Here
the first coincidence edge considered (dotted line in the 1st
graph) does not create any conflict since both paths give
the onset position of 1/4. However, the coincidence edge
for the quarter note on the top staff (dotted line in the 2nd
graph) gives the onset time of 1/2 while the voice edge
gives the onset time of 5/8, thereby generating a conflict.
Thus we must reinterpret the path giving the later onset
time of 5/8 to be consistent with the onset time of 1/2. In
this case the desired interpretation is that the three eighth
notes form an implicit triplet, and thus have note lengths
of 1/12 rather than 1/8 (bottom graph). Another example
of a conflict arises when a voice edge links to the right bar
line and attributes an onset time for the bar line other than
its true position (which is the meter viewed as a rational
number). In this case we must reinterpret the path leading
to the right bar line.

When reinterpreting we must consider the path that gen-
erates the onset position in conflict — but how far back-
ward should we go? The collection of reinterpretable ver-
tices could spill over into multiple voices and staff mea-
sures, thus generating an intractable collection of possibil-
ities to consider. Here we make some simplifying assump-
tions to keep the computation from becoming prohibitively
large. First of all, recall that we consider the staff mea-
sures of a system one at a time. After a staff measure is
completely analyzed and reduced to a single interpretation,
we do not consider future reinterpretations of the measure.
Thus reinterpretation is confined to the current staff mea-
sure (or two staves in the case of the piano). Furthermore
we do not allow the reinterpretation process to generate ad-
ditional inconsistencies. This rules out the reinterpretation
of any vertex connecting to a measure in a previously ana-
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lyzed staff measure. Even with these restrictions the com-
putation can still be significant, as we must simultaneously
consider the possibility of a number of different tuplet hy-
potheses, thus requiring an effort that is exponential in the
number of hypotheses.

One might contrast this approach with a purely top-
down model-based strategy that considers every possible
rhythmic labeling. Such a strategy would be our prefer-
ence if computationally feasible, and, in fact, was the ap-
proach we explored in [10]. The problem is that there are,
a priori, a large enough collection of possible labelings
so that, when coupled with unknown voicing, the compu-
tation does not always prove tractable. This is why we
uncover candidates for reinterpretation prompted by coin-
cidence edges. Thus the modeling of our algorithm lies
somewhere between top-down and bottom-up recognition.
It is model-based, yet it relies on the data itself to prompt
certain data interpretations. While not necessarily an argu-
ment in favor of our approach, this appears to be a central
part of the human strategy for rhythm understanding.

We consider several cases of reinterpretation:

1. A beamed group can be reinterpreted as a beamed
tuplet note of simple duration (1/2, 1/4, etc.), as in
the left measure of Figure 2.

2. Three consecutive vertices that add up to 3/8 could
be reinterpreted as missing triplet of total length 1/4,
as in the middle measure of Figure 2. This rule
can be generalized to include other kinds of triplets
(quarter note or sixteenth note) and to include tuplets
other than 3.

3. We can globally reinterpret all vertices along the voice
path, as in the right measure in Figure 2, meaning
that all note lengths are rescaled to create the desired
collective duration.

The score functionϕ(l(v)) in Eqn (1) penalizes the com-
plexity of a reinterpretation, thus favoring simple interpre-
tations whenever possible.

2.5 Dynamic Programming for Optimization

During graph construction, each time we add a new vertex
into the graph we consider adding voice edges between the
new vertex and all vertices already in the graph. Thus, only
considering the voice edges, the number of possible graphs
with n vertices would be n!. Since a common system mea-
sure may have more than 50 vertices, it is computationally
infeasible to search the whole graph space. This situation
can be improved by dynamic programming: after any new
vertex has been added to the graph, if two different graphs
give identical onset times for each vertex we prune the one
with lower score.

The order in which the vertices are considered is im-
portant in producing a feasible search. One way would
be to visit all vertices in the system measure according to
their horizontal location on the image. The problem with
this approach is that the constraints imposed by the right

Figure 3. Constructing the rhythm graph of an example
measure. Voice (red) and Coincidence (Purple) edges are
automatically constructed to identify the onset time of ver-
tices (notes, rests and bar lines).
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bar line, which has a known onset position, do not come
into play until the very end of the graph construction. An
alternative first considers the vertices in left-right manner
from a single staff measure, then continuing one-by-one
with the other staff measures. Each time a staff measure
is completed we continue only with the best scoring single
graph. In this way, we will greatly reduce the number of
partial graphs we carry through the process.

Among all measures in our experiments the maximum
number of graph hypotheses we encounter during the DP
computation is usually less than 100, even in the system
measures with 50 to 60 vertices. The measures posing the
greatest computational challenge are those having multi-
ple voices, missing tuplets, and, at the same time, similar
rhythm between the voices. The left example measure in
Figure 4 shows such a case. It may seem easy for a per-
son to recognize that there are two voices in the first staff.
Here four quarter notes form one voice, and four pairs of
triplets, consisting of an eighth rest and two eighth notes,
form another voice. However, it’s not an easy task for a
computer. The second staff measure doesn’t provide much
information since it also has the similar missing tuplets
which are hard to distinguish from nominal rhythm until
one encounters the right bar line. Other measures in the
same system also don’t provide aligned symbols to anchor
the search. The number of graph hypotheses for this sys-
tem measure grows up to 2600 at the end of the measure.
This measure represents the maximum number of hypothe-
ses attained throughout our experiments. This is still easily
feasible computationally.

3. EXPERIMENTS

In the experiments, we have chosen three different scores
of varying degrees of rhythmic complexity for evaluation,
all taken from the IMSLP [1].

3.1 Rachmaninoff Piano Concerto No.2

The orchestra score of Rachmaninoff Piano Concerto No.
2 is a highly challenging example for our rhythm inter-
pretation algorithm. The score has 371 system measures,
with each system measure containing up to 15 staff mea-
sures. The piece covers different types of rhythmic dif-
ficulties such as polyphonic voices, missing tuplets, and
voices moving between staff measures. In addition some
pages of the score are rotated and skewed due to the scan-
ning process, creating difficulty detecting coincidence be-
tween notes.

We get 355 out of 371 (95.7%) system measures cor-
rectly. In the following paragraphs, we will discuss three
representative examples in which our system fails to find
the correct rhythm.

Failure case 1 In the left example in Figure 4 we fail
to interpret all the missing triplets. The result produced
by our system did not recognize the first and last triplet in
the first staff, instead treating those beamed eighth notes
as normal eighth notes. The system gives the left eighth
note in the beam the same onset time as the eighth note

rest, explaining it as coincidence with the eighth note rest
since they almost align vertically. In this case we found
that the correct interpretation was actually generated by
our system, but survives with a lower score. This type of
scenario, where the correct interpretation survives but does
not win, occurs a number of times in our experiments. In
this case, the reason is because we give a high penalty for
tuplet reinterpretation, while a give comparatively lower
penalty when allegedly coincident symbols are not per-
fectly aligned. Therefore, the state that has fewer tuplets
but worse alignment gets a higher score.

Failure case 2 The right example in figure 4 is another
example where our system does not produce the correct
rhythm. The difficulty in this measure is the voice that
moves between the treble and bass staves of the piano.
While we successfully recognized two missing sextuplets
in the treble staff, we failed to recognize that the quarter
note in treble staff and eighth note in the bass staff form
a triplet. In our result, they are interpreted as a normal
quarter note and a normal eighth note with the eighth note
aligned to the 3rd sixteenth through a coincidence edge.
This happens because we impose a penalty for interpreting
a missing tuplet, while the eighth note aligns reasonably
well with the third 16th note, providing a plausible expla-
nation. However, the isolated eighth note is the only note
that has the wrong onset time. This case also shows that
our algorithm is capable of recovering from local errors to
produce mostly correct results, even though not perfect.

Failure case 3 Our third incorrect case is shown in the
left of Figure 5. In the first staff of this example, the dot-
ted half note chord and first eighth note in the first beam
group both begin at the start of the measure. However,
we have a maximal horizontal distance between two notes
that have the same onset time, which serves the important
role of pruning graphs graphs that exceed this threshold —
usually this is the correct thing to do. In this particular
case these two notes exceeded the threshold, thus we lose
the correct interpretation. For such a case, we can always
make the threshold larger, but this weakens the power of
the alignment rule elsewhere. Of course, there will always
be special cases where our threshold is not large enough.
In the right measure in Figure 5, the eighth rest and whole
note “high” c in the first staff are very far away from the
half note in staff three due to the long grace note figure.
Presumably the grace note figure begins on the beat, so the
coincidence suggested by the score is correct, though this
peculiarity lies outside of the basic modeling assumptions
we have employed: here two notes at the same rhythmic
position are not intended to sound at the same time! We
have a few other examples of this general type of failure,
such as when we can’t compute horizontal distances ac-
curately due to image skew. Given the reasons above, we
decide to keep the threshold as strict as it is, because it
provides a significant help with keeping the computation
tractable.
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Figure 4. Examples for failure case 1 and failure case 2
from Rachmaninoff Piano Concerto No. 2. Both measures
are in 4/4 time.

Figure 5. Examples for failure case 3 from Rachmaninoff
Piano Concerto No.2. Both measures are in 4/4 time.

Figure 6. Two examples from Debussy’s 1st Arabesque.
Both measures are in 4/4 time.

3.2 Borodin String Quartet No.2, 3rd Movement

We also tested on the 3rd movement (Notturno) from Borodin’s
2nd String Quartet. This is a “medium” difficulty score
consisting of 4 staves for each system. The third movement
has 180 systems measures over 6 pages. 22 out of 180 sys-
tem measures contain triplets, and, while all of these are
explicitly notated with numerals in the score, we deliber-
ately didn’t include these in our rhythm interpretation pro-
cess. The system gets 100 percent correct rhythm on all of
these measures.

3.3 Debussy 1st Arabesque

Usually the more staves in a system, the more coincidence
edges between different staves, thus providing anchors for
reinterpretation when needed. Thus solo piano music can
be particularly challenging with only two staves. In mea-
sures that are monophonic or homophonic we can’t iden-
tify inconsistencies until we reach the end of the measure
as both nominal and tuplet hypotheses are consistent with
spacing. In order to demonstrate that our system is also
capable of handling these challenges, we experimented on
the first of the two Debussy Arabesques, containing 107
measures.

This piece has a variety of rhythmic difficulties. 73/107
(68%) of the system measures have at least one, and up to
six missing tuplets, while 17/107 measures contain voices
moving between the two staves. This latter category is par-
ticularly difficult because the measures are monophonic as
in Figure 6, and thus do not provide coincidence clues.
Therefore, our algorithm only sees conflicts at the end of
the measure and must reinterpret the entire measure at once.
However, our results show that we are generally capable of
handling such situations. There’s only one measure that
we don’t get exactly correct as shown in the right of Figure
6. In this measure, there are four missing beamed group
triplets. In our best scoring solution, we found the first and
last triplets but are missing the middle two. The correct in-
terpretation also survives into the final list but with a lower
score.

4. CONCLUSION

We have presented a graph-based rhythm interpretation sys-
tem. Experiments show that given the perfect symbol recog-
nition, our system is generally capable of interpreting diffi-
cult notation involving separating multiple voices and iden-
tifying implicit symbols such as missing tuplets. It also
shows that it’s a difficult and interesting problem and worth
further exploration. One possibility will be using trained
penalty parameters for a particular score. A rare notation
or rhythmic pattern could appear repeatedly in one score,
thus we hope an adaptive model would improve the result.
Also, since there are always exceptions in all music-related
questions, human interactive methods are another interest-
ing direction to explore.
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ABSTRACT

A swarm of bees buzzing “Let it be” by the Beatles or the
wind gently howling the romantic “Gute Nacht” by Schu-
bert – these are examples of audio mosaics as we want to
create them. Given a target and a source recording, the
goal of audio mosaicing is to generate a mosaic recording
that conveys musical aspects (like melody and rhythm) of
the target, using sound components taken from the source.
In this work, we propose a novel approach for automati-
cally generating audio mosaics with the objective to pre-
serve the source’s timbre in the mosaic. Inspired by algo-
rithms for non-negative matrix factorization (NMF), our
idea is to use update rules to learn an activation matrix
that, when multiplied with the spectrogram of the source
recording, resembles the spectrogram of the target record-
ing. However, when applying the original NMF proce-
dure, the resulting mosaic does not adequately reflect the
source’s timbre. As our main technical contribution, we
propose an extended set of update rules for the iterative
learning procedure that supports the development of sparse
diagonal structures in the activation matrix. We show how
these structures better retain the source’s timbral character-
istics in the resulting mosaic.

1. INTRODUCTION

Using the sounds in a recording of buzzing bees to recre-
ate a recording of the song “Let it be” by the Beatles is a
typical example of an audio mosaic. In this example, the
recording of the bees serves as source, while the Beatles
recording is called the target. Ultimately, one should be
able to identify the target recording when listening to the
mosaic, but at the same time perceive the timbre of the
source sounds. Therefore, the audio mosaic of “Let it be”
with the bee recording could give the impression of bees
being musicians, buzzing the song’s tune.

Audio mosaicing is an interesting audio effect which
has found its way into both artistic work as well as aca-
demic research. Artists like John Oswald used thousands
of manually selected source audio snippets to create new

c© Jonathan Driedger, Thomas Prätzlich, Meinard Müller.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jonathan Driedger, Thomas Prätzlich,
Meinard Müller. “Let it Bee – Towards NMF-inspired Audio Mosaicing”,
16th International Society for Music Information Retrieval Conference,
2015.
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Figure 1. Schematic overview of our proposed audio mo-
saicing method. The sparse diagonal structures in the acti-
vation matrix are important in order to preserve the timbre
of the source in the mosaic.

musical compositions 1 and real-time audio mosaicing has
been used by musicians as an instrument in live perfor-
mances [4,22]. Over the years, many different systems for
audio mosaicing were proposed [1,3,5,11,13,17,18]. The
core idea of most automated systems is to split the source
into short audio segments, which are suitably concatenated
afterwards to match spectral and temporal characteristics
of the target [19].

In this work, we propose a novel way to create audio
mosaics. Our idea is to learn an activation matrix that,
when multiplied with the spectrogram of the source record-
ing, approximates the spectrogram of the target recording
(see Figure 1). The source spectrogram hereby serves as a
template matrix which is fixed throughout the learning pro-
cess. This way, as opposed to many previous automated
mosaicing approaches, a frame of the target can be re-
synthesized as the superposition of several spectral frames
of the source , thus allowing “polyphony” of the source
sounds.

1 Especially on his album Plexure [16].
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As a first contribution, we propose an audio mosaicing
procedure which is inspired by well-known algorithms for
non-negative matrix factorization (NMF) [14]. Keeping
the template matrix fixed (the source’s magnitude spectro-
gram), this basic procedure learns an activation matrix by
iteratively applying a standard NMF update rule to a ran-
domly initialized matrix. Experiments show that in case
the source recording offers an appropriate amount of dif-
ferent sounds, this procedure can closely approximate the
spectrogram of the target recording. However, the source’s
timbre is often barely recognizable in the resulting mo-
saics. The reason is that the procedure recreates every tar-
get frame independently, thus destroying temporal charac-
teristics of the source in the final audio mosaic. Further-
more, the method can superimpose an arbitrary number of
spectral frames from the source to construct a good nu-
merical approximation of a single target frame. A super-
position of a large number of source sounds may however
result in a timbre that is no longer similar to the actual tim-
bre of the source. Therefore, an exact approximation of the
target’s spectrogram cannot be our procedure’s sole goal.

As our main technical contribution, we therefore pro-
pose an extended set of update rules that supports the de-
velopment of sparse diagonal structures in the activation
matrix during the learning process (see the activation ma-
trix in Figure 1). Rather than single frames, diagonal struc-
tures activate whole frame sequences in their original or-
der. This preserves the source’s temporal characteristics
in the resulting mosaic. Furthermore, the extended set of
update rules also limits the number of simultaneous acti-
vations, making the learned activation matrix sparse and
reducing the problem of too many source sounds being au-
dible simultaneously. This way, we trade some approxima-
tion quality for a better preservation of the source’s timbre.

The idea of activating sequences of frames is inspired
by methods like non-negative matrix factor deconvolution
(NMFD) and related formulations [20,21], where template
sequences of frames from a dictionary are activated by sin-
gle activation values. However, our approach is conceptu-
ally different. Instead of changing the NMF problem for-
mulation, our approach stays in the standard NMF setting,
supporting the activation of whole frame sequences di-
rectly in the activation matrix with additional update rules.
Besides being computationally very efficient and easy to
implement, this also has the advantage that we do not need
to choose a maximal length of the sequences as in NMFD.
Similarly, the sparseness constraint imposed by our proce-
dure is not enforced by penalty terms in the problem for-
mulation (as for example in [8, 10, 12, 23]), but also by
additional update rules.

The remainder of this paper is structured as follows. In
Section 2 we introduce the basic concept of using NMF-
inspired update rules for the task of audio mosaicing. In
Section 3 we present the extended set of update rules that
supports the development of sparse diagonal structures in a
learned activation matrix. The effects of these update rules
on the audio mosaics are discussed and demonstrated in
Section 4.
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Figure 2. Basic NMF-inspired audio mosaicing. (a): Mag-
nitude spectrogram of “Let it be” V (target). (b): Mag-
nitude spectrogram of a recording of bees W (source).
(c): Activation matrix H . (d): The product WH (mosaic).

2. BASIC NMF-INSPIRED AUDIO MOSAICING

Non-negative matrix factorization (NMF) has been ap-
plied very successfully in a large variety of music pro-
cessing tasks and beyond. Given a non-negative matrix
V ∈ RN×M

≥0 , the goal of NMF is to decompose this ma-
trix into two factors W ∈ RN×K

≥0 and H ∈ RK×M
≥0 , where

N,M,K ∈ N. The distance between the product WH and
the matrix V is minimized with respect to some distance
measure, for example the Kullback-Leibler divergence

(V ||WH ) =
∑

nm

Vnm log
Vnm

(WH)nm
−Vnm+(WH)nm. (1)

In the context of music processing, the matrix V is usually
a magnitude spectrogram of a music recording, the matrix
W is interpreted as a set of spectral templates, and the ma-
trix H constitutes an activation matrix. Non-zero values
in a row of H activate the associated template in W at the
respective time instance. The two factors W and H are
usually learned by iteratively applying multiplicative up-
date rules to two suitably initialized matrices [14].

Fixing the template matrixW to be the magnitude spec-
trogram of the source recording, the basic idea of our pro-
posed audio mosaicing approach is to learn only the acti-
vation matrix H . More precisely, we proceed as follows.
Given the target recording xtar and the source record-
ing xsrc, we first compute the complex valued spectro-
grams Xtar and Xsrc by applying the short-time Fourier
transform (STFT) to both recordings. Afterwards, we
set V := |Xtar|, W := |Xsrc|, and randomly initialize
H(1) ∈ (0, 1]K×M . Fixing a number of iterations L, we
then iteratively update H with

H
(`+1)
km = H

(`)
km

∑
nWnkVnm/(WH(`))nm∑

nWnk
, (2)
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for k ∈ [1 : K], m ∈ [1 : M ], and the iteration index
` ∈ [1 : L − 1]. Finally, we set H := H(L). The learned
activation matrix H is then multiplied with the complex
valued Xsrc, yielding the complex valued spectrogram of
the audio mosaic Xmos := XsrcH . To compute the audio
mosaic xmos, we apply an “inverse” STFT to the spectro-
gram Xmos which also adjusts the phases such that arti-
facts from phase discontinuities are reduced [9].

Figure 2 shows this basic procedure applied to our run-
ning example. In Figure 2a we see an excerpt of the mag-
nitude spectrogram of the song “Let it be”. Our goal is
to create an audio mosaic of this song, using the record-
ing of buzzing bees, which can be seen in Figure 2b. To
increase the range of different pitches occurring in our
source, we used a pitch-shifting algorithm [6] to create
differently pitched versions of the bee recording and con-
catenated them. Figure 2c shows an excerpt of the activa-
tion matrixH , derived by applying the basic procedure de-
scribed above. A first observation about H is the predom-
inance of horizontal activation structures. These patterns
correspond to single spectral frames in the source which
are activated repeatedly to mimic the stable spectral struc-
tures in the target. Although the resulting mosaic, shown in
Figure 2d, closely resembles these spectral structures, one
can hear a “stuttering” effect when listening to the recon-
structed audio recording. This stuttering originates from
the same frame of the source being repeated over and over
again. In Section 3.1, we aim to prevent the learning pro-
cess from activating the same frame in fast repetition with
an additional update rule.

A second observation is that the matrix H usually ac-
tivates many source frames simultaneously. The learning
process can thus closely approximate the spectral shapes
of the target frames. However, in the context of audio mo-
saicing, this has several drawbacks. Since H is multiplied
with the complex spectrogramXsrc, phase cancellation ar-
tifacts may arise when superimposing many complex spec-
tral frames. This way, especially low pitched sounds tend
to cancel each other out and are not audible in the final
audio mosaic. Furthermore, since a sound’s timbre is also
closely related to the energy distribution in its frequency
spectrum, adapting the spectral shapes may change the
timbre of the source. An update rule which sets a limit
on the maximal number of simultaneous activations is pre-
sented in Section 3.2.

A third problem connected with the activation matrix
shown in Figure 2c is the loss of temporal characteristics
of the source. The typical “buzzing sound” of the bees,
which results from pitch modulations (see Figure 2b), is
lost in the mosaic (see Figure 2d). This is the case since the
spectral frames of the source are activated independently
of their order in the source spectrogram. To preserve some
temporal characteristics, the update rule presented in Sec-
tion 3.3 supports the development of diagonal structures in
the activation matrix.
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Figure 3. (a): Activation matrix H(`). (b): Repetition
restricted activation matrix R(`). The horizontal neighbor-
hood is indicated in red. (c): Polyphony restricted acti-
vation matrix P (`). For each column, the highest value is
indicated in red. (d): Continuity enhancing activation ma-
trix C(`). The diagonal kernel is indicated in red.

3. LEARNING SPARSE DIAGONAL
ACTIVATIONS

The core idea to overcome the issues of the basic NMF-
inspired audio mosaicing procedure is to impose specific
constraints on the learned activation matrices by adapting
the iterative update process. As discussed in the previous
section, we identified three main problems of the mosaics
generated by the basic procedure, all related to proper-
ties of the the derived activation matrices. First, horizon-
tal activation patterns cause stuttering artifacts in the mo-
saics. Second, too many simultaneous activations lead to
phase cancellations and overfitting of the spectral shapes.
Third, the source’s temporal characteristics are destroyed
by activating source frames independently of each other.
We therefore introduce additional update rules to approach
these issues, see also Figure 3.

3.1 Avoiding repeated activations

To avoid activating the same spectral frame of the source
in subsequent time-instances, the idea is to only keep the
highest activations in a horizontal neighborhood of the ma-
trix H , suppressing the remaining values. However, we
do not want to interfere too much with the actual learning
process in the first few update iterations. The amount of
suppression applied to the smaller values is therefore de-
pendent on the iteration index `. Given the activation ma-
trix H(`), the size of a horizontal neighborhood r, and the
number of iterations L, we compute a repetition restricted
activation matrix R(`) by

R
(`)
km =

{
H

(`)
km if H(`)

km = µ
r,(`)
km

H
(`)
km(1− (`+1)

L ) otherwise
, (3)
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with ` ∈ [1 : L − 1] and µr,(`)
km being the maximum value

of H(`) in a horizontal neighborhood

µ
r,(`)
km = max(H

(`)
k(m−r), . . . ,H

(`)
k(m+r)) . (4)

Note that the suppression of smaller values becomes strict
in the last update iteration for ` = L − 1. Intuitively, the
parameter r defines the minimal horizontal distance (and
therefore the minimal time interval) between two activa-
tions of the same source frame. Figure 3b shows the rep-
etition restricted activation matrix R(`) derived from the
toy example activation matrix shown in Figure 3a, using
r = 2, ` = 8, and L = 10. As opposed to H(`), there are
no two dominant values next to each other in R(`).

3.2 Restricting the number of simultaneous
activations

Next, we address the problem of too many simultaneous
activations. Setting a limit p ∈ N on the number of activa-
tions in one column of the activation matrix, we compute
a polyphony restricted activation matrix P (`) in a similar
manner as R(`) by

P
(`)
km =

{
R

(`)
km if k ∈ Ω

p,(`)
m

R
(`)
km(1− (`+1)

L ) otherwise
, (5)

where Ω
p,(`)
m contains the indices of the p highest values

in the mth column of R(`). The parameter p can be di-
rectly interpreted as the desired degree of polyphony in the
mosaic. For example, setting p = 1 results in a mosaic
where the source sounds are not heavily superimposed but
mainly concatenated to mimic the most dominant features
of the target. In Figure 3c, we see the polyphony restricted
activation matrix P (`) derived fromR(`), using p = 1. One
can see that in P (`) there is (at most) one single dominant
value left in every column.

3.3 Supporting time-continuous activations

To support the development of diagonal structures that ac-
tivate successive frames of the source, we now compute
a continuity enhancing activation matrix C(`). The idea
here is to convolve the matrix P with a diagonal kernel.
Choosing c ∈ N, which defines the length of the kernel,
we compute

C
(`)
km =

c∑

i=−c

P
(`)
(k+i)(m+i) . (6)

Intuitively, the length 2c+1 of the kernel defines the mini-
mal number of source frames that we would like to succes-
sively activate. Figure 3d shows the matrixC(`) for our toy
example, computed with c = 2. Note that in C(`) the num-
ber of simultaneous dominant activations may locally ex-
ceed the limit which was imposed in the computation of the
polyphony restricted activation matrix P (`). In practice,
this is however not a problem and even desirable since this
way, the diagonal structures can overlap with each other
to some degree. Therefore, the corresponding audio seg-
ments of the source are overlapped in the final mosaic as
well, leading to smooth transitions between them.
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Figure 4. The activation matrixH for the mosaic of “Let it
bee” with a recording of bees in different states. (a): H(1).
(b): H(3). (c): H(6). (d): H(10). The repetition restricting
neighborhood is indicated in red.

3.4 Adapting the activations to fit the target

Finally, we perform the standard NMF update step to let
the mosaic adapt to the target again. Similarly to Equa-
tion (2), we compute the activation matrix for the next it-
eration by

H
(`+1)
km = C

(`)
km

∑
nWnkVnm/(WC(`))nm∑

nWnk
. (7)

In summary, a single update step of the activation matrix
H is computed by applying Equations (3), (5), (6), and (7)
sequentially.

Note that in one update iteration, the three intermediate
update rules (3), (5), and (6) are insensitive to the target
and therefore may increase the distance measure of Equa-
tion (1). However, as already discussed in Section 1, we are
not interested in minimizing this measure, but trade some
approximation accuracy for a better preservation of the
source’s timbre. In practice, our procedure usually yields
an activation matrix that, when multiplied with the source
spectrogram, approximates the target spectrogram to a suf-
ficient degree, while preserving the source’s timbre in the
mosaic much better than the basic procedure described in
Section 2.

Figure 4 shows an excerpt of the activation matrix H
of our running example “Let it be” for several iteration in-
dices `. Here, we set the repetition restriction parameter to
r = 3, the limit of simultaneous activations to p = 10, the
kernel parameter to c = 3 (resulting in a diagonal kernel of
length 7), and the number of update iterations to L = 10.
Figure 4a shows the random initialization of the activation
matrix H(1). After two iterations, one can already notice
diagonal patterns in H(3), see Figure 4b. Figure 4c shows
the activations after another three update iterations. The
diagonal patterns in H(6) are even more prominent and
one can observe that separate diagonal structures start to
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Figure 5. The effect of diagonal activation patterns. (a):
Spectrogram of the target recording “Let it be”. (b): Spec-
trogram of the source recording of buzzing bees. (c): Ac-
tivation matrix H derived with the basic approach. (d):
Activation matrix H derived with the extended set of up-
date rules. (e): Spectrogram of the audio mosaic resulting
from the basic approach. (f): Spectrogram of the audio
mosaic resulting from the extended procedure.

emerge, leaving regions of lower values inbetween them.
In Figure 4d, the activation matrix H(10) is shown. In this
final activation matrix, four clear diagonal structures have
emerged. The remaining activations are outside the visible
range. Looking at the two upper diagonals, one can see
that although they seem to be rather close together, they
obey the repetition restricting horizontal neighborhood in-
dicated in red. Furthermore, it is noteworthy that the length
of the diagonals greatly exceeds the length of the diago-
nal kernel. For example, while we used a diagonal kernel
of length 7, the lowest diagonal has a length of 25 non-
zero activations, corresponding to an audio segment in the
source of roughly one second. This means that the proce-
dure uses a whole one-second patch of source audio mate-
rial to recreate the target between second 17 and 18.

4. EXPERIMENTS AND EXAMPLES

In this section, we both visually and acoustically demon-
strate the effectiveness of our proposed method. As dis-
cussed in previous sections, the main drawbacks of the
basic audio mosaicing approach described in Section 2
were both the loss of temporal characteristics and spectral
shapes of the source sounds in the resulting audio mosaics.
The idea was to approach these problems by supporting the
development of sparse diagonal structures in the activation
matrix with an extended set of update rules. In the follow-
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Figure 6. Comparison of spectral shapes. (a): A single
spectral frame of the target recording (“Let it be”). Har-
monics are indicated by red circles. (b): The spectral
frame of the mosaic computed with the basic procedure at
the same temporal position. Harmonics which are present
in both the original frame as well as in the mosaic are indi-
cated by red circles. (c): The spectral frame of the mosaic
computed by using the extended set of update rules.

ing, we exemplify how these structures can preserve the
source’s desired characteristics in the audio mosaic.

4.1 Preserving temporal characteristics of the source

In Figure 5, we once again revert to our running example.
Here, spectrogram excerpts of the target recording “Let it
be” as well as the source recording of buzzing bees are
shown in Figures 5a and 5b, respectively. The spectro-
gram of the target recording exhibits sounds with very sta-
ble pitches, resulting from the solo piano at the beginning
of the song. In contrast, the buzzing of the bees leads to
rather strong amplitude modulations that are characteristic
for the sound. Figure 5c shows an excerpt of the activation
matrix H as derived by the basic NMF-inspired audio mo-
saicing procedure. In this excerpt of H , only two different
spectral frames of the source are activated repeatedly by
the procedure to mimic the stable pitch of the piano sound.
The resulting spectrogram of the audio mosaic, shown in
Figure 5e, approximates the target’s spectrogram quite pre-
cisely. However, the characteristic pitch modulations of the
buzzing bee sound are lost almost completely. Looking at
Figure 5d, one can see the activation matrix H derived by
our proposed procedure based on the extended set of up-
date rules. The diagonal patterns shown activate segments
of the source that have a duration of roughly half a sec-
ond. As can be seen by comparing the regions marked in
red in the source (Figure 5b) and the mosaic spectrogram
(Figure 5f), the temporal structures of these segments are
preserved in the mosaic. While the mosaic computed with
the extended set of update rules exhibits a lot of pitch mod-
ulations, which reflect the preserved timbre of the buzzing
bee sound, the tonal content as well as rhythmic structures
of the target are still maintained. For example, the two
strong partials of the target recording at around 270 Hz and
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Name of the target Description of the target Name of the source Description of the source
LetItBe An excerpt of the song “Let it be” by the Beatles (piano & singing). Bees Recording of a buzzing swarm of bees.
GuteNacht An excerpt of “Gute Nacht” by Franz Schubert which is part of the

romantic Winterreise song cycle, taken from [15].
Wind Recording of howling wind.

FunkJazz An excerpt from a jazz piece performed by the band “Music Delta”
(saxophone, synthesizer, bass, and drums), taken from [2].

Whales Recording of whale songs and whale sounds.

Stepdad Excerpt from the song “My leather, my fur, my nails” by the pop
band Stepdad (synthesizers, drums, and singing).

Chainsaw Recording of a chainsaw’s sawing and engine sounds.

Freischütz Excerpt from the opera “Der Freischütz” by Carl Maria von Weber
(full orchestra, applause at the end).

AirRaid Recording of an air raid siren.

Vermont An excerpt of the song “Vermont” by the band “The Districts”
(singing, guitar, bass, and drums), taken from [2].

RaceCars Recording of engine sounds of starting race cars.

Table 1. List of target and source recordings used in our experiments.

300 Hz in Figure 5a are also visible in the audio mosaic in
Figure 5f, only this time pitch modulated. Similarly, the
onset in the target at second 2.6 is present in the mosaic as
well.

4.2 Preserving spectral shapes of the source

In Figure 6, we investigate typical spectral shapes of the
target as well as the mosaic for our running example. Fig-
ure 6a shows the spectral frame of the target’s spectro-
gram at second 4.6 as a frequency-magnitude plot. One
can see the harmonic structure with several clear partials
in this frame, resulting from the piano sound in the tar-
get. The corresponding spectral frame of the mosaic com-
puted by the basic procedure shown in Figure 6b shows
a very similar spectral structure. Most of the harmonics
visible in the target are also present in this frame (indi-
cated by the red circles) and even the relations between
peak heights are often preserved. In contrast, the spectral
frame of the mosaic computed with the extended set of up-
date rules only roughly corresponds to the spectral shape
of the target frame, see Figure 6c. However, some of the
dominant peaks in the target frame are still present in the
mosaic, leading to a sound that captures only the dominant
tonal characteristics of the target. The noisy timbre of the
buzzing bees, visible by the increased noise level in the
frame, is therefore preserved.

4.3 Audio examples

In order to also give an auditory demonstration of our
method, we set up an accompanying website for this pa-
per at [7]. On this website, one finds the target recordings
as well as source recordings listed in Table 1. To ensure
that each source recording offers an adequate pitch range,
we computed several pitch-shifted versions of it (using a
pitch-shifting algorithm from [6]) and concatenated them.
For each pair of target and source, we then generated an
audio mosaic using both the basic mosaicing procedure de-
scribed in Section 2 as well as the procedure based on the
extended set of update rules proposed in Section 3. For
these experiments, we used music recordings sampled at
22050 Hz, an STFT frame length of 2048 samples and a
hop size of 1024 samples to compute the spectrograms.
In order to derive the activation matrices for both proce-
dures, we performed L = 20 iterations of the respective

update steps. For the extended set of update rules, we set
the repetition restriction parameter to r = 3, the limit of
simultaneous activations to p = 10, and the kernel param-
eter to c = 3. To reconstruct time-domain signals from the
derived complex valued mosaic spectrograms, we finally
performed 20 iterations of the STFT inversion procedure
proposed in [9].

5. CONCLUSION AND FUTURE WORK

In this work we presented a novel approach for automati-
cally generating an audio mosaic of a target recording us-
ing the sounds from a source recording. The core idea
of this NMF-inspired procedure was to learn an activa-
tion matrix that, when multiplied with the spectrogram of
the source recording, yields the spectrogram of the mo-
saic recording. As our main technical contribution, we
proposed an extended set of update rules that supports
the development of sparse diagonal structures in the ac-
tivation matrix during the learning process. Our experi-
ments showed that these diagonal activation structures cor-
respond to the activation of whole sequences of spectral
frames and help to preserve timbral characteristics of the
source in the mosaic.

In future work we want to investigate if our proposed
procedure can also be applied in scenarios beyond audio
mosaicing. One possibility is to examine whether support-
ing the development of diagonal structures in the activa-
tion matrix can also be beneficial when learning not only
the activation matrix, but also the template matrix. Such an
NMF procedure could be applied for learning and identify-
ing repeating patterns in feature sequences, similar to [24]
who used techniques based on NMFD for this task. In this
context, we hope that our approach may yield a simpler im-
plementation as well as more flexibility since the maximal
length of sequences does not need to be fixed.
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ABSTRACT

In general, algorithms for real-time music tracking di-
rectly use a symbolic representation of the score, or a syn-
thesised version thereof, as a reference for the on-line align-
ment process. In this paper we present an alternative ap-
proach. First, different performances of the piece in ques-
tion are collected and aligned (off-line) to the symbolic
score. Then, multiple instances of the on-line tracking al-
gorithm (each using a different performance as a reference)
are used to follow the live performance, and their output is
combined to come up with the current position in the score.
As the evaluation shows, this strategy improves both the
robustness and the precision, especially on pieces that are
generally hard to track (e.g. pieces with extreme, abrupt
tempo changes, or orchestral pieces with a high degree of
polyphony). Finally, we describe a real-world application,
where this music tracking algorithm was used to follow a
world-famous orchestra in a concert hall in order to show
synchronised visual content (the sheet music, explanatory
text and videos) to members of the audience.

1. INTRODUCTION

Real-time music tracking (or, score following) algorithms,
which listen to a musical performance through a micro-
phone and at any time report the current position in the
musical score, originated in the 1980s (see [8, 24]) and
still attract a lot of research [4, 6, 11, 15, 17, 21, 23]. In
recent years this technology has already found use in real-
world applications. Examples include Antescofo 1 , which
is actively used by professional musicians to synchronise a
performance (mostly solo instruments or small ensembles)
with computer realised elements, and Tonara 2 , a music
tracking application focusing on the amateur pianist and
running on the iPad.

A common approach in music tracking, and also for
the related task of off-line audio to score alignment (see

1 repmus.ircam.fr/antescofo
2 tonara.com

c© Andreas Arzt, Gerhard Widmer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Andreas Arzt, Gerhard Widmer.
“Real-time Music Tracking using Multiple Performances as a Reference”,
16th International Society for Music Information Retrieval Conference,
2015.

e.g. [9, 19, 20]), is to start from a symbolic score represen-
tation (e.g in the form of MIDI or MusicXML). Often, this
score representation is converted into a sound file using a
software synthesizer. The result is a ‘machine-like’, low-
quality rendition of the piece, in which we know the time of
every event (e.g. note onsets). Then, a tracking algorithm
is used to solve the problem of aligning the incoming live
performance to this audio version of the score – thus, the
problem of real-time music tracking can be treated as an
on-line audio to audio alignment task.

In this paper we follow a similar approach, but instead
of using the symbolic score directly, we propose to first
automatically align a recording of another performance of
the same piece to the score. Then, we use this automati-
cally annotated ‘score performance’ as the new score rep-
resentation for the on-line tracking process (for the related
task of off-line performance to performance alignment see
e.g. [18]). Our motivation for this is twofold. First of
all, we expect the quality of the features to be higher than
if they were computed from a synthesised version of the
score. Also, in a performance a lot of intricacies are en-
coded that are missing in the symbolic score, including
(local) tempo and loudness changes. In this way we im-
plicitly also take care of special events like trills, which
normally are insufficiently represented in a symbolic score
representation.

As will be seen in this paper, this approach proves to
be promising, but the results also depend heavily on which
performance was chosen as a reference. To improve the
robustness we further propose a multi-agent approach (in-
spired by [25], where a related strategy was applied to off-
line audio alignment), which does not depend on a single
performance as a reference, but takes multiple ‘score per-
formances’ and aligns the live performance to all these ref-
erences simultaneously. The output of all agents is com-
bined to come up with the current position in the score. As
will be shown in the evaluation, this extension stabilises
our approach and increases the alignment accuracy.

The paper is structured as follows. First, in Section 2 we
give an overview on the data we use to evaluate our music
tracker. For comparison, we then give results of the origi-
nal tracking algorithm that our approach is based on in Sec-
tion 3. In Section 4 we present a tracking strategy based on
off-line aligned performances, which shows promising but
unstable results. Then, in Section 5 we propose a multi-
agent strategy, which stabilises the tracking process and
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ID Composer Piece Name # Perf. Groundtruth
CE Chopin Etude Op. 10 No. 3 (excerpt) 22 Match
CB Chopin Ballade Op. 38 No. 1 (excerpt) 22 Match
MS Mozart 1st Mov. of Sonatas KV279, KV280, KV281,

KV282, KV283, KV284, KV330, KV331,
KV332, KV333, KV457, KV475, KV533

1 Match

RP Rachmaninoff Prelude Op. 23 No. 5 3 Manual
B3 Beethoven Symphony No. 3 1 Manual
M4 Mahler Symphony No. 4 1 Manual

Table 1. The evaluation data set.

Error CE CB MZ RP B3 M4
≤ 0.05 0.33 0.33 0.55 0.45 0.42 0.23
≤ 0.25 0.96 0.92 0.97 0.90 0.84 0.71
≤ 0.50 0.99 0.96 0.98 0.96 0.91 0.83
≤ 0.75 1 0.98 0.99 0.98 0.94 0.87
≤ 1.00 1 0.98 0.99 0.98 0.95 0.91

Table 2. Results for the original on-line tracking algo-
rithm. The results are shown as proportion of correctly
aligned pairs of time points (note times or downbeat times,
respectively), for different error tolerances (in seconds).
For instance, the first number in the first row means that for
the Chopin Etude the alignment was performed for 33% of
the notes with an error smaller than or equal to 0.05 sec-
onds.

improves the results for all test pieces. Next, we compare
the results of the previous chapters to each other (Section
6). Finally, we describe a real-life application of our algo-
rithm at a world-famous concert hall, where it was used to
track Richard Strauss’ Alpensinfonie (see Section 7).

2. DATA DESCRIPTION

To evaluate a real-time music tracking algorithm, a collec-
tion of annotated performances is needed. Table 1 gives
an overview on the data that will be used throughout the
paper. It is important to note that the dataset includes two
orchestral pieces (symphonies by Beethoven and Mahler),
which in our experience are difficult challenges for mu-
sic tracking algorithms, due to their high polyphony and
complexity. The table also indicates how the ground truth
was compiled. For the Chopin Ballade and Etude, and for
the Mozart piano sonatas we have access to accurate data
about every note onset (‘matchfiles’) that was played, as
these were recorded on a computer-monitored grand piano
(see [12] and [26] for more information about this data).
For the Prelude by Rachmaninoff as well as for the Sym-
phonies by Beethoven and Mahler we have to rely on man-
ually annotated performances (at the note level for the pre-
lude and at the downbeat level for the two symphonies).

Furthermore, we collected a number of additional per-
formances of the pieces in our dataset. For these we do
not have any annotations, and their sole purpose is to be

Error CE CB MZ RP B3 M4
≤ 0.05 0.92 0.87 0.93 0.75 0.54 0.38
≤ 0.25 0.99 0.97 0.99 0.97 0.93 0.86
≤ 0.50 1 0.97 1 0.99 0.96 0.94
≤ 0.75 1 0.98 1 0.99 0.97 0.97
≤ 1.00 1 0.98 1 1 0.98 0.98

Table 3. Results for the off-line alignments. The results
are shown as proportion of correctly aligned pairs of time
points (note times or downbeat times, respectively), for dif-
ferent error tolerances (in seconds). For instance, the first
number in the first row means that for the Chopin Etude
the alignment was performed for 92% of the notes with an
error smaller than or equal to 0.05 seconds.

processed fully automatically. These will act as replace-
ments for the symbolic scores. We collected 7 additional
performances for each piece in the dataset. We made an
exception for the excerpts of the Ballade and the Etude by
Chopin, as we already have 22 performances of those. We
thus reused these performances accordingly, randomly se-
lected 7 additional performances for each performance in
the evaluation set, and treated them in the same way as
the other additional data (i.e. we did not use any part of
the ground truth, everything was computed automatically
when they were used as a ‘score performance’). We also
took care not to use additional performances of the same
performer(s) that occur in our evaluation set.

3. STANDARD MUSIC TRACKING BASED ON A
SYMBOLIC SCORE REPRESENTATION

Our approach to music tracking is based on the standard
dynamic time warping (DTW) algorithm. In [10] exten-
sions to DTW were proposed that made it applicable for
on-line music tracking: 1) the path is computed in an in-
cremental way, and 2) the complexity is reduced to being
linear in the length of the input sequences. Later on, this
algorithm was extended with a ‘backward-forward’ strat-
egy, which reconsiders past decisions, increasing the ro-
bustness [4], and a simple tempo model (see [3]), which
greatly increases the ability of the algorithm to cope with
tempo differences.

To make music tracking possible, some internal repre-

358 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Live Performance

Score

MIDI Representation

Synthesised MIDI

On-line Music Tracking

Live Performance

Score

MIDI Representation

Synthesised MIDI

Performance 
Recording

On-line Music Tracking

Off-line Alignment

Figure 1. Standard music tracking (left) vs. music tracking
via an off-line aligned reference performance (right).

sentation of the musical score is needed. In this case we
start with a MIDI version of the score, which is converted
into an audio file using a software synthesizer. Thus we ac-
tually treat this task as an audio-to-audio alignment prob-
lem, with additional knowledge about the score audio file
(i.e. the exact timing of each note). See Figure 1 (left) for
a sketch of this setup. In our approach we use the features
(a mix of chroma features and ‘semi-tone onset’ features)
and the distance computation method presented in [5].

For comparison, we re-evaluated this algorithm on our
data. Each performance from our evaluation set was aligned
to the symbolic score representation. The results are given
in Table 2. The goal of this paper is to improve on these
results, both regarding tracking precision and, especially,
robustness (i.e. reduce the amount of big mistakes made
by the music tracker). As can be seen, the algorithm works
particularly well on the piano pieces, but shows problems
with the two symphonies. A reason for this is that it is rela-
tively easy to synthesise piano pieces from MIDI in accept-
able quality, but it is much harder to do this automatically
for orchestral pieces.

4. MUSIC TRACKING VIA A SINGLE
PERFORMANCE AS A REFERENCE

As we are effectively treating the task of music tracking as
an on-line audio-to-audio alignment task, we can actually
use any annotated audio recording of a performance as a
score representation. Using a real performance as a ‘score’
has some advantages.

First of all, an audio file synthesised from a deadpan
MIDI file may sound bad compared to a real performance,
thus also the features are of relatively low quality (i.e. they
differ sometimes quite heavily from the features computed
from the live performance we want to track). Despite ob-
vious differences between performances, their respective

Live Performance

Score

MIDI Representation

Synthesised MIDI

Performance 
Recording 1

Performance 
Recording 2

Performance 
Recording N...

On-line Music Tracking

Off-line Alignment

Figure 2. Multi-agent tracking based on off-line aligned
performances as a reference.

features tend to be more similar to each other. This is es-
pecially true for orchestral pieces, which often include in-
struments that are hard to synthesise in high quality (or at
least this would demand for expensive sound fonts and a
lot of effort by a trained audio engineer).

Secondly, a performance implicitly encodes a lot of in-
formation that is missing in the symbolic score. This in-
cludes detailed information about tempo, loudness and ar-
ticulation. Again we want to stress that of course perfor-
mances differ from each other quite heavily, but compared
to the differences between a performance and an audio syn-
thesised from the MIDI, these differences are small.

There is also one big disadvantage: the symbolic infor-
mation linking time points in the audio to beat times in
the score, which we get for free when we use a MIDI file
as the basis for the score audio, is missing. Thus, this in-
formation needs to be generated. There are two possible
ways to do that: (1) by manual annotation, which can be
very laborious, or (2) by automatic off-line alignment of
the performance to the score – which is the option we de-
cided on, as we are interested in an automatic method to
improve tracking results (see Section 4.1 below).

Figure 1 shows a sketch of the intended setup. On the
left, ‘normal’ music tracking is shown, where the live per-
formance is aligned to the symbolic score (via a synthe-
sised audio). On the right, another performance is first
aligned to the symbolic score. This performance is then
used as the new reference in the on-line alignment process.

4.1 Offline Alignment

To use a performance as a ‘score’ we have to generate the
necessary symbolic information, linking time points in the
audio to beat times in the score. As we are interested in an
automatic way to improve the tracking results, we decided
to use off-line audio alignment to align the ‘score perfor-
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Error CE CB MZ RP B3 M4
≤ 0.05 0.39 0.35 0.52 0.25 0.35 0.27
≤ 0.25 0.98 0.96 0.97 0.87 0.85 0.80
≤ 0.50 0.99 0.97 0.99 0.97 0.93 0.92
≤ 0.75 1 0.98 0.99 0.99 0.95 0.95
≤ 1.00 1 0.98 1 1 0.97 0.96

Table 4. Results for on-line music tracking based on a
single off-line aligned performance as a reference. The
results are shown as proportion of correctly aligned pairs
of time points (note times or downbeat times, respectively),
for different error tolerances (in seconds). For instance,
the first number in the first row means that for the Chopin
Etude the alignment was performed for 39% of the notes
with an error smaller than or equal to 0.05 seconds.

mance’ to the symbolic score, which gives us the needed
mapping as a result. As off-line audio alignment is far
more accurate than on-line tracking, our intuition was that
the increase in feature quality outweighs the introduced er-
ror by the off-line alignment process.

The off-line alignment is computed with the music track-
ing algorithm from Section 3 above, with the only differ-
ence being that in the end we compute the backward path,
as it is done in the standard DTW algorithm. As this path
is based on more information (i.e. it is computed in a non-
causal way), the results are generally much more accu-
rate than in the on-line case. Of course any off-line audio
score alignment algorithm could be used for this task (see
e.g. [16, 19, 20].

Just to get a rough idea of how much error will be intro-
duced by the off-line alignment, we ran an experiment on
our test data and aligned it to the symbolic scores (later on,
off-line alignments of the additional data will be used, but
we expect a similar behaviour). Unsurprisingly, the results
show that there is a gap between the results of the off-line
approach (see Table 3) and the on-line music tracking ap-
proach (see Table 2). As we will use the off-line algorithm
during data preparation, we strongly expect that the higher
quality of the features and the additional information en-
coded in the performances will outweigh the error that is
introduced during this step.

Thus, we aligned all the additional performances from
Section 2 to the respective symbolic scores, resulting in
performances with linked symbolic information. In the fol-
lowing sections, we will use these performances as new
references (‘score performances’) for the music tracking
algorithm.

4.2 Tracking based on an aligned Performance

Given the automatically computed ‘score performances’,
we can now use them in the tracking process as shown in
Figure 1. In this experiment, each performance from the
evaluation set is aligned to the score via each respective
‘score performance’, resulting in 7 on-line alignments for
each performance.

The results are given in Table 4 and should be compared

Error CE CB MZ RP B3 M4
≤ 0.05 0.39 0.35 0.58 0.19 0.44 0.32
≤ 0.25 0.99 0.98 0.99 0.92 0.90 0.84
≤ 0.50 1 0.98 1 1 0.95 0.94
≤ 0.75 1 0.98 1 1 0.96 0.96
≤ 1.00 1 0.99 1 1 0.97 0.97

Table 5. Results for the multi-agent tracking approach
based on a set of off-line aligned performances as a ref-
erence. The results are shown as proportion of correctly
aligned pairs of time points (note times or downbeat times,
respectively), for different error tolerances (in seconds).
For instance, the first number in the first row means that for
the Chopin Etude the alignment was performed for 39% of
the notes with an error smaller than or equal to 0.05 sec-
onds.

to the numbers in Table 2. As can be seen, the general
trend is an improvement in robustness, especially for the
complex orchestral pieces (e.g. the percentage of aligned
downbeats with an error smaller than 250 ms increased
from 71% to 80% for the Mahler Symphony).

Unfortunately, the results also proved to be unstable.
Some performances are more similar (or at least easier to
align) to each other, which also results in good tracking
results – but the use of some of the ‘score performances’
led to results that were worse than our basic approach. A
closer look at the positions where tracking errors occurred
showed that some of them happened at the same points in
time over all alignments of the piece – basically showing
that some parts are harder to track than others. But there
were also many alignment errors that occurred only for one
or two of the ‘score performances’, but not for the others.
This led us to the idea to combine individual on-line align-
ments in such away, that it would smooth out these errors.

5. MUSIC TRACKING VIA A SET OF
PERFORMANCES AS REFERENCE

The analysis of the results from Section 4 above showed
that a combination of a number of on-line alignments might
further improve the tracking results. Here, we propose a
simple multi-agent strategy (see Figure 2 for an illustra-
tion). During a live concert n trackers run in parallel and
each tracker tries to align the incoming live performance
to its score representation, each producing its own, inde-
pendent hypothesis of the current position in the score. Fi-
nally, the hypotheses are combined to form one collective
hypothesis of the music tracking system.

Many different ways of combining the hypotheses would
be possible, e.g. based on voting or on the current align-
ment error of the individual trackers. Here, we decided on
a very simple method: taking the median of the positions
that are returned by the individual trackers. The reasoning
behind this is that trackers tend to make mistakes in both
directions – i.e. ‘running ahead’ (reporting events to early),
and ‘lagging behind’ (reporting events with some delay) –
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with about the same frequency. Thus, trackers that stay
safely in the middle of the pack tend to give a robust esti-
mate of the position in the score.

Furthermore, using the median also means that as long
as n

2 + 1 trackers stay close to the actual position, the sys-
tem would still come up with a reasonable position esti-
mate – while this is not directly reflected in the evaluation
results, this extra robustness is convenient when the track-
ing algorithm is used in real-world applications. Further
strategies to increase the robustness are possible, like the
automatic replacement of trackers that got lost, but were
not used in our experiments.

For the evaluation we set n = 7, as this was a good
trade-off between robustness and computation time (7 on-
line alignments can still be easily computed in real-time
on a conventional consumer laptop). The results, given in
Table 5, show that our approach is working well. Errors of
more than 1 second are rare, and the multi-agent approach
even improved the alignment precision for all pieces (with
the exception of the Prelude by Rachmaninoff).

6. DISCUSSION

The main goal of our approach was to increase the robust-
ness of the algorithm, i.e. to decrease the frequency of
‘large’ errors and to make sure that the tracker does not get
lost, even when following difficult orchestral pieces. For
convenience, we give a summary of the results (see Table
6) based on a common measure in the evaluation of mu-
sic tracking algorithms: the percentage of notes that were
aligned with an error less than or equal to 250 ms (see [7]).
As can be seen, the multi-agent approach based on au-
tomatically aligned reference performances improves the
results heavily – in fact for CB the results of the on-line
alignment even surpassed the off-line alignment. For the
results on the Chopin data (CE and CB) one has to take
into account that we used 22 performances which were
recorded by different performers, but still on the same pi-
ano and with the same recording setup, which will have
a positive influence on the alignment results. Still, as the
remaining results show, even when completely unrelated
performances of the same piece were used as references,
the alignment results improved drastically.

Especially for the orchestral pieces (B3 and M4), we
can see that our intuition proved to be correct: the error
introduced by the off-line alignment had a lot less impact
than the better quality of the features and the additional
tempo and loudness information provided by the perfor-
mances. In addition, the multi-agent approach proved to
be very effective regarding the increase in robustness. It
smooths out some of the bigger errors that occur when us-
ing just a single performance as a score reference.

7. REAL-LIFE SCENARIO: MUSIC TRACKING IN
THE CONCERTGEBOUW AMSTERDAM

The multi-national European research project PHENICX 3

provided us with the unique opportunity (and challenge) to
3 http://phenicx.upf.edu

Piece Offline Standard Via 1 Via 7
CE 99.06% 95.62% 97.92% 98.78%
CB 97.13% 92.10% 96.00% 97.93%
MZ 99.35% 96.88% 97.46% 99.04%
RP 96.62% 90.14% 87.47% 92.47%
B3 92.88% 83.67% 85.04% 89.55%
M4 86.74% 71.15% 80.06% 83.66%

Table 6. Comparison of the results (error tolerance 250
ms). The results are shown as percentage of matching pairs
of time points (note times or downbeat times, respectively).
For instance, the first number in the first row means that for
the Chopin Etude the off-line alignment was performed for
99.06% of the notes with an error smaller than or equal
to 0.25 seconds. The results of the offline alignment algo-
rithm are only shown for comparison. Standard refers to
the basic on-line music tracker (see Section 3), Via 1 to the
tracker using a single ‘score performance’ as a reference,
Via 7 to the multi-agent approach based on 7 trackers.

demonstrate our score following technology in the context
of a big, real-life symphonic concert (for a full description
of this experiment see [2], a similar study was presented
in [22]). The general goal of the project is to develop tech-
nologies that enrich the experience of classical music con-
certs. In the experiment to be described, this was done by
using the live performance tracker to control, in real time
and via WiFi, the transmission and display of additional vi-
sual and textual information, synchronised to the live per-
formance on stage. The user interface and the visualisa-
tions were provided by our project partner Videodock 4 .
Some impressions can be seen in Figure 3.

The event took place on February 7th, 2015, in the Con-
certgebouw in Amsterdam. The Royal Concertgebouw Or-
chestra, conducted by Semyon Bychkov, performed the
Alpensinfonie (Alpine Symphony) by Richard Strauss. This
concert was part of a series called ‘Essentials’, during which
technology developed within the project can be tested in a
real-life concert environment. All the tests during this con-
cert series have to be as non-invasive as possible. For the
demonstration during the concert in question, a test audi-
ence of about 30 people was provided with tablet comput-
ers and placed in the rear part of the concert hall.

In contrast to the experiments presented in this paper so
far, we did not even have access to a symbolic score. In-
stead, we annotated a single performance manually (on the
level of downbeats) and used it as a score representation.
Then, to add extra robustness, we aligned 6 more perfor-
mances to this reference, resulting in 7 instances that can
be used for the tracking process.

The event in the Concertgebouw was a big success. The
tracking went smoothly and there were no glitches, only
some minor inaccuracies, and the accuracy was more than
sufficient to trigger the visualisation in time.

After the event we annotated an audio recording of the
concert to be able to perform quantitative experiments (see

4 http://videodock.com
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Figure 3. Left: View from the control room onto the stage (during orchestra rehearsal); right: synchronised score display
in the audience during the concert.

Err. (sec) Single Multi-agent
≤ 0.25 78.25% 81.80%
≤ 0.50 92.20% 93.24%
≤ 0.75 95.57% 96.44%
≤ 1.00 97.49% 98.01%

Table 7. Real-time alignment results for the single tracker
(using only on manually annotated performance), and the
multi-agent tracker, shown as percentages of correctly
aligned pairs of downbeats. For instance, the first num-
ber in the first row means that the single tracker aligned
78.25% of the downbeats with an error smaller than or
equal to 0.25 seconds.

Table 7). The first column shows the results of the tracking
using only the manually annotated performance as a refer-
ence. The second column shows the results of the multi-
agent approach. Also in this case using multiple perfor-
mances as a reference improved the tracking results: extra
robustness and a slight increase in accuracy were achieved
without any extra manual efforts as the additional data was
prepared by automatic methods.

8. CONCLUSION

In this paper we presented an alternative approach to real-
time music tracking. Instead of tracking directly on a sym-
bolic score representation, we first use off-line alignment
to match other performances of the piece in question to
the symbolic score. We then use these performances as
our new score representation, which results in high quality
features, and implicitly also adds extra information about
how this piece generally is performed. Together with a
multi-agent tracking strategy, which smooths out most of
the major errors, we achieve increased robustness and also
increase the accuracy of the live tracking, especially for
complex orchestral music. We also reported on a success-
ful real-world test of our algorithm in a world-famous con-
cert hall.

In the future, we will also look at other options to com-
bine tracking results of the individual trackers. While tak-
ing the median seems like a natural choice, more sophis-
ticated strategies also based on alignment costs might be

promising. A further problem which deserves a closer look
is the automatic selection strategy of the ‘score performan-
ces’. For this paper we simply decided on 7 additional
performances of the pieces based on availability. With a
bigger database, automatic selection of the ‘best score per-
formances’ for an on-going live performance becomes an
interesting question, and a good selection strategy might
further improve the tracking results.

A common problem of real-time music tracking and au-
dio to score alignment are structural differences between
the score and the performance. For example, if a piece
has some repeated sections, the performers might decide
to play the repetition or to leave it out. For the experi-
ments in this data we chose the additional ‘score perfor-
mances’ manually, such that they have the same structure
as the piece we want to track, but in the future we will try
to cope with this automatically – in the preparation phase
via the technique used in [13] or [14] (maybe in combina-
tion with the method described in [25], to bring the benefit
of using multiple performances also to the preprocessing
stage), and in the live tracking phase with the approach
presented in [1], extended to orchestral music.
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ABSTRACT

We present two new data sets for automatic evaluation of
tempo estimation and key detection algorithms. In con-
trast to existing collections, both released data sets focus
on electronic dance music (EDM). The data sets have been
automatically created from user feedback and annotations
extracted from web sources. More precisely, we utilize
user corrections submitted to an online forum to report
wrong tempo and key annotations on the Beatport website.
Beatport is a digital record store targeted at DJs and focus-
ing on EDM genres. For all annotated tracks in the data
sets, samples of at least one-minute-length can be freely
downloaded. For key detection, further ground truth is ex-
tracted from expert annotations manually assigned to Beat-
port tracks for benchmarking purposes. The set for tempo
estimation comprises 664 tracks and the set for key detec-
tion 604 tracks. We detail the creation process of both data
sets and perform extensive benchmarks using state-of-the-
art algorithms from both academic research and commer-
cial products.

1. INTRODUCTION

Electronic dance music (EDM) is one of the most im-
portant and influential music genres of our time. The
genre has been defined as a broad category of popu-
lar music that, since the end of the 1990s, encompasses
styles such as techno, house, trance, and dubstep, and,
uniquely, utilizes electronic instruments such as synthesiz-
ers, drum machines, sequencers, and samplers. Tradition-
ally, technologically-mediated live performances form an
integral part of EDM [6, 8].

Historically, EDM evolved from and links genres from
the 1950s to the 1980s such as soul, funk, disco, rap, and
techno. After two decades of isolation as a genre, today,
we are witnessing how it not only influences its legitimate

c© Peter Knees, Ángel Faraldo, Perfecto Herrera, Richard
Vogl, Sebastian Böck, Florian Hörschläger, Mickael Le Goff.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Peter Knees, Ángel Faraldo, Per-
fecto Herrera, Richard Vogl, Sebastian Böck, Florian Hörschläger, Mick-
ael Le Goff. “Two data sets for tempo estimation and key detection
in electronic dance music annotated from user corrections”, 16th Interna-
tional Society for Music Information Retrieval Conference, 2015.

forerunner genres, but also most generic and formulaic pop
forms, including contemporary rock, r&b and rap music.
In fact, given its spread over millions of followers, EDM
is a central element in the 21st century’s popular music —
and therefore a major economical factor in the entertain-
ment industry. 1 2 3

Despite its popularity, in terms of musical sophistica-
tion, the reputation of EDM might not be the best: “sim-
plistic,” “too repetitive,” “feasible with lack of talent,”
“fake music,” or “button-pushing” are some of the crit-
icisms we can find in press, social media, or even in
academia. In contrast to such stereotyped views, for MIR
research, EDM, in fact, presents an interesting area as
some styles have inherent properties that may challenge
or pose difficult problems for existing music description
algorithms. These properties include complex rhythm pat-
terns (as can be observed in IDM or breakbeat), tonal pat-
terns beyond major-minor distinctions [41], structural de-
velopment not using intro-verse-chorus, temporal devel-
opments simply based on reoccurring tension-relaxation
patterns (such as “drops” [1, 43]), or, contrarily, develop-
ments that are not built on tension-relaxation schemes at
all. This has been acknowledged by musicologists and the-
orists [8, 19, 40, 41, 44].

Although some work on topics pertinent to electronic
music, e.g., regarding timbre, rhythm, segmentation, or in-
dividual sub genres, have been published in recent years
[1, 10, 12, 17, 18, 26, 29–31, 33, 35, 42, 43], and there seems
to be a trend towards tempo estimation, e.g., [20, 28], we
still lack EDM-specific annotated collections and data sets.
For instance, existing data sets for tempo (or beat) esti-
mation comprise of ballroom dance genres [23], Beatles
tracks [13, 25], classical, jazz, and (J-)pop [22], rock/pop,
dance, classical, folk and jazz [24], or examples from clas-
sical music, romantic music, film soundtracks, blues, chan-
son, and solo guitar tracks selected for “difficulty” [27].
Similarly, for tonality-related tasks, existing data sets com-
prise of tracks by The Beatles and Queen [32], Robbie
Williams [16], piano chords [2], and rock and pop mu-

1 http://www.amsterdam-dance-event.nl/static/files/dance-
onomics economic-significance-edm-17102012.pdf

2 http://www.thembj.org/2013/12/the-economics-of-the-electronic-
dance-industry/

3 https://smartasset.com/insights/the-economics-of-electronic-dance-
music-festivals

364



sic [7, 15]. Other data sets used in MIR research that con-
tain electronic dance music or other types of electronic mu-
sic, such as the Million Song Dataset [3], the MediaEval
2014 Crowdsourcing Task data set, 4 or the art-oriented
UbuWeb corpus [11], lack human annotations of tempo
and key, among others.

In this paper, we want to address this lack of EDM data
sets for MIR research. To this end, we propose two data
sets – one for the task of tempo estimation and one for the
task of key detection. In contrast to existing collections,
both released data sets focus on electronic dance music.
Since labeling a corpus manually is a labor-intense task,
we follow another strategy to obtain human ground truth
annotations for tracks from an digital online record store
focusing on EDM, namely Beatport. 5 As tempo and key
information given by the retailer are imperfect, users were
encouraged to give feedback on spotted incorrect data us-
ing a dedicated online forum. We describe this forum in
Section 2. We extract the contained information using
regular expressions and knowledge-based filtering in or-
der to obtain user-based annotations for the corresponding
tracks (Section 3). In Section 4, we present some descrip-
tive statistics on the extracted ground truth. Section 5 re-
ports on benchmarking results obtained using a variety of
academic and commercial algorithms on the two new data
sets. We conclude this paper by discussing the modalities
of making this data set available to the research community
and by drawing conclusions in Section 6.

2. BEATPORT USER FORUM

Beatport is a US- and Germany-based online music store
targeted at DJs and music producers. In comparison
to standard music web stores, it emphasizes additional
meta-data relevant for DJs, such as tempo, key, and style,
as well as information on record label, release information,
version, and remixing artists, making it an interesting
source for MIR research. Meta-data associated with a track
can be easily extracted in JSON format from the source
code of the corresponding web page. This meta-data also
contains links to the listening snippets of the tracks, which
are typically between 60 and 120 seconds long.

An important observation is that tempo and key infor-
mation provided on the website are determined algorith-
mically upon upload of the tracks by undisclosed algo-
rithms. Thus, this information can not be considered a
ground truth and is therefore useless for evaluation pur-
poses. 6 However, apparently being aware of the imper-
fection of their automatic annotation algorithms, until late
2014, Beatport asked its customers to provide feedback on
tempo and key information via a link (“Report Incorrect
BPM/Key”) pointing to a dedicated online forum. In this
forum, users would post their corrections in free-form text
using natural language, i.e., the feedback given is highly

4 https://osf.io/h92g8/
5 http://www.beatport.com
6 The same holds for the associated genre/style information, which has

to be set by the human uploading the tracks onto the platform and often
results in rather arbitrary assignments, cf. [38, 39]

“93 bpm not 111 or whatever it is!”
“bpm is 120 not 160. i should know, i made it ;)”
“173 bpm / g minor”
“key should be c# minor”
“wrong bpm”
“the bpm is fine... its the genre. it’s progressive house, not
tech house.”

Table 1. Examples of correctional comments published on
the online forum (links to tracks removed for readability)

heterogeneous and in many cases incomplete (no informa-
tion, reference to track missing, etc.) 7 Nonetheless, as
other work has shown [37], online forums present a great
opportunity to extract user-generated, music-related infor-
mation. Table 1 shows typical comments posted into the
forum.

We performed a complete web crawl of this user fo-
rum in May 2014. At the time of the crawl, there were
2,412 comments available, of which 1,857 contained a di-
rect link to a track on the Beatport website. From the link
to the track, we download the complete meta-data record
in JSON format using web scraping techniques. From this,
we also extract the associated style descriptor for statistical
reasons, cf. Section 4.

3. GROUND TRUTH EXTRACTION

In this section we detail the process of extracting ground
truth from the 1,857 comments that contained a link to a
track. First, we describe the process of extracting BPM
(beats-per-minute) information. Second, we describe the
extraction of key information from the forum, as well as
from expert sources available online. All steps were per-
formed after case-folding the texts.

3.1 BPM Extraction

For BPM extraction, we retain all posts that contain the
word ‘bpm’ and a two- or three-digit number, option-
ally followed by a decimal point and a one- to three-digit
number. On the remaining posts, we apply several rule-
based filter criteria to exclude unlikely or possibly unre-
lated numbers. This comprises of all numbers below 40
and above 250 as these represent tempo values with a low
probability of occurrence in this context. Furthermore, we
remove all two- or three-digit numbers (with optional dec-
imal places) that are preceded by the word ‘not’ as well
as the number representing the tempo given by the Beat-
port website (as this is obviously the wrong tempo). We
then take the first matching number as ground truth for the
linked track. Applying this restrictive filtering, we were
able to extract 726 records of BPM tempo annotations that
were made by humans rather than an algorithm.

7 The resulting difficulty in exploiting this information might be one of
the reasons why none of the reported errors have led to a correction of the
meta-data on the Beatport website, which has been also been negatively
commented on by users, and could be a reason for discontinuing this form
of feedback.
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From these 726 annotations, we identified duplicate
BPM entries for the same IDs (e.g., when different users
report a wrong tempo on the website for the same track
or when the same user repeatedly urges to incorporate a
suggestion made before). Furthermore, we use audio fin-
gerprinting as well as manual inspection in order to map
duplicate audio files with different IDs to one single ID (9
files). This joint information on duplicates is used to sub-
stantiate the tempo annotation: if there is more than one
tempo correction available per track, we put all candidates
with the same tempo (within ±4%) into a bin and con-
sider the mean of all tempo candidates within the bin that
contains the absolute majority (> 50%) as the correct an-
notation. If no such bin exists, the track is rejected. Since
this was only the case for one file, we manually set the cor-
rect tempo for this file. This way 61 entries, including the
9 files with same audio but different IDs, were removed.
In total, 42 resulting ground truth annotations are based
on multiple sources. We further removed one file because
the linked mp3 sample was no longer available. After this
procedure, we obtain a human-annotated data set of 664
distinct electronic music tracks.

3.2 Key Extraction

A similar process was carried out on the same data, in or-
der to extract user corrections on Beatport’s key tags. Ad-
ditionally, we found three independently annotated sources
that use the Beatport database for software benchmarking.

3.2.1 User Forum

In the 1,857 posts that contained a link to a track, we
filter all that contain the sequences ‘mixed-in-key,’ ‘mixed
in key,’ ‘mik,’ and ‘melodyne’ in order to exclude posts
reporting on other algorithm’s outputs. In the remaining
posts, we search for occurrences of the regular expression
[a-g](\s∗(#|b|sharp|flat))?\s∗(min|maj)(or)?
where \s represents the class of whitespace characters.
Additionally, all occurrences of this expression preceded
by the word ‘not’ are excluded as well as matches that
represent the same key as the key indicated in the Beatport
meta-data (which, again, is obviously wrong).

After processing, we found a total of 404 key correc-
tions which can be regarded as ground truth. In this group
we found 15 duplicates and one track which is no longer
available, leaving us with a total of 388 global-key annota-
tions.

3.2.2 DJ Endo Labels

In order to compare different commercial key detection ap-
proaches, DJ Endo has published two online reports with
different samples from Beatport that are built on his own
ground truth annotations. For the first report (2011), 8 he
annotates 100 songs, providing a (slightly truncated) GIF
image file of the list. This image contains 99 items (one
of which is a duplicate) with artist name, song title, his
personal annotation, and the predictions of Mixed-In-Key
and Beatport. We used OCR software to convert this list to

8 http://blog.dubspot.com/dubspot-lab-report-mixed-in-key-vs-beatport

a spreadsheet in order to obtain the human labels and ac-
cess to the audio excerpts from the Beatport website. Us-
ing a simple script that queries the Beatport search page
for artist and title, we retrieve the meta-data of candidate
tracks. In case artist and title match perfectly, they are as-
signed, in case there are multiple candidates (e.g., different
remix versions), a manual assignment to the correct ver-
sion is done. Ultimately, this allowed us to obtain 92 out
of the unique 98 tracks in the list image.

In the second report (2013), 9 DJ Endo makes a more
exhaustive comparison between 7 different key estimation
applications, including the Beatport database. The track
list holds a total of 119 songs, 19 of which come from
YouTube videos, while 7 tracks are listed without any link
or Beatport key tag. We have excluded these 26 items, ob-
taining a batch of 93 songs with ground truth and links to
the Beatport samples.

3.2.3 DJTechTools Labels

A third internet source (2014) 10 provides ground truth
from human consensus for another 60 tracks. Besides the
manual annotations and the Beatport key tags and links, 10
commercial products are evaluated.

Two of the annotations in this collection provide two
key estimates per track. These have been checked and re-
duced to a single key manually by one of the authors, to fit
with the rest of the collection.

3.2.4 Unification

With all these sources added together, we obtain a com-
pound data set with 633 annotated tracks. However, we
found a total of 29 duplicates among the different sources.
In all cases, the different sources agree on the reported key,
giving evidence that our approach is working (see also Sec-
tion 6). This leaves us with a global-key detection data set
of 604 EDM excerpts.

4. DATA SET CHARACTERISTICS

In this section we want to analyze the newly obtained data
sets. To this end, we present descriptive statistics and also
utilize the style information extracted from the Beatport
meta-data. Please note that this style information does not
represent a consistently annotated ground truth but merely
serves as a broad reference to estimate the characteristics
of the data sets.

4.1 Tempo Data Set Statistics

The Tempo data set contains tempo ground truth for 664
samples. Table 2 provides descriptive statistics for the
samples within the different Beatport styles. The table
contains the corresponding number of samples as well as
the minimum, the maximum, the mean (x̄), the median (x̃)
and the standard deviation (σ) of the tempo annotations for
each individual style. The extracted tempo ground truth

9 http://blog.dubspot.com/endo-harmonic-mixing-key-detection-
analysis

10 http://www.djtechtools.com/2014/01/14/key-detection-software-
comparison-2014-edition
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style # x̄ x̃ σ min max

reggae-dub 2 70.0 70.0 0.0 70.0 70.0
chill-out 15 88.3 80.0 27.0 53.0 173.0

indie-dance-nu-dsc. 11 97.9 99.0 16.6 80.0 123.0
hip-hop 2 107.5 107.5 32.5 75.0 140.0

glitch-hop 17 109.9 110.0 26.9 80.0 174.0
deep-house 24 120.1 122.0 8.3 82.0 126.0

house 23 120.3 126.0 26.9 58.0 174.0
tech-house 22 123.8 126.0 5.3 107.0 130.0

techno 61 126.1 126.0 13.7 63.5 180.0
minimal 8 126.8 127.5 1.6 123.0 128.0

progressive-house 19 126.8 128.0 8.4 96.0 140.0
electronica 54 127.2 129.0 32.7 64.0 180.0

dj-tools 9 128.0 126.0 21.0 93.0 175.0
electro-house 22 129.4 128.0 21.7 63.0 175.0
funk-r-and-b 1 135.0 135.0 0.0 135.0 135.0

hard-dance 8 135.1 148.0 27.2 90.0 171.4
dubstep 76 135.2 140.0 23.7 70.0 180.0

breaks 26 138.9 140.0 14.4 83.5 170.0
trance 74 140.3 140.0 7.3 130.0 199.0

psy-trance 34 143.6 146.5 17.2 85.0 190.0
pop-rock 3 144.0 130.0 21.2 128.0 174.0

drum-and-bass 139 162.0 173.0 28.0 80.0 180.0
hardcore-hard-tech. 14 174.6 171.2 14.7 140.0 200.0

all 664 136.7 140.0 28.3 53.0 200.0

Table 2. Statistics for the GiantSteps Tempo data set
per style (#...number of examples, x̄...mean BPM value,
x̃...median, σ...std.dev.).
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Figure 1. Distribution of BPM values in the Tempo set.

ranges from 53 to 200 BPM. Figure 1 contains a histogram
of all BPM values in the data set. It reveals that most of the
values are between 120 and 150 BPM, furthermore a peak
between 170 and 180 BPM is apparent. This peak can most
likely be attributed to the style drum-and-bass (x̄ = 162
BPM, x̃ = 173 BPM), which makes up 20.9 % of all sam-
ples. This style is known for very high tempos (above 160
BPM) and seems to be a challenging and error prone task
for beat and tempo estimation algorithms due to its syn-
copated beat structure. The evaluation of different tempo
estimation approaches presented in Section 5 supports this
theory. We argue that Beatport’s algorithmic issues with
this genre, apart from the style’s popularity, are the reason
that many incorrect estimates were found by users and re-
ported. Figure 2 visualizes the distribution of the different
Beatport styles in the data set by means of a histogram.
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Figure 2. Histogram of tracks per style in the Tempo set.
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Figure 3. Distribution of keys in the Key data set.

4.2 Key Data Set Statistics

The Key data set contains 604 tracks with ground truth.
Table 3 presents some simple statistics, including number
of excerpts per subgenre, percentage of major and minor
keys and most frequent key. 84.8% of the data set is in mi-
nor. Figure 3 shows the distribution of the corpus by tonal
centers. The most frequent key is Fm, closely followed by
Cm and Gm. Overall the distribution of tonics is relatively
balanced. This is possibly related to the modes of produc-
tion of these styles of music.

Figure 4 presents a histogram of tracks arranged by
Beatport genre tags. We observe that these are unevenly
distributed, with 344 excerpts (57%) pertaining to differ-
ent “house” styles, whereas other subgenres and categories
are underrepresented, with only 3 to 6 tracks each (funk
and r&b, glitch-hop, hard-dance, hardcore, hip-hop, psy-
trance, reggae/dub, and dj-tools).

5. BENCHMARKING

In this section we provide benchmarking results for both
academic and commercial approaches on both data sets to
estimate the performance of current methods as well as get-
ting an impression of the “difficulty” of the data sets.
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style # maj (%) min (%) most freq. key (%)

breaks 14 28.6 71.4 C (21.0)
chill-out 11 36.3 63.6 Em, Dm, Ab (18.1)

deep-house 77 5.2 94.8 Cm (13.0)
dj-tools 3 33.3 66.7 —

drum-and-bass 38 18.4 81.6 Gm (28.9)
dubstep 22 9.1 90.9 Fm (22.7)

electro-house 51 9.8 90.2 Fm (25.5)
electronica 20 20.0 80.0 Fm (20.0)

funk-r-and-b 3 0.0 100.0 —
glitch-hop 6 20.0 80.0 Gm (15.0)

hard-dance 4 0.0 100.0 Gbm (50.0)
hardcore-hard-tech. 3 33.3 66.7 —

hip-hop 4 0.0 100.0 Em (50.0)
house 47 17.0 83.0 Gm,Cm (12.8)

indie-dance-nu-dsc. 14 21.4 78.6 —
minimal 11 0.0 100.0 Em,Am (27.3)

pop-rock 7 57.1 42.9 Gm (42.9)
progressive-house 88 21 67 Am (12)

psy-trance 5 0.0 100.0 Fm (40.0)
reggae-dub 3 33.3 66.7 —
tech-house 81 12.4 87.6 Dm (14.9)

techno 34 17.6 82.4 Cm (17.6)
trance 58 12.0 88.0 Fm (24.1)

all 604 15.2 84.8 Fm (12.0)

Table 3. Statistics for the GiantSteps Key data set per style
(number of examples, percentage of major and minor keys,
most frequent key)
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Figure 4. Histogram of tracks per style within the Gi-
antSteps Key data set.

5.1 GiantSteps Tempo Data Set

Common in tempo estimation tasks, results are provided
as accuracies within a ±4% tolerance window. Accuracy1
considers an estimate to be correct if it is within ±4% of
the true tempo. Accuracy2 also considers an estimate to be
correct if it is within ±4% of either a third, half, double or
triple of the true tempo, thus being permissive of so-called
octave errors.

5.1.1 Algorithms

As a baseline we evaluate the annotations created by Beat-
port’s undisclosed algorithm, obtained by evaluating the
tempo annotations that were initially reported as incorrect.
We expect very low values from this strategy, as the data
set consists only of cases where Beatport has given wrong

estimates. However, the results are not trivially all zero,
as the tolerance window allows for correct results if only
minor deviations were corrected, as well as for corrections
of octave errors.

In terms of academic algorithms we evaluate the tempo
estimation approaches by Davies and Plumbley [14],
Böck et al. [4], Gkiokas et al. [21], Percival and Tzane-
takis [34], and Hörschläger et al. [28]. As a reference
for non-academic algorithms we evaluate tempo estimators
shipped with popular DJ tools, namely Cross DJ Free, 11

Deckadance v2 (trial), 12 Traktor 2 PRO, 13 and Rekord-
box v3.2.2. 14 We argue that those estimators are tailored
to EDM and therefore should be able to perform well on
this data set.

The commercial products typically enable (or require)
the user to set an output range for BPM prediction, as a
means of dealing with octave errors. Deckadance offers to
choose among a predefined set of lower bounds of which
we selected 80 BPM. In the Traktor option pane, the user
can choose between a predefined set of tempo ranges. We
decided to evaluate two ranges: 88-175 and 60-200 BPM.
Similarly, for CrossDJ, we chose the 75-150 BPM setting
as this is the best match for the given BPM distribution.
The research algorithm by Böck et al. [4] also allows to
set an arbitrary range. To compare to some of the range
presets in commercial products, we evaluate the ranges 50-
240, 95-190, and 88-175 BPM.

5.1.2 Results

Table 4 reports the obtained tempo accuracy values for all
algorithms. As expected, commercial products outperform
research algorithms, however none of the approaches ex-
ceeds 77% in terms of accuracy1. One important finding of
more detailed investigations on a per-style level is that the
proper choice of the output tempo range has a considerable
influence on the accuracy for the style drum-and-bass. For
instance, the algorithm by Böck et al. has a known defi-
ciency when dealing with syncopated beats, thus, yielding
only acceptable performance on drum-and-bass when be-
ing restricted to the 95-190 BPM range. Due to the fact that
drum-and-bass makes up 20.9% of the collection, improve-
ments in this style have a significant impact on the overall
accuracy. This is further evidenced by [28], where perfor-
mance is boosted through style-specific output ranges.

5.2 GiantSteps Key Data Set

The evaluation method follows the MIREX standard in key
estimation tests. It assigns different weighting factors to
different types of errors, depending of the proximity of the
estimated key to the ground truth (fifth, relative, or parallel
keys), and an overall weighted score. 15

11 http://www.mixvibes.com/products/cross
12 http://www.image-line.com/deckadance/
13 http://www.native-instruments.com/products/traktor/dj-

software/traktor-pro-2/
14 http://rekordbox.com
15 http://www.music-ir.org/mirex/wiki/2015:Audio Key Detection
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accuracy1 accuracy2

Beatport 4.819 23.795

Davies, Plumbley [14] 29.367 48.042
Böck et al. [4] (50-240) 56.325 88.253
Böck et al. [4] (95-190) 76.506 86.597
Böck et al. [4] (88-175) 69.289 85.693
Gkiokas et al. [21] 58.886 82.380
Percival, Tzanetakis [34] 51.355 88.404
Hörschläger et al. [28] 75.000 82.831

Deckadance (80+) 57.681 81.627
CrossDJ (75-150) 63.404 90.211
Traktor (60-200) 64.608 88.705
Traktor (88-175) 76.958 88.705
Rekordbox 74.548 89.157

Table 4. Tempo estimation accuracies within a ±4% win-
dow for evaluated algorithms. BPM range restrictions in
parentheses, if applicable.

5.2.1 Algorithms

On top of the Beatport annotations that serve as a baseline,
we evaluate five different key estimation algorithms: two
academic algorithms, namely Queen Mary’s Key Detector
(QM-Key) [9] and UPF’s Essentia key extractor [5], and
three popular solutions, namely KeyFinder, 16 an open-
source application by Sha’ath [36], the commercial soft-
ware Mixed-In-Key 7, 17 and the online service/app Reko-
rdbox v3.2.2. These applications are regarded trustworthy
options for key detection within the EDM community.

KeyFinder is an application that allows the user to tweak
the parameters of the algorithm, providing a single esti-
mate per track. We use the default settings. On the other
hand Mixed-in-Key 7 and Rekordbox have a sealed ap-
proach and do not give the user any configuration option.

5.2.2 Results

Table 5 shows the results of the different algorithms on
the key data set. If we look at the Beatport annotations,
less than a third of the annotations match the ground truth
(29.1%). However, it should be recalled that the majority
of the collection (388 tracks) has been collected from re-
ported mistakes in the Beatport forum, so the amount of
correct keys is consequently very low. 18

From the algorithms in the evaluation, we observe that
the two academic algorithms perform poorly on this reper-
toire, very close to the baseline provided by the Beatport
key tags, especially Essentia.

The two undisclosed approaches yield the best results,
with Rekordbox providing 71.85% of correct estimations
and a weighted score of 79.55 points. In any case, the ex-
periment shows that there is room for improvement of the
task in this specific repertoire.

16 http://www.ibrahimshaath.co.uk/keyfinder/
17 http://www.mixedinkey.com/
18 As a matter of fact, if we look at the performance of the Beatport

algorithm on the different sources of ground truth separately, we find that
the tracks from the user forum only contain 4.2% of correct predictions,
while the manually-annotated expert sources result in about 66% of cor-
rect predictions each.

corr. 5th rel. par. other weigh.

Beatport 29.14 21.52 8.77 19.20 21.36 46.37

QM-Key [9] 39.40 16.89 13.41 5.13 25.17 52.90
Essentia [5] 30.46 17.55 11.09 11.42 29.47 44.85

KeyFinder [36] 45.36 20.69 6.79 7.78 19.37 59.30
Mixed-In-Key 67.22 9.27 5.63 5.30 12.58 74.60
Rekordbox 71.85 10.10 3.97 7.28 6.79 79.55

Table 5. MIREX-style scores on the Key set with results
from different algorithms.

6. CONCLUSIONS

We have presented two new data sets for tempo and key
estimation in electronic dance music with 664 and 604 ex-
amples, respectively. The annotations have been automati-
cally extracted from human feedback. In order to confirm
the correctness of the labels, we have inspected randomly
selected 15% of the annotations manually and found them
all to be correct. In order to make this data set available to
the community, we offer the annotations for download on a
dedicated web page alongside scripts to retrieve the corre-
sponding audio files from Beatport (and a backup location
in case files change or are removed) and the original data
including the crawl from the user forum and the code to
extract the ground truth. 19 Since we performed rather re-
strictive filtering, a semi-automatic approach, for instance,
would allow to extract even more ground truth labels for
future work.

From the benchmarking results, we can see that there
is still room for improvement for MIR algorithms. Al-
though the data set is biased towards examples that are
hard to classify specifically for the Beatport algorithms,
these results challenge the stereotypical view on EDM as
being “trivial cases”. Commercial algorithms are ahead of
research-oriented multi-purpose algorithms for both tempo
and key estimation as they are likely optimized for EDM.
We can conclude that academic algorithms still need to
be improved in order to meet the characteristics of EDM,
something we wish to contribute to with the publication of
these new data sets.
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ABSTRACT

Supporting the understanding of classical music is an im-
portant topic that involves various research fields such as
text analysis and acoustics analysis. Content descriptions
are explanations of classical music compositions that help
a person to understand technical aspects of the music. Re-
cently, Kuribayashi et al. proposed a method for obtain-
ing content descriptions from the web. However, the con-
tent descriptions on a single page frequently explain a spe-
cific part of a composition only. Therefore, a person who
wants to fully understand the composition suffers from a
time-consuming task, which seems almost impossible for a
novice of classical music. To integrate the content descrip-
tions obtained from multiple pages, we propose a method
for aligning each pair of paragraphs of such descriptions.
Using dynamic time warping-based method along with our
new ideas, (a) a distribution-based distance measure named
w2DD, and (b) the concept of passage expressions, it is
possible to align content descriptions of classical music
better than when using cutting-edge text analysis methods.
Our method can be extended in future studies to create ap-
plications systems to integrate descriptions with musical
scores and performances.

1. INTRODUCTION

When listening to classical music, we can enhance our un-
derstanding of the music by reading descriptions of the
contents of the music simultaneously, which is even truer
for those who are not experts of the field of music, such
as amateur players in a college orchestra. Those people
would want to read content descriptions written by experts
when they play or listen to a composition.

A content description of classical music is defined as an
objective description related to the structure of the compo-
sition that explains specific parts of it, often using technical
terms and the names of instruments [19]. Reading those
passages along with the music can help people to under-
stand what the part we are listening to means technically,

c© Taku Kuribayashi, Yasuhito Asano, Masatoshi
Yoshikawa. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Taku Kuribayashi, Yasuhito
Asano, Masatoshi Yoshikawa. “Towards Support for Understanding
Classical Music: Alignment of Content Descriptions on the Web”, 16th
International Society for Music Information Retrieval Conference, 2015.

∗Current Affiliation: Accenture Japan Ltd.

which is difficult to understand without preliminary knowl-
edge. An example of a content description of Beethoven’s
Symphony No. 9,1 is the following. “The opening theme,
played pianissimo over string tremolos, so much resem-
bles the sound of an orchestra tuning, many commentators
have suggested that it was Beethoven’s inspiration.” This
example of a content description explains what instruments
(strings) are doing technically (pianissimo, tremolos) in a
specific part (the opening theme).

Books and the web are two major sources of content de-
scriptions of classical music. Any person having such an
interest can find important musical knowledge by reading
books such as the well-known A History of Western Mu-
sic [14], which includes not only historical knowledge of
the development of western music but also abundant refer-
ences to other important books. Some encyclopedias con-
tain descriptions of orchestral compositions.

Nevertheless, books have several important limitations.
One is that they can hold only a few descriptions. An-
other problem is that once books are published, they can-
not be updated easily or consistently. Although classical
music compositions are not increasing to any great degree,
the performances are increasing constantly. With the rise
of the internet and international communication, there are
more descriptions of music and performances. Different
perspectives and ways of analysis continue to appear. With
the form of printed publications, it is difficult to update the
increasing amount of information continuously.

The web is an alternative source of information, offer-
ing resources such as “DW3 Classical Music Resources”
[11] or Wikipedia. However, it is often difficult to find
sufficient information to understand some compositions.
Conventional search engines are unsuitable for the vertical
search for content descriptions because their results often
include commercial websites that do not describe the con-
tents of the compositions. Kuribayashi et al. [19] proposed
a method that we can use to collect descriptions from the
web. Content descriptions gathered from a number of web
pages using their method can be classified into two cate-
gories: ones that describe the overall contents of the music,
and ones that describe specific parts of the composition.
We call the latter ones partial content descriptions. Both
are essential for technical understanding of the music, al-
though it is often difficult to understand where in the com-
position partial content descriptions explain. Furthermore,

1http://en.wikipedia.org/wiki/Symphony No. 9 (Beethoven),
viewed on Jan. 4, 2013

371



a single page seldom includes partial content descriptions
explains every important part of the composition; a page
might describe the introduction in detail, while another
page might explain the final part mainly. Therefore, it can
be helpful to integrate pieces of information in partial con-
tent descriptions from different sources, that is, to check
how they complement each other.

We propose a method for the alignment of every pair
of paragraphs which are partial content descriptions in dif-
ferent web pages. As a dataset, we manually extract para-
graphs corresponding to partial content descriptions from
the content descriptions collected from multiple web pages
by the method of Kuribayashi et al. [19]. Each alignment
clarifies which sentence in a paragraph matches a sentence
in the other paragraph. We can understand the music more
easily and efficiently by seeing the alignments which in-
tegrate the pieces of information in them than merely by
reading a single web page. Actually, showing the align-
ment is beneficial in many situations, as for (1) beginners,
(2) experts who want to support those beginners, and (3)
future applications.

(1) For beginners, the alignment can help them integrate
pieces of information from different websites. If beginners
have difficulties understanding one website or feel the need
for more information related to a specific part of the com-
position, they can look at the information that corresponds
to the specified part of the description.

(2) For those with a specialized knowledge of classical
music, there is always a demand that they want to support
beginners as they come to understand music. Web services
such as YouTube have several videos that are designed to
help beginners to understand classical music. However,
preparing all the materials necessary for the explanation
is a task that is both difficult and time-consuming. Show-
ing the alignment of sentences provides materials that can
support greater understanding. Therefore, showing such an
alignment is an important aid to experts who try to support
beginners.

(3) In the future, we seek to develop a system that in-
tegrates our methods and studies of the analysis of music
and music scores; the most important feature is to align
content descriptions with the music itself. Beginners will
especially benefit from this system because the hardest task
for beginners is to ascertain which part of the music the
partial content descriptions are referring to. The first step
of this ultimate application is analysis of the sentences and
their mutual alignment.

The main contributions of this paper are as follows.

• We proposed a novel method named w2DD+PE for
aligning partial content descriptions based on dy-
namic time warping using the following two ideas:
(a) the distribution divergence of semantic vectors of
words, and (b) passage expressions.

• We presented a way to show the aggregated results
of our methods for collecting and aligning partial
content descriptions.

2. RELATED WORK

This paper deals with various fields of study, including
analysis of music, temporal information, multi-document
summarization, and parallel corpus discovery; the sub-
ject of this paper is the analysis of temporal informa-
tion in music, and the methodology utilizes the ideas of
multi-document summarization and parallel corpus dis-
cover models. We will take a look at some of the previous
works related to each field of study.

2.1 Musical Knowledge

Music has remained an important topic of research from
various aspects, including acoustics, music theory, and
psychology. We list a few related works that are closely
related to understanding the support and analysis of music.

In the area of understanding support and collecting mu-
sical knowledge, Fineman [11] reported a project called
“DW3 Classical Music Resources.” The project was a col-
lection of web links that gathered various forms of knowl-
edge related to classical music for college students major-
ing in music. The link quality was scrutinized by experts,
making it easier for students to obtain information that can-
not be found easily via conventional web searches. Unfor-
tunately, the project was ceased in 2007.

Other works that are related to the future application
of this research include the following. Some studies have
been made to analyze the structure of the music itself, such
as research by Sumi et al. [36], which created a system for
inference of the chord from other data such as the base
pitch. Maezawa et al. [24] proposed a system that links
the performance and the interpretation of the composition.
Using these studies with our research, it would be possible
in the future to analyze and extract the music structure and
link it to the content descriptions of the composition.

2.2 Temporal Information

As Alonso et al. state in [2], temporal information is an
important factor in information retrieval in general. Re-
searches that deal with temporal information in natural lan-
guage are being studied widely, as in [34], [27], [23], [3],
[16]. In order to extract temporal expression, Schilder et al.
[32] use finite state transducer (FST); Strötgen et al. [33]
use regular expressions, and Mani et al. [26] use machine
learning. Chambers et al. [7] focus on the relationships
between events, whereas Lapata et al. [20] concentrate on
the relationships between expressions in a single sentence.
Kimura et al. [17] propose a system that shows chronolog-
ically organized information obtained by web searching on
a single person. Schilder et al. [32] extract temporal infor-
mation from news articles.

As we see from these examples, researches on tempo-
ral information have various aspects, including many view-
points on the subject and granularity. In our research, we
deal with temporal information in one composition, which
is generally an hour or two at the longest.
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2.3 Multi-document Summarization

To gain knowledge from multiple sources, summarization
of information is an important technique. One type of sum-
marization, the extractive method, chooses subsets of the
original document to convey the meaning of the whole text.
In the task of multiple document summarization, numer-
ous approaches have been taken. Mani et al. [25] take an
graph-based approach, and many of recent studies follow
similar ideas [39] [8] [5] [13] [10]. Other approaches in-
clude Bayesian models [9] [6], topic models [15], rhetoric-
based models [4], and cluster-based models [30] [37].

2.4 Parallel Corpus Discovery

Because we are interested in discovering potential align-
ments from different documents, we will take a look at
previous works that utilize techniques for investigating par-
allel corpora. Caroline et al. [21] apply dynamic time
warping to movie subtitles to construct parallel corpora
for machine translation. Previous works on finding par-
allel texts from bilingual, often non-parallel, corpora in-
clude [12], [29], [38] and [35].

3. ALIGNMENT OF DESCRIPTIONS

3.1 Collection of Content Descriptions

We adopted a method of Kuribayashi et al. [19] to col-
lect content descriptions from the web. Their method uti-
lizes labeled latent Dirichlet allocation (labeled LDA) [31]
which is a supervised learning to classify documents prob-
abilistically. They proposed eight classes of descriptions
(one of them corresponds to content descriptions) con-
tained in the pages obtained by inputting names of compo-
sitions to a search engine, and trained labeled LDA with
manually-classified 1540 pages. Note that information
other than text, such as images or HTML tags, is removed
from these pages using nwc-toolkit2. Applying the trained
labeled LDA to paragraphs obtained by inputting the name
of a composition to a search engine, we can collect para-
graphs corresponding to content descriptions.

From our investigation of a number of content descrip-
tions gathered by this method, we found out that par-
tial content descriptions in a single paragraph are ordered
chronologically for a composition. Therefore, the se-
quence alignment of those sentences is more suitable for
integrating information of partial content descriptions than
other methods such as matching sentences.

3.2 Bootstrapping Method for Acquiring Passage
Expressions

It is quite a difficult task to identify what part of a musi-
cal piece that a description corresponds, because most par-
tial content descriptions do not contain measure numbers.
Here we try to obtain as much information related to the
correspondence of one expression to another. For instance,
if we have two descriptions “The first theme is played by

2http://nwc-toolkit.googlecode.com/svn/trunk/docs/tools/text-
extractor.html

solo flute” and “The lyrical first subject appears after the
introduction,” we can see the relationship between them;
because the words “theme” and “subject” are semantically
similar in this context, we can align these two sentences
and understand that the theme is lyrical and is played by
the flute. If we have another sentence talking about “solo
flute,” we can also infer the relationship of that descrip-
tion to the two sentences above. We have to identify what
types of nouns point to the parts of music, which we call
passage expressions, in order to perform this inference. If
we are able to obtain those expressions, then we would be
able to use them to align sentences that correspond to the
same part of the composition. In the future, we might also
be able to employ them to mapping of the actual parts of
music by finding measure numbers or giving some infor-
mation manually.

To obtain the passage expressions, we focus on the
grammatical structure of content description sentences. In
content descriptions, the most basic structure of sentences
is subject-verb-object, where the verb describes the rela-
tionship between two passage expressions (subject and ob-
ject). Therefore, we use a bootstrapping method as in [1],
using the relation between the subject and the predicate to
extract appropriate nouns. Because a simple bootstrapping
method tends to produce noises in the results, we also pro-
posed filtering methods to reduce those noises.

The corpus for the bootstrapping method is 2300 para-
graphs which are the top 100 paragraphs obtained by ap-
plying the method of Kuribayashi et al. [19] to each of 23
compositions.

First, we prepared an initial list of 14 nouns and 29
verbs for the bootstrapping method. Then we expanded
that list when two of the triplet of the subject, the verb and
the object (or the object of the preposition) were already in
the list, by adding the third word. We did not add the third
word when the subject was a personal pronoun (“I”, “we”,
“you”, “he”, or “she”) because the word was inappropriate
in almost all cases.

Instead of adding all the words that appear in the triplet,
we eliminate words that do not fulfill certain conditions to
reduce noise words that are not relevant to content descrip-
tions. The following filtering methods incorporate the re-
sults of the labeled LDA-based method [19] and word2vec
[28]3 which converts a word to a vector based on the co-
occurence of words in a corpus; the similarity of words can
be calculated using the vectors corresponding the words.

L-LDA Words that are stop words or that do not appear
in the training data of labeled LDA in the methods
of [19] are not added.

word2vec Words that are below the threshold (0.128 and
0.3) of word2vec similarity. Word2vec using the
same corpus as the one used for our bootstrapping
explained above. The word2vec similarity used here
is defined as the maximum of the similarities be-
tween the word and the seed nouns of the bootstrap-
ping method.

3https://code.google.com/p/word2vec/
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L-LDA && word2vec Only words that fulfill both of the
above two are added. The threshold of the word2vec
score is 0.128.

L-LDA ‖ word2vec Words that fulfill either one of the
two above are added. The threshold of the word2vec
score is 0.3.

3.3 Alignment Method using Dynamic Time Warping

We propose a method called “word sets to Distribu-
tion Distance-based alignment using Passage Expressions”
(w2DD +PE) for finding an alignment of pairs of para-
graphs of content descriptions. This method is based on
dynamic time warping (DTW), a well-known technique for
finding an alignment of two sequences. Applying DTW to
paragraphs requires a distance measure of two sentences.
We propose a new distance measure employing (a) the dis-
tribution of word vectors of each sentence, and (b) passage
expressions.

3.3.1 w2DD

A simple measure of distance between two sentences is to
take the average of semantic vectors of words in the sen-
tence calculated using word2vec and calculate the cosine
distance. However, adopting the average loses much infor-
mation about how the vectors distribute. Therefore, it is
required to propose a new method to capture the feature of
the distribution corresponding to each sentence.

The fundamental idea of our new method, named
w2DD, is to measure the distance between two sentences
by the distance between the distributions of their corre-
sponding vectors. We firstly reduce each vector to a small
number of dimensions using principal component analysis
because the 200 dimensions obtained by word2vec are too
numerous to handle. The number of dimensions is deter-
mined empirically, and eleven dimensions were sufficient
for the cumulative proportion of 70%. Secondly, we con-
vert the 11-dimension vectors of each sentence into a his-
togram, in order to apply a distance measure for a pair of
probabilistic distributions. For the conversion, we divide
each dimension into halves (resulting in 211 subspaces)
and count the number of vectors in each subspace; the se-
quence of the numbers forms the obtained histogram. We
tried splitting each dimension into 2, 3, and 4, but the result
did not change at all, so we chose 2. Then we calculated the
distance of the pair of histograms by the Jensen–Shannon
divergence using the following formula:

JSD(P ‖ Q) =
1

2
(
∑

x

log
P (x)

R(x)
+

∑

x

log
Q(x)

R(x)
) (1)

where P and Q are the histograms corresponding to the
two sets of vectors, x is each subspace, P (x) is the number
of vectors of P in x divided by the total number of vectors
of P , and R(x) = P (x)+Q(x)

2 .

3.3.2 Passage Expressions

First, to utilize the information of passage expressions in
sentences containing no such expressions, we merge such

sentences into the previous sentence having a passage ex-
pression. Then, we calculate the distance of two sentences
s1 and s2 as follows. Let sim(p1, p2) be the cosine simi-
larity between the semantic vectors of passage expressions
p1 in s1 and p2 in s2. The distance Dist(s1, s2) is

Dist(s1, s2) =





αJSD(s1, s2)
+(1 − α)(1 − maxp1,p2(sim(p1, p2)))
(if maxp1,p2(sim(p1, p2)) 6= 0)

JSD(s1, s2) (otherwise)
(2)

where JSD(s1, s2) is the value calculated as in Section
3.3.1. If either one of the paragraphs is without a passage
expression, then maxp1,p2

(sim(p1, p2)) = 0. Therefore
only the Jensen–Shannon divergence matters. Also, α is
the coefficient factor, which was set to 0.2, 0.4, 0.6, 0.8,
and 1.0.

4. EVALUATION

4.1 Procedure

An input of the alignment is a pair of paragraphs which
are partial content descriptions explaining a common sec-
tion in a composition. The labeled LDA-based method of
Kuribayashi et al. [19] is able to collect content descrip-
tions, although it is not able to extract partial content de-
scriptions from them. Consequently, our data set consists
of 32 paragraphs (135 sentences) manually extracted from
the top 100 paragraphs for each of 10 classical music com-
positions obtained by their method; the number of pairs are
41. The extraction and assignment of each paragraph to a
section is based on keywords corresponding to sections,
such as “movement” (the most basic divisions of a music
composition), “exposition” and “development” (common
structures within a movement). The keywords are selected
for the sonata form, and a selection specialized for other
types of classic music, “theme and variations” for exam-
ple, is also possible. A method for automatic extraction
and assignment is a candidate of future studies.

To see how each of our ideas work, we used the fol-
lowing variants of methods for calculating the distance be-
tween two sentences.

Baseline1 the cosine distance of the averages of word2vec
vectors.

Baseline1+PE the cosine distance of the following 400
dimension vectors for the two sentences s1 and s2.
The first 200 dimensions are the average of the
word2vec vector of each sentence. The second 200
dimensions are the word2vec vector of passage ex-
pression p1 for s1 or p2 for s2, respectively; p1 and
p2 are the pair of the closest expressions in terms of
word2vec cosine similarity.

Baseline2 the cosine distance calculated using
sentence2vec.4 This is an implementation of Para-
graph Vector proposed by Le and Mikolov [22],

4https://github.com/klb3713/sentence2vec
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Figure 1. Example of how to calculate F -measure.

which is an advanced method of word2vec that in-
corporates the order of words in a sentence to rep-
resent its semantics. Their experiments showed
that Paragraph Vector performs better than previous
methods for several tasks; word vector averaging,
Naive Bayes, SVMs, and recursive neural network
for a sentiment analysis task; vector averaging, bag-
of-words, and bag-of-bigrams for an information re-
trieval task.

Baseline2+PE the cosine distance calculated using sen-
tence2vec incorporated with the passage expression
vector by the same way Section 3.3.2.

w2DD the method described in Section 3.3.1

w2DD+PE the method described in Section 3.3.2.

For Baseline1+PE, Baseline2+PE, and w2DD+PE, we
used the filtered list of passage expressions described in
Section 3.1.

The ground truth for the alignment of each pair of para-
graphs was created manually by one of the authors who
is an enthusiast of classical music, with the help of vari-
ous books and websites on the compositions. We evaluate
each method using precision, recall, and F -measure. We
explain below how they are calculated employing Figure 1
which illustrates an example of the result of alignment of
two paragraphs. The red dots represent the manual align-
ment result, and black dots indicate the output a method; in
the manual alignment, the first sentence of paragraph 1 (x-
axis) corresponds to the first, second, and third sentences
of paragraph 2 (y-axis), the second sentence of paragraph
1 corresponds to the third sentence of paragraph2, and so
on. The precision is the number of matching red and black
dots over the number of black dots, 9/13 in this case. The
recall is the number of matching red and black dots over
the number of red dots, 9/15 in this case. The F -measure
is defined by the following equation.

F =
2 · precision · recall

precision + recall
(3)

4.2 Results

Tables 1, 2, and 3 present the experimental results. Com-
paring the “No PE” row with the others in each table, we
see that employing PE improves the results in general.
Comparing the three tables, we see that w2DD performs
much better than baseline methods. Especially, w2DD+PE
with L-LDA (α = 0.2) and w2DD+PE with L-LDA &&
word2vec (α = 0.2) are the methods that resulted in the
best F -measure (shown in bold in the Table 3).

Table 1. Results of Baseline1 (No PE) and Baseline1+PE.

Method Precision Recall F -measure
No PE 0.595 0.534 0.563

No Filtering 0.608 0.633 0.620
L-LDA 0.618 0.647 0.632

word2vec (0.128) 0.582 0.618 0.600
word2vec (0.3) 0.562 0.607 0.584

L-LDA && word2vec 0.592 0.629 0.610
L-LDA ‖ word2vec 0.591 0.615 0.602

Figure 2. Visualization of Tchaikovsky’s Symphony No.5
(Each block of sentences separated by dotted lines is from
a single web page.)

Because the baseline methods “compress” the word
vectors in a sentence into a single vector, they are con-
sidered to lose much information of the words. On the
other hand, w2DD keeps the information on how varied
the words are in the sentence.

The numbers of passage expressions employed in L-
LDA and L-LDA && word2vec were 30 and 26, respec-
tively. Passge expressions were generally effective as men-
tioned above, while higher alpha often made the perfor-
mance worse. These results would indicate that the word
distribution employed in w2DD is more important than
passage expressions.

4.3 Visualization

To present the results of our methods to users for under-
standing support, we created a prototype of a system to
visualize them in a table form, whose examples can be ac-
cessed online.5 Each row corresponds to a part of mu-
sic. Figure 2 shows a single row corresponding to the
“4th movement” of the table for Tchaikovsky’s “Sym-
phony No.5.” In this row, there are three blocks of sen-
tences separated by dotted lines, each of which indicates a
paragraph retrieved from one web page. As we hover the
cursor over one of the sentences, the sentences of other de-
scriptions that are aligned with that sentence by our method
is highlighted (shown as pink in the figure).

The recapitulation part builds up the tension and ends

5http://bit.ly/1vHMkgm
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Table 2. Results of Baseline2 (No PE) and Baseline2+PE.

Method α Precision Recall F -measure
No PE - 0.610 0.550 0.578

No Filtering

0.2 0.621 0.562 0.590
0.4 0.630 0.568 0.597
0.6 0.603 0.544 0.572
0.8 0.474 0.417 0.444

L-LDA

0.2 0.659 0.598 0.627
0.4 0.670 0.604 0.635
0.6 0.627 0.565 0.594
0.8 0.474 0.417 0.444

word2vec
(0.128)

0.2 0.619 0.562 0.589
0.4 0.630 0.568 0.597
0.6 0.603 0.544 0.572
0.8 0.474 0.417 0.444

word2vec
(0.3)

0.2 0.625 0.565 0.593
0.4 0.627 0.565 0.594
0.6 0.603 0.544 0.572
0.8 0.474 0.417 0.444

L-LDA &&
word2vec

0.2 0.659 0.598 0.627
0.4 0.670 0.604 0.635
0.6 0.627 0.565 0.594
0.8 0.474 0.417 0.444

L-LDA ‖
word2vec

0.2 0.616 0.559 0.586
0.4 0.627 0.565 0.594
0.6 0.603 0.544 0.572
0.8 0.474 0.417 0.444

up with a brief stop. From the three highlighted descrip-
tions, it is readily apparent that common tone modulation
is used cleverly in the recapitulation; the fate theme en-
genders a suspenseful buildup; and a fermata rest follows
the majestic chords in B major. By reading the aligned de-
scriptions that are retrieved from multiple pages, a more
detailed and thorough view of the part of the music can be
obtained than by reading just one description.

5. CONCLUDING REMARKS

As described in this paper, we proposed methods for sup-
porting the understanding of classical music using mutual
alignment of partial content descriptions. Our method
w2DD+PE uses word sets to Distribution Distance
(w2DD) and the concept of passage expressions, which are
expressions that serve as the key to identification of which
parts of the music the descriptions correspond to. Although
the concept of passage expressions is unique to the field of
classical music, w2DD can be applied to other domains of
text data. It is one of our future tasks to apply w2DD to
other datasets.

Future studies will be undertaken to create an applica-
tion system that can help beginners to appreciate classical
music. By integrating our methods with studies of musi-
cal analysis such as [36] and [24], or other applications of
music-related information retrieval such as [18], it is ex-
pected to be possible to support beginners in their efforts
to understand and enjoy music.

Table 3. Results of w2DD (No PE) and w2DD+PE.

Method α Precision Recall F -measure
No PE - 0.746 0.688 0.716

No Filtering

0.2 0.671 0.733 0.701
0.4 0.671 0.733 0.701
0.6 0.690 0.748 0.718
0.8 0.667 0.718 0.691

L-LDA

0.2 0.680 0.780 0.727
0.4 0.678 0.774 0.723
0.6 0.675 0.760 0.715
0.8 0.669 0.745 0.705

word2vec
(0.128)

0.2 0.639 0.721 0.678
0.4 0.639 0.721 0.678
0.6 0.651 0.718 0.683
0.8 0.658 0.718 0.687

word2vec
(0.3)

0.2 0.648 0.736 0.689
0.4 0.648 0.736 0.689
0.6 0.652 0.739 0.693
0.8 0.659 0.745 0.699

L-LDA &&
word2vec

0.2 0.680 0.780 0.727
0.4 0.678 0.774 0.723
0.6 0.673 0.757 0.712
0.8 0.669 0.745 0.705

L-LDA ‖
word2vec

0.2 0.637 0.733 0.681
0.4 0.637 0.733 0.681
0.6 0.641 0.727 0.681
0.8 0.651 0.736 0.691
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1Music Technology Group, Universitat Pompeu Fabra
2Technical University of Madrid

3Faculty of Psychology, University of Sevilla
{sergio.oramas, emilia.gomez}@upf.edu, fmartin@eui.upm.es, mora@us.es

ABSTRACT

Online information about flamenco music is scattered over
different sites and knowledge bases. Unfortunately, there
is no common repository that indexes all these data. In
this work, information related to flamenco music is gath-
ered from general knowledge bases (e.g., Wikipedia, DB-
pedia), music encyclopedias (e.g., MusicBrainz), and spe-
cialized flamenco websites, and is then integrated into a
new knowledge base called FlaBase. As resources from
different data sources do not share common identifiers, a
process of pair-wise entity resolution has been performed.
FlaBase contains information about 1,174 artists, 76 pa-
los (flamenco genres), 2,913 albums, 14,078 tracks, and
771 Andalusian locations. It is freely available in RDF and
JSON formats. In addition, a method for entity recognition
and disambiguation for FlaBase has been created. The sys-
tem can recognize and disambiguate FlaBase entity refer-
ences in Spanish texts with an f-measure value of 0.77. We
applied it to biographical texts present in Flabase. By using
the extracted information, the knowledge base is populated
with relevant information and a semantic graph is created
connecting the entities of FlaBase. Artists relevance is then
computed over the graph and evaluated according to a fla-
menco expert criteria. Accuracy of results shows a high
degree of quality and completeness of the knowledge base.

1. INTRODUCTION

Music context information is now playing a key role in
MIR research. Multimodal approaches, semantic approaches,
and text-IR approaches have shown important achievements
in typical MIR problems, such as music recommendation
and discovery, genre classification, or music similarity [17].
Therefore, collecting and storing music context informa-
tion may be extremely useful for the MIR research com-
munity [13]. There are some broad repositories of music
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Licensed under a Creative Commons Attribution 4.0 International Li-
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Emilia Gómez1, Joaquı́n Mora3. “FlaBase: Towards the Creation of a
Flamenco Music Knowledge Base”, 16th International Society for Music
Information Retrieval Conference, 2015.

context information such as MusicBrainz 1 or Discogs 2 .
Although some of these repositories are very complete and
accurate, there is still a vast amount of music informa-
tion out there, which is generally scattered among differ-
ent sources on the Web. Hence, harvesting and combining
that information is a crucial step in the creation of practical
and meaningful music knowledge bases. In addition, the
creation of genre-specific knowledge bases may be very
valuable for research and dissemination purposes, and par-
ticularly to non-western music traditions.

In this paper, we propose a methodology for the creation
of a genre-specific knowledge base; in particular, a knowl-
edge base of flamenco music. The proposed methodology
combines content curation and knowledge extraction pro-
cesses. First, an important amount of information is gath-
ered from different data sources, which are subsequently
combined by applying pair-wise entity resolution. Next,
new knowledge is extracted from unstructured harvested
texts and employed to populate the knowledge base. For
this purpose, an entity linking system has been expressly
developed. Finally, the content of the knowledge base is
used to compute artist relevance and results are evaluated
according to flamenco experts criteria. The content of the
knowledge base is freely available and downloadable as
data dumps in RDF and JSON formats.

The remainder of the paper is organized as follows. In
Section 2, an introduction to flamenco music is presented.
In Section 3 some relevant prior work is briefly surveyed.
Section 4 describes the structure of the knowledge base.
Next, in Section 5 the process of content curation is ex-
plained. Section 6 shows the methodology applied for knowl-
edge extraction. In Section 7 artist relevance is computed
and some statistics about the content are laid out. Finally,
Section 8 concludes the paper and points out for future
lines of work.

2. FLAMENCO MUSIC

Several musical traditions contributed to the genesis of fla-
menco music as we know it today. Among them, the influ-
ences of the Jews, Arabs, and Spanish folk music are rec-
ognizable, but indubitably the imprint of Andalusian Gyp-
sies’ culture is deeply ingrained in flamenco music. Fla-

1 http://musicbrainz.org
2 http://www.discogs.com/
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menco occurs in a wide range of settings, including festive
juergas (private parties), tablaos (flamenco venues), con-
certs, and big productions in theaters. In all these settings
we find the main components of flamenco music: cante or
singing, toque or guitar playing, and baile or dance. Ac-
cording to Gamboa [9], flamenco music grew out of the
singing tradition, as a melting process of all the traditions
mentioned above, and therefore the role of the singer soon
became dominant and fundamental. Toque is subordinated
to cante, especially in more traditional settings, whereas
baile enjoys more independence from voice.

In the flamenco jargon styles are called palos. Crite-
ria adopted to define flamenco palos are rhythmic patterns,
chord progressions, lyrics and its poetic structure, and geo-
graphical origin. In flamenco geographical variation is im-
portant to classify cantes as often they are associated to a
particular region where they were originated or where they
are performed with gusto. Rhythm or compás is a unique
feature of flamenco. Rhythmic patterns based on 12-beat
cycles are mainly used. Those patterns can be classed as
follows: binary patterns, such as tangos or tientos; ternary
patterns, which are the most common ones, such as fan-
dangos or bulerı́as; mixed patterns, where ternary and bi-
nary patterns alternate, such as guajira; free-form, where
there is no a clear underlying rhythm, such as tonás. For
further information on fundamental aspects of flamenco
music, see the book of Fernández [7]. For a comprehen-
sive study of styles, musical forms and history of flamenco
the reader is referred to the books of Blas Vega and Rı́os
Ruiz [3], Navarro and Ropero [12], and Gamboa [9] and
the references therein.

3. RELATED WORK

A knowledge base is a centralized repository intended to
store both complex structured and unstructured informa-
tion. Content in a knowledge base can be either curated or
extracted, and knowledge bases can be classified accord-
ing to those criteria [6]. Curated knowledge can be man-
ually gathered by humans or automatically extracted from
a structured data source. By contrast, extracted knowledge
is produced after the application of an information extrac-
tion process over an unstructured data source. There are
several well-known general purpose knowledge bases ei-
ther extracted or curated. The most widely used are DBpe-
dia 3 and Freebase 4 , and more recently WikiData 5 . The
most relevant extracted knowledge bases are NELL [5] and
Open IE [1].

In the music field, one of the most complete and broadly
used knowledge bases is MusicBrainz 6 , which has been
created in a collaborative curated way. However, there is
not any extracted and open music knowledge base. More-
over, little effort have been done in the creation of genre-
specific knowledge bases. Most relevant initiatives in this

3 http://dbpedia.org
4 http://www.freebase.com
5 http://www.wikidata.com
6 http://musicbrainz.org

direction have been done within the CompMusic project 7 .
In this project, one of the main tasks has been the gather-
ing of culture-specific corpora of non-western musical tra-
ditions, combining expert information, audio recordings,
features, music notation, lyrics, editorial metadata and com-
munity information [18]. According to [19], a domain-
specific corpora should be designed by satisfying the fol-
lowing criteria: purpose, coverage, completeness, quality
and reusability. In [15], the architecture and applications
of a system that exploits domain-specific corpora is pre-
sented. Another interesting project is Linked Jazz [14],
where the application of Linked Open Data (LOD) tech-
nology to enhance discovery and visibility of jazz music is
studied.

4. FLABASE

FlaBase (Flamenco Knowledge Base) is the acronym of a
new knowledge base of flamenco music. Its ultimate aim
is to gather all available online editorial, biographical and
musicological information related to flamenco music. A
first version is just being released. Its content is the result
of the curation and extraction processes explained in Sec-
tions 5 and 6. FlaBase is stored in RDF and JSON formats,
and it is freely available for download 8 . Its RDF version
follows the Linked Open Data principles, and it might be
queried by setting up a SPARQL endpoint. A JSON ver-
sion is also available, thus facilitating the use of the content
by all the community of researchers and developers. This
first release of FlaBase contains information about 1,174
artists, 76 palos (flamenco genres), 2,913 albums, 14,078
tracks, and 771 Andalusian locations.

4.1 Ontology Definition

The FlaBase data structure is defined in an ontology schema.
One of the advantages of using an ontology as a schema is
that it can be easily modified. Thus, our design is a first
building block that can be enhanced and redefined in the
future. The initial ontology is structured around five main
classes: MusicArtist, Album, Track, Palo and Place, and
three domain specific classes: cantaor (flamenco singer),
guitarist (flamenco guitar player), and bailaor (flamenco
dancer). These three classes were defined because they are
the most frequent types of artists in the data. Other instru-
ment players may be instantiated directly from the Musi-
cArtist class. We have tried to reuse as much vocabulary
as we could. We re-utilized most of the classes and some
properties from the Music Ontology 9 , a standard model
for publishing music-related data. We selected the classes
according to the ones used by the LinkedBrainz project 10 ,
which maps concepts from MusicBrainz to Music Ontol-
ogy.

7 http://compusic.upf.edu
8 http://mtg.upf.edu/download/datasets/flabase
9 http://musicontology.com

10 https://wiki.musicbrainz.org/LinkedBrainz
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Figure 1. Selected data sources

5. CONTENT CURATION

The first step towards building a domain-specific knowl-
edge base is to gather all possible content from available
data sources. This implies at least two problems, namely,
the selection of sources, and the matching between enti-
ties from different sources. In what follows we enumerate
the involved data sources and describe the methodology
applied to entity resolution.

5.1 Data Acquisition

Our aim is to gather an important amount of information
about musical entities, including textual descriptions and
available metadata. A schema of the selected data sources
is shown in Figure 1. We started by looking at Wikipedia 11 ,
the free and multilingual Internet encyclopedia. It is the In-
ternet’s largest and most popular general reference work.
Each Wikipedia article may have a set of associated cat-
egories. Categories are intended to group together pages
on similar subjects and are structured in a taxonomical
way. To find Wikipedia articles related to flamenco mu-
sic, we first looked for flamenco categories. The taxon-
omy of categories can be explored by querying DBpedia,
a knowledge base with structured content extracted from
Wikipedia. In particularly, we employed the SPARQL end-
point of the Spanish DBpedia 12 . We queried for categories
related to the flamenco category in the taxonomy. At the
end, we obtained 17 different categories (e.g., cantaores de
flamenco, guitarristas de flamenco).

By querying again DBpedia, we gathered all DBpedia
resources related to one of these categories. We obtained
a total number of 438 resources in Spanish, of which 281
were also in English. Each DBpedia resource is associated
with a Wikipedia article. Text and HTML code were then
extracted from Wikipedia articles in English and Spanish
by using the WikiMedia API. Next, we classified the ex-
tracted articles according to the ontology schema defined
in our knowledge base (Section 4.1). For this purpose, we
exploited classification information provided by DBpedia

11 http://www.wikipedia.org
12 http://es.dbpedia.org

(DBpedia ontology and Wikipedia categories). At the end,
from all gathered resources, we only kept those related to
artists and palos, totalling 291 artists and 56 palos.

However, the amount of information present in Wikipedia
related to flamenco music is somewhat scarce. Therefore,
we decided to expand our knowledge base with informa-
tion from two different websites. First, Andalucia.org, the
touristic web from the Andalusia Government 13 . It con-
tains 422 artist biographies in English and Spanish, and the
description of 76 palos also in both languages. Second, a
website called El arte de vivir el flamenco 14 , which in-
cludes 749 artist biographies among cantaores, bailaores
and guitarists. Both webs were crawled and their content
stored in our knowledge base.

MusicBrainz is one of the biggest and more reliable
open music databases, which provides an unambiguous form
of music identification. Therefore, we turned to it in order
to fill our knowledge base with information about flamenco
album releases and recordings. Artists present in FlaBase
were intended to be mapped with MusicBrainz artists. For
every match, all content related to releases and recordings
was gathered. After doing so, we obtained a total number
of 814 releases and 9,942 recordings.

The information gathered from MusicBrainz is a lit-
tle part of the actual flamenco discography. Therefore,
to complement it we used a flamenco recordings database
gathered by Rafael Infante and available at CICA web-
site 15 (Computing and Scientific Center of Andalusia). This
database has information about releases from the early time
of recordings until present time, counting 2,099 releases
and 4,136 songs. For every song entry, a cantaor name
is provided, and most of the times also guitarist and palo,
which is a very valuable information to define flamenco
recordings.

Finally, we supplied our knowledge base with informa-
tion related to Andalusian towns and provinces. We gath-
ered this information from the official database SIMA 16

(Multi-territorial System of Information of Andalusia).

5.2 Entity Resolution

Entity Resolution (ER) is the problem of extracting, match-
ing and resolving entity mentions in structured and un-
structured data [10]. There are several approaches to tackle
the ER problem. For the scope of this research, we selected
a pair-wise classification approach based on string similar-
ity between entity labels.

The first issue after gathering the data is to decide whether
two entities from different sources are referring to the same
one. Therefore, given two sets of entities A and B, the ob-
jective is to define an injective and non-surjective mapping
function f between A and B that decides whether an en-
tity a ∈ A is the same as an entity b ∈ B. To do that,
a string similarity metric sim(a, b) based on the Ratcliff-
Obershelp algorithm [16] has been defined. It measures

13 http://andalucia.org
14 http://www.elartedevivirelflamenco.com/
15 http://flun.cica.es/index.php/grabaciones
16 http://www.juntadeandalucia.es/

institutodeestadisticaycartografia/sima
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Figure 2. F-measure for different values of θ

the similarity between two entity labels and outputs a value
between 0 and 1. We consider that a and b are the same en-
tity if their similarity is bigger than a parameter θ. If there
are two entities b, c ∈ B that satisfy that sim(a, b) ≥ θ
and sim(a, c) ≥ θ, we consider only the mapping with the
highest score. To determine the value of θ, we tested the
method with several θ values over an annotated dataset of
entity pairs. To create this dataset, the 291 artists gathered
from Wikipedia were manually mapped to the 422 artists
gathered from Andalucia.org, obtaining a total amount of
120 pair matches. As it is shown in Figure 2 the best F-
measure (0,97) was obtained with θ = 0.9. Finally, we
applied the described method with θ = 0.9 to all gath-
ered entities from the three data sources. Thanks to the en-
tity resolution process, we reduced the initial set of 1,462
artists and 132 palos to a set of 1,174 artists and 76 palos.

Once we had our artist entities resolved, we began to
gather their related discographic information. First, we
tried to find out the MusicBrainz ID of the gathered artists.
Depending on the information about the entity, two differ-
ent process were applied. First, every Wikipedia page, and
its equivalent DBpedia resource, has a correspondent en-
tity defined in Wikidata. Wikidata is a free linked database
which acts as a structured data storage of Wikipedia. There
are several properties in Wikidata that may link Wikidata
items with MusicBrainz items. Thus, the equivalent Wiki-
data resource of a Wikipedia artist page may have a link
to its corresponding MusicBrainz artist ID. Therefore, we
looked for these relations and mapped all possible entities.
For those artists without a direct link to MusicBrainz, we
queried the MusicBrainz API by using the artist labels, and
then applied our entity resolution method to the obtained
results.

Finally, to integrate the discography database of CICA
into our knowledge base, we applied the entity resolution
method to the fields cantaor, guitarist and palo of each
recording entry in the database. From the set of 202 can-
taores and 157 guitarists names present in the recording
entries, a total number of 78 cantaores and 44 guitarists
were mapped to our knowledge base. The number of mapped
artists was low due to differences between the way of la-
beling an artist. An artist name may be written using one
or two surnames, or using a nickname. In the case of palos,
there were 162 different palos in the database, 54 of which
were mapped with the 76 of our knowledge base. These 54
palos correspond to an 80% of palo assignments present in
the recording entries.

6. KNOWLEDGE EXTRACTION

Once the process of data acquisition is finished, the knowl-
edge base is ready for use. However, there is an impor-
tant amount of knowledge present in the data that has not
been fully exploited. Texts gathered contain a huge epis-
temic potential that remains implicit. Consequently, to en-
hance the amount of structured data in FlaBase, a process
of knowledge extraction has been carried out. This implicit
knowledge may vary from biographical data, such as place
and date of birth, to more complex semantic relations in-
volving different entities. Three tasks play a key role in
the process of knowledge extraction from non-structured
text: named entity recognition (NER), named entity dis-
ambiguation (NED), and relation extraction (RE) [20]. In
this research, we focus on the two first tasks. In what fol-
lows, a system for entity recognition and disambiguation is
described and evaluated. Lastly, an information extraction
process is applied to populate the knowledge base.

6.1 Named entity recognition and disambiguation

To extract implicit knowledge from a text, the first step
is to semantically annotate it by identifying entity men-
tions. Named entity recognition is a task that seeks and
classify words in text into pre-defined categories (e.g., per-
son, organization, or place). Named entity disambigua-
tion, also called entity linking, aims to determine what
is actually a named entity present in a text. It generally
does so by identifying it in a knowledge base of reference.
NED can be addressed directly from the text, or applied to
the output of a NER system. We propose a method that
employs a combination of both approaches, depending on
the category of the entity. For NER, we used the Stan-
ford NER system [8], implemented in the library Stanford
Core NLP 17 and trained on Spanish texts. For NED we
tried two different approaches. First, we looked for exact
string matches between FlaBase entity labels and word n-
grams extracted from the text. Second, we searched for
exact string matches between FlaBase entity labels and the
output of the NER system. In fact, we tried several com-
binations of both approaches until we obtained the most
satisfactory one.

For the scope of this research, we focused on Spanish
texts, as flamenco texts are mostly written in Spanish. Al-
though there are many entity linking tools available, we
decided to develop ours because state-of-the-art systems
(e.g., Tag-me or Babelfy) are well-tuned for English texts,
but do not perform well on Spanish texts, and even less
with music texts of a specific domain. In addition, we
wanted to have a system able to map entities to our knowl-
edge base. Therefore, we developed a system able to detect
and disambiguate three categories of entities: person, palo
and location. Three different approaches were defined by
combining NER and NED in different ways according to
the category. First, directly applying NED to text. Sec-
ond, disambiguating location and person entities from the

17 http://nlp.stanford.edu/software/corenlp.
shtml
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Approach Precision Recall F-measure
1) NED 0.829 0.694 0.756
2) NED + NER to PERS & LOC 0.739 0.347 0.472
3) NED + NER to LOC 0.892 0.674 0.767

Table 1. Precision, Recall and F-measure of NER+NED

NER output, and palo directly from text. Third, only dis-
ambiguating location entities from the NER output, and
location and palo directly from text.

To determine which approach performs better, three artist
biographies coming from three different data sources were
manually annotated, having a total number of 49 annotated
entities. We followed an evaluation methodology similar to
the one used in KBP2014 Entity Linking Task 18 . Results
on the different approaches are shown in Table 1. We ob-
serve that applying NER to entities of the person category
before NED worsens performance significantly, as recall
suddenly decrease by half. After manually analysing false
negatives, we observed that this is caused because many
artist names have definite articles between name and sur-
name (e.g., de, del), and this is not recognized by the NER
system. In addition, many artists have a nickname that is
not interpreted as a person entity by the NER system. The
best approach is the third (NED + NER to LOC), which is
slightly better than the first (only NED) in terms of preci-
sion. This is due to the fact that many artists have a town
name as a surname or as part of his nickname. Therefore,
applying NED directly to text is misclassifying person en-
tities as location entities. Thus, by adding a previous step
of NER to location entities we have increased overall per-
formance, as it can be seen on the F-measure values.

6.2 Knowledge base population

Biographical texts coming from different data sources have
been stored in FlaBase. These texts are full of relevant
information about FlaBase entities, but in an unstructured
way. Thus, a process of information extraction is necessary
to transform the unstructured information into structured
knowledge. For the scope of this research, we focused on
extracting two specific data: birth year and birth place, as
they can be very relevant for anthropologic studies. We
observed that this information is often in the very first sen-
tences of the artist biographies, and always near the word
nació (Spanish translation of “was born”). Therefore, to
extract this information, we looked for this word in the first
250 characters of every biographical text. If it is found, we
apply our entity linking method to this piece of text. If a
location entity is found near the word ”nació”, we assume
that this entity is the place of birth of the biography sub-
ject. In addition, by using regular expressions, we look for
the presence of a year expression in the neighborhood. If
it is found, we assume it as the year of birth. If more than
one year is found, we select the one with the smaller value.

To evaluate our approach, we tested the extraction of
birth places in all texts coming from the web Andalucia.org
(442 artists). We chose this subset because Andalucia.org

18 http://nlp.cs.rpi.edu/kbp/2014/

also provides specific information about artist origin that
had been previously crawled and stored in FlaBase. How-
ever, we observed that in many occasions the artist origin
provided by the data source was wrong. Therefore, we de-
cided to manually annotate the province of precedence of
these 442 artists for building ground truth data. After the
application of the extraction process on the annotated test
set, we obtained a precision value of 0,922 and a recall of
0,648. Therefore, we can state that our method is extract-
ing biographic information with very high precision and
quite reasonable recall. We finally applied the extraction
process to all artist entities with biographical texts com-
ing from any of the two flamenco crawled websites. Thus,
from a total number of 1,123 artists coming from these data
sources (95% of the artists in the knowledge base), 743
birth places and 879 birth years were extracted.

7. LOOKING AT THE DATA

7.1 Artist Relevance

We assume that an entity mention inside an artist biog-
raphy means a semantic relation between the biography
subject and the mentioned entity. Based on this assump-
tion, we build a semantic graph by applying the following
steps. First, each artist of the knowledge base is added to
the graph as a node. Second, entity linking is applied to
artist’s biographical texts. For every linked entity, a new
node is created in the graph (only if it was not previously
created). Next, an edge is added by connecting the artist
entity node with the linked entity node. This way, a di-
rected graph connecting the entities of FlaBase is finally
obtained. Entities identified in a text can be seen as hyper-
links. Hence, algorithms to measure the relevance of nodes
in a network of hyperlinks can be applied to our semantic
graph [2]. In order to measure artist relevance, we applied
PageRank [4] and HITS [11] algorithms to the obtained
graph.

We built an ordered list with the top-10 entities of the
different artist categories (cantaor, guitarist and bailaor)
for the two algorithms. For evaluation purposes, we asked
a flamenco expert to build a list of top-10 artists for each
category according to his knowledge and the available bib-
liography. The concept of artist relevance is somehow sub-
jective and there is no unified or consensual criteria for fla-
menco experts about who the most relevant artists are. De-
spite that, there is a high level of agreement among them
on certain artists that should be on such a hypothetical
list. Thus, the expert provided us with this list of hypo-
thetical top-10 artists by category and we considered it as
ground truth. We define precision as the number of iden-
tified artists in the resulting list that are also present in the
ground truth list divided by the length of the list. We eval-
uated the output of the two algorithms by calculating pre-
cision over the entire list (top-10), and over the first five el-
ements (top-5) (see Table 3). We observed that PageRank
results (see Table 2) show the greatest agreement with the
flamenco expert. High values of precision, specially for the
top-5 list, indicates that the content gathered in FlaBase is
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highly complete and accurate (see Table 3).

Cantaor Guitarist Bailaor
Antonio Mairena Paco de Lucı́a Antonio Ruiz Soler
Manolo Caracol Ramón Montoya Rosario

La Niña de los Peines Niño Ricardo Antonio Gades
Antonio Chacón Manolo Sanlúcar Mario Maya

Camarón de la Isla Sabicas Carmen Amaya

Table 2. PageRank Top-5 artists by category

Top-5 Top-10
PageRank 0.933 0.633

HITS Authority 0.6 0.4

Table 3. Precision values

7.2 Statistics

For the sake of completeness, some statistics on the data
stored in FlaBase were calculated. Data shown in Figure 3
was produced out of the entity resolution process, while
data shown in Figures 4 and 5 was calculated according
to the populated data. In Figure 3 it is shown that the most
representative palos are represented in the knowledge base,
with a higher predominance of fandangos. We can observe
in Figure 4 that most flamenco artists are from the Andalu-
sian provinces of Seville and Cadiz. Finally, in Figure 5
we observe a higher number of artists in the data were born
from the 30’s to the 80’s of the 20th century.

Figure 3. Songs by palo

8. CONCLUSIONS AND FUTURE WORK

A new knowledge base that contains information about fla-
menco music has been created and released. A process of
automatic knowledge curation has been applied to com-
bine information coming from different data sources. In
addition, the knowledge base has been enriched with con-
tent extracted directly from texts by using a custom en-
tity linking system. Using FlaBase data, artist relevance
has been computed and compared to the flamenco experts’
judgment. Precision values obtained reveals a high degree

Figure 4. Artists by province of birth

Figure 5. Artists by decade of birth

of coverage and a good quality of the knowledge base con-
tent.

There are still many avenues to be explored for future
work. More websites can be exploited to increase cov-
erage. The entity resolution step might be improved by
increasing the amount of entity labels used, or by apply-
ing learning algorithms. A SPARQL endpoint might be
created, letting users query FlaBase directly. In addition,
implementing a collaborative environment for knowledge
management would lead to an improvement in terms of
completeness and data accuracy, as content might be added,
checked and corrected directly by a community of users.
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ABSTRACT

We address the unexplored problem of percussion pattern
discovery in Indian art music. Percussion in Indian art mu-
sic uses onomatopoeic oralmnemonic syllables for the trans-
mission of repertoire and technique. This is utilized for the
task of percussion pattern discovery from audio recordings.
From a parallel corpus of audio and expert curated scores
for 38 tabla solo recordings, we use the scores to build a
set of most frequent syllabic patterns of different lengths.
From this set, we manually select a subset of musically rep-
resentative query patterns. To discover these query patterns
in an audio recording, we use syllable-level hiddenMarkov
models (HMM) to automatically transcribe the recording
into a syllable sequence, in which we search for the query
pattern instances using a Rough Longest Common Subse-
quence (RLCS) approach. We show that the use of RLCS
makes the approach robust to errors in automatic transcrip-
tion, significantly improving the pattern recall rate and F-
measure. We further propose possible enhancements to im-
prove the results.

1. INTRODUCTION

In many music cultures, music is sometimes transmitted
partly through speech, using what are variously called vo-
cables, oral mnemonics, solfège, etc [12]. In the case of
several percussion traditions, the choice of vowels and con-
sonants is such that the syllables closely represent the un-
derlying acoustic phenomenon they represent. The term
acoustic-iconic mnemonic systems coined by Hughes [12]
explains this mnemonic based syllable systems where the
core aspect is the similarity of the phonetic features of the
syllables with the acoustic properties of the sounds they
represent. A well studied example of such a system is the
tabla, where the repertoire and technique is transmittedwith
the help of a system based on onomatopoeic oral sylla-
bles [18]. In this paper, we explore the use of themnemonic
syllable system of tabla for the discovery of percussion pat-
terns. The use of these mnemonics allows us to work with a

© Swapnil Gupta, Ajay Srinivasamurthy, Manoj Kumar,
Hema A. Murthy, Xavier Serra.
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musically relevant representation that truly reflects the un-
derlying timbre, articulation and dynamics of the patterns
played.

Automatic discovery of patterns is a relevant Music In-
formation Retrieval (MIR) task. It has applications in en-
riched and informed music listening, enhanced apprecia-
tion for listeners, in music training, and in aiding musicol-
ogists working on such music cultures. We use the ono-
matopoeic oral mnemonic syllables to represent, transcribe
and search for patterns in audio recordings of tabla solos.
We first build a set of query patterns from the corpus of
scores in our dataset. Given an audio recording, we auto-
matically transcribe it into a sequence of syllables. We then
propose a method for searching the query patterns in the
automatically transcribed score using approximate string
search. We also propose several extensions to improve the
search performance. We first provide a brief introduction
to tabla.

1.1 Tabla and its solo performances

Tabla is the main rhythm accompanying instrument in Hin-
dustani music, the art music tradition from North India. It
consists of two drums: a left hand bass drum called the
bāyān or diggā and a right hand drum called the dāyān that
can produce a variety of pitched sounds [15]. To showcase
the nuances of the tāl (the rhythmic framework of Hindus-
tani music) as well as the skill of the percussionist with
the tabla, Hindustani music performances feature tabla so-
los. A tabla solo is intricate and elaborate, with a variety
of pre-composed forms used for developing further elab-
orations. There are specific principles that govern these
elaborations [10, p. 42]. Musical forms of tabla such as
the tḥēkā, kāyadā, palatạ̄, rēlā, pēśkār and gat ̣are a part
of the solo performance and have different functional and
aesthetic roles in a solo performance.

Playing a tabla is taught and learned through the use
of onomatopoeic oral mnemonic syllables called the bōl,
which are vocal syllables corresponding to different tim-
bres that can be produced on the tabla. However, several
bōls correspond to the same stroke played on the tabla, cre-
ating a many bōl to same timbre mapping, which can be
exploited to discover acoustically similar patterns. Though
the primary function of the bōls is to provide a representa-
tion system, a rhythmic vocal recitation of the bōls, which
requires high skills, is inserted into solo performances for
music appreciation.

Tabla has different stylistic schools called gharānās. The
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Sym. bōls Sym. bōls
DA D, DA, DAA NA N, NA, TAA, TU
KI KA, KAT, KE, KI,

KII
DIN DI, DIN, DING,

KAR, GHEN
GE GA, GHE, GE, GHI,

GI
KDA KDA, KRA, KRI,

KRU
TA TA, TI, RA TIT CHAP, TIT

Table 1: The bōls used in tabla, their grouping, and the
symbol we use for the syllable group in this paper. The
symbolsDHA,DHE,DHET,DHI,DHIN,RE,TE,TII,TIN,
TRA have a one to one mapping with a syllable of the same
name and hence not shown in the table.

repertoires of major gharānās of tabla differ in aspects such
as the use of specific bōls, the dynamics of strokes, orna-
mentation and rhythmical phrases [4, p. 60]. But there are
also many similarities due to the fact that the same forms
and standard phrases reappear across these repertoires [10,
p. 52]. This enables in creation of a library of standard
phrases or patterns across compositions of different gharānās.

1.2 Previous Work

Early research related to tabla focused mainly on stroke
transcription, as seen in the work of Gillet [9]. Chordia [6]
extended the work adding additional features and classi-
fiers, using a larger and more diverse dataset. The use of
tabla syllables in a predictive model for tabla stroke se-
quencewas also demonstrated recently byChordia et al. [7].
Recent work in transcription has been reported for Mridan-
gam, the percussion accompaniment used in South Indian
Carnatic music, by Kuriakose et al. [13] and Anantapad-
manabhan et al. [1]. The transcription task has a definite
analogy to speech recognition and we can apply several
tools and knowledge from this well explored research area
with many state of the art algorithms and systems [11].

There is significant literature on pattern search and re-
trieval from percussion solos. Nakano et al. [16] address
the problem of drum pattern retrieval using an HMM based
approach using onomatopoeia as the representation for drum
patterns, retrieving known fixed sequences from a library
of drum patterns with snare and bass drums. We use a
similar approach, the main difference being that we use a
musically well grounded syllabic representation. Recently,
Srinivasamurthy et al. [20] demonstrated the use of syllable
level HMM followed by a string edit distance to transcribe
and classify percussion patterns in Beijing Opera. Tsunoo
et al. [21] also demonstrated a music classification task us-
ing K-means clustering of bar-long percussive patterns and
bass lines extracted using one-pass dynamic programming.
While the last two mentioned approaches aim at classifica-
tion of patterns, we address the general task of retrieving
patterns from recordings of full length solo compositions.

Transcription is often inaccurate with many errors, and
any pattern search on transcribed data needs to use approxi-
mate string search algorithms. There are several attempts to
deal with search in symbolic sequences [22]. Well explored
techniques such as longest common subsequence (LCS) do
not consider the local correlation while searching for a sub-

sequence [14]. To overcome this limitation, Lin et al. [14]
proposed a novel Rough Longest Common Subsequence
(RLCS) method for music matching. Dutta et al. [8] used
a modified version of RLCS for motif spotting in ālāpanas
of Carnatic music. We propose to use a similar approach
with minor modifications to suit the symbolic domain spe-
cific to our use case. To the best of our knowledge, this is
the first work to explore syllabic pattern discovery as ap-
plied to tabla solos in Hindustani music.

2. PROBLEM FORMULATION

We formulate the problem of discovery of percussion pat-
terns in tabla solo recordings. We present a general frame-
work for the task, while outlining some of the challenges.
The approach we explore in this paper is to use syllables
to define, transcribe, and eventually search for percussion
patterns. We build a fixed set of syllabic query patterns.
Given an audio recording, we obtain a time-aligned syl-
labic transcription using syllable level timbral models. For
each of the query patterns in the set, we then perform an ap-
proximate search on the output transcription to obtain the
locations of the patterns in the audio recording. We de-
scribe each of the steps in detail.

We first compile a comprehensive set of syllables in
tabla. Although, the syllables vary marginally within and
across gharānās, several bōls can represent the same stroke
on the tabla. To address this issue, we grouped the full set
of 41 syllables into timbrally similar groups resulting into
a reduced set of 18 syllable groups as shown in Table 1.
Though each syllable on its own has a functional role, this
timbral grouping is presumed to be sufficient for discov-
ery of percussion patterns. For the remainder of the paper,
we limit ourselves to the reduced set of syllable groups and
use them to represent patterns. For convenience, when it is
clear from the context, we call the syllable groups as just
syllables and denote them by the symbols in Table 1. Fur-
ther, we use bōls and syllables interchangeably. Let the set
of syllables be denoted as S = {S1, S2, · · ·SM}, M =
18.

A percussion pattern is not well defined and varied def-
initions can exist. Here, we use a simplistic definition of a
pattern, as a sequence of syllables. A pattern is defined as
Pk = [s1, s2, · · · , sLk

] where sk ∈ S and Lk is the length
of Pk. Though, for defining patterns, it is important to con-
sider the relative and absolute durations of the constituent
syllables, as well as the metrical position of the pattern in
the tāl, we use a simple definition and leave amore compre-
hensive definition for future work. In this paper, we take
a data driven approach to build a set of K query patterns,
P = {P1, P2, · · ·PK}.

Given an audio recording x[n], it is first transcribed into
a sequence of time-aligned syllables, Tx = [(t1, s1), (t2, s2),
· · · , (tLx , sLx)], where ti is the onset time of syllable si.
The task of syllabic transcription has a significant analogy
to connected word speech recognition using word models.
Syllables are analogous to words and a percussion pattern
to a sentence - a sequence of words. Finally, given a query
patternPk of lengthLk, we search for the pattern in the out-
put syllabic transcription Tx, to retrieve the subsequences
p
(n)
k in Tx (n = 1, · · · , Nk) that match the query, where
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.... .... ...
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0.188 0.387 KI
0.453 0.598 TA
0.598 0.738 TA
.... .... ...
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.... .... ...

49.911 50.125 NA
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Pattern library,

KI TA TA KA
TA TA KI TA
... ... ...
DHE RE DHE RE

Training Data

Transcription

Figure 1: The block diagram of the approach

Nk is the number of retrieved matches for Pk. We use p(n)
k

and the corresponding onset times from Tx to extract au-
dio segments corresponding to the retrieved syllabic pat-
terns. Syllabic transcription is often not exact and it can
have common transcription errors such as insertions, sub-
stitutions and deletions, to handle which we need an ap-
proximate search algorithm.

3. DATASET
To evaluate our approach to percussion pattern discovery,
we need a parallel corpus with time-aligned scores and au-
dio recordings. These are useful both for building isolated
stroke timbre models and for a comprehensive evaluation
of the approach. We built a dataset comprising audio reco-
rdings, scores and time aligned syllabic transcriptions of 38
tabla solo compositions of different forms in tīntāl (a met-
rical cycle of 16 time units). The compositions were ob-
tained from the instructional video DVD Shades Of Tabla
by Pandit Arvind Mulgaonkar 1 . Out of the 120 compo-
sitions in the DVD, we chose 38 representative composi-
tions spanning all the gharānās of tabla (Ajrada, Benaras,
Dilli, Lucknow, Punjab, Farukhabad). The booklet accom-
panying the DVD provides a syllabic transcription for each
composition. We used Tesseract [19], an open source Opti-
cal Character Recognizer (OCR) engine to convert printed
scores to a machine readable format. The scores obtained
from OCRwere manually verified and corrected for errors,
adding the the vibhāgs (sections) of the tāl to the syllabic
transcription. The score for each composition has addi-
tional metadata describing the gharānā, composer and its
musical form.

We extracted audio from the DVD video and segmented
the audio for each composition from the full audio record-
ing. The audio recordings are stereo, sampled at 44.1 kHz
and have a soft harmonium accompaniment. A time aligned
syllabic transcription for each score and audio file pair was
obtained using a spectral flux based onset detector [3] fol-

1 http://musicbrainz.org/release/
220c5efc-2350-43dd-95c6-4870dc6851f5

ID Pattern L Count
1 DHE, RE, DHE, RE, KI, TA, TA,
KI, NA, TA, TA, KI, TA, TA, KI,
NA

16 47

2 TA, TA, KI, TA, TA, KI, TA, TA,
KI, TA, TA, KI, TA, TA, KI, TA

16 10

3 TA, KI, TA, TA, KI, TA, TA, KI 8 61
4 TA, TA, KI, TA, TA, KI 6 214
5 TA, TA, KI, TA 4 379
6 KI, TA, TA, KI 4 450
7 TA, TA, KI, NA 4 167
8 DHA, GE, TA, TA 4 97

Table 2: Query Patterns, their ID (k), length (L) and the
number of instances in the dataset (Total instances: 1425)

lowed by manual correction by the authors. The dataset
contains about 17 minutes of audio with over 8200 sylla-
bles. The dataset is freely available for research purposes
through a central online repository 2 .

4. APPROACH

The block diagram in Figure 1 shows us the overall ap-
proach. It comprises three major steps: building a set of
query patterns, transcription, and search. In the following
sections, we describe each of these in detail.

4.1 Building a set of query patterns

A data driven approach is taken to create a set of query pat-
terns of length L = 4, 6, 8, 16. These lengths were chosen
based on the structure of tīntāl for different layas (tempo
classes) [4, p. 126]. Using the simple definition of a pattern
as a sequence of syllables, we use the scores of the compo-
sitions to generate all theL length patterns that occur in the
score collection. We sort them by their frequency of occur-
rence to get an ordered set of patterns for each stated length.
We thenmanually choosemusically representative patterns
from this ordered set of most commonly occurring patterns
to form a set of query patterns. Table 2 shows the chosen
patterns, their length and their count in the dataset, leading
to a total of 1425 instances. We want a diverse collection
of patterns to test if the algorithms generalize. Hence we
choose patterns that have a varied set of syllables that have
different timbral characteristics, like syllables that are har-
monic (DHA), syllables played with a flam (DHE,RE) and
syllables having bass (GE).

4.2 Transcription

Some bōls of tabla may be pronounced with a different
vowel or consonant depending on the context, without al-
tering the drum stroke [5]. Furthermore, the bōls and the
strokes vary across different gharānās, making the task of
transcription of tabla solos challenging. To model the tim-
bral dynamics of syllables, we build an HMM for each syl-
lable (analogous to a word-HMM). We use these HMMs
along with a language model to transcribe an input audio
solo recording into a sequence of syllables.

2 http://compmusic.upf.edu/tabla-solo-dataset
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The stereo audio is converted to mono, since there is
no additional information in stereo channels. We use the
MFCC features to model the timbre of the syllables. To
capture the temporal dynamics of syllables, we add the ve-
locity and the acceleration coefficients of the MFCC. The
13 dimensional MFCC features (including the 0th coeffi-
cient) are computed from the audio with a frame size of
23.2 ms and a shift of 5.8 ms. We also explore the use of
energy (as measured by the 0th MFCC coefficient) in tran-
scription performance. Hence we have two sets of features,
MFCC_0_D_A, the 39 dimensional feature including the
0th, delta and double-delta coefficients, and MFCC_D_A,
the 36 dimensional vector without the 0th coefficient.

Using the features extracted from training audio record-
ings, we model each syllable Su using a 7-state left-to-right
HMM {λu}, 1 ≤ u ≤ U(= 18), including an entry and
an exit non-emitting states. The emission density of each
emitting state is modeled with a three component Gaussian
Mixture Model (GMM) to capture the timbral variability in
syllables. We experimented with higher number of compo-
nents in the GMMs, but with little performance improve-
ment. We use the time aligned syllabic transcriptions and
the audio recordings in the parallel corpus to do an isolated
HMM training for each syllable. We then use these HMMs
further in an embedded model Baum-Welch re-estimation
to get the final syllable HMMs.

Tabla solos are built hierarchically using short phrases,
and hence some bōls tend to follow a bōl more often than
others. In such a scenario, a language model can improve
transcription. In addition to a flat language model with
uniform unigram and transition probabilities, i.e. p(s1 =
Su) = 1/U and p(si+1 = Sv/si = Su) = 1/U , with
1 ≤ u, v ≤ U and i being the sequence index, we explore
the use of a bigram language model learned from data.

For testing, we treat the feature sequence extracted from
test audio file to have been generated from a first order
time-homogeneous discrete Markov chain, which can con-
sist of any finite length sequence of syllables. From the
extracted feature sequence, we use the HMMs {λu} and a
syllable network constructed from the language model to
do a Viterbi (forced) alignment, which aims to provide the
best sequence of syllables and their onsets Tx. All the tran-
scription experiments were done using the HMM Toolkit
(HTK) [23].

4.3 Pattern Search

The automatically transcribed output syllable sequence Tx

is used to search for the query patterns. Transcription is
often inaccurate in both the sequence of syllables and in the
exact onset times of the transcribed syllables. We need to
handle both these errors in a pattern search task from audio.
We primarily focus on the errors in syllabic transcription
in this paper. We use the syllable boundaries output by the
Viterbi algorithm, without any additional post processing.
We can improve the output syllable boundaries using an
onset detector [3], but we leave this task to future work.

There are three main kinds of errors in the automatically
transcribed syllable sequence: Insertions (I), Deletions (D),
and Substitutions (B). Further, the query pattern is to be
searched in the whole transcribed composition, where sev-

eral instances of the query can occur. Rough Longest Com-
mon Subsequence (RLCS) method is a suitable choice for
such a case. RLCS is a subsequence search method that
searches for roughlymatched subsequences while retaining
the local similarity [14]. We make further enhancements to
RLCS to handle the I, D and B errors in transcription.

We use a modified version of the RLCS approach as
proposed by Lin et al. [14] with changes proposed by Dutta
et al. [8] to handle substitution errors. We propose a fur-
ther enhancement to handle insertions and deletions, and
explore its use in the current task. We first present a gen-
eral form of RLCS and then discuss different variants of
the algorithm.

Given a query pattern Pk of length Lk and a reference
sequence (transcribed syllable sequence) Tx of length Lx,
RLCS uses a dynamic programming approach to compute
a score matrix (of size Lx × Lk) between the reference
and the query with a rough length of match. We can use
a threshold on the score matrix to obtain the instances of
the query occurring in the reference. We can then use the
syllable boundaries in the output transcription and retrieve
the audio segment corresponding to the match.

For the ease of notation, we index the transcribed sylla-
ble sequence Tx with i and the query syllable sequence Pk

with j. We compute the rough and actual length of the sub-
sequence matches similar to the way computed by Dutta et
al. [8]. At every position (i, j), a syllable is included into
the matched subsequence if d(si, sj) < δ, where d(si, sj)
is the timbral distance between the syllables at positions i
and j in the transcription and query, respectively. δ is the
threshold distance below which the two syllables are said
to be equivalent. The matrices of rough length of match
(C) and the actual length of match (Ca) are updated as,

C(i, j) = C(i− 1, j − 1) + (1 − d(si, sj)).1d (1)
Ca(i, j) = Ca(i− 1, j − 1) + 1d (2)

where, 1d is an indicator function that takes a value of 1 if
d(si, sj) < δ, else 0. The matrixC thus contains the length
of rough matches ending at all combinations of the sylla-
ble positions in reference and the query. The rough length
and an appropriate distance measure handles the substitu-
tion errors during transcription. To penalize insertion and
deletion errors, we compute a “density” of match using two
measures called the Width Across Reference (WAR) and
Width Across Query (WAQ), respectively. The WAR (R)
and WAQ (Q) matrices are initialized to Ri,j = Qi,j = 0
when i.j = 0, and propagated as,

Ri,j =





Ri−1,j−1 + 1 d(si, sj) < δ

Ri−1,j + 1 d(si, sj) ≥ δ, Ci−1,j ≥ Ci,j−1

Ri,j−1 d(si, sj) ≥ δ, Ci−1,j < Ci,j−1

(3)

Qi,j =





Qi−1,j−1 + 1 d(si, sj) < δ

Qi−1,j d(si, sj) ≥ δ, Ci−1,j ≥ Ci,j−1

Qi,j−1 + 1 d(si, sj) ≥ δ, Ci−1,j < Ci,j−1

(4)
Here, Ri,j is the length of substring containing the subse-
quencematch ending at the ith and the jth position of the ref-
erence and the query, respectively. Qi,j represents a simi-
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lar measure in the query. When incremented,Ri,j andQi,j

are incremented by 1 similar to the way formulated by Lin
et al. [14]. At the same time, the increment is done based
on the conditions formulated by Dutta et al. [8].

Using the rough length of match (C), actual length of
match (Ca), and width measures (R and Q), we compute a
score matrixσ that incorporates penalties for substitutions,
insertions, deletions, and additionally, the fraction of the
query matched.

σi,j =

{ [
β ·f

(
Ci,j

Ri,j

)
+(1 − β)·f

(
Ci,j

Qi,j

)]
·C(i,j)

Lk
if C

a(i,j)
Lk

≥ ρ

0 otherwise
(5)

where σi,j is the score for the match ending at the ith and
the jth position of the reference and the query, respectively.
f is a warping function for the rough match length densi-
ties Ci,j

Ri,j
in the reference and Ci,j

Qi,j
in the query. The pa-

rameter β controls their weights in the convex combina-
tion for score computation. The term Ca

i,j

Lk
is the fraction of

the query length matched and is used for thresholding the
minimum fraction of the query to be matched.

Startingwith all combinations of i and j as the end points
of the match in the reference and the query, respectively,
we perform a traceback to get the starting points of the
match. RLCS algorithm outputs a match when the score
is more than a score threshold ψ. However, with a simple
score thresholding, we get multiple overlapping matches,
from which we select the match with the highest score. If
the scores of multiple overlapping matches are equal, we
select the ones that have the lowest width (WAR). This
way, we obtain a match that has the highest score density.
We use these non-overlappingmatches and the correspond-
ing syllable boundaries to retrieve the audio patterns.

4.3.1 Variants of RLCS

The generalized RLCS provides a framework for subse-
quence search. The parameters ρ, β, ψ and δ can be tuned
to make the algorithm more sensitive to different kinds of
transcription errors. The variants we consider here use dif-
ferent distance measures d(si, sj) in Eqn (1) to handle sub-
stitutions and different functions f(.) in Eqn (5) to handle
insertions and deletions. We explore these variants for the
current task and evaluate their performance.

In a default RLCS configuration (RLCS0), we only con-
sider exact syllable matches. We set δ = 1 and use a binary
distance metric based on the syllable label, i.e. d(si, sj) =
0 if si = sj , and 1 otherwise. Further, an identity warping
function, f(y) = y is used.

The rough lengthmatch densities can be transformed us-
ing a non-linear warping function to penalize low density
values more than the higher ones, leading to another variant
of RLCS (RLCSκ). In this paper, we only explore warping
functions of the form,

f(y) =
eκy − 1

eκ − 1
(6)

where κ > 0 is a parameter to control warping, larger val-
ues of κ lead to more deviation from an identity transfor-
mation. RLCS0 is a limiting case of RLCSκwhen κ → 0.

We hypothesize that the substitution errors in transcrip-
tion are due to the confusion between timbrally similar syl-
lables. A timbral similarity (distance) measure between the
syllables can thus be used to make an RLCS algorithm ro-
bust to specific kinds of substitution errors. In essence, we
want to disregard and give a greater allowance for substi-
tutions between timbrally similar syllables during RLCS
matching. Computing timbral similarity is a wide area of
research and has many different proposed methods [17],
but we restrict ourselves to a basic timbral distance mea-
sure: the Mahalanobis distance between the cluster cen-
ters obtained using a K-means clustering of MFCC fea-
tures (with 3 clusters) from isolated audio examples of each
syllable [2]. We call this variant of RLCS as RLCSδ and
experiment with different thresholds δ. For better repro-
ducibility of the work in this paper, an implementation of
the different variants of RLCS described is available 3 .

5. EXPERIMENTS AND RESULTS

We experiment with different sets of features and language
models for transcription. With the best performing tran-
scription configuration, we experiment with different RLCS
variants and report their performance. We first describe the
evaluation measures used in this paper.
5.1 Evaluation measures

We use the ground truth time aligned syllabic transcrip-
tions to evaluate both the transcription and pattern search
algorithms. We evaluate transcription performance using
the measures often used in speech recognition, Correct-
ness (Corr.) and Accuracy (Accu.). Given the ground truth
transcription T ∗

x of length N , the transcribed sequence Tx,
and the number of insertions, deletions and substitutions
as NI , ND, and NB , respectively, we compute Corr. =
(N−ND−NB)/N andAccu.=(N−ND−NB−NI)/N . The
Correctness measure penalizes deletions and substitutions,
while Accuracy measure additionally penalizes insertions.

For pattern retrieval, we don’t evaluate the accuracy of
boundary segmentation. However, we call a retrieved pat-
tern from RLCS as correctly retrieved if it has at least a
70% overlap with the pattern instance in ground truth. To
evaluate pattern search performance, we use the standard
information retrieval measures precision (the ratio between
the number of correctly retrieved patterns and all retrieved
patterns) and recall (the ratio between number of correctly
retrieved patterns and the patterns in the ground truth). The
harmonicmean of precision and recall, called the F-measure
is also reported.
5.2 Results and Discussion

The transcription results shown in Table 3 are the mean
values in a leave-one-out cross validation over the dataset.
We experimented with the two different MFCC features
(MFCC_D_A andMFCC_0_D_A) and two languagemod-
els (a flat model and a bigram learnt from data). Overall,
we see a best Accuracy of 53.13%, which justifies the use
of a robust approximate string search algorithm for pattern
retrieval. The use of a bigram languagemodel learned from
data improves the transcription performance. We see that

3 http://compmusic.upf.edu/ismir-2015-tabla
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Feature Corr. Accu.
Flat language
model

MFCC_D_A 64.07 45.01
MFCC_0_D_A 64.26 49.27

Bigram language
model

MFCC_D_A 65.53 49.97
MFCC_0_D_A 66.23 53.13

Table 3: Transcription results showing the Correctness
(Corr.) and Accuracy (Accu.) measures (in percentage) for
different features and language models. In each column,
the values in bold are statistically equivalent to the best re-
sult (in a paired-sample t-test at 5% significance levels).

the Accuracy measure is lower than the Correctness mea-
sure, which shows that there are a significant number of
insertion errors in transcription. We use the output tran-
scriptions from the best performing combination (MFCC_-
0_D_A and a bigram language model) to report the perfor-
mance of the RLCS variants.

To form a baseline for string search performance with
the output transcriptions, we used an exact string search
algorithm and report its performance in Table 4 (shown as
Baseline). We see that the baseline has a precision that is
similar to transcription performance, but a very poor recall
leading to a poor F-measure.

To establish the optimum parameter settings for RLCS,
we performed a grid search over the values of β, ρ and ψ
with RLCS0 . β and ψ are varied in the range 0 to 1. To
ensure that the minimum length of the pattern matched is
at least 2, we varied ρ between 1.1/min(Lk) and 1.
β is the convex sum parameter for the contribution of the

rough match length density of the reference and the query
towards the final score. With increasing β, we give more
weight to the reference length ratio, allowing more inser-
tions. We observed a poor true positive rate with larger β,
and hence we validate the observation that insertion errors
contribute to a majority of transcription errors.

The best average F-measure over all the query patterns
in an experiment using RLCS0 is reported in Table 4. We
see that RLCS0 improves the recall, but with a lower pre-
cision and an improved F-measure, showing that the flex-
ibility in approximate matching provided by RLCS comes
at the cost of additional false positives. The values of ρ,
β and ψ that give the best F-measure are then fixed for all
subsequent experiments to compare the performance of the
proposed RLCS variants.

It is observed that the patterns composed of smaller repet-
itive patterns (and hence having ambiguous boundaries) re-
sult in a poor precision (e.g. P2 and P3 in Table 2 with a
precision of 0.108 and 0.239, respectively). P1 in Table 2,
on the contrary, has non-ambiguous boundaries leading to
a good precision of 0.692. The effect of the length of a
pattern on precision is also evident. Small patterns (with
L = 4) that have non-ambiguous boundaries (e.g. P8 in
Table 2 with a precision of 0.384) have a poor precision as
compared to longer patterns with non-ambiguous bound-
aries (e.g. P1 in Table 2). The reason for this is that the
smaller patterns are more prone to errors as the search al-
gorithm has to match a lower number of syllables.

The results with other variants of RLCS are also reported
in Table 4. The results from RLCSδ show that the use of

Variant Parameter Precision Recall F-measure
Baseline - 0.479 0.254 0.332
RLCS0 δ = 1 0.384 0.395 0.389
RLCSδ δ = 0.3 0.139 0.466 0.214
RLCSδ δ = 0.6 0.0837 0.558 0.145
RLCSκ κ = 1 0.412 0.350 0.378
RLCSκ κ = 4 0.473 0.268 0.342
RLCSκ κ = 7 0.482 0.259 0.336
RLCSκ κ = 9 0.481 0.258 0.335

Table 4: Performance of different RLCS variants using the
best performing parameter settings for RLCS0 (ρ = 0.875,
β = 0.76 and ψ = 0.6).

a timbral syllable distance measure with higher threshold
δ further improves the recall, but with a much lower preci-
sion and F-measure. Although we find matches that have
substitution errors using the distance measure, we retrieve
additional matches that do not have substitution errors con-
tributing to additional false positives. On the contrary, us-
ing a non-linear warping function f(.) in RLCSκ improves
the precision with a higher value of κ. The penalties on
matches with higher number of insertions and deletions is
high and they are left out, leading to good precision at the
cost of recall. We observe that both the above mentioned
variants improve either precision or recall at the cost of the
other measure. They need further exploration with better
timbral similarity measures to be combined in an effective
way to improve the search performance.

6. SUMMARY

We addressed the unexplored problem of a discovering syl-
labic percussion patterns in Tabla solo recordings. The pre-
sented formulation used a parallel corpus of audio record-
ings and syllabic scores to create a set of query patterns, that
were searched in an automatically transcribed (into sylla-
bles) piece of audio. We used a simplistic definition of a
pattern and exploredRLCS based subsequence search algo-
rithm, using an HMMbased automatic transcription. Com-
pared to a baseline, we showed that the use of approximate
string search algorithms improved the recall at the cost of
precision. Additionally, proposed variants improved either
the precision or recall, but do not provide a significant im-
provement in the F-measure over the basic RLCS.

For future work, we aim to improve syllable boundaries
output by transcription using onset detection. Inclusion of
the rhythmic information can be an interesting aspect in
defining and discovering percussion patterns, and will help
in comprehensively evaluating the task of pattern discov-
ery. The next steps would be to incorporate better timbral
similarity measures and inclusion of segment boundaries
into the RLCS algorithm that effectively combines the pro-
posed variants.
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ABSTRACT

A stochastic model of symbolic (MIDI) performance of
polyphonic scores is presented and applied to score fol-
lowing. Stochastic modelling has been one of the most suc-
cessful strategies in this field. We describe the performance
as a hierarchical process of performer’s progression in the
score and the production of performed notes, and repre-
sent the process as an extension of the hidden semi-Markov
model. The model is compared with a previously studied
model based on hidden Markov model (HMM), and rea-
sons are given that the present model is advantageous for
score following especially for scores with trills, tremolos,
and arpeggios. This is also confirmed empirically by com-
paring the accuracy of score following and analysing the
errors. We also provide a hybrid of this model and the
HMM-based model which is computationally more effi-
cient and retains the advantages of the former model. The
present model yields one of the state-of-the-art score fol-
lowing algorithms for symbolic performance and can pos-
sibly be applicable for other music recognition problems.

1. INTRODUCTION

For the last thirty years the real-time matching of music
performance to the corresponding score (called score fol-
lowing) has been a popular field of study motivated by
applications such as automatic music accompaniment and
score-page turning system [1, 2, 3, 4, 5, 6, 7, 8]. We
study here score following of polyphonic symbolic (MIDI)
performance. A central problem in score following is to
properly capture the variety of music performance in a
computationally efficient manner. A commonly studied
way to capture this variety and develop an effective score-
following algorithm is to use stochastic models of music
performance (Sec. 2.1, see also [3]).

c© Eita Nakamura, Philippe Cuvillier, Arshia Cont, Nobu-
taka Ono, Shigeki Sagayama. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Eita Naka-
mura, Philippe Cuvillier, Arshia Cont, Nobutaka Ono, Shigeki Sagayama.
“ Autoregressive Hidden Semi-Markov Model of Symbolic Music Perfor-
mance for Score Following ”, 16th International Society for Music Infor-
mation Retrieval Conference, 2015.

Hidden Markov models (HMMs) have been applied to
score following of symbolic performance and provided
currently best results [4, 7, 9]. In these models, a musi-
cal event in the score, i.e. note, chord, trill, etc., is repre-
sented as a state, and the performed notes are described
as outputs of an underlying state transition process. Mem-
oryless statistical dependence is assumed for both output
and transition probabilities for the sake of computational
efficiency. Due to these simplifications the models cannot
well describe significant features of performance data such
as the number of performed notes per event and the total
duration of a trill.

Phenomenologically, music performance can be re-
garded as a hierarchical process of producing musical
notes: The higher level describes performer’s progression
in the score in units of musical events, and the lower level
describes the production of individual notes [9, 10]. We
describe this process in terms of a hidden semi-Markov
model (HSMM) [11] with an autoregressive extension [12]
(Sec. 2) and incorporate the above features into the model.
With some simplifications, the model is reduced to a pre-
viously studied HMM [9]. We compare these models in
the informational and algorithmic aspects and argue that
the present model is advantageous for score following es-
pecially for scores with trills, tremolos, and arpeggios
(Sec. 3). Empirical confirmation of this fact is given by
comparing the accuracy of score following and analysing
the errors (Sec. 4). Finally remaining problems and future
prospects are discussed (Sec. 5).

2. AUTOREGRESSIVE HIDDEN SEMI-MARKOV
MODEL OF SYMBOLIC PERFORMANCE

2.1 Stochastic description of music performance

Music performances based on a score have a wide vari-
ety because of indeterminacies inherent in musical score
descriptions and uncertainties in movements of perform-
ers and musical instruments. These indeterminacies and
uncertainties are included in tempos, noise in onset times,
dynamics, articulations, ornaments, and also in the way of
making performance errors, repeats, and skips [7]. In order
to perform accurate and robust score following, we need
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to incorporate (maybe implicit) rules into the algorithm to
capture this variety.

A way to do this is to construct a stochastic model of
music performance and describe those indeterminacies and
uncertainties in terms of probability. A score-following al-
gorithm can be developed as an inference problem of the
model. We shall take this approach in the following, which
has been proved to be successful in score following.

2.2 Model of performer’s progression in the score

Let us present the model. We model music performance as
a combination of subprocesses in two levels. The higher-
level (top-level) process describes the performer’s pro-
gression in the score in units of musical events that are
well-ordered in performances without errors. We take a
chord (possibly arpeggiated), a trill/tremolo, a short ap-
poggiatura, or an after note 1 as a unit and represent it with
a state (top state). Let i label a top state. Then the per-
former’s progression can be described as successive transi-
tions between these states denoted by i1:N = (i1, . . . , iN )
(N is the number of performed MIDI notes). We will use
the symbol n(= 1, . . . , N) to index the performed notes
that are ordered according to the onset time, and in repre-
sents the corresponding musical event.

The probability P (i1:N ) describes statistical tenden-
cies of performances. Simplifications are necessary to
construct a performance model yielding a computation-
ally tractable algorithm. A typical assumption is that
the probability is decomposed into transition probabilities:
P (i1:N ) = ΠN

n=1P (in|in−1) (P (i1|i0) ≡ P (i1) denotes
the initial distribution). The probability P (j|i) represents
the relative frequency of straight progressions to the next
event (j = i + 1), insertions of events (j = i), dele-
tions of an event (j = i + 2), and repeats or skips (if
|j− i−1| > 1). These probability values can be estimated
from performance data. With the assumption that P (i|j) is
only dependent on i − j, the probability values have been
estimated with piano performance data in a previous study
([7], Table 3).

2.3 Model of production of performed notes

The lower-level process describes the production of per-
formed notes during each musical event. Because dynam-
ics and articulations are generically highly indeterminate,
we focus on pitch and onset time which are denoted by
pn and tn. For example, multiple notes are performed at
a chord or a trill (Fig. 1). Note that whereas chords are
written in musical scores as simultaneous notes, performed
MIDI notes are serialised and never exactly simultaneous.
Thus pn is always a single pitch.

Let us first consider the number of performed notes per
event. For “chords” (meaning a set of all simultaneous
notes in the score), short appoggiaturas, and after notes,
the expected number of notes is determinate, but it can

1 Here ‘after notes’ are defined as grace notes that are played in prece-
dence over the associated beat. A typical example is grace notes after a
trill.

Score

Performance

IOI3 IOI3 IOI2
IOI1

(a) An arpeggiated chord.

IOI3IOI3 IOI2
IOI1

Score

Performance

(b) Trill with preceding short-appoggiaturas and after notes.

Figure 1. Examples of musical events and performed
notes. The three types of time intervals IOI1, IOI2, and
IOI3 are explained in the text.

be modified as a result of added or deleted notes by mis-
take. For trills and (unmeasured) tremolos, the number
of notes are indeterminate since the speed of ornaments
varies among realisations. We describe this situation with
a probability distribution di(s) where s denotes the num-
ber of performed notes (Σ∞s=1di(s) = 1). For example, the
function di(s) peaks at the indicated number of notes when
event i is a chord. When event i is a one-note trill, the peak
can be written as speaki ' νiv/δttrill, where δttrill, νi, and
v denote the average inter-onset time interval (IOI) of suc-
cessive notes of a trill, the note value of event i, and the
(inverse) tempo in units of “second per unit note value”.
Because currently we do not have a strong empirical basis
for determining the shape of di(s), we simply assume it is
a normal distribution di(s) = N(s; speaki , σi) with speaki

given in Sec. 2.3, and leave σi as an adjustable parameter.
Next the pitch of each performed note of event i can be

described with a probability P pitch
i (p), which is assumed

to be independent for each note for the sake of compu-
tational efficiency. The probability values for incorrect
pitches represent the possibility and frequencies of pitch
errors. An approximate distribution of P pitch

i (p) has been
estimated previously (Eq. (30) of [7]) with piano perfor-
mance data, where the probability of pitch errors is as-
sumed to be uniform for all score notes.

Finally we consider the description of onset times.
A natural assumption of time translational invariance re-
quires the model to be only dependent of time intervals.
There are (at least) three different kinds of time intervals
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relevant in locally describing onset times of music perfor-
mance: (IOI1) The time interval between the first notes
of succeeding events, which is typically the duration of an
event, (IOI2) the time interval between the first note of an
event and the last note of its previous event, and (IOI3) the
time interval between succeeding performed notes within
an event (Fig. 1). Assuming that the probability of these
time intervals depends only on the current and previous
states for simplicity and computational efficiency, it has
the form Pκ(δt|in−1, in, v) (κ = IOI1, IOI2, IOI3) where
δt and v denote the relevant time interval and the tempo.
Based on the experience that time interval IOI3 is mostly
dependent on the relevant event and almost independent
of tempo and other contexts, we further simplify the func-
tional form as PIOI3(δt|in). Note that the time intervals
IOI1 and IOI2 are not independent quantities if we retain
all historical information on time, but they have different
importance when we take the Markovian description ex-
plained below.

2.4 Autoregressive hidden semi-Markov model

The integration of the models in Secs. 2.2 and 2.3 can be
described in terms of an extension of the HSMM. In one of
equivalent formulations [13] (also Sec. 3.3 of Ref. [11]), a
semi-Markov model can be represented as a Markov model
on an extended state space. The extended state space is
indexed by a pair (i, s) of the top state i (corresponding
to a musical event) and a counter of performed notes s =
1, 2, . . . 2 with a transition probability

P (in, sn|in−1, sn−1) = δsn,1P (in|in−1)P exit
in−1

(sn−1)

+ δsn,sn−1+1δin,in−1

(
1− P exit

in−1
(sn−1)

)
(1)

where
P exit
i (s) = di(s)/Σ

∞
s′=sdi(s

′). (2)

Here δ in Eq. (1) denotes Kronecker’s delta. The exiting
probability in Eq. (2) represents the probability that the
performer moves to another event given that she has al-
ready played s notes at event i. The first term in the right-
hand side of Eq. (1) describes the probability that the per-
former moves to event in after having played sn−1 notes of
event in−1. The second term describes the probability that
the performer stays at event in and sounds another note
after having played sn−1 notes. In this way, this model de-
scribes the integrated process of performer’s progression
in the score and the production of performed notes.

The pitches and onset times of the performed notes
can be described with output probabilities associated with
this semi-Markov process. We assume the statistical in-
dependence of pitch and onset time for simplicity. The
output probability of pitch is given by P (pn|in, sn) =
P pitch
in

(pn).
The output probability of the onset time of the n-th note

2 Remark: In the present model, s counts the number of notes played
during a musical event. This is not the durational time (in seconds) spent
on that event, which is described with time interval IOI1.

. . . in�1

sn�1

in
sn

in+1

sn+1

. . .

. . . tn�1 tn tn+1 . . .

pn�1 pn pn+1

Figure 2. Graphical representation of the autoregres-
sive hidden semi-Markov model of symbolic music perfor-
mance. The stochastic variables are explained in the text.

is given as

P (tn|in, sn, in−1, sn−1, v, t1:n−1)

=

{
w1PIOI1 + w2PIOI2, sn = 1;

PIOI3, sn 6= 1
(3)

where

PIOI1 = PIOI1(tn − tn−s[n−1]|in, in−1, v), (4)

PIOI2 = PIOI2(tn − tn−1|in, in−1, v), (5)

PIOI3 = PIOI3(tn − tn−1|in)δinin−1
. (6)

(Here we have written s[n−1] = sn−1 to display the equa-
tion with clarity.) The three cases correspond to the three
kinds of time intervals explained in Sec. 2.3. Because both
probabilities for IOI1 and IOI2 have relevance in score
following, we have used a mixture probability of them
(w1 + w2 = 1). Such output probabilities with condi-
tional dependence on the previous outputs have been con-
sidered in some studies on speech processing, and we call
the model autoregressive semi-Markov model based on the
convention of previous studies [12]. A graphical represen-
tation of the model is given in Fig. 2.

The distributions PIOI1, PIOI2, and PIOI3 can be esti-
mated by analysing performance data. The functions PIOI2

and PIOI3 have previously been estimated with piano per-
formance data [9]. It has been shown there that, in the most
important case that in = in−1+1 (straight transition to the
next event), PIOI2(δt|i+1, i, v) is well approximated by a
Cauchy distribution of the form

Cauchy(δt; v(τ endi − τi)− devi, 0.4 s). (7)

Here Cauchy(x;µ,Γ) denotes the Cauchy distribution
with median µ and width Γ, and τi is the onset score time
of event i, τ endi is the score time after which no new onsets
of event i can occur, and devi describes the ‘stolen time’
of event i whose expectation value is given as the number
of short appoggiaturas and arpeggiated notes times the av-
erage IOI of the corresponding notes. Using this result, we
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can estimate PIOI1 in the case that in = in−1+1 as

PIOI1(δt|i+1, i, v) = Cauchy(δt; vνi, 0.4 s) (8)

where νi = τi+1 − τi is the note value of event i. The dis-
tribution PIOI3 was estimated with measurements on IOIs
of chordal notes and ornaments (see Secs. 3.3 and 4.2 of
[9]).

Finally, tempo vn is estimated online with a sepa-
rate model, for which we use a method based on switch-
ing Kalman filter (see Sec. 3.4 of [9]). In summary the
complete-data probability P (i1:n, s1:n, t1:n, p1:n) is given
as the following recursive product:

n∏

m=1

[
P (tm|im, sm, im−1, sm−1, vm−1, t1:m−1) ·

P (im, sm|im−1, sm−1)P pitch
im

(pm)
]
. (9)

3. COMPARISON WITH OTHER MODELS

3.1 Relation to the HMM-based model

So far the state-of-the-art method for symbolic score fol-
lowing is developed with a performance model based on
a standard HMM [9]. The current model can be seen as
an extension of this performance model in two ways. First
the transition probability of the HMM is realised as a spe-
cial case of the transition probability in Eq. (1) with exiting
probabilities P exit

i (s) constant in s. Specifically, it is given
as the inverse of the expected number of performed notes
in event i. As is well known, this constraint leads to a geo-
metrically distributed di(s) with a peak at s = 1, which is a
bad approximation for a large chord or a long trill/tremolo.

The second difference is the structure of output proba-
bilities for onset times. In the standard HMM, the Marko-
vian condition is assumed on the output probability of on-
set times. Thus the model describes only time intervals
IOI2 and IOI3, and the probability distribution for IOI1 in
Eq. (3) is ignored. In other words, the IOI output probabil-
ity of the HMM assumes w1 = 0 and w2 = 1 in that equa-
tion. This means that the total duration of a trill/tremolo or
an arpeggio is poorly captured with the HMM.

These differences have important effects when the mod-
els are applied to score following. For score following,
the pitch information is generically most important. When
there are musical events with similar pitch contents in suc-
cession, however, the information on onset times and the
number of performed notes play more significant roles in
correctly matching notes. For example, to correctly match
performed notes of succeeding trills/tremolos, the number
of notes and the duration of each trill/tremolo are impor-
tant viewpoints. Since they are not well captured in the
HMM, the autoregressive HSMM would work better in this
case. Similar situations arise for successions of arpeggios,
where the time intervals IOI2 and IOI3 are largely vari-
able among realisations. On the other hand, the time inter-
vals IOI1 and IOI2 are almost same for successive normal
chords and these IOIs carry much information necessary to
cluster them. Thus the models are expected to have similar
effects for passages without ornaments.

3.2 Comparison with the preprocessing method

To solve the problems with ornaments for score follow-
ing, a preprocessing method has been proposed long ago
[14]. The idea is to preprocess performed notes so that
ornamental notes are not sent to the matching module di-
rectly. While the method can work for scores with not-
heavy polyphonic ornamentation and performances with
infrequent errors, the preprocessing can fail when there are
errors or unexpected repeats or skips near ornaments. Be-
cause a direct comparison showed that the HMM outper-
formed the preprocessing method for piano performances
with errors, repeats, and skips [9], we compare our model
only with the HMM in Sec. 4.

3.3 Computational cost

For score following, we find the most probable hidden state
sequence given the input performance. In order to realise
real-time processing, the computational cost of the estima-
tion algorithm must be sufficiently small. We here compare
the present model and the HMM discussed in Sec. 3.1 in
terms of the computational cost.

The Viterbi algorithm can be applied for HMMs to es-
timate states. Let us denote the product of the transi-
tion probability and the output probability as aij(o) =
P (j|i) · P (o|i, j) where o represents pitch and onset time.
The Viterbi update equation can be expressed as the fol-
lowing recursive equation

p̂N (iN ) ≡ max
i1,...,iN−1

[ N∏

n=1

ain−1in(on)

]
(10)

= max
iN−1

[
p̂N−1(iN−1)aiN−1iN (oN )

]
. (11)

The number of states is N since a state corresponds to a
musical event in the score. If we allow arbitrary progres-
sions in the score including repeats and skips, a direct ap-
plication of the Viterbi algorithm requires O(N2) compu-
tations of probability for each update. When the probabil-
ity matrix aij(o) can be represented as a sum of a band
matrix αij of width D and an outer product of two vec-
tors Si and rj , the computational complexity can be re-
duced to O(DN) with a recombination method [7]. Intu-
itively, αij describes probabilities corresponding to transi-
tions between neighbouring states, which have larger prob-
abilities, and Si and rj represent probabilities correspond-
ing to large repeats and skips, which typically have very
small probabilities. Substituting aij(o) = αij + Sirj
into Eq. (11), we see αij induces O(DN) complexity and
Sirj induces O(N) complexity by a recombination. This
simplified transition probability matrix is used in previous
studies to enable real-time processing for long scores.

It is clear from the formulation of the autoregressive
HSMM in Sec. 2.4 that the standard Viterbi algorithm can
also be applied to the model. In practice, we put an up-
per bound on the number of performed notes smax

i for
each event i, and the number of states of the HSMM is
Σis

max
i ≡ SN where S is the average of smax

i . Because
of the special form of transition probabilities in Eq. (1), the
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Table 1. Error rates (%) of score following with the auto-
regressive HSMM (“HSMM”), the hybrid model (“Hy-
brid”), and the HMM [9]. The first four pieces indicate
Couperin’s Allemande à deux clavecins, the solo piano part
of Beethoven’s first piano concerto, Beethoven’s second
piano concerto, and Chopin’s second piano concerto [9],
and the last two pieces are explained in the text.

Piece # Notes HSMM Hybrid HMM
Couperin 1763 5.50 6.02 6.66

Beethoven 1 17587 3.16 3.13 3.16
Beethoven 2 5861 2.01 2.20 2.35

Chopin 16241 9.22 9.22 11.1
Debussy 3294 3.64 3.58 4.66

Tchaikovsky 2245 0.40 0.40 4.55

computational complexity for one Viterbi update is generi-
callyO(SN2). When we apply the recombination method
in Ref. [7], the complexity can be reduced to O(DSN)
for the outer-product type transition probability. Note that
the width D in the top-level transition probability matrix
induces SD transitions between HSMM states. Conse-
quently the computational cost of the model is about S
times larger than its reduced HMM. For example, if we
set smax

i as twice the number of expected notes per event,
S ' 3–10 for a score with a modest degree of polyphony,
and it increases if there are many large chords or long
trills/tremolos.

3.4 Hidden hybrid Markov/semi-Markov model

As discussed in Sec. 3.1, there are reasons that the present
model yields better results for score following than the
HMM, but it is at the cost of increased computational cost,
which is unwanted for long scores. On the other hand,
most of the musical events in scores are normal chords
(or single notes) for which the HMM already yields good
results. Therefore if we combine the HMM state repre-
sentation for normal chords and the autoregressive HSMM
state representation for other ornamented events, it would
be possible to obtain an improved score-following algo-
rithm with minimal increase in computational cost. Such a
combination of HMM and HSMM can be achieved in the
framework of hidden hybrid Markov/semi-Markov model
[5, 15]. In the hybrid model, normal chords are rep-
resented with HMM states and other events (i.e. trill,
tremolo, arpeggio, short appoggiatura, and after notes) are
represented with HSMM states. For this model the com-
putational complexity of the Viterbi algorithm takes the
same form as the autoregressive HSMM, by substituting
smax
i = 1 for HMM states in S = Σis

max
i /N .

4. COMPARING THE ACCURACY OF SCORE
FOLLOWING

To evaluate and compare the discussed models with re-
spect to the accuracy of score following, we implemented

Table 2. Number of mismatched notes of various types.
Each type is explained in the text. The same abbreviations
for the models as in Table 1 are used.

Type # Notes HSMM Hybrid HMM
Trill 8159 282 281 508
Tremolo 2603 115 115 151
Arpeggio 1081 36 33 127
Other
ornaments 2401 340 339 362

Other 32030 1580 1599 1673

three score-following algorithms based on the autoregres-
sive HSMM (Sec. 2.4), the hybrid model (Sec. 3.4), and the
HMM [9], and run these algorithms for music performance
data containing various ornaments. In addition to the piano
performance data used in Ref. [9] which contains perfor-
mance errors, repeats and skips, we used collected piano
performances of passages in Debussy’s En Blanc et Noir
with successions of tremolos (the first piano part in the sec-
ond movement) and the solo piano part of Tchaikovsky’s
first piano concerto with his typical successions of wide
arpeggios (the last section of the second movement).

The additional parameters σi for the autoregressive
HSMM and the hybrid model were set as follows: σi =
0.4speaki for trills and tremolos and σi = 1 otherwise. The
mixture weights for the output probability for time inter-
vals IOI1 and IOI2 were set as w1 = w2 = 1/2. These
parameters were used as a benchmark and there is a room
for further optimisation.

For the evaluation measure, we calculated the error rate,
which is defined as the proportion of mis-matched notes
to the total number of performed notes. There were per-
formed notes that are difficult to associate with any score
notes even for humans, which naturally appear in real data.
While they were included in the input data, they were not
used in the calculation of error rates. Results are shown in
Table 1, where we see that the autoregressive HSMM and
the hybrid model had similar accuracies, and the HMM had
the worst accuracy overall. (Slight differences in the values
for the HMM compared to those in Ref. [9] are mainly due
to slight corrections of the implementation.) For detailed
error analysis, we list the frequencies of classified match-
ing errors in Table 2. Here the numbers indicate the total
number of matching errors in the whole data for each type.
Ornaments are classified into the first four types, and other
notes are gathered in the last type. Significant reduction
of matching errors is observed in the first three types (trill,
tremolo, and arpeggio), and other types of matching errors
are also reduced but rather slightly in the reduction rate.

Two example results of score following are shown in
Fig. 3, which represent typical situations where the auto-
regressive HSMM worked better than the HMM. In the
first example, the passage includes a succession of tremo-
los with similar pitch contents. We see some of the mis-
matched notes with the HMM are correctly matched with
the autoregressive HSMM. Similarly the mismatched notes
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Score

Performance

(a) A passage from Debussy’s En Blanc et Noir with the autoregressive
HSMM.

Score

Performance

(b) Same as (a) with the HMM.

Score

Performance

(c) A passage from Tchaikovsky’s first piano concerto with the autore-
gressive HSMM.

Score

Performance

(d) Same as (c) with the HMM.

Figure 3. Example results of score following with the
autoregressive HSMM and the HMM [9]. Mismatched
notes are indicated with bold red lines.

Table 3. Averaged computation time (ms) required for one
Viterbi update. The same abbreviations for the models and
the musical pieces as in Table 1 are used.

Piece HSMM Hybrid HMM
Couperin 1.6 1.1 0.3

Beethoven 1 5.9 2.9 1.1
Beethoven 2 7.0 3.0 1.6

Chopin 7.1 3.5 1.2
Debussy 0.9 0.8 0.1

Tchaikovsky 1.2 1.0 0.1

with the HMM are all correctly matched with the autore-
gressive HSMM for a succession of wide arpeggios in the
second example. These results are consistent with the dis-
cussion in Sec. 3.1.

We also measured the required computation time (Ta-
ble 3). The computation time for each Viterbi update is
constant over time, and the algorithms were run on a lap-
top with moderate computation power. The results con-
firm our expectation that the use of hybrid model for score
following has practical advantages over the autoregressive
HSMM in the computation time and the HMM in the ac-
curacy.

5. CONCLUSION

We explained reasons that the present model of sym-
bolic music performance based on autoregressive HSMM
is more advantageous for score following than previously
studied HMMs, and we have confirmed this empirically by
comparing the accuracy of score following and analysing
the matching errors. Because a semi-Markov model can
be seen as a Markov model with an extended state space as
we have explained, we can apply to the present model the
methods for HMMs to improve score following [7, 16]. In
particular, this is important to reduce matching errors oc-
curring after repeats and skips and those due to reordered
notes in the performance, which were the main factors of
remaining errors.

It would be interesting to apply the present model for
music/rhythm transcription and related problems. Because
the model describes both the total duration and the internal
temporal structure of ornaments, it would be possible to
detect ornaments from performances without a score and
integrate the results into music transcription.
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ABSTRACT

In this paper, we proposed a system to effectively create
music mashups – a kind of re-created music that is made
by mixing parts of multiple existing music pieces. Unlike
previous studies which merely generate mashups by over-
laying music segments on one single base track, the pro-
posed system creates mashups with multiple background
(e.g. instrumental) and lead (e.g. vocal) track segments.
So, besides the suitability between the vertically overlaid
tracks (i.e. vertical mashability) used in previous studies,
we proposed to further consider the suitability between the
horizontally connected consecutive music segments (i.e.
horizontal mashability) when searching for proper music
segments to be combined. On the vertical side, two new
factors: “harmonic change balance” and “volume weight”
have been considered. On the horizontal side, the meth-
ods used in the studies of medley creation are incorporated.
Combining vertical and horizontal mashabilities together,
we defined four levels of mashability that may be encoun-
tered and found the proper solution to each of them. Sub-
jective evaluations showed that the proposed four levels of
mashability can appropriately reflect the degrees of listen-
ing enjoyment. Besides, by taking the newly proposed ver-
tical mashability measurement into account, the improve-
ment in user satisfaction is statistically significant.

1. INTRODUCTION

A Mashup is a kind of popular music what is made by
overlaying, connecting, digitally modifying parts of two
or more existing audio recordings [29]. The most common
way to create a mashup is to overlay the vocal track of one
song on the instrumental track of another [29]. With the
aid of high-speed Internet, users are more easily to trade
music materials and find related information through so-
cial websites [1, 3]. The development and availability of
digital audio editing techniques and software also reduced
the entry barrier for creating mashups. For example, the

c© Chuan-Lung Lee, Yin-Tzu Lin, Zun-Ren Yao, Feng-Yi
Lee and Ja-Ling Wu. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Chuan-Lung Lee,
Yin-Tzu Lin, Zun-Ren Yao, Feng-Yi Lee and Ja-Ling Wu. “Automatic
Mashup Creation by Considering Both Vertical and Horizontal Mashabil-
ities”, 16th International Society for Music Information Retrieval Confer-
ence, 2015.
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Figure 1. Common strucuture of mashup songs. Each
block labeled with “L” or “B” represents a segment in lead
track (e.g. vocal track) or the background track (e.g. in-
strumental track) from the same songs, respectively. M
and N denote the number of lead track segments per back-
ground segment and the total number of background track
segments in the resultant mashup, respectively.

loop-based music sequencers such as Sony ACID Pro and
Ableton Live make it easier for users to match the beats and
shift the keys of the audio samples. As a result, mashups
are now more often created by music lovers without formal
musical training [29]. However, with the aforementioned
tools, users still need to rely on their own experiences and
musical training to find out proper music clips to be com-
bined together. As the amount of currently available digital
music explosively goes up, finding suitable clips becomes
time-consuming and labor-intensive. How to automatically
find out and create pleasant mashups becomes an challeng-
ing and interesting issue.

Some previous studies have proposed automatic
schemes to create mashups. But those approaches [8, 9]
merely focused on the vertical suitability of the chosen
music segments, that is, “they considered only about how
suitable are the music segments to be overlaid”, which was
defined as the term “mashability” in [8]. By observation,
many human made mashups 1 are not created just by over-
laying different music segments on one single base track,
as proposed in [9]. A Mashup can also be composed of
segments of multiple background tracks (e.g. instrumental
tracks) segments from different songs. Each background
track segment is overlaid with several lead track segments
(e.g. vocal tracks). As shown in Figure 1, when the back-
ground track segments changed, the lead tracks on top of
them may still remain in the same song. So, while finding
proper segments for generating mashups, we need to con-
sider not only the vertical mashability between lead and
background track segments but also the horizontal relation-

1 https://www.youtube.com/watch?v=If5MF4wm1T8
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ships between consecutive lead/background segments – we
defined this relation as the “horizontal mashability”.

In this work, a framework is proposed to automatically
create mashups by considering both the vertical and the
horizontal mashabilities. Besides, two additional factors:
“harmonic change balance” and “volume weighting” to
the vertical mashability are also considered and investi-
gated. Subjective evaluation shows, by taking these fac-
tors into account, the users’ listening pleasance of the cre-
ated mashups will be enhanced as compared with that of
the original counterparts created in [9]. Moreover, by in-
tegrating with the horizontal mashability, various degrees
of listening enjoyment of mashups can be achieved. As a
result, given a set of multitrack songs with structural seg-
ment labels, the first background track users want to ex-
tracted from and some desired structure factors (such as the
number of background track segments N , and the number
of lead track segments per background segment M ), the
system will then automatically generate a pleasant mashup
with the structure as illustrated in Figure 1.

We assume that the multitrack songs should at least con-
tain two kinds of tracks: background and lead. This as-
sumption is reasonable because multitrack songs can be
easily retrieved from mashup-related social websites [1,3].
The unit of input segments depends on the granularity of
user specified song changes in a mashup. The unit could be
as large as a structural section (e.g. verse, chorus), or be as
small as a musical phrase (e.g. half or quarter of a verse),
but we assume that all segment boundaries are aligned with
bars. If users are not willing to provide segment bound-
aries, we can still detect the boundaries by using current
structural segmentation techniques [14]. These input seg-
ments are regarded as the basic units to create mashups. To
distinguish “input segment” from the generally used term
“segment”, in the rest of the paper, we will term the it as
“unit”. Therefore, in this paper, a lead unit stands for a
segment in the lead track of an input song, and so on.

2. RELATED WORK

As compared with other music genres, mashup music is
still young, so there is still a few academic studies focused
on automatic mashup creation. Griffin et al. [13] pro-
posed an efficient way to adjust the tempi of user-specified
tracks and combine them after synchronizing their beats.
The commercial software – Mixed in Key Mashup [2]
uses the global harmonic compatibility among tracks in
the users’ music collection as the cue for track screen-
ing and provides tools to help users match the beats of
the chosen tracks. In other words, users still need to find
out proper segments in the chosen tracks by themselves.
AutoMashupper [8, 9] is the first study that provided a
thorough investigation on measurement for finding proper
music segments to be overlaid together and an automatic
mashup generation scheme. In AutoMashupper [9], an in-
put song is regarded as a base track, and is segmented into
short segments. For each segment, segments from other
songs that are with the highest mashability–on the basis
of chromagram similarity, rhythmic similarity, and spectral

balance – will be overlaid with the corresponding segment
in the base track to create the final mashup. The subse-
quent studies [7, 27] also followed this structure. In [7],
a live input audio is regarded as the base track, and the
accompanied music segments are overlaid upon the input
audio. Tsuzuki et al. [27] focused on helping users over-
lay voices from different singers who had sung the same
song along the common accompanied track. The proposed
system, in contrast, is capable of creating mashups from
multiple background and lead segments.

Besides mashup creation, there are other studies fo-
cused on mixing parts from existing music recordings, by
means of concatenating instead of overlaying the music
segments, such as the automatic DJ [6, 15] [16, p. 97-
101], the medley creation systems [18, 20] and concate-
native synthesis [4, 24] [16, p. 101-102,109-111]. The for-
mer two types of studies focused on concatenating longer
audio segments such as phrases or sections, and studies of
concatenative synthesis focused on audio snippets that are
as short as musical notes/onsets. To select proper units to
be concatenated, the existing systems may pick up proper
candidates by comparing the similarity/distance between
the candidates and the given unit according to various au-
dio features (e.g. tempo, rhythm, pitch, harmonic, and
timbre) [15, 16, 18], pre-cluster the all the units and then
choosing among them according to some statistical mod-
els [4, 20, 24], or align them with user specified condi-
tions [4, 6, 20]. For short units (e.g. notes), the units
may be concatenated directly or accompanied with short
cross-fade. For long units (e.g. sections or phrases), the
above-mentioned systems may first decide the transition
positions between consecutive music segments on the ba-
sis of rhythm [16] or chroma [18] similarity. And then,
they adjusted the tempi (e.g. by phase vocoder [12]) and
aligned the beats in the music segments with various meth-
ods and then concatenated the segments by cross-fading.
In this study, the pre-described methods used to find proper
segments and to smoothly connect them will be well-
incorporated in the horizontal stage of the proposed sys-
tem.

3. PROPOSED FRAMEWORK

The proposed system framework is illustrated in Figure 2.
In the preprocessing step, the system will first extract audio
features and pre-compute vertical and horizontal masha-
bilities for each possible pair of units in the given music
set. Then, according user specified structure factors (e.g.
the first song, the number of background track segments
N , the number of lead track units per background seg-
ment M , etc. ), we will determine (i) which and where
the audio segment should locate in the resultant mashup
– mashup composition (ii) how these segments are trans-
formed to generate the resultant mashup. – mashup gener-
ation. In the “mashup composition” step, we will first pick
M consecutive background units from the user specified
song. We termed these units as a group of background unit
(GBU). If users did not specify the first song, our system
will randomly choose a GBU for them. Then, in the verti-
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Figure 2. Proposed system Framework.

cal stage, we focus on finding proper lead units (the gray
blocks marked with “L” in Figure 2) to be overlaid with the
input GBU via vertical multiple mashabilities. After that,
in the horizontal stage, we aim at finding a proper subse-
quent GBU (the gray block marked with “B” in Figure 2)
by considering both vertical and horizontal mashabilities.
The two processes, vertical and horizontal mashup stages,
will be run iteratively until the resultant mashup reaches
user desired length – the number of GBU N . Finally, in
the mashup generation step, the tempo, loudness and pitch
of each unit will be first modified to the desired values, and
then the units will be mixed and concatenated to generate
the final mashup song.

4. PREPROCESSING

In this step, the system will first extract audio features
and pre-compute vertical and horizontal mashabilities for
each possible pair of music units. The used features
are beat/tempo [11], beat-synchronous chromagram [21],
chord [22], MFCC [10], and volume [23]. For the ease
of understanding, we will describe the used mashabilities,
and how the above mentioned features are combined with
each mashability in the following sections.

5. MASHUP COMPOSITION

In mashup composition, our system will determine which
and where the basic units should locate. First, we will pick
a GBU as our starting point (user specified or randomly
picked by the system). The GBU should be with M con-
secutive background units in a song. Besides, all the back-
ground units in a GBU should contain exactly 2κ beats, for
κ ∈ N, κ ≥ 2. The reasons are (i) most popular songs are
in 4/4 meter – 4 beats in a bar. (ii) most musical phrases in
pop songs are multiples of four bars long [28]. (iii) most
verse or chorus sections contain 2 to 4 phrases [28].

5.1 Vertical Stage

In the vertical stage, our system will find proper multi-
ple lead units for each of the background unit in the input
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Figure 3. Chromagrams of the segment unit with (a) sim-
ple texture and (b) complex texture .

GBU based on vertical mashabilities. Mashabilities used
in previous studies [9] include, harmonic matching, rhyth-
mic matching and spectral balance. We do not use rhyth-
mic matching in this stage because most lead tracks have
no kick or snare sounds, so rhythmic pattern becomes un-
reliable in finding lead units. Spectral balance is also elim-
inated because the sounds in lead tracks often spread in the
mid-band (220-1760 Hz), then spectral balance becomes
indistinguishable. As a result, we adopt harmonic match-
ing, and propose two new vertical mashabilities: harmonic
change balance, and volume weighting.

5.1.1 Harmonic Matching

In harmonic matching part, we use a similar method to that
of the AutoMashUpper [9]. The major difference is that we
directly calculate the chroma similarity between each lead
unit and background unit instead of shifting a window in
the whole song. The reason is that the original method can
not guarantee to get a complete lead unit. This may cause
problems for the subsequent horizontal stage process, es-
pecially when it is the last unit in a GBU, because we will
need to find consecutive lead units near GBU boundaries
(please refer to Section 5.2 for details). The mashability
score calculated by harmonic matching is denoted as Sc.

5.1.2 Harmonic Change Balance Weighting

Harmonic change balance is a newly proposed mashability.
The idea comes from the observation that chroma similar-
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Figure 4. (a) Chromagrams of a segment unit and (b) the
corresponding plot of chroma similarity between consecu-
tive beats.

ities are not always proportional to the suitability for over-
laying two segments. For instance, a given GBU composed
of only one long note or long chord, the highest chroma-
similar lead unit to it will highly probably be lead units that
are also composed of the same texture. Then, the picked
lead units for the GBU will all sound alike – long notes
or long chords, which makes the resultant mashup sound
boring and meaningless, even it sounds quite harmonic be-
cause of high chroma-similarity. As a result, we proposed
to match the input unit to the one that is composed of op-
posite harmonic change rate, e.g., a background unit with
simple texture (such as the chromagram illustrated in Fig-
ure 3(a) ) should match with a lead unit with complex tex-
ture (c.g. Figure 3(b) ), and vice versa. The harmonic
change rate can be calculated according to how many beats
remain stable on the chroma in a unit. Figure 4 illustrates
the chromagram and the chroma similarities between con-
secutive beats in a unit. The local minima of the chroma
similarity plot below the threshold δ can be defined as the
chroma change points. Then, the beats lie between any two
change points and contain exactly two crossing points to δ
are regarded as stable beats. The percentage of stable beats
will be mapped to a sigmoid function to get a smooth score
from 0 to 1 (0% stable beat is mapped to 1 while, 100% sta-
ble beats are mapped to 0), i.e. the harmonic change rate
ξ. Then, the harmonic change balance weights wt can be
calculated as:

wt = 1− |ξp − (1− ξq)| , (1)

where ξp and ξq are the harmonic change rate of units p and
q, respectively. If harmonic change rate of a background
unit is 0.7, we tend to find a lead unit whose harmonic
change rate is closer to 0.3.

5.1.3 Volume Weighting

There are many inaudible (less than -40db) lead units in
a lead track because the lead vocal or instruments often
rest in sections such as intro, intermezzo, and outro. To
eliminate lead units contain too many inaudible parts, we
included the volume weighting wv in our vertical masha-
bility computation. wv can be calculated according to the
portion of the lead units that can be heard. That is,

wv =

{
1 , if a ≥ 1

2η
1
2 + a

η , if a < 1
2η,

(2)

Figure 5. Schematic diagrams showing how to generate
mashups by considering (a) horizontal mashability and (b)
vertical mashability, respectively.

where a and η are the numbers of audible and total beats
in a unit, respectively.

Finally, we combine the aforementioned measurements
together to find the final vertical mashability Sv , that is

Sv = Sc · wt · wv + wτ , (3)

where wτ is an additional bonus to the pair of units with
close tempo, it is similar to the parameter α adopted in
Eqn. (9) of [9].

5.2 Horizontal Stage

In this stage, we aim at finding a proper subsequent GBU
T for the input GBU I by considering both vertical and
horizontal mashabilities. A perfect subsequent GBU T
should satisfy two properties: (i) it can smoothly be con-
catenated with the previous GBU I (cf. Figure 5 (a)), and
(ii) one can find a proper leader unit on top of the first
background unit in this GBU T and the found leader unit
can be smoothly concatenated with the previous leader unit
(cf. Figure 5 (b)). To achieve property (i), we incorporated
an approach similar to the concept described in [20, Sec.
7.2] and [19, Sec. 4.1]. We adopted the same similarity
measurements and weights as [20] to compute the similar-
ity between the GBU subsequent to I in the original track
and all the candidate GBUs, which was defined as the hor-
izontal mashability Sh. Then, sort according to Sh, we can
get a rank list, Rh. A threshold α is applied to cut off the
rank list: the GBUs with Sh that are lower than α are elim-
inated. For dealing with the pre-described property (ii), we
take the opposite direction. That is, we first check if the
next unit in the original track of the lead unit LIm exists. If
it is, we will temporally choose it as the first lead unit for
GBU T. Then, we can get another rank list Rv of GBUs
by sorting the vertical mashabilities Sv between the first
background units of the GBUs and the picked lead unit. A
similar threshold β is also applied to the rank list to elim-
inate inappropriate GBUs. After the above steps, we may
encounter four cases in the transitions between two GBUs.
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Case 1. Both Rh and Rv exist, and {Rh ∩Rv} 6= ∅. This
is the perfect case. Then, we can pick the first GBU
in {Rh ∩Rv} as our result.

Case 2. Only Rv exists. We pick the first GBU in Rv .
In case 2, the two background units at the transition
have no correlation but they are bridged via the lead
units taken from the same song on top of them.

Case 3. The opposite of case 2. Only Rh exists. We
choose the first GBU from Rh. In this situation, two
background units at the transition have high correla-
tion but the lead units on top of them cannot stay in
the same track.

Case 4. Both Rh and Rv do not exist. We randomly
choose a GBU. In case 4, the two background units
have no correlation and the lead units on top of them
cannot stay in the same track. We can also pro-
vide an optional self-repairing mechanism for case
4. That is, instead of random selection, we choose a
GBU that its next transition will fit the condition of
case 1 via pre-computation of all the possible cases
of all the GBUs in the collection.

A more complex situation is that, both Rh and Rv exist,
but {Rh ∩ Rv} = ∅. Which rank list should we choose
from? According to the user evaluation results in Sec-
tion 7.2, most users prefer case 2 than case 3. So we will
choose a GBU from Rv first.

6. MASHUP GENERATION

Mashup generation can be divided into two steps: segment
modification and mixing. In segment modification, we first
shift the pitches of the lead units to a target key, found
in the harmonic matching step (Section 5.1.1). The same
as [9], we use Rubberband library [5] to shift the pitches.
Then, the volume of the lead units are also re-scaled to
match that of the background unit by Replay Gain [23].
After that, to match to beats of the units, we apply phase
vocoder [12] to stretch the beats. Finally, we extend all of
the units one beat long and apply cross fade technique to
all of the transitions to create the resultant mashup.

7. EXPERIMENT: SETTINGS AND RESULTS

We conducted two subjective listening tests. The first
test is to evaluate the impact and the user’s acceptabil-
ity of the four approaches, we proposed to deal with
various transition conditions and also find the proper-
connecting priority of these four cases. The second test
is to compare the compatibilities of lead units which are
provided by the mashability in AutoMashUpper [9] and
by the vertical mashability in our system. The generated
mashups can be found in http://cmlab.csie.ntu.
edu.tw/˜kane0986/ISMIR2015.html.

7.1 Dataset

We use the multi-track audio dataset in [14] with structural
segment labels. The dataset contains 104 pop songs, each

song contains about 5 tracks on average. In the experi-
ment, for each song, we take the lead vocal track as the
lead track, and then we mix all the rest tracks into a single
track and regard it as the background track. Examples of
background tracks are drum and bass tracks or chordal in-
struments such as piano, guitar, or string. The vocal chorus
track is eliminated because it has different properties to ei-
ther the lead or the background track. We take 0.8478 as
the threshold δ in the harmonic change balance weighting
step. The threshold is obtained by finding the intersection
of distribution of the chroma similarity values of consec-
utive beats in 73 simple textured units and 156 complex
units. The other two thresholds, α and β we used in the
horizontal stage are set to 0.6422 and 0.5740, respectively.
These two thresholds are obtained through observations on
the first derivatives of the sorted scores of all the unit pairs.

7.2 Subjective Evaluations on Horizontal Mashability

In the first test, given the same background unit B and lead
units on top of B as inputs, we then got four mashups
which have dedicated configurations as those of pre-
described case 1 to case 4, respectively. We also added the
original track of unit B, which has no transition, as a ref-
erence, and is denoted as case 0. The user evaluations are
conducted through the aid of a web interface, and the tested
mashups are presented in random order. For each partic-
ipant, he or she needs to listen five groups of mashups,
and each group contains five mashups which respect to
the five cases we mentioned above. The questionnaires
are designed based on a 7-point Likert scale [17]. Users
are asked to report their opinions about the degrees of en-
joyment of the mashups from the following options: very
pleasing (7), pleasing (6), somewhat pleasing (5), neutral
(4), not so pleasing (3), not pleasing (2), and very unpleas-
ing (1). 21 males and 6 females aged around 20∼60 par-
ticipated in this test. All of our participants have listening
test experience, but most of them are not major in music
(less than five participants have educational background in
music) since our target consumer is general public.

Figure 6 shows the mean opinion score of each case.
The paired Wilcoxon signed rank test [25] is applied to
analyze the results, where the corresponding p-values are
reported in Figure 6. The overall result shows that the four
proposed cases did impact the human feeling of the resul-
tant mashups under a confidence level of 95% 2 . Case 1 is
rated second only to case 0. The score of case 2 is lower
than case 1, but commonly higher than case 3. This in-
dicates that users commonly prefer case 2 to case 3, i.e.,
bridging two GBUs with no relation via one lead track is
more acceptable than concatenating two GBUs with high
correlation but with the lead units do not stay in the same
track. Case 3 is rated higher than case 4 commonly, but not
as significant as other cases. Case 4 gets the lowest score
generally, this verifies that when there is significant change
in both of the lead and the background transitions, a great
impact to user’s acceptability will result.

2 By Bonferroni correction, to preserve the total confidence level as 95
%, the p value for each paired comparison should be < 0.05

C5
2

= 0.005
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Figure 6. Mean opinion scores of total and each test sam-
ple, in which the relevant p-values of paired Wilcoxon
signed rank test [25] on “case 0 (no transition) vs. case
1”, “case 1 vs. case 2”, “case 2 vs. case 3”, and “case 3
vs. case 4” are displayed above the corresponding bars of
each one of the experiments, respectively.
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Figure 7. Mean opinion scores of total and each test sam-
ple, in which the relevant p-values of paired Wilcoxon
signed rank test [25] on “AMU vs. our system” are dis-
played above the corresponding bars of each experiment.

Counter-intuitively, there are two groups in our listening
test showing that case 1 is rated higher than case 0 slightly
though they did not statistically significant. Possible rea-
son would be that the two GBUs in case 0 happen to be
from verse and chorus sections of different styles, respec-
tively. Then our system may have chance to find another
background unit which can be concatenated after the verse
segment more smoothly than it’s own chorus counterpart.

7.3 Subjective Evaluations on Vertical Mashability

In the second test, we aim at comparing the vertical masha-
bility provided by our system and the AutoMashUpper [9]
(denoted as AMU). We create the mashups by our method
and AMU’s method from the same input GBU I of 6 back-
ground units. Besides, we force the chosen lead units to
be picked from different songs. As we mentioned in Sec-
tion 5.1, rhythmic matching and spectral balance are not
reliable for the current dataset, so we only used the har-
monic matching part in AMU 3 , i.e. the version in [8].

3 We implemented AMU’s methods by ourselves.

Then, it is easily to pick lead units that are nearly inaudible
since only harmonic matching is considered in the adopted
AMU version. To make a fair test, we also apply our
volume weighting (Section 5.1.3) to AMU. As a result,
the target component we compared here is the harmonic
change balance weighting. A similar evaluation procedure
to the previous experiment was conducted. Users are in-
vited to listen to five groups of mashups per time, and each
group has two mashups – generated by AMU and by our
systems, in random order. 18 males and 6 females aged
around 20∼60 with similar background to the previous ex-
periment participated in this test. The result of this test is
given in Figure 7, and the corresponding p-values are also
reported. The lead units generated by our system are com-
monly rated higher than those created by AMU, under a
confidence level of 95%. This again verified the advantage
of taking the harmonic change balance weighting into con-
sideration. In fact, most of the GBUs are simple textured.
So the lead units generated by AMU is more likely to pick
simple textured lead units.

8. CONCLUTION AND FUTURE WORK

In this paper, a novel system is proposed to effectively cre-
ate music mashups. There are two main contributions done
in our system. First, both vertical and horizontal mashabil-
ities are taken into consideration. Through this, our sys-
tem can create a mashup with multiple background and
lead track segments, which provides much higher flexibil-
ity in making mashups than the systems proposed in previ-
ous studies. Second, by taking the newly proposed vertical
mashability measurement into account, user study shows
that the improvement in user satisfaction is statistically sig-
nificant. The subjective evaluations also show that the four
concatenation cases we analyzed play a critical role in gen-
erating enjoyable mashups.

Many aspects of our system can be extended. First, in
the vertical stage, we could alternatively match the unit
based on the compatibility of pitch of lead unit and the
chord of the background unit [26] instead of the chroma
similarity between the lead and the background units di-
rectly. Second, sometimes we found that the lead units
chosen by our system are too different from one another,
so that the created mashups would sound very abrupt. To
prevent this situation, we may restrict the chosen lead units
to be with certain characteristics analyzed in advance, e.g.
timbre, style, and emotion. Finally, we could further in-
vestigate the effect of overlapping the lead units and the
chorus track units. Even more, the background units can
also be separated into instrumental track units and drum
track units, etc.. Toward the study about how to combine
all kinds of units reasonably may provide true solutions to
create music mashups in all conditions.
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ABSTRACT

Structure in music is traditionally analyzed hierarchically:
large-scale sections can be sub-divided and refined down to
the short melodic ideas at the motivic level. However, typ-
ical algorithmic approaches to structural annotation pro-
duce flat temporal partitions of a track, which are com-
monly evaluated against a similarly flat, human-produced
annotation. Evaluating structure analysis as represented by
flat annotations effectively discards all notions of structural
depth in the evaluation. Although collections of hierar-
chical structure annotations have been recently published,
no techniques yet exist to measure an algorithm’s accuracy
against these rich structural annotations. In this work, we
propose a method to evaluate structural boundary detec-
tion with hierarchical annotations. The proposed method
transforms boundary detection into a ranking problem, and
facilitates the comparison of both flat and hierarchical an-
notations. We demonstrate the behavior of the proposed
method with various synthetic and real examples drawn
from the SALAMI dataset.

1. INTRODUCTION

The analysis of structure in music is a principal area of
interest to musicologists. Its goal is to identify and char-
acterize the form of a musical piece by investigating the
organization of its components, such as sections, phrases,
melodies, or recurring motives. Traditional analyses usu-
ally provide multiple levels of annotation (e.g., Schenke-
rian analysis), which suggest that music is structured hier-
archically [3], and can be modeled and analyzed using tree
representations [2].

In the music information research literature, music seg-
mentation (also known as music structure analysis) is a
task that aims to automatically identify the structure of a
musical recording [6]. The segmentation task has histori-
cally been geared toward algorithms which produce a flat
partition of the recording into disjoint segments. This for-
malization contrasts with our intuition that music exhibits
hierarchical structure [7,8]. Even though a large dataset of

c© Brian McFee, Oriol Nieto, Juan P. Bello.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Brian McFee, Oriol Nieto, Juan P.
Bello. “Hierarchical Evaluation of Segment Boundary Detection”, 16th
International Society for Music Information Retrieval Conference, 2015.

hierarchically-structured human annotations is now pub-
licly available [8], current evaluation methodologies are
defined only for flat segmentations. As a result, the dimen-
sion of depth has been practically ignored in the evaluation
of music segmentation algorithms.

In contrast to segmentation, the pattern discovery task
formulation allows output segments to overlap, and the an-
notation is not required to cover the entire piece. These two
tasks share multiple attributes [5], and steps toward a gen-
eral formulation musical structure analysis could be made
by accounting for depth in segmentation. Numerous met-
rics to evaluate pattern discovery have been proposed [1].
However, they are designed to capture repeated patterns,
and would be inappropriate for evaluating non-repeating,
hierarchical structure.

1.1 Our contributions

We present the Tree Measures (T -measures): an evaluation
framework designed to measure the accuracy of boundary
detection in hierarchical segmentations. The T -measures
infer frame-wise similarity from a hierarchical annotation,
and then compare the induced rank-orderings to assess
agreement between reference and estimated annotations.
The T -measures integrate information from all layers of
a hierarchy, trivially specialize to handle flat annotations,
and require no explicit correspondence between the depth
of the estimated and reference hierarchies. Thus, the T -
measures encourage the development of new algorithms
to produce richer representations of structure. Although
not all music can necessarily be modeled using trees [11],
we argue that tree-based evaluation represents a first step
toward moving beyond flat structure analyses. We demon-
strate the properties of T -measures with multiple synthetic,
human, and algorithmic examples.

2. SEGMENT BOUNDARY EVALUATION

Segmentation algorithms are typically evaluated for two
distinct goals. The first goal, boundary detection, evalu-
ates the algorithm’s ability to detect the times of transitions
between segments. The second goal, structural grouping,
evaluates the labeling applied to the estimated segmenta-
tion, and thus quantifies the ability of an algorithm to detect
repeated forms, such as verses or refrains. In this paper, we
focus exclusively on the boundary detection task.

Boundary estimates are typically evaluated by precision
and recall [10]. Estimated and reference boundaries are
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matched within a specified tolerance window — typically
either 0.5 or 3 seconds — and the hit rate nh (number of
matches) is used to define precision and recall scores:

P ··=
nh
ne
, R ··=

nh
nr
, (1)

where ne and nr denote the number of boundaries in the
estimated and reference annotations, respectively. P and
R are typically combined into a single F -measure by com-
puting their harmonic mean.

Boundary detection has also been evaluated by devi-
ation [10]. This is done by measuring the median time
(absolute) differential between each reference boundary
and the nearest estimated boundary (R2E), and vice versa
(E2R). Boundary deviation is useful for quantifying the
temporal accuracy of a detection event. However, it can
be sensitive to the number of estimated boundaries.

2.1 The limitations of flat evaluation

The precision-recall paradigm has been critical to quanti-
fying improvements in segmentation algorithms, but it has
numerous limitations with hierarchical annotations. The
most obvious limitation is that both the reference and esti-
mated annotations must have flat structure. This is some-
times resolved by collecting multiple flat reference annota-
tions for each track, each corresponding to different levels
of analysis [8].

When only the estimation is flat, it is still not obvious
how to compute accuracy against multiple layers. Aggre-
gating reference boundaries across layers prior to evalua-
tion would imply that all boundaries are equally informa-
tive. However, high-level boundaries often convey more
information about the overall structure of the piece, but
their contribution to the total score may be diluted by the
abundance of low-level boundaries, which necessarily out-
number high-level boundaries in hierarchical annotations.

Flat evaluation followed by aggregation across layers
can be similarly problematic, since it discards the rela-
tional structure between layers in the reference annotation.
This can complicate interpretation of the scores by con-
flating inaccurate boundary detection with mismatch be-
tween the target levels of the estimate and reference anno-
tations [9].

Finally, the above strategies provide no means to di-
rectly compare two hierarchical annotations. While one
may imagine simple comparison strategies when both hi-
erarchies have a small number of layers with an obvious
layer-wise correspondence — e.g., SALAMI’s large- and
small-scale annotations — it is unclear how to proceed in
more general settings.

3. THE TREE MEASURES

In this section, we derive the tree measures for evaluating
multi-level segment boundary detection. The evaluation
is based on a reduction to ranking evaluation, which we
describe in detail below.

i j k m

Time

level_2

level_1

level_0

H(i,i) H(j,j) H(k,k) H(m,m)

H(j,k)

H(i,k)

Hierarchical Segmentation

Figure 1: An example of a three-level hierarchical segmentation.
Frames i, j, and k are indicated along the x-axis, and their con-
taining segments are indicated within the figure, e.g., H(j, k).

3.1 Preliminaries

Let X denote a set of sample frames generated from the
track at some fixed resolution fr (e.g., 10Hz). 1 Let S de-
note a flat, temporally contiguous partition of X , and let
S(i) identify the segment containing the ith frame in X .
We will use the subscripts SR and SE to denote reference
and estimated annotations, respectively.

A hierarchical segmentation H is defined as a tree of
flat segmentations (S0, S1, . . . , Sd) where each layer is a
refinement of the preceding layer. 2 Let H(i, j) identify
the smallest (most refined) segment containing frames i
and j. We will denote precedence (containment) of seg-
ments by ≺: e.g., H(j, k) ≺ H(i, k). Note that flat
segmentations are a special case of hierarchical segmen-
tations, where there are only two levels of segmentation,
and the first layer contains no boundaries.

As illustrated in Figure 1, hierarchical segmenta-
tions can be represented as tree structures. Here,
H(i, i), H(j, j) and H(k, k) denote the most specific seg-
ments containing frame i, j and k, respectively. From the
figure, we observe thatH(j, k) identifies the least common
ancestor of frames j and k. We can generally infer mem-
bership and precedence relations from the hierarchy, e.g.,

j ∈ H(j, j) ≺ H(j, k) ≺ H(i, j) = H(i, k). (2)

3.2 Flat segmentation and bipartite ranking

Segmentation evaluation can be reduced to a ranking eval-
uation problem as follows. Let q denote an arbitrary
frame, and let i and j denote any two frames such that
SR(q) = SR(i) and SR(q) 6= SR(j). In this case, i may
be considered relevant for q, and j is considered irrelevant.
This leads to the following per-frame recall metric:

f(q;SE , SR) ··=
∑

i∈SR(q)\{q},
j /∈SR(q)

JSE(q) = SE(i) 6= SE(j)K
Zq

(3)

Zq ··= (|SR(q)| − 1) · (n− |SR(q)|+ 1),

where J·K is the indicator function, n = |X| denotes the
total number of frames, and Zq counts the number of terms
in the summation. The score for frame q is the fraction of

1 Non-uniform samplings (e.g., beat- or onset-aligned samples) are
also easily accommodated.

2 A partition Si+1 is a refinement of partition Si if each member of
Si+1 is contained within exactly one member of Si.
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pairs (i, j) for which SE agrees with SR with respect to q.
Averaging over all q yields a mean recall score:

ρ(SE , SR) ··=
1

n

∑

q

f(q;SE , SR). (4)

3.3 Hierarchies and partial ranking

Equation (3) is defined in terms of segment membership
equality, but it has a straightforward generalization to hier-
archical segmentations. If we restrict attention to a query
sample q, then H(q, ·) induces a partial ranking over the
remaining samples. Frames contained in H(q, q) are con-
sidered maximally relevant, followed by those inH(q, q)’s
immediate ancestor, and so on.

Rather than compare frames q, i, and j where
S(q) = S(i) 6= S(j), we can instead compare where
H(q, i) ≺ H(q, j): i.e., the pair (q, i) merge deeper in
the hierarchy than do (q, j). This leads to the following
generalization of Equation (3):

g(q;HE , HR) ··=
∑

(i,j),
i6=q,

HR(q,i)≺HR(q,j)

JHE(q, i) ≺ HE(q, j)K
Zq

, (5)

whereZq is suitably modified to count the number of terms
in the summation. This definition is equivalent to Equa-
tion (3) for flat hierarchies, but it applies more generally to
hierarchies of arbitrary (and unequal) depth.

Just as in Equation (3), g can be viewed as a classifica-
tion accuracy of correctly predicting pairs (i, j) as positive
(q and i merge first) or negative (q and j merge first). Ties
(H(q, i) = H(q, j)) are precluded by the strict precedence
operator in the summation. Equation (5) can be alternately
be viewed as a generalized area under the curve (AUC)
over the partial ranking induced by the hierarchical seg-
mentation, where depth within the estimated hierarchyHE

plays the role of the detection threshold.
Averaging over q yields the tree-recall T -measure:

TR(HE , HR) ··=
1

n

∑

q

g(q;HE , HR). (6)

The tree-precision metric TP (HE) is defined analogously
by swapping the roles of HE and HR:

TP (HE , HR) ··= TR(HR, HE). (7)

Intuitively, TR measures how many triplets generated by
the reference HR can be found in the estimate HE , while
TP computes the converse. The T -measures retain inter-
pretation as recall and precision scores, albeit at the level
of frame triplets rather than boundaries. Finally, an anal-
ogous F -measure TF can be defined in the usual way by
computing the harmonic mean of TP and TR.

3.4 Windowing in Time

The T -measures defined above capture the basic notion of
hierarchically nested, frame-level relevance, but they pose
three technical limitations. First, the score for each query

will generally depend on the track duration n, which makes
comparisons between tracks of differing length problem-
atic. Second, for large values of n (long tracks), Equa-
tion (5) can be dominated by trivial comparisons where j
lies far from q in time, i.e., |q− i| � |q− j|. Longer tracks
will produce inflated scores compared to shorter tracks,
simply by having more “easy” comparisons. Finally, the
calculation of Equation (6) can be expensive, takingO(n3)
time using a direct implementation.

To resolve these issues, we introduce a time window of
w seconds to both simplify the calculation of the metric
and normalize its range. This is achieved by restricting
the triples (q, i, j) in the summation such that i and j both
lie within a window of w seconds centered at q. Adding
this windowing property to equations (5, 6) yields the win-
dowed T -measures:

g(q;HE , HR, w) ··=
∑

i,j∈{x:|q−x|≤w/2}
i6=q,

HR(q,i)≺HR(q,j)

JHE(q, i) ≺ HE(q, j)K
Zq(w)

,

(8)

TR(HE , HR;w) ··=
1

n

∑

q

g(q;HE , HR, w), (9)

and Zq(w) is again modified to count the terms in the
summation. This reduces computational complexity from
O(n3) to O(nw2). Each query frame q now operates over
a bounded number of comparisons, so the windowed T -
measures are calibrated across tracks of different lengths.
This property is useful when compiling score statistics over
a test collection.

3.5 Transitive reduction

Just as Equation (5) can be dominated by long-range inter-
actions in the absence of windowing, deep hierarchies can
also pose a problem. To see this, consider the sequence
HR(q, i) ≺ HR(q, j) ≺ HR(q, k). Since the summation
in Equation (5) ranges over all precedence comparisons,
and i ∈ HR(q, j), the triple (q, i, k) is double-counted.
Since segments grow in size at higher levels in the hierar-
chy, over-counting can dominate the evaluation.

To counteract this effect, the summation can be re-
stricted to include only direct precedence relations. This
is accomplished by comparing samples only from succes-
sive levels in the hierarchy, i.e., replacing the partial rank-
ing generated by q with its transitive reduction. This both
eliminates redundant comparisons and increases g’s effec-
tive range. We refer to the resulting metrics as reduced
T -measures.

4. SYNTHETIC EXAMPLES

In this section we discuss the behavior of the T -measures
by showing various synthetic examples, and comparing
them against other existing methods when possible. For
each example in this section, we illustrate the behavior
of our proposed metric under different window times w.
This section is subdivided by the types of annotations un-
der consideration.
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0.5 0.40 1.00 0.40 1.00
3 0.40 1.00 0.40 1.00
15 0.39 0.53
30 0.69 0.50
∞ 0.80 0.50

Figure 2: Flat vs. flat boundaries (top), T -measures and bound-
ary detection (hit-rate) scores (bottom).

4.1 Flat vs. flat annotations

We first compare two flat boundary annotations to demon-
strate how the T -measures behave compared to standard
boundary detection. When both annotations are flat, the re-
duced T -measures behave identically to the full measures,
so we omit them from this section. The synthesized flat
boundaries are displayed on the top of Figure 2, and they
aim to capture a situation where an algorithm correctly de-
tects a subset of the reference boundaries.

The hit rate scores obtain a recall of 0.40 and a pre-
cision of 1.0, since all estimated boundaries are also in
the reference, but only two out of five boundaries were re-
trieved. 3 When w does not exceed the minimum segment
duration, the T -measures coincide exactly with the bound-
ary detection metrics. For larger w, TP decreases, while
TR increases as w approaches the track duration. The de-
pendency on w is further explored in Section 5.1.

To understand the relationship between TP and w, con-
sider the example (q, i, j) = (5, 15, 25). The estimation
considers i to be relevant for q (since they belong to the
segment [0, 20]), and j to be irrelevant for q. Meanwhile,
the reference considers both i and j to be equally irrelevant
for q, so this triple contributes 0 to the precision metric.
Note that this comparison is counted only when w is large
enough to span multiple segments.

In general, sensitivity to long-range interactions in-
creases with w. This illustrates how the window size de-
pends on the duration and scale of structure that the practi-
tioner wishes to capture.

4.2 Flat vs. hierarchical annotations

Here we present four examples of flat estimations against a
fixed hierarchical reference, but note that the reverse com-
parisons can be inferred by swapping TP and TR.

4.2.1 Large-scale and under-segmentation

Figure 3 illustrates a flat estimation corresponding to the
highest layer of a hierarchical reference. We report T -

3 The first and last boundaries (0 and 60s) mark the beginning and end
of the track, and since they are constant across all estimates, we suppress
them during the evaluation to avoid score inflation.
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level_0
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Reduced Full
w TR TP TR TP

0.5 0.00 1.00 0.40 1.00
3 0.00 1.00 0.40 1.00
15 0.37 1.00 0.51 1.00
30 0.70 1.00 0.82 1.00
∞ 0.80 1.00 0.89 1.00

Figure 3: Hierarchical reference vs. flat (large-scale) estima-
tion (top) and T -measures (bottom). Reduced uses the transi-
tive reduction method of section 3.5, while Full uses comparisons
across all layers.

0 10 20 30 40 50 60
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level_1
level_0

Reference

0 10 20 30 40 50 60
Time (seconds)

level_0

Estimation

Reduced Full
w TR TP TR TP

0.5 0.0 1.00 0.20 1.00
3 0.0 1.00 0.20 1.00
15 0.19 0.94 0.26 0.94
30 0.37 0.71 0.44 0.71
∞ 0.53 0.67 0.59 0.67

Figure 4: Hierarchical reference vs. flat under-segmentation
(top) and T -measures (bottom).

measures with and without the transitive reduction strategy
described in Section 3.5. The T -measures behave as ex-
pected: the tree-precision score TP is always 100%, since
the reference contains the estimation. We also observe the
general trend that full scores exceed reduced scores.

For small time windows (w ≤ 3), the full tree-recall
score is 40%, just as in the previous example. The reduced
recall scores in this case are 0 because no frame q in the
estimation has two frames i, j both within w ≤ 3 seconds
that merge within one layer of each-other in the reference.

Figure 4 illustrates an example of under-segmentation:
the estimation misses a high-level structural change at 20s.
Again, small w yields T -measures which coincide with
standard boundary detection metrics. Larger w increases
the tree-recall (and decreases precision) since only long-
range interactions are well represented in the estimation.

4.2.2 Small-scale and over-segmentation

Figure 5 illustrates an example comparable to Figure 3,
except that the estimation now corresponds to the bottom
layer of the reference annotation. Again, since the refer-
ence contains the estimation, precision is maximal for all
w. However, the reference provides strictly more informa-
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Figure 5: Hierarchical reference vs. flat, small-scale estimation
(top) and T -measures (bottom).
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3 0.98 0.56 0.98 0.56
15 0.46 0.86 0.53 0.86
30 0.22 0.92 0.40 0.92
∞ 0.13 0.94 0.37 0.94

Figure 6: Hierarchical reference vs. flat over-segmentation (top)
and T -measures (bottom).

tion: namely, it encodes structure over the low-level seg-
ments. The T -measures quantify the missing information
in the estimation When w exceeds the smallest segment
duration (10s), TR decreases. This information would be
obscured by independent, layer-wise boundary evaluation.

Similarly, Figure 6 illustrates an over-segmentation
where the estimation predicts more boundaries than the
deepest layer of the reference. Again, the TR decays when
the window captures multiple short segments. Unlike the
under-segmented example in Figure 4, long-range interac-
tions derived from HE are mostly satisfied by HR, so TP

increases rather than decreases.

4.3 Hierarchical vs. hierarchical

Figure 7 compares two different hierarchical segmenta-
tions. The estimation contains an additional high-level
layer, but is otherwise identical to the reference. At small
w, both T -measures agree perfectly, since the window is
not large enough to resolve differences. As w increases,
TP decreases as expected, since the estimation has found
an additional structural element not captured in the refer-
ence. The TR scores remain at 100% for all w.
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0.5 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00
15 1.00 0.98 1.00 0.99
30 1.00 0.79 1.00 0.89
∞ 1.00 0.62 1.00 0.79

Figure 7: 2-layer vs. 3-layer hierarchical boundaries (top) and
T -measures scores (bottom).
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3 0.95 0.95 0.96 0.93
15 0.75 0.75 0.80 0.84
30 0.62 0.83 0.71 0.89
∞ 0.57 0.96 0.68 0.98

Figure 8: Hierarchical annotations for SALAMI track #636 from
the two different human annotators. Top: annotations; bottom:
T -measures scores.

5. LARGE-SCALE EVALUATION

In this section, we apply the T -measures to quantify inter-
annotator agreement in the SALAMI corpus, and evaluate
the hierarchical predictions of the agglomerative clustering
method (OLDA) of McFee and Ellis [4].

5.1 Human annotator agreement

Figure 8 illustrates hierarchical annotations obtained from
two human annotators on one track in the SALAMI
dataset. While the two annotators tend to agree at the small
scale, they differ at the large scale. This is reflected in the
T -measures: at large w, the recall skews low because the
reference’s large-scale annotations are coarser than those
of the estimation.

To further investigate inter-annotator agreement, we
computed T -measure scores between hierarchical refer-
ence annotations for the 410 tracks in the SALAMI dataset
where two annotations are available and both mark the start
and end times of the song equally at both levels. To sim-
plify exposition, we summarize agreement by TF . Figure 9
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Figure 9: TF scores between human annotators for SALAMI
tracks over a range of window sizes w.

illustrates the distribution of per-track TF scores as a func-
tion of w. We observe that the score distribution is rela-
tively stable for w ≥ 15. 4 The example in Figure 8 is gen-
erally representative of inter-annotator agreement, achiev-
ing TF = 0.75 at w = 15. The out-lying low scores tend
to be examples where one annotator ignored structure an-
notated by the other: e.g., in track #68, one annotator only
marked silence boundaries.

This analysis quantitatively substantiates prior obser-
vations that humans do not perfectly agree upon struc-
tural annotations [9], and suggests an accuracy ceiling near
70% for hierarchical annotation. Similarly, it suggests
that w = 15 provides a reasonable default value for the
SALAMI dataset. This setting is large enough to capture
multiple small-scale segments: in the tracks considered for
this evaluation, the median small-scale segment duration
was 6.66s, with a 95th percentile of 15.69s.

5.2 Annotator vs. algorithm

Finally, we evaluated the quality of hierarchical segmenta-
tions produced by OLDA [4]. 5 Figure 10 illustrates one
example output of OLDA and the resulting T -measures.
The reference provides two levels of segmentation (large
and small), while the estimation produces several layers
with generally large segments. For sufficiently large w, the
estimation achieves high recall and low precision. This be-
havior is typical of the OLDA method, which constructs
hierarchies in a bottom-up fashion by agglomerative clus-
tering, adding only a single boundary at each layer. Due
to the depth of the estimated boundaries, the full scores are
inflated compared to the reduced scores.

Figure 11 displays the TF score distribution for
OLDA, measured against annotator 1 on 726 tracks from
SALAMI. These results reveal a gap of around 30% be-
tween inter-annotator agreement (Figure 9) and the perfor-
mance of OLDA. This suggests that there is substantial
room for improvement in hierarchical boundary estimation
algorithms.

4 The analogous plots for TP and TR are omitted for brevity, but illus-
trate the same trend.

5 To the authors’ knowledge, this is the only published method for hi-
erarchical boundary detection.
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Figure 10: Hierarchical reference annotation vs. OLDA on
SALAMI track #636. (top) and T -measures (bottom).
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Figure 11: TF scores between OLDA and human reference an-
notations on the SALAMI dataset.

6. DISCUSSION AND CONCLUSIONS

The implementation of T -measures depends upon two crit-
ical parameters: the time windoww, and whether to use the
reduced or full metrics. While the setting of w ultimately
depends upon the practitioner’s preference and character-
istics of the dataset, the results on SALAMI suggest that
w = 15 provides a reasonable balance between captur-
ing high-level structure and resilience to long-range inter-
actions. As illustrated in section 4.2.1, when w is large
enough to capture multiple short segments, the transitive
reduction approach can also be used to enhance the range
of the metrics while eliminating redundant comparisons.

In this paper, we focused only on the problem of eval-
uating estimated boundaries. In future work, we plan to
extend general ideas behind T -measures to other structural
annotation problems, such as segment label agreement.
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ABSTRACT

In this paper, we propose a method for improving the accu-
racy of MIDI guitars. MIDI guitars are useful tools for var-
ious purposes from inputting MIDI data to enjoying a jam
session system, but existing MIDI guitars do not have suf-
ficient accuracy in converting the performance to an MIDI
form. In this paper, we make an attempt on improving
the accuracy of a MIDI guitar by integrating it with an
audio transcription method based on non-negative matrix
factorization (NMF). First, we investigate an NMF-based
algorithm for transcribing guitar performances. Although
the NMF is a promising method, an effective post-process
(i.e., converting the NMF’s output to an MIDI form) is a
non-trivial problem. We propose use of a neural network
for this conversion. Next, we investigate a method for inte-
grating the outputs of the MIDI guitar and NMF. Because
they have different tendencies in wrong outputs, we take
an policy of outputting only common parts in the two out-
puts. Experimental results showed that the F-score of our
method was 0.626 whereas those of the MIDI-guitar-only
and NMF-and-neural-network-only methods were 0.347
and 0.526, respectively.

1. INTRODUCTION

A MIDI guitar, which outputs the user’s performance data
into the MIDI format in real time, is useful for guitarists to
engage in various music activities such as inputting MIDI
data into a computer and enjoying the use of a jam session
system. However, the accuracy of MIDI guitars is not as
high as a MIDI keyboard because the MIDI guitar detects
the strings’ vibration by analyzing the temporal changes in
the magnetic field around the strings.

There have been many attempts made to transcribe gui-
tar performances [1–3, 5, 8–10, 12]. Arimoto et al. remade
the PreFEst method, originally developed by Goto [4],
for a guitar based on physical constraints on fingering
forms [1]. Yazawa et al. also focused on latent harmonic
allocation for a guitar based on physical constraints in fin-
gering form [12]. Barbancho et al. furthermore investi-

c© Masaki Otsuka and Tetsuro Kitahara.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Masaki Otsuka and Tetsuro Kita-
hara. “Improving MIDI Guitar’s Accuracy with NMF and Neural Net”,
16th International Society for Music Information Retrieval Conference,
2015.

gated these physical constraints [2]. Fiss et al. constructed
a system that transcribes a guitar performance as a tabla-
ture [3]. This system estimates not only the notes that are
played, but it also estimates how the notes are played (i.e.,
string number and fret number) through audio signal pro-
cessing. O’Grady et al. considered both the use of non-
negative matrix factorization (NMF) [7] and a hardware
improvement of a MIDI guitar for accurate guitar perfor-
mance transcription [8]. Harquist also proposed a real-time
guitar transcription method using NMF [5]. In addition,
there have been attempts to improve guitar performance
transcription by integrating audio signal processing with
computer vision [9, 10].

In this paper, we focus on improving the accuracy of
MIDI guitars by integrating them with audio signal pro-
cessing technologies (especially NMF). Almost all MIDI
guitars have an audio output jack for connecting to a guitar
amplifier as well as a MIDI output. By connecting this au-
dio output jack to a PC’s audio input jack, the guitar’s au-
dio signal can be analyzed. By inputting the guitar’s MIDI
output to that PC, the audio result and the guitar’s MIDI
output can be integrated. Thus, introducing audio signal
processing to a MIDI guitar does not require any special
equipment or hardware improvements. O’Grady et al. fo-
cused on a similar technique as we employ here but their
method involved hardware improvements [8]; our method-
ology requires no hardware improvement. Using computer
vision [9, 10] is an interesting approach, but it requires in-
stalling a camera and it may restrict the player’s motions.
Using physical constraints in fingering forms [1, 2, 12] is
a common and promising approach, but we dare to adopt
the approach of exploring how much we can improve the
accuracy without using physical constraints. Physical con-
straints can be applied to our method for further improve-
ments in the future.

The rest of this paper is organized as follows: In Sec-
tion 2 we propose a method for transcribing guitar perfor-
mance using NMF. In Section 3 we describe a method for
integrating NMF-based transcription outputs and the MIDI
guitar’s outputs. In Section 4 we report our experimental
results. Finally, we conclude the paper in Section 5.

2. AUDIO-TO-MIDI CONVERSION WITH NMF

NMF is a technique for decomposing a matrix V into the
product of two matrices W and H , that is, V ∼= WH ,
where W is a basis matrix and H is a gain matrix. A typical
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usage of NMF in automatic music transcription is to apply
NMF to a spectrogram. Then, the basis matrix W is an
array of N column vectors wn that represent the spectrum
of each note n; the gain matrix is an array of N row vectors
hn that represent a temporal sequence of the gain for the
basis vector wn. Because the gain vector hn represents an
approximation of a temporal sequence of the amplitude for
the note n, the onset and offset times for a note n can be
identified by thresholding hn; steep rises in the time series
{hn,t}t represent onsets and steep drops represent offsets.

However, there are two problems with this technique.
The first one is that standard NMF is applicable only af-
ter the entire spectrogram is obtained. This fact means
that standard NMF cannot be used for real-time process-
ing. The second problem is that it is difficult to determine a
universally appropriate threshold because the actual gains
vary according to playing style, strings, and other factors.
Thus, the issues to be resolved here can be summarized as
follows:

Issue 1 How to apply NMF to real-time processing

Issue 2 How to determine an appropriate threshold de-
pending on the playing style, strings, etc.

In this paper, we resolve these issues as follows:

Solution 1 We ask the user to play a chromatic scale (from
the lowest note to the highest note) for each string in
advance and apply NMF to this preliminary perfor-
mance. We assume that the spectrum of each note
is similar enough between the preliminary and tar-
get performances1 if the same person plays the same
instrument in the same way. Under this assumption,
the basis matrix calculated from the preliminary per-
formance is then used to obtain the gain vectors for
the target performance.

Solution 2 We introduce one more preliminary perfor-
mance and adaptively determine the threshold. This
preliminary performance has a similar musical fea-
ture to the target performance, and we ask the user
to play the phrase specified by the system accurately
(thus, the system knows the ground truth). Adap-
tation of the threshold using these data is approxi-
mately equivalent to learning a neural network. We
therefore learn how high the gain is and how steeply
the gain rises at onsets with a neural network and use
this neural network for detecting onsets.

In the rest of this section, we first describe a method in
which only Solution 1 is introduced (we call this method
the baseline method). Next, we introduce Solution 2 to this
baseline method.

1 The target performance refers to the performance to be converted to
the MIDI format.

2.1 Baseline method — Introducing Solution 1 only

Stage 1: Estimating basis matrix from preliminary
performance

After the user plays all chromatic notes successively for
each string k (called the 1st preliminary performance), the
spectrogram Vk is calculated using the short-term Fourier
transform with a 4096-point Hamming window shifted by
10 ms (we suppose 44.1-kHz sampling). Then, the spectro-
gram Vk is decomposed into the basis matrix Wk and the
gain matrix Hk using NMF. To avoid that spectral peaks
for different notes are mixed into a single basis vector, we
prepare 35 basis vectors for each string even though each
string has 23 notes. We then obtain 23 basis vectors by
merging pairs of basis vectors that have a high cosine sim-
ilarity.

Stage 2-1: Estimating gain vectors for target
performance

The user plays the target performance (i.e., the perfor-
mance to be converted to the MIDI format). As the user
plays, the power spectrum vt (where t is time) is obtained
via the Fourier transform, and then the gain vector ht,k for
each string k is calculated. The gain vector ht,k is defined
as ht,k = W−1

k vt, where Wk is the basis matrix for the
string k, obtained in Stage 1. Because Wk is not a square
matrix in general, its inverse matrix cannot be calculated.
We therefore use a pseudo-inverse matrix [6] instead.

Stage 2-2: Generating MIDI messages by thresholding
gain vectors

After the gain vector ht,k is calculated, MIDI messages
are generated. When the n-th element of ht,k has a higher
value than the threshold h0 but that of ht−1,k does not
(that is, ht−1,k,n ≤ h0 < ht,k,n), a MIDI Note On mes-
sage for the note number corresponding to fret n of string
k is generated. When ht−1,k,n > h0 ≥ ht,k,n, a MIDI
Note Off message is generated. When ht−2,k,n > ht−1,k,n

and ht−1,k,n < ht,k,n, even if both ht−1,k,n and ht,k,n are
higher than h0, we can consider that a note is played again
before the previous note is decayed enough. If this is the
case, a Note Off message is generated at time t − 1 and a
Note On message at time t.

2.2 Introducing Solution 2

The method discussed above involves thresholding but the
appropriate threshold depends on various factors including
the individual instrument, the strength of picking, and the
characteristics of the player. In practice, dynamic adjust-
ment of the threshold is not straightforward. We therefore
add one more preliminary performance (called the 2nd pre-
liminary performance) and adjust the threshold using this
2nd preliminary performance under the assumption that a
correct transcription of the 2nd preliminary performance
has been given. Let ht,k,n be the gain in the 2nd prelimi-
nary performance at time t, string k, and fret n. Whether
t is an onset time at fret n of string k in this peformance
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Figure 1. Neural network that we employ

can be identified from the correct transcription, then it is
represented as follows:

st,k,n =

{
1 (t is an onset time at fret n of string k)
0 (else)

What to be solved here is to find h0 such that ht,k,n > h0

iff st,k,n = 1. This h0 can be estimated by minimizing
E(h0) =

∑
t,k,n{ς(−h0 + ht,k,n) − st,k,n}2, where ς(x)

is the sigmoid function, that is, ς(x) = 1/(1 + e−x). It
is equivalent to training a neural network. The temporal
differential of ht,k,n is also considered important for onset
detection, so we obtain a neural network shown in Figure
1 by adding such features.

Stage 1: Estimating basis matrix from 1st preliminary
performance

In the same way as Stage 1 of the baseline method, the 1st
preliminary performance is played by the user, and then
the basis matrix Wk for each string k is calculated.

Stage 2-1: Estimating gain vectors for 2nd preliminary
performance

The user plays the 2nd preliminary performance. As he/she
plays, the power spectrum vt and the gain vector ht,k =
W−1

k vt for each string k are calculated every 10 ms in the
same way as in Stage 2-1 of the baseline method.

Stage 2-2: Learning neural network

For each element ht,k,n of ht,k, the following steps are
performed if ht,k,n is a peak:

1. Features are extracted from ht,k,n and are set to the
vector xt,k,n. In the current implementation, the fol-
lowing feature vector is used:

xt,k,n = (ht,k,n, ht,k,n−ht−2,k,n, ht,k,n−ht′,k,n),

where t′ is the time of the last valley before t
in {hτ,k,n}τ=0,··· ,t, in other words, the maximum
value of τ (< t) such that hτ,k,n < hτ−1,k,n and
hτ,k,n < hτ+1,k,n.

2. The supervision st,k,n is defined as described above.

3. The neural networks shown in Figure 1 are trained
using backpropagation such that the difference be-
tween the value of the output node yt,k,n and the su-
pervison st,k,n is minimized. We prepare and train
different neural networks for different string, but we
use the same neural network for different frets of the
same string due to a limited number of training data.
Each neural network has a single hidden layer con-
sisting of three to ten nodes (we try all cases and
present the best result).

In the training, the number of data with supervisions of
1 and 0 are balanced.

Stage 3-1: Estimating gain vectors for target
performance

During the target performance, the spectrum and the gain
vector are calculated every 10 ms in the same way as in
Stage 2-1.

Stage 3-2: Generating MIDI messages based on neural
network

The feature vector xt,k,n is calculated in the same way as
in Stage 2-2. Then, the value of the output node yt,k,n in
the trained neural network is calculated for each time, each
string, and each fret. When this value is higher than 0.5, a
MIDI Note On message for the corresponding note number
is generated.

Theoretically, offsets can also be learned and estimated
with a neural network. However, for simplicity, offsets are
detected in the same way as in the baseline method.

3. INTEGRATION OF MIDI GUITAR AND NMF

In this section, we describe a method for integrating the
outputs of a MIDI guitar and the method discussed in Sec-
tion 2.2. When we discuss how to integrate two differ-
ent outputs, we should consider a tradeoff between recall
rates and precision rates. We believe that precision is more
important in our task because false positives (MIDI mes-
sages generated but actually not played) directly result in
dissonant sound; false negatives (MIDI messages not gen-
erated but actually played) do not. We therefore adopt an
approach of outputting the common part of the two out-
puts.

Stages 1 to 3-2

We perform the same process as in Section 2.2 is per-
formed until Stage 3-2. Although in the method in Section
2.2 the value of the output node yt,k,n is thresholded, it is
not thresholded here because yt,k,n is used in Stage 4.

Stage 4: Integration with MIDI guitar outputs

From the output of the MIDI guitar, we obatin the follow-
ing value:
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mt,k,n =





1 − α (the note corresponding to fret
n of string k is being played.)

α (else)

“(A note is) being played” means the state in which the
MIDI guitar had output a MIDI Note On message for this
note number but has not yet output a MIDI Note Off mes-
sage. Note that it represents the MIDI guitar’s estima-
tion, so it may not agree with whether that note is actually
played. In the equation above, α is a parameter and is set
to 0.3 in the current implementation.

Then, zt,k,n = mt,k,nyt,k,n is calculated. The guitar
can play only one note at each string at the same time. As
a result,

n̂t,k = argmax
n

zt,k,n

is calculated and the fret n̂t,k of string k is considered to
be played at time t. Then, a MIDI Note On message is
generated for the corresponding note number. However, no
fret is considered to be played on string k at time t when
every element of {zt,k,n}n is lower than a certain threshold
(0.3 in the current implementation).

4. EXPERIMENTS

4.1 Experiment 1 — Use of neural network

Experimental conditions

To confirm the effect of the use of the neural network de-
scribed in Section 2.2, we conducted an experiment about
converting guitar performances to the MIDI format. We
used a Roland GK-3 installed into a Stratocaster as a MIDI
guitar with a guitar synthesizer (Roland GR-55). The first
author of this paper played 79 four-measure funk rhythmic
phrases taken from a guitar phrase book [11]. Of these 79
phrases, those shown in Figures 2 and 3 were used for the
2nd preliminary performance. The remaining phrases were
used for test data. We attempted the following three cases:

Case 1 Using only Figure 2,

Case 2 Using only Figure 3, and

Case 3 Using both Figures 2 and 3

for the 2nd preliminary performance. We used neural net-
works that had three to ten nodes in the hidden layer and
will present only the best result.

Experimental results

The results are listed in Table 1. The number of hidden
nodes was three. For brevity, we list the accuracy for each
chapter instead of each phrase in [11]. In [11], phrases are
divided into 16 chapters according to their playing styles,
and each chapter includes several phrases. Whereas the
F-score for the baseline method was 0.516 on average, the
F-score for the proposed method was 0.526 in Case 3. This
difference is not very large but one must consider that the
proposed method acquired the best threshold because the

Figure 2. Phrase 1 for the 2nd preliminary performance

Figure 3. Phrase 2 for the 2nd preliminary performance

listed result for the baseline method was the best one in
given various thresholds.

Figure 4 shows an example of the experimental results.
While the baseline method generated many false positives,
especially in the first measure, most of these false positives
were eliminated by the proposed method. Thus, the preci-
sion rate was improved from 0.659 to 0.692. However,
some positives were eliminated so the recall rate decreased
slightly (from 0.562 to 0.556).

Figure 5 shows another example. Whereas the base-
line method generated many false negatives from the be-
ginning to the end, such false negatives were eliminated
by the proposed method. The precision rate was improved
from 0.465 to 0.661.

4.2 Experiment 2 — Integration

Experimental conditions

To confirm the effect of the integration described in Sec-
tion 3, we conducted on audio-to-MIDI conversion of gui-
tar performances using the MIDI guitar only (MGT), the
NMF and neural network only (NMF+NN; Section 2.2),
and their integration (INT; Section 3). We used the same
data as Experiment 1. For the 2nd preliminary perfor-
mance, we used both Figures 2 and 3 (Case 3). Also in
this experiment, we used neural networks that had three to
ten nodes in the hidden layer, and will present only the best
result for each condition.

Experimental results

The results are listed in Table 2. The numbers of hidden
nodes were three for NMF+NN and nine for INT. Whereas
the precision rates for MGT and NMF+NN were 0.258 and
0.513, respectively, the precision rate improved to 0.660
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Table 1. Result of Experiment 1 (R: recall rates, P : precision rates, F : F-score)
Baeline method Proposed method

(Simple thresholding) Case 1 Case 2 Case 3
Chapters R P F R P F R P F R P F

1 0.640 0.509 0.552 0.636 0.422 0.503 0.642 0.376 0.473 0.611 0.458 0.521
2 0.647 0.489 0.555 0.624 0.483 0.538 0.661 0.490 0.563 0.635 0.574 0.595
3 0.579 0.496 0.531 0.468 0.483 0.472 0.603 0.502 0.541 0.525 0.560 0.539
4 0.536 0.510 0.519 0.554 0.509 0.529 0.576 0.479 0.521 0.562 0.524 0.541
5 0.731 0.557 0.585 0.759 0.399 0.503 0.809 0.431 0.550 0.838 0.437 0.561
6 0.538 0.410 0.465 0.531 0.459 0.491 0.581 0.427 0.491 0.539 0.460 0.496
7 0.580 0.601 0.564 0.562 0.624 0.569 0.640 0.569 0.590 0.636 0.668 0.635
8 0.528 0.577 0.540 0.499 0.481 0.488 0.544 0.520 0.528 0.518 0.536 0.525
9 0.401 0.489 0.431 0.415 0.418 0.413 0.425 0.423 0.422 0.416 0.451 0.430
10 0.464 0.403 0.429 0.476 0.346 0.397 0.472 0.326 0.376 0.442 0.350 0.382
11 0.432 0.621 0.505 0.445 0.621 0.510 0.466 0.589 0.516 0.470 0.643 0.535
12 0.313 0.600 0.411 0.343 0.502 0.407 0.373 0.429 0.399 0.399 0.567 0.468
13 0.621 0.527 0.541 0.568 0.505 0.504 0.652 0.522 0.559 0.611 0.541 0.543
14 0.412 0.442 0.422 0.395 0.425 0.407 0.456 0.425 0.436 0.441 0.473 0.451
15 0.576 0.407 0.474 0.460 0.362 0.384 0.558 0.521 0.463 0.520 0.554 0.418

Final 0.475 0.413 0.422 0.480 0.400 0.424 0.485 0.377 0.415 0.484 0.416 0.437
Average 0.530 0.503 0.516 0.513 0.465 0.488 0.559 0.463 0.506 0.540 0.513 0.526

Figure 4. Example of Experiment 1 (Track 47-2)

via the integration. This fact arises because many false
positives were eliminated in INT. The recall rate for INT
was 0.595; that for MGT was 0.528. The recall rate im-
proved because sequential short notes were fused in MGT,
as will be illustrated below, but such errors rarely appeared
in INT. Accordingly, the F-score for INT was 0.626; the
F-scores for MGT and NMF+NN were 0.347 and 0.526,
respectively.

Focusing on the results for each chapter, we can see that
the recall rates for 11 chapters (Chapters 1, 2, 3, 4, 6, 7, 8,
10, 12, 13, and final) was improved compared with MGT.
However, for other chapters (Chapters 5, 9, 11, 14, and
15) the recall rates decreased. Chapter 5 in [11] features
monophonic phrases but the 2nd preliminary performance
did not include monophonic phrases. This mismatch is
why the recall rate decreased in Chapter 5. The phrases
in Chapters 9, 14, and 15 also included monophonic notes.

On the other hand, the precision rate improved for every
chapter compared with MGT. In particular, the precision
rate improved by more than 0.5 for Chapters 5, 11, and 13.

Figure 5. Example of Experiment 1 (Track 09-1)

Figure 6 shows an example of the results. While MGT
generated false positives in the whole phrase, such false
positives were eliminated in INT as described above. Thus,
the precision rate significantly improved from 0.48 (MGT)
to 0.83 (INT). At the same time, however, some true pos-
itives were also eliminated. On the other hand, MGT
caused errors in the fusion of sequential short notes; INT
reduced such errors. Eventually, the recall rate increased
from 0.60 (MGT) to 0.67 (INT).

Figure 7 shows another example. Similar to the data
shown in Figure 6, MGT resulted in errors due to the fu-
sion of sequential short notes at the first beat of every mea-
sure. In INT, such errors were corrected. Thus, the recall
rate was improved from 0.61 (MGT) to 0.80 (INT). In ad-
dition, MGT generated false positives from the second half
of the first measure to the last measure; these false positives
were eliminated in INT. Thus, the precision rate improved
from 0.25 (MGT) to 0.78 (INT). Accordingly, the F-score
improved from 0.36 (MGT) to 0.79 (INT).
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Table 2. Result of Experiment 2 (R: recall rates, P : precision rates, F : F-score)
MIDI guitar (MGT) NMF+NN Integration (INT)

Chapters R P F R P F R P F

1 0.668 0.445 0.513 0.611 0.458 0.521 0.758 0.589 0.660
2 0.630 0.230 0.338 0.635 0.574 0.595 0.717 0.648 0.679
3 0.380 0.310 0.327 0.525 0.560 0.539 0.763 0.613 0.679
4 0.505 0.233 0.313 0.562 0.524 0.541 0.508 0.670 0.575
5 0.805 0.110 0.195 0.838 0.437 0.561 0.731 0.643 0.675
6 0.583 0.187 0.287 0.539 0.460 0.496 0.649 0.660 0.641
7 0.493 0.205 0.278 0.636 0.668 0.635 0.597 0.660 0.606
8 0.503 0.215 0.295 0.518 0.536 0.525 0.593 0.644 0.602
9 0.533 0.345 0.408 0.416 0.451 0.430 0.398 0.603 0.469

10 0.463 0.190 0.267 0.442 0.350 0.382 0.732 0.545 0.623
11 0.425 0.345 0.375 0.470 0.643 0.535 0.378 0.825 0.493
12 0.310 0.260 0.285 0.399 0.567 0.468 0.488 0.708 0.574
13 0.438 0.183 0.250 0.611 0.541 0.543 0.640 0.674 0.644
14 0.555 0.280 0.360 0.441 0.473 0.451 0.475 0.776 0.550
15 0.652 0.354 0.434 0.520 0.554 0.418 0.532 0.695 0.517

Final 0.505 0.238 0.313 0.484 0.416 0.437 0.555 0.607 0.542
Average 0.528 0.258 0.347 0.540 0.513 0.526 0.595 0.660 0.626

Figure 6. Example of Experiment 2 (Track 47-2)

5. CONCLUSION

A MIDI guitar is a promising tool for guitarists and there-
fore is being sold by electronic musical instrument man-
ufacturers. However, the audio-to-MIDI conversion accu-
racy of MIDI guitars is still insufficient. In particular, the
accuracy is very low for phrases including many brushing
notes like those used in our experiments. To improve this
accuracy, we attempted to integrate the output of the MIDI
guitar and the signal processing result of the guitar’s audio
output. Our experimental results showed a significant im-
provement in accuracy: the F-score was 0.626 compared
with 0.347 for the MIDI guitar only.

Although this improvement is significant, we need to
improve the accuracy even more to ensure practical use of
MIDI guitars. An idea for further improvement may be
increasing quantity of training data for the neural network
(i.e., the 2nd preliminary performance). However, increas-
ing these data will result in an increase in the user’s la-
bor and the time required for learning the neural network.

Figure 7. Example of Experiment 2 (Track 09-2)

We will therefore investigate a reasonable tradeoff between
these time investments and the outcome. In addition, we
will assess the latency in outputting MIDI messages be-
cause this latency is an important factor in the use of MIDI
guitars as musical instruments.
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ABSTRACT

We present a new dataset for singing analysis and mod-
elling, and an exploratory analysis of pitch accuracy and
pitch trajectories. Shortened versions of three pieces from
The Sound of Music were selected: “Edelweiss”, “Do-Re-
Mi” and “My Favourite Things”. 39 participants sang three
repetitions of each excerpt without accompaniment, result-
ing in a dataset of 21762 notes in 117 recordings. To ob-
tain pitch estimates we used the Tony software’s automatic
transcription and manual correction tools. Pitch accuracy
was measured in terms of pitch error and interval error.
We show that singers’ pitch accuracy correlates signifi-
cantly with self-reported singing skill and musical train-
ing. Larger intervals led to larger errors, and the tritone
interval in particular led to average errors of one third of a
semitone. Note duration (or inter-onset interval) had a sig-
nificant effect on pitch accuracy, with greater accuracy on
longer notes. To model drift in the tonal centre over time,
we present a sliding window model which reveals patterns
in the pitch errors of some singers. Based on the trajectory,
we propose a measure for the magnitude of drift: tonal ref-
erence deviation (TRD). The data and software are freely
available. 1

1. INTRODUCTION

Singing is common in all human societies [2], yet the fac-
tors that determine singing proficiency are still poorly un-
derstood. Many aspects are important to singing, including
pitch, rhythm, timbre, dynamics and lyrics; here we fo-
cus entirely on the pitch dimension. Music psychologists
have studied singing pitch [4, 6, 18], and engineers have
developed advanced software for automatic pitch track-
ing [5, 11, 21], but the process of annotating and analysing
the pitch of singing data remains a laborious task. In this
paper, we present a new extensive dataset for the analy-
sis of unaccompanied solo singing, complete with audio,
pitch tracks, and hand-annotated note tracks matched to
the scores of the music. In addition, we provide an anal-
ysis of the data with a focus on intonation: pitch errors,

1 see Data Availability, Section 7
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interval errors, pitch drift, and the factors that influence
these phenomena.

Intonation, defined as “accuracy of pitch in playing or
singing” [23], or “the act of singing or playing in tune”
[12], is one of the main priorities in choir rehearsals [9] and
in choral practice manuals (e.g. [3]). Good intonation in-
volves the adjustment of pitch to maximise the consonance
of simultaneous notes, but it also has a temporal aspect,
particularly in the absence of instrumental accompaniment,
where the initial tonal reference can be forgotten over time
[15]. A cappella ensembles frequently observe a change in
tuning over the duration of a piece, even when they are un-
able to detect any local changes. This phenomenon, called
intonation drift or pitch drift [22], usually exhibits as a
lowering of pitch, or downward drift [1]. Several studies
present evidence that drift is induced by harmonic progres-
sions as singers negotiate the tradeoff between staying in
tune and singing in just intonation [7,10,24]. Yet this is not
the only cause of drift, since drift is also observed in solo
singing, such as unaccompanied solo folk songs [17] and
even queries to query-by-humming systems [20]. A factor
that has received relatively little attention in the singing re-
search community is the effect of note duration on singing
accuracy [8], so one of our aims in this paper is to explore
the effect of duration.

The definitions of intonation given above imply the ex-
istence of a reference pitch, which could be provided by ac-
companying instruments or (as in the present case) could
exist solely in the singer’s memory. This latter case al-
lows for the reference to change over time, and thus explain
the phenomenon of drift. We introduce a novel method to
model this internal reference as the pitch which minimises
the intonation error given some weighted local context,
and we compare various context windows for parametris-
ing our model. Using this model of reference pitch, we
compute pitch error as the signed pitch difference relative
to the reference pitch and score, measured in semitones on
an equal-tempered scale. Interval error is measured on the
same scale, without need of any reference pitch, and pitch
drift is given by the trajectory of score-normalised refer-
ence pitch over time.

In this paper we explore which factors may explain into-
nation error in our singing data. The effects of four singer
factors, obtained by self-report, were tested for signifi-
cance. Most of the participants in this study were amateur
singers without professional training. Their musical back-
ground, years of training, frequency of practice and self-
reported skill were all found to have a significant effect on
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Figure 1: Score of piece Do-Re-Mi, with some intervals
marked (see Section 3)

Table 1: Summary details of the three songs used in this
study.

Title Tempo (BPM) Key Notes
Edelweiss 80 B[ 54
Do-Re-Mi 120 C 59
My Favourite Things 132 Em 73

intonation errors. We then considered as piece factors three
melodic features, note duration, interval size and the pres-
ence of a tritone interval, for their effect on intonation. All
of these features had a significant effect on both pitch and
interval error. Finally we consider the pitch drift trajecto-
ries of individual singers. Our model tracks the direction
and magnitude of cumulative pitch errors and captures how
well participants remain in the same key. Some trajectories
have periodic structure, revealing systematic errors in the
singing.

2. MATERIALS AND METHODS

2.1 Musical material

We chose three songs from the musical “The Sound of Mu-
sic” as our material: “Edelweiss”, “Do-Re-Mi” (shown in
Figure 1) and “My Favourite Things.” Despite originating
from one work, the pieces were selected as being diverse in
terms of tonal material and tempo (Table 1), well-known to
many singers, and yet sufficiently challenging for amateur
singers. The pieces were shortened so as to contain a single
verse without repeats, which the participants were asked
to sing to the syllable “ta”. In order to observe long-term
pitch trends, each song was sung three times consecutively.
Each trial lasted a little more than 5 minutes.

2.2 Participants

We recruited 39 participants (12 male, 27 female), most
of whom are members of our university’s music society or
our music-technology focused research group. Some par-
ticipants took part in the experiments remotely. The age
of the participants ranged from 20 to 27 years (mean 23.3,
median 23 years). We asked all participants to self-assess
their musical background with questions loosely based on

the Goldsmiths Musical Sophistication Index [16]. 2 Ta-
ble 2 shows the results, suggesting a range of skill levels,
with a strong bias towards amateur singers.

Table 2: Self-reported musical experience

Musical Background Instrumental Training
None 5 None 5
Amateur 27 1–2 years 15
Semi-professional 5 3–4 years 7
Professional 2 5+ years 12

Singing Skill Singing Practice
Poor 2 None 4
Low 25 Occasionally 22
Medium 9 Often 12
High 3 Frequently 1

2.3 Recording procedure

Participants were asked to sing each piece three times on
the syllable ‘ta’. They were given the starting note but no
subsequent accompaniment, except unpitched metronome
clicks.

2.4 Annotation

We used the software Tony 3 to annotate the notes in the
audio files [13]: pitch track and notes were extracted using
the pYIN algorithm [14] and then manually checked and,
if necessary, corrected. Approximately 28 corrections per
recording were necessary; detailed correction metrics on
this data have been reported elsewhere [13].

2.5 Pitch metrics

The Tony software outputs the median fundamental fre-
quency f0 for every note. We relate fundamental frequency
to musical pitch p as follows:

p = 69 + 12 log2

f0
440 Hz

(1)

This scale is chosen such that a difference of 1 corresponds
to 1 semitone. For integer values of p the scale coincides
with MIDI pitch numbers, with reference pitch A4 tuned
to 440 Hz (p = 69).

2.5.1 Interval Error

A musical interval is the difference between two pitches
[19] (which is proportional to the logarithm of the ratio
of the fundamental frequencies of the two pitches). Using
Equation 1, we define the interval from a pitch p1 to the
pitch p2 as i = p2−p1 and hence we can define the interval
error between a sung interval i and the expected nominal
interval in (given by the musical score) as:

eint = i− in (2)
2 The questions were: How do you describe your musical background?

How many years do you have instrument training? How do you describe
your singing skills? How often do you practice your singing skills?

3 https://code.soundsoftware.ac.uk/projects/tony
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Hence, for a piece of music with M intervals
{eint

1 , . . . , e
int
M}, the mean absolute interval error (MAIE)

is calculated as follows:

MAIE =
1

M

M∑

i=1

|eiint| (3)

2.5.2 Tonal reference curves and pitch error

In unaccompanied singing, pitch error is ill-defined, since
singers use intonation with respect to their internal refer-
ence, which we cannot track directly. If it is assumed that
this internal reference doesn’t change, we can estimate it
via the mean error with respect to a nominal (or given)
reference pitch. However, it is well-known that unaccom-
panied singers (and choirs) do not maintain a fixed internal
reference (see Section 1). Previously, this has been ad-
dressed by estimating the singer’s reference frequency us-
ing linear regression [15], but as there is no good reason
to assume that drift is linear, we adopt a sliding window
approach in order to provide a local estimate of tuning ref-
erence.

The first step is to take the annotated musical pitches
pi of a recording and remove the nominal pitch si given
by the score, t∗i = pi − si, which we adjust further by
subtracting the mean: ti = t∗i − t̄∗. The resulting raw tonal
reference estimates ti are then used as a basis for our tonal
reference curves and pitch error calculations.

The second step is to find a smooth trajectory based on
these raw tonal reference estimates. For each note, we cal-
culate the weighted mean of ti in a context window around
the note, obtaining the reference pitch ci, from which the
pitch error can be calculated:

ci =
n∑

k=−n
wkti+k, (4)

where
∑n

k=−n wk = 1. Any window function W = {wk}
can be used in Equation 4. We experimented with sym-
metric windows with two different window shapes (rect-
angular and triangular) and seven window sizes (3, 5, 7,
9, 11, 15 and 25 notes) to arrive at smooth tonal reference
curves. The rectangular window WR,N = {wR,N

k } cen-
tred at the ith note is used to calculate the mean of its N-
note neighbourhood, giving the same weight to all notes in
the neighbourhood, but excluding the ith note itself:

wR,N
k =

{
1

N−1 , 1 ≤ |k| ≤ N−1
2

0, otherwise.
(5)

The triangular window WT,N = {wT,N
k } gives more

weight to notes near the ith note (while still excluding the
ith note itself). For example, if the window size is 5, then
the weights are proportional to 1, 2, 0, 2, 1. More gener-
ally:

wT,N
k =

{
2N+2−4|k|

N2−1 , 1 ≤ |k| ≤ N−1
2

0, otherwise.
(6)
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Figure 2: Pitch error (MAPE) for different sliding win-
dows.

The smoothed tonal reference curve ci is the basis for cal-
culating the pitch error:

ep
i = ti − ci, (7)

so for a piece with M notes with associated pitch errors
ep
1, . . . , e

p
M , the mean absolute pitch error (MAPE) is:

MAPE =
1

M

M∑

i=1

|ep
i |. (8)

2.5.3 Tonal reference deviation

The tonal reference curves ci can also be used to calculate a
new measure of the extent of fluctuation of a singer’s refer-
ence pitch. We call this measure tonal reference deviation
(TRD), calculated as the standard deviation:

TRD =

√√√√ 1

M − 1

M∑

i=1

(ci − c̄M )2. (9)

3. RESULTS

We first compare multiple choices of window for the cal-
culation of the smoothed tonal reference curves ci (Sec-
tion 2.5.2), which provide the local tonal reference es-
timate used for calculating mean absolute pitch error
(MAPE). We assume that the window that gives rise to the
lowest MAPE models the data best. Figure 2 shows that
for both window shapes an intermediate window size N
of 5 notes minimises MAPE, with the triangular window
working best (MAPE = 0.276 semitones, computed over
all singers and pieces). Hence, we use this window for all
further investigations relating to pitch error, including tonal
reference curves, and for understanding how pitch error is
linked to note duration and singers’ self-reported skill and
experience.
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(a) Edelweiss, singer 11
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(b) Do-Re-Mi, singer 39
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(c) My Favourite Things, singer 31

Figure 3: Examples of tonal reference trajectories. Dashed vertical lines delineate the three repetitions of the piece.

3.1 Smoothed tonal reference curves

The smoothed curves exhibit some unexpected behaviour.
Figure 3 shows three examples of different participants and
pieces. Several patterns emerge. Figure 3a shows a perfor-
mance in which pitch error is kept within half a semitone
and tonal reference is almost completely stable. This is
reflected in very low values of MAPE (0.171) and TRD
(0.070), respectively. However, most singers’ tonal refer-
ence curves fluctuate. For example, Figure 3b illustrates a
tendency of some singers to smoothly vary their pitch ref-
erence in direct response to the piece. The trajectory shows
a periodic structure synchronised with the three repetitions
of the piece. The fluctuation measure TRD is much higher
as a result (0.624). This is a common pattern we have
observed. The third example (Figure 3c) illustrates that
strong fluctuations are not necessarily periodic. Here, TRD
(0.635) is nearly identical, but originates from a mostly
consistent downward trajectory. The singer makes signif-
icant errors in the middle of each run of the piece, most
likely due to the difficult interval of a downward tritone
occurring twice (notes 42 and 50; more discussion below).
Comparing Figures 3b and 3c also shows that MAPE and
TRD are not necessarily related. Despite large fluctuations
(TRD) in both, pitch error (MAPE) is much smaller in Fig-
ure 3c (0.297).

Turning from the trajectories to pitch error measure-
ments, we observe that the three pieces show distinct pat-
terns (Figure 4). The first piece, Edelweiss, appears to be
the easiest to sing, with relatively low median pitch errors.
In Do-Re-Mi, the third quarter of the piece appears much
more difficult than the rest. This is most likely due to faster
runs and the presence of accidentals, taking the singer out
of the home tonality. Finally, My Favourite Things ex-
hibits a very distinct pattern, with relatively low pitch er-
rors throughout, except for one particular note (number
50), which is reached via a downward tritone, a difficult
interval to sing. The same tritone (A-D]) occurs at note
42, where the error is smaller and notably in the oppo-
site direction (this D] is flat, while note 50 is over a semi-
tone sharp on average). It appears that singers are drawn
towards the more consonant (and more common) perfect
fifth and fourth intervals, respectively.

Estimate Std. Err. t p
(intercept) 0.374 0.012 32.123 0.000

nominal duration -0.073 0.004 -17.487 0.000
prev. nom. IOI -0.021 0.004 -4.646 0.000

abs(nom. interval) 0.016 0.001 13.213 0.000
abs(next nom. interval) 0.010 0.001 8.471 0.000

tritone 0.370 0.019 19.056 0.000
quest. score -0.011 0.001 -9.941 0.000

(a) MAPE

Estimate Std. Err. t p
(intercept) 0.481 0.015 33.124 0.000

nominal duration -0.076 0.005 -14.570 0.000
prev. nom. IOI -0.050 0.006 -8.984 0.000

abs(nom. interv.) 0.030 0.002 19.700 0.000
abs(next nom. interv.) -0.006 0.002 -3.826 0.000

tritone 0.373 0.024 15.404 0.000
quest. score -0.012 0.001 -8.665 0.000

(b) MAIE

Table 3: Effects of multiple covariates on error for a linear
model. t denotes the test statistic. The p value rounds to
zero in all cases, indicating statistical significance.

3.2 Duration, interval and proficiency factors

The observations on pitch error patterns suggest that note
duration and the tritone interval may have significant im-
pact on pitch error. In order to investigate their impact we
make use of a linear model, taking into account further-
more the size of the intervals sung and singer bias via con-
sidering the singers’ self assessment.

Table 3a lists all dependent variables, estimates of their
effects and indicators of significance. In the following we
will simply speak of how these variables influence, re-
duce or add to error, noting that our model gives no in-
dication of true causation, only of correlation. We turn
first to the question of whether note duration influences
pitch error. The intuition is that longer notes, and notes
with a longer preparation time (previous inter-onset inter-
val, IOI), should be sung more correctly. This is indeed
the case. We observe a reduction of pitch error of 0.073
semitones per added second of duration. The IOI between
previous and current note also reduces pitch error, but by
a smaller factor (0.021 semitones per second). Conversely,
absolute nominal interval size adds to absolute pitch error,
by about 0.016 semitones per interval-semitone, as does
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(c) My Favourite Things

Figure 4: Pitch errors by note for each of the three pieces. The plots show the median values with bars extending to the
first and third quartiles.

the absolute size of the next interval (0.010 semitones).
The intuition about the tritone interval is confirmed here,
as the presence of any tritone (whether upward or down-
ward) adds 0.370 semitones—on average—to the absolute
pitch error. The last covariate, questionnaire score, is the
sum of the points obtained from the four self-assessment
questions, with values ranging between 5 and 14. The re-
sult shows that there is correlation between the singers’
self-assessment and their absolute pitch error. For every
additional point in the score their absolute pitch error is
reduced by 0.012 semitones. The picture is very similar
as we do the same analysis for absolute interval error (Ta-
ble 3b): the effect directions of the variables are the same.

4. DISCUSSION

We have investigated how note length relates to singing ac-
curacy, finding that notes are sung more accurately as the
singer has more time to prepare and sing them. Yet it is not
entirely clear what this improvement is based upon. Do
longer notes genuinely give singers more time to find the
pitch, or is part of the effect we observe due to measure-
ment or statistical artefacts? To find out, we will need to
examine pitch at the sub-note level, taking vibrato and note
transitions into account. Conversely, studying the effect of
melodic context on the underlying pitch track could shed
light on the physical process of singing, and could be used
for improved physical modelling of singing.

Overall, the absolute pitch error of singers (mean: 28
cents; median: 18; std.dev.: 36) and the absolute inter-

val error (mean: 34 cents; median: 22; std.dev.: 46) are
slightly higher than those reported elsewhere [15], but this
may reflect the greater difficulty of our musical material in
comparison to “Happy Birthday”. We also did not exclude
singers for their pitch errors, although the least accurate
singers had MAPE and MAIE values of more than half a
semitone, i.e. they were on average closer to an erroneous
note than to the correct one. That the values of MAIE and
MAPE are similar is to be expected, as interval error is the
limiting case of pitch error, using a minimal window con-
taining only the current and previous note.

We used a symmetric window in this work, but this
could easily be replaced with a causal (one-sided) win-
dow [15], which would also be more plausible psycholog-
ically, as the singer’s internal pitch reference in our model
is based equally on past sung notes and future not-yet-sung
notes. However, for post hoc analysis, the fuller context
might reveal more about the singer’s internal state (which
must influence the future tones) than the more restricted
causal model.

Figure 4 shows how the three pieces in our data differ
in terms of pitch accuracy. It is interesting to see that ac-
cidentals (which result in a departure from the established
key), and the tritone as a particular example, seem to have
a strong adverse impact on accuracy. To compile more de-
tailed statistical analyses like the ones in Table 3 one could
conduct singing experiments on a wider range of intervals,
isolated from the musical context of a song. In future work
we also intend to explore the interaction between singers
as they negotiate a common tonal reference.
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Finally, we would like to mention that some singers
took prolonged breaks between runs in a three-run rendi-
tion of a song. The recording was stopped, but no new
reference note was played, so the singers resumed with the
memory of what they last sung. As part of the reproducible
code package (see Section 7) we provide information on
which recordings were interrupted and at which break. We
found that the regression coefficients (Tables 3b and 3a)
did not substantially change as a result of these interrup-
tions.

5. CONCLUSIONS

We have presented a new dataset for singing analysis, in-
vestigating the effects of singer and piece factors on the
intonation of unaccompanied solo singers. Pitch accuracy
was measured in terms of pitch error and interval error. We
introduced a new model of tonal reference computed using
the local neighbourhood of a note, and found that a win-
dow of two notes each side of the centre note provides the
best fit to the data in terms of minimising the pitch error.
The temporal evolution of tonal reference during a piece
revealed patterns of tonal drift in some singers, others ap-
peared random, yet others showed periodic structure linked
to the score. As a complement to errors of individual notes
or intervals, we introduced a measure for the magnitude of
drift, tonal reference deviation (TRD), and illustrated how
it behaves using several examples.

Two types of factors influencing pitch error were inves-
tigated, those related to the singers and those related to the
material being sung. In terms of singer factors, we found
that pitch accuracy correlates with self-reported singing
skill level, musical training, and frequency of practice.
Larger intervals in the score led to larger errors, but only
accounted for 2–3 cents per semitone of the mean absolute
errors. On the other hand, the tritone interval accounted
for 35 cents of error when it occurred, and in one case led
to a large systematic error across many of the singers. We
hypothesised that note duration might also have an effect
on pitch accuracy, as singers make use of aural feedback
to regulate their pitch, which results in less stable pitch at
the beginnings of notes. This was indeed the case: a small
but significant effect of duration was found for both the
current note, and the nominal time taken from the onset of
the previous note; longer durations led to greater accuracy.
Many aspects of the data remain to be explored, such as the
potential effects of scale degree, consonance, modulation,
and rhythm.
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ABSTRACT

The General Chord Type (GCT) representation is ap-
propriate for encoding tone simultaneities in any harmonic
context (such as tonal, modal, jazz, octatonic, atonal). The
GCT allows the re-arrangement of the notes of a harmonic
sonority such that abstract idiom-specific types of chords
may be derived. This encoding is inspired by the standard
roman numeral chord type labelling and is, therefore, ideal
for hierarchic harmonic systems such as the tonal system
and its many variations; at the same time, it adjusts to any
other harmonic system such as post-tonal, atonal music, or
traditional polyphonic systems. In this paper the descrip-
tive potential of the GCT is assessed in the tonal idiom by
comparing GCT harmonic labels with human expert an-
notations (Kostka & Payne harmonic dataset). Addition-
ally, novel methods for grouping and clustering chords, ac-
cording to their GCT encoding and their functional role in
chord sequences, are introduced. The results of both har-
monic labelling and functional clustering indicate that the
GCT representation constitutes a suitable scheme for rep-
resenting effectively harmony in computational systems.

1. INTRODUCTION

Computational systems developed for harmonic analysis
and/or harmonic generation (e.g. melodic harmonisation),
rely on chord labelling schemes that are relevant and char-
acteristic of particular idioms [7, 10, 20, 21, 26]. There ex-
ist various typologies for encoding note simultaneities that
embody different levels of harmonic information/abstraction
and cover different harmonic idioms. For instance, some
commonly used chord notations in tonal music are the fol-
lowing: figured bass (pitch classes denoted above a bass
note – no concept of ‘chord’), popular music guitar style
notation or jazz notation (absolute chord), roman numeral
encoding (relative chord to a key) [18] - see, Harte’s [12]
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UATING THE GENERAL CHORD TYPE REPRESENTATION IN
TONAL MUSIC AND ORGANISING GCT CHORD LABELS IN
FUNCTIONAL CHORD CATEGORIES”, 16th International Society for
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formal tonal chord symbol representation. For atonal and
other non-tonal systems, pitch-class set theoretic encod-
ings [8] may be employed. There exists no single chord
encoding scheme that can be applied to all harmonic sys-
tems with sufficient expressiveness.

Preliminary studies on the General Chord Type (GCT)
[3] representation (e.g. for probabilistic melodic harmoni-
sation [15]) indicate that it can be used both as a means to
represent accurately harmonic chords and to describe mu-
sically meaningful relations between different harmonic
labels in diverse music idioms. The GCT provides accu-
rate harmonic representation in a sense that it encompasses
all the pitch-class-related information about chords. At the
same time, for every pitch class simultaneity the GCT al-
gorithm rearranges pitch classes so that it identifies a root
pitch class and a chord base type and extension, leading
to chord representations that convey musical meaning for
diverse music idioms.

It is true that the main strength of the GCT representa-
tion is its application in non-tonal harmonic idioms; some
such preliminary examples have been presented in [2, 3,
14]. This paper, however, focuses on the tonal idiom, as
this provides a well-studied system with reliable ground
truth data against which a chord labelling and grouping al-
gorithm can be tested. If the GCT representation can cope
with such a sophisticated hierarchical harmonic system as
the tonal system, then it seems likely that it can deal with
other non-tonal systems (even though other simpler repre-
sentations may also be adequate). Applying and testing the
GCT on other musics is part of ongoing research.

The paper at hand addresses two issues regarding the
GCT representation. First, an evaluation of the GCT’s abil-
ity to label chords is performed by comparing the chord
roots and types it produces with human expert annotations
(roman-numeral analysis) on the Kostka & Payne dataset.
This analysis provides clear indications about the inter-
pretational efficiency of the GCT (around 92% agreement
with human annotations). Secondly, a grouping process is
proposed, which allows the identification of the functional
role of chord groups in GCT form. An initial grouping
stage, solely based on the GCT expression of the chords,
allowsn in a second stage, the identification of functional
similarities according to first-order transitions of GCT chord
groups. The results of this analysis on a set of Bach Chorales
indicate that the functional role of GCT chord groups is
determined in a reliable manner, agreeing with theoretic
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functional characteristics of chords in this idiom.

2. THE GENERAL CHORD TYPE
REPRESENTATION

Harmonic analysis is a rather complex musical task that in-
volves not only finding roots and labelling chords within a
key, but also segmentation (points of chord change), iden-
tification of non-chord notes, metric information and more
generally musical context [27]. In this section, we focus on
the core problem of labelling chords within a given pitch
hierarchy (e.g. key). We assume, for simplicity, that a full
harmonic reduction (main harmonic notes) is available as
input to the model along with key/modulation annotations.
It is suggested that the GCT representation scheme can be
used in the future so as to facilitate the harmonic reduction
per se of an unreduced musical surface (e.g. by identifying
dissonant chord extensions in relation to a chord’s conso-
nant base).

The General Chord Type (GCT) representation, allows
the re-arrangement of the notes of a harmonic simultane-
ity such that a maxinal consonant part determines the base
of the chord, and the rest of the dissonant notes form the
chord extension; the lowest note of the base is the root of
the chord. The GCT representation has common charac-
teristics with the stack-of-thirds and the virtual pitch root
finding methods for tonal music, but has differences as well
(see [3]). This encoding is inspired by the standard roman
numeral chord type labelling, but is more general and flex-
ible. A brief description of merely the GCT core algorithm
is presented below (due to space limitations); a more ex-
tended discussion on the background concepts necessary
for the GCT model as well as a more detailed description
of the GCT representation are presented in [3].

2.1 Description of the GCT Algorithm

Given a classification of intervals into consonant/dissonant
(binary values) and an appropriate scale background (i.e.
scale with tonic), the GCT algorithm computes, for a given
multi-tone simultaneity, the ‘optimal’ ordering of pitches
such that a maximal subset of consonant intervals appears
at the ‘base’ of the ordering (left-hand side) in the most
compact form; the rest of the notes that create dissonant
intervals to one or more notes of the chord ‘base’ form the
chord ‘extension’. Since a tonal centre (key) is given, the
position within the given scale is automatically calculated.

Input to the algorithm is the following:

• Consonance vector: a Boolean 12-dimensional vec-
tor is employed indicating the consonance of pitch-
class intervals (from 0 to 11). E.g., the vector [1, 0, 0,
1, 1, 1, 0, 1, 1, 1, 0, 0] means that the unison, minor
and major third, perfect fourth and fifth, minor and
major sixth intervals are consonant – dissonant in-
tervals are the seconds, sevenths and the tritone; this
specific vector is referred to in this text as the tonal
consonance vector.

• Pitch Scale Hierarchy: is given in the form of scale
tones and a tonic. E.g., a D major scale is given as:

Table 1. GCT chord labelling example
Input: Bb major scale: [10, [0, 2, 4, 5, 7, 9, 11]]
Input: Consonance vector: [1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0]

– input [53, 63, 69, 72, 75]
– input converted to pc-set: [0, 3, 5, 9]
– maximal consonant subset: [0, 5, 9]
– rewrite in narrowest range: [5, 9, 0]
– Dissonant tone 3 goes to the end: [5, 9, 0, 3]
– Lowest tone is root, i.e. 5 (note F )
– Chord with root 0: [0, 4, 7, 10] (i.e., dominant seventh)
– Absolute chord: [5, [0, 4, 7, 10]] (i.e., F7)
– Relative position: root is 7 semitones above the tonic

Bb
– Chord in relative position: [7, [0, 4, 7, 10]]
– No other maximal subset exists.

Output: [7, [0, 4, 7, 10]] (i.e. V7)

2, [0, 2, 4, 5, 7, 9, 11], or anAminor pentatonic scale
as: 9, [0, 3, 5, 7, 10]

• Input chord: list of pitch classes (MIDI pitch num-
bers modulo 12).

Algorithm 1 GCT algorithm (core) – computational pseu-
docode
Require: (i) the pitch scale (tonality), (ii) a vector of the
intervals considered consonant, (iii) the pitch class set (pc–
set) of a note simultaneity
Ensure: The roots and types of the possible chords de-
scribing the simultaneity

1: find all maximal subsets of pairwise consonant tones
2: select maximal subsets of maximum length
3: for all selected maximal subsets do
4: order the pitch classes of each maximal subset in the

most compact form (chord ‘base’)
5: add the remaining pitch classes (chord ‘extensions’)

above the highest of the chosen maximal subset’s
(if necessary, add octave – pitches may exceed the
octave range)

6: the lowest tone of the chord is the ‘root’
7: transpose the tones of the chord so that the lowest

becomes 0
8: find position of the ‘root’ in regards to the given

tonal centre (pitch scale)
9: end for

Since the aim of this algorithm is not to perform so-
phisticated harmonic analysis, but rather to find a practical
and efficient encoding for tone simultaneities (to be used,
for instance, in statistical learning and automatic harmonic
generation in the context of the project COINVENT [25]),
we decided to extend the algorithm so as to reach a single
chord type for each simultaneity (no ambiguity) in every
case . These additional steps are described in [3] and take
into account overlapping of maximal subsets and avoid-
ance of non-scale notes in the base of chord types.

An example taken from Beethoven’s Andante Favori
(Figure 1) illustrates the application of the GCT algorithm
for different consonance vectors. For the tonal vector, GCT
encodes classical harmony in a straightforward manner.
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All instances of the tonic chord are tagged as [0, [0, 4, 7]];
the dominant seventh (inverted or not) is [7, [0, 4, 7, 10]];
the third to last chord is a minor seventh on the second
degree encoded as [2, [0, 3, 7, 10]]; the second and fourth
chord is a Neapolitan sixth chord encoded as [1, [0, 4, 7]]
(which means major chord on lowered second degree) with
a secondary dominant in between (the pedal G flat note in
the third chord is not taken into account). This way we
have an encoding that is analogous to the standard roman
numeral encoding (Figure 1, ‘tonal’). If the tonal context
is changed to a chromatic scale context and all intervals
are considered equally consonant, i.e. all entries in conso-
nance vector are 1s, we get the second ‘atonal’ GCT anal-
ysis (Figure 1, ‘atonal’) which amounts to normal orders
(not prime forms) in standard pc-set analysis. In pitch class
set theory normal orders do not have roots – however, they
have transposition values (T0-T11) in relation to a refer-
ence pc (normally pc 0); the normal orders with transposi-
tion values of pc-set theory are equivalent to the GCT for
the atonal consonance vector. Obviously, for tonal music,
this pc-set-like analysis is weak as it misses out or obscures
important tonal hierarchical relationships; however, it can
encode efficiently non-tonal musics. More examples from
non-tonal music in [2, 3, 14].

2.2 Qualitative evaluation of the GCT in tonal music

We tested the GCT algorithm on the Kostka-Payne dataset
created by David Temperley. This dataset consists of the
46 excerpts that are longer than 8 measures from the work-
book accompanying Kostka and Payne’s theory textbook
Tonal Harmony, 3rd edition (McGraw-Hill, 1995) 1 . Given
the local tonality (key), the GCT algorithm was applied to
all the Kostka-Payne excerpts. Then, the resulting GCTs
were compared to the Kostka-Payne ground truth (i.e. the
roman numeral analysis included in the Instructor’s Man-
ual, not taking into account chord inversions). From the
919 chords of the dataset, GCT successfully encodes 847
chords, and 72 chords are labelled differently. This means
that the algorithm labels 92.16% of all chords correctly.

The identified mistakes can be categorised as follows:
a) Twenty three (23) mislabeled chords were diminished

seventh chords [0, 3, 6, 9]. As explained earlier, these sym-
metric chords can have as their root any of the four con-
stituent notes. In most cases these were viio7 chords in
various inversions, referring either to the main key or to
other keys as applied chords, but in some cases they were
embellishing (non functional) chords.

b) Twenty two (22) half-diminished chords [0, 3, 6, 10]
were labelled as minor chords with added sixth [0, 3, 7, 9];
e.g. [B,D,F,A] was re-ordered as [D,F, A,B]. As a con-
sequence, all iiø6/5 chords in minor keys were identified as
ivadd6 chords, and all viiø7-type chords in major keys were
identified as iiadd6 chords.

c) Seventeen (17) cases had a salient note missing (e.g.
diminished chord without root, dominant seventh without
third, half-diminished seventh without third, etc) and this

1 The dataset set is available in machine readable format at
¡http://theory.esm.rochester.edu/temperley/kp-stats/index.html¿.

resulted in finding a wrong root; e.g. [G],D, F ], viio7 in
A minor without 3rd, was identified as [D,F,A[], i.e. as
iv5[; [B,F,A], viiø7 in C major without 3rd, appears as
[F,A,B], i.e. IV5[; [C,E,B[,D[], V7/9 in F minor, is
identified as [B[,D[, F [, C], i.e. as iv5[/9; [E[,G,D[,C],
i.e. V7/13 in A[ major erroneously appeared as [C,E[,G,
D[], i.e. iii9[, while [C,E,B[,A[], i.e. V7/13 in F minor
appears almost correctly as [C,E,G],B[], i.e. as V5]/7

(the difference is that in the first case the 13th interval was
major).

d) Eight (8) chords were misspelled because they ap-
peared over a pedal note (pedal notes were included in
our GCT analysis, while they were omitted in Temperley’s
analysis); e.g. [D,A,C],G], a V7 over a tonic pedal in
D major, appeared as [A,D,G,C]], i.e. as V4/7/10, and
[D,C],G,B], a viiø7 over a tonic pedal, is described as
[G,B,D,C]], i.e. as IV11].

e) Two (2) sus4 chords [0, 5, 7] were identified incor-
rectly as [0, 5, 10]; e.g. [C,F, G], Vsus4 in F major con-
tains the dissonant interval [F,G] and was erroneously re-
ordered as [G,C, F ], i.e. as ii4/7 (quartal chord).

On the other hand, the GCT algorithm correctly identi-
fied numerous functionally ambiguous chords, such as var-
ious cases of augmented 6th chords (mainly German types,
but also Italian and French types) formed over a variety
of scale degrees (6[, 2[, 4, etc.). It also correctly iden-
tified most harmonic circles of fifths, applied dominants,
neapolitan chords, chords produced by modal mixture and
complex triadic chords (with more than four members).

Overall, in the context of tonal music and the for stan-
dard tonal consonance vector, the GCT algorithm produces
quite satisfactory results. However, it makes primarily the
following types of mistakes: firstly, it yields ambiguous
results regarding the root of symmetric chords such as the
full diminished seventh and augmented chords – to disam-
biguate the root for symmetrical chords (mainly for dimin-
ished seventh chords), harmonic context has to be taken
into account (e.g. the root of the following chord); sec-
ondly, it assigns the wrong root to chords that have ‘dis-
sonant’ intervals at their triadic base, such as diminished
fifths in half-diminished chords or major second in sus4
chords; thirdly, tertian chords that have notes missing from
their base (e.g. missing third in seventh chords) are misin-
terpreted as their upper denser part is taken as the chords
base and the lower root as an extension; and, finally, pedal
notes, when taken into account for the identification of the
GCT type, produce complex and functionally incorrect re-
sults.

In order to correct such cases, a more sophisticated model
for harmonic analysis is required, which extends the purely
representational scope of the current proposal. Such a model
would take into account voicing (e.g. the bass note), chord
transition probabilities (functions), and, even, higher-level
domain-specific harmonic knowledge (e.g. specific types
of chords used in particular idioms).

The GCT algorithm captures the common-practice roman-
numeral harmonic analysis encoding scheme (for the ‘stan-
dard’ consonance vector) reasonably well. Additionally, it
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Figure 1. Beethoven, Andante Favori, reduction of mm.189-198. Tonal and atonal GCT analysis (see text).

adapts to non-tonal systems, such as atonal, octatonic or
traditional polyphonic music. The question is whether the
GCT representation works well on such non-tonal systems.
The GCT representation has been employed in the case of
traditional polyphonic music from Epirus [14], whereby,
song transcriptions were initially converted to the GCT en-
coding, followed by a learning HMM scheme. This scheme
was then employed to learn chord transitions, which was fi-
nally used to create new harmonisations in the polyphonic
style of Epirus. Ongoing research is currently studying the
application of GCT on various harmonic idioms, from me-
dieval music to 20th century music, and various pop and
folk traditions.

3. GROUPING GCT CHORDS

Chord relationships, and more specifically chord similar-
ity/distance in tonal and non-tonal music, have been stud-
ied by various music theorists/researchers; some notable
examples are the work by Hindemith [13], the classifi-
cation scheme by Harris [11], pitch-class set (pcset) the-
ory [8, 9], neo-riemannian theory [4, 5], tonal pitch space
theory [19] and the work by Quinn [22]. Empirical studies
have attempted to evaluate aspects of such theories in an
empirical manner - see, for instance, [1, 16, 17, 24]. Apart
from sensory, cognitive and musicological factors that play
a significant role in such studies (and also in the first chord
grouping algorithm below), the work herein makes addi-
tional use of data-driven information derived from statisti-
cal harmonic analysis in order to tackle similarity of dif-
ferent chord groups based on their functionality (i.e. tran-
sitions between chords) cf. related work by Quinn and
Mavromatis [23].

A large number of unique note simultaneities may ap-
pear in a certain musical style. These simultaneities, how-
ever, are organised into fewer more cognitively manage-
able chord families/categories. Things like octave equiva-
lence, interval inversion equivalence, root, tonal centre and
so on, enable a parsimonious ‘packing’ of the great variety
of actual note simulaneities into a relatively small number
of musically meaningful chord categories. This categori-
cal organisation of chords is probably most apparent in the
case of tonal music; for instance, ‘major chord’ applies to
many vertical note configurations that may appear in differ-
ent guises such as open/closed position, different registers
and keys, with doubled or missing or, even, extra notes.

The GCT algorithm re-organises note simultaneities in

terms of ‘root’, ‘base’, ‘extension’ and relative root to lo-
cal key, giving the same label to pitch collections that have
identical structure in relation to a tonal centre. However,
missing or extra notes are not taken into account, result-
ing in a larger number of chords than what is musically
acceptable (at least for tonal music). For instance, the
GCTs: [7, [0, 4, 7]], [7, [0, 4]], [7, [0, 4, 10]], [7, [0, 4, 7, 10]]
are all independent chord labels whereas they could be
grouped under one dominant chord label (these share the
same relative root and are all subsets of the [0, 4, 7, 10]
chord type). Additionally, the GCTs: [11, [0, 3, 6]] and
[11, [0, 3, 6, 9]] are diminished chords on the seventh scale
degree; these cannot be grouped with the previous GCTs
because of the different relative root and chord type, even
though we know that they also belong to the dominant
chord functional category.

In the next two subsections, firstly, a simple algorithm is
presented that groups raw GCTs into GCT chord categories
based on GCT properties, such as, relative root, type sim-
ilarity and relationship to underlying scale/key; secondly,
an algorithm is developed that further organises the above
GCT categories into functional chord categories by exam-
ining the function of chords, i.e., chords that tend to be
followed by the same chords (similar rows in a chord tran-
sition matrix) are considered to have the same function.
These two algorithms tidy up the initial raw GCTs into
meaningful chord categories, each represented by the most
frequently occurring instance (exemplar) .

3.1 Grouping chords based on their GCT properties

Following the aforementioned example, the ‘exemplar [7,
[0, 4, 7]] might be found in several ‘reduced’ (e.g. [7, [0, 4]])
or ‘expanded’ (e.g. [7, [0, 4, 7, 11]]) forms, that actually
represent the same chord label. According to the GCT
representation, further abstraction can be achieved through
grouping GCT expressions of simultaneities that ‘evidently’
concern the same chord.

Grouping of GCTs has been studied under some ba-
sic assumptions about the chord characteristics that are re-
flected by the root scale degree, the base and the scale notes
underlying a GCT expression. Specifically, GCT expres-
sions are grouped into more general GCT categories that
potentially contain several GCT members according to the
criteria described below: two chords belong to the same
group if

1. they have the same scale degree root,
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2. their GCT bases are subset-related and
3. they both contain notes that either belong or not to

the given scale context.

Regarding criterion 2, two bases B1 and B2 are consid-
ered subset-related if B1 ⊆ B2 or B2 ⊆ B1, e.g. [0, 4] ⊆
[0, 4, 7] while [0, 4] 6⊂ [0, 3, 7]. Criterion 3 is utilised to
identify and group together chords that belong to secondary
tonalities within the primary tonality of the piece. For in-
stance, in a diatonic major context, while c1 = [0, [0, 4, 7]]
and c2 = [0, [0, 4, 7, 10]] fulfil criteria 1 and 2, according to
criterion 3 they are not grouped together since c2 includes
value 10, which is mapped to the non-diatonic 10 pitch
class value. In a major context [0,[0,4,7,10]] is secondary
dominant to the IV (V/IV) and is differentiated from the I
major chord.

Each GCT group includes the GCT types that satisfy the
aforementioned three criteria. Furthermore, each group is
represented by the ‘exemplar’ GCT type, which is the one
that is more often met in the datasets under study. Some
common chord groups in the major scale Bach Chorales
are illustrated in Table 2. This table also includes the func-
tional naming of each group in order to assist the com-
parison of the derived GCT types and the standard roman-
numeral labelling. Testing this simple algorithm on sets
of both major and minor Bach chorales gives a reasonable
first classification of the ‘raw’ GCTs.

3.2 Functional similarity of chords

According to functional harmony each chord can be viewed
not only in terms of its actual pitches, roots, chord type and
so on, but also in terms of its ‘dynamic’ attributes accord-
ing to its position in a chord sequence and to the chords that
usually follow [18]. For instance, in the tonal idiom, dom-
inant chords are ‘expected’ to resolve to a (relative) tonic
chord. Therefore, different chords can be similar accord-
ing to the purpose they serve in terms of their functionality
within chord sequences.

In this Section, a first approach to derive the function-
ality of the GCT chord groups is addressed by observing
their succeeding chords in chord sequences extracted from
specific idioms. In order to capture the functional relations
between GCT groups of specific music idioms, the first-
order Markov transition table is considered for all the GCT
chord sequences that pertain to a certain idiom. The pro-
posed approach below, tackles chord similarity by employ-
ing the Euclidean distance metrics related to the probabil-
ity distribution for each chord group to precede any other
(i.e., euclidean distance between rows of the transition ma-
trix).

Figure 2 illustrates a colour-based graphic interpretation
of the transition matrix obtained from a collection of Bach
Chorales in major mode (darker areas indicate higher prob-
abilities); transitions between chords that pertain to the
same GCT chord group are disregarded (this neutralises the
diagonal). Furthermore, GCT chord groups that occurred
4 times or less in the entire dataset were discarded, since
their functional role can hardly be determined by so few
observations. The probability that a GCT chord group is

followed by another (a row of the transition matrix in Fig-
ure 2) is regarded as a vector that defines the position of
this group into the ‘space of transitions’. Thereby, func-
tional relations between GCT groups according to their
most common successors can be deduced by employing
distance metrics between rows of the transition matrix.

Figure 2. The first-order Markov transition matrix of GCT
groups in the major Bach Chorales. The numbers after the
colon indicate the number of times a representative of a
GCT group was found in the data.

3.3 Functional similarity results

The Euclidean distance between transitions of GCT groups
(rows in the transition matrix depicted in Figure 2) in a set
of major Bach chorales has been utilised to produce the
dendrogram of distances illustrated in Figure 3. For clarity
of presentation, GCT groups with rare occurrences (less
than 4) were not considered, although their placement in
the grouping results was explainable. The six annotated
clusters underpin interesting functional relations between
the chords involved (the comments are presented in dimin-
ishing cluster coherence order):

Cluster 1 comprises the double dominant V/V [2, [0, 4, 7,
10]] and its subset viio/V [6, [0, 3, 6]]. Both chords have
identical harmonic function (pre-dominant) and they al-
ways lead to the dominant V chord as applied dominants.

Cluster 4 contains the dominant V [7, [0, 4, 7]] and the
leading-tone triad viio [11, [0, 3, 6]], which is a subset of
the dominant 7th chord. Both chords have strong dominant
function.

Cluster 6 contains the applied dominant of the sub-me-
diant, i.e. V/vi, and the corresponding applied diminished
7th chord, i.e. viio7/vi. The GCT algorithm erroneously
describes the second chord as its enharmonic equivalent
[11, [0, 3, 6, 9]], i.e. as viio7 [B,D,F,A[], while it should
be [8, [0, 3, 6, 9]], i.e. viio7/vi[G],B,D, F ]. However, the
strong clustering relation could help to disambiguate the
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functional name exemplar Group members
tonic [0, [0, 4, 7]] [0, [0, 4, 7]] [0, [0, 4]] [0, [0, 4, 7], [11]]

dominant [7, [0, 4, 7]] [7, [0, 4, 7]] [7, [0, 4, 7], [10]] [7, [0, 4], [10]] [7, [0, 4]]
subdominant [5, [0, 4, 7]] [5, [0, 4, 7]] [5, [0, 4]] [5, [0, 4, 7], [11]]

V / IV [0, [0, 4, 7], [10]] [0, [0, 4, 7], [10]] [0, [0, 4], [10]]

Table 2. Four tonal chord groups and their exemplar GCTs. Notice how the group of [0, [0, 4, 7]] has been separated from
the group of [0, [0, 4, 7], [10]], due to the non-diatonic pitch class 10 of the latter.

root of the diminished 7th chord; this is future work for
improving the descriptiveness efficiency of the GCT repre-
sentation.

Cluster 5 groups the applied dominant of the super-
tonic, i.e. V/ii[9, [0, 4, 7]], and the corresponding applied
diminished triad, i.e. viio/ii[1, [0, 3, 6]]. Clusters 1, 4, 5, 6
are of the same category, as they share the same dominant
function.

Cluster 2 is different, as it groups three chords that have
(or may have) tonic harmonic function, the tonic I [0, [0, 4,
7]], the submediant vi[9, [0, 3, 7]] and the mediant iii[4,
[0, 3, 7]]. In functional harmony [6], these chords are la-
beled as T, Tp and Tg accordingly and the last two chords
have a diatonic (with two common tones) third-relation
with the first.

Cluster 3 is similar to cluster 2, as it groups two chords
with diatonic third-relation, however in this case the chords
share subdominant harmonic function: the subdominant
IV [5, [0, 4, 7]] and the supertonic ii[2, [0, 3, 7]]. In func-
tional harmony, they are described as S and Sp accordingly.

Overall, the proposed data-driven functional approach
to chord grouping seems to be quite reliable. Further test-
ing is necessary on larger and more varied corpora.

4. CONCLUSIONS

The paper at hand examines two main topics: a) the ability
of the GCT algorithm to analyse chord sequences (in com-
parison to roman numeral analysis) and b) the possibilty to
organise the ‘raw’ GCT labels in higher-level chord fam-
ilies according to the internal GCT properties and to dy-
namic functional properties in terms of chord successions
in harmonic corpora. The first study was based on com-
paring the annotations of chords produced by the GCT al-
gorithm with the harmonic annotations of human experts
(around 92% accuracy in the Kostka-Payne dataset). So,
with its ability to identify roots and chord types, the GCT
can be used as an interpretation/analytic tool allowing it
to be classified as a hybrid between neutral representations
(e.g. Forte pc-set theory analysis) and interpretative ones
(e.g. roman numeral analysis). For the second study, in-
formation about transitions of the GCT chord groups were
utilised to identify similarities between these groups ac-
cording to their successors, thus, reflecting functional rela-
tions.

The results are promising, since they illustrate the abil-
ity of the GCT to accurately label chords, but also to re-
veal chord groups according to (higher) functional mean-
ing in the tonal system. It is maintained that if the GCT
representation can cope with such a sophisticated hierar-

0
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Figure 3. (a) The dendrogram derived from the Euclidean
distances between rows of the transition matrix (Figure 2).

chic harmonic system as the tonal system, then it seems
likely that it can deal with other non-tonal systems as well.
Preliminary examples presented in [2, 3, 14] illustrate the
potential of the GCT to represent non-tonal harmonic id-
ioms; further reseach is under way to unveil the potential
of the proposed representation in other musics.
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ABSTRACT

In this paper we present novel rhythm features derived from
drum tracks extracted from polyphonic music and evaluate
them in a genre classification task. Musical excerpts are
analyzed using an optimized, partially fixed Non-Negative
Matrix Factorization (NMF) method and beat histogram
features are calculated on basis of the resulting activation
functions for each one out of three drum tracks extracted
(Hi-Hat, Snare Drum and Bass Drum). The features are eval-
uated on two widely used genre datasets (GTZAN and Ball-
room) using standard classification methods, concerning
the achieved overall classification accuracy. Furthermore,
their suitability in distinguishing between rhythmically sim-
ilar genres and the performance of the features resulting
from individual activation functions is discussed. Results
show that the presented NMF-based beat histogram features
can provide comparable performance to other classification
systems, while considering strictly drum patterns.

1. INTRODUCTION

The description of musical rhythm remains an important
and challenging topic in Music Information Retrieval (MIR)
with applications in several areas [12, 16]. The difficulty of
rhythm extraction lies in its multifaceted character, which
involves periodicity and structural patterning in the signal as
well as perceptual components such as musical meter [19].
An approach which has achieved some popularity over the
last years is based on the creation of a periodicity represen-
tation — commonly called the beat histogram (BH) — and
the subsequent extraction of features from this histogram
to be used, e.g., in genre classification [4, 13, 33]. A com-
mon first processing step of all approaches is the extraction
of a so-called novelty function [2] or its derivatives as the
starting point for further analysis. Since a complete rhythm
representation of a musical track results from the superposi-
tion of the temporal progressions of different instruments
or voices [12, 16], it makes sense to include features taking
into account individual temporal and spectral properties.

c© Athanasios Lykartsis, Chih-Wei Wu, Alexander Lerch.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Athanasios Lykartsis, Chih-Wei Wu, Alexan-
der Lerch. “Beat histogram features from NMF-based novelty functions
for music classification”, 16th International Society for Music Information
Retrieval Conference, 2015.

In western popular music (which is the focus of this pa-
per), rhythm is most often carried from the drum section,
providing the temporal grid on which other instruments can
unfold their melodic or harmonic patterns. This makes the
analysis of the drum track appealing for the description of
rhythmic character. In order to obtain the rhythmic proper-
ties of the drum section, the extraction of temporal novelty
functions per instrument is necessary. Although such meth-
ods for the extraction of specific voices or instruments have
been commonly used in the area of source separation or
automatic instrument transcription (the most notable being
non-negative matrix factorization (NMF) [31]), their appli-
cation to rhythm extraction problems is, to the best of our
knowledge, sparse. We therefore propose to use a technique
for source separation and drum transcription based on par-
tially fixed NMF using the resulting activation functions as a
source material for the extraction of rhythmic features based
on beat histograms. This paper investigates the suitability
of the proposed features in the context of rhythm-based
genre classification for dance music and other styles.

The paper is structured as follows. In the second section,
an overview of previous work and the goals of the current
paper are presented. In section 3, the drum transcription
procedure and the feature extraction are described. In the
fourth section, the evaluation of the proposed features and
the results are given. After discussing the results in sec-
tion 5, we close by giving conclusions and suggestions for
future work (sect. 6).

2. PREVIOUS WORK AND GOALS

Beat histograms have been used for a long time as rhythmic
descriptions. Initially introduced in studies on beat track-
ing and analysis [11, 29] as a useful very low frequency
periodicity representation, they were only later referred to
as the beat histogram [33] or periodicity histogram [13].
The histogram is useful as an intermediate representation
that can be used to extract musical parameters such as
tempo as well as low-level features (e.g., statistical prop-
erties of the histogram). Traditionally, a measure of the
signal amplitude envelope or its change over time is utilized
as the novelty function for the extraction of a beat his-
togram [4, 13, 33]. However, in the field of onset detection,
the proposed novelty functions take into account spectral
content changes [3, 10, 15, 27]. Genre classification sys-
tems based on such representations have generally shown
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promising results, although rhythm features do usually not
perform as well as features from other domains such as tim-
bre descriptors [4,28,33]. However, studies have shown that
for highly rhythmical music, beat histogram features can
achieve very high performance [13], a fact which has been
confirmed in current studies investigating the role of using
multiple novelty functions as a basis for beat histogram
features [20].

Since drum tracks convey essential information about
tempo, rhythm and possibly genre, they could potentially
provide better representation for extracting rhythm features.
To extract drum tracks from complete mixtures of music, a
drum transcription system for polyphonic music would be
necessary. Gillet and Richard divide systems for the drum
transcription from mixtures into three categories [9]: (i) seg-
ment and classify, (ii) separate and detect, and (iii) match
and adapt. Here, we focus on the second type of approaches
(separate and detect). Based on the assumption that the
music signal is a superposition of different sound sources,
the music content could be transcribed by first decomposing
the signal into source templates with corresponding acti-
vation functions, and then detecting the activities of each
template. Different methods such as Independent Subspace
Analysis [7], Prior Subspace Analysis [6], and Non-negative
Matrix Factorization [1, 21] fall into this category. These
approaches are usually easy to interpret since most of the
decompositions result in spectrum-like representations. Fur-
thermore, these approches do not require additional classes
for simultaneous events, which could potentially reduce the
model complexity.

In the context of NMF for music transcription, the fol-
lowing issues have to be taken into consideration: First, the
number of sound sources and notes within a music record-
ing is usually unknown. It is therefore difficult to determine
a suitable rank r in order to obtain a clear differentiation of
the decomposed components in the dictionary matrix. Sec-
ond, after the unsupervised NMF decomposition process,
it is difficult to identify the associated instrument of each
component in the dictionary matrix W when rank is too
high or too low. Third, when multiple similar entries exist in
the dictionary matrix, the corresponding activation matrix
could be activated at these entries simultaneously, which in
turn increases the difficulty of intuitively interpreting the
results.

To address the above issues, Yoo et al. proposed a co-
factorization algorithm [35] to simultaneously factorize a
prior drum track and a target signal, and use the basis ma-
trix from the drum track to identify the drum components
in the target signal. This method ensures that the drum
components in both dictionary matrices remain percussion
only over the iterations, and thus proper isolation of the
harmonic components from the drum components. Since
they focus on drum separation rather than drum transcrip-
tion, their selection of ranks can be higher, but the approach
is not directly applicable to the transcription problem be-
cause of the probable lack of interpretability of the dictio-
nary matrix. Wu and Lerch proposed a variant of the co-
factorization algorithm using partially fixed NMF (PFNMF)

Figure 1. Illustration of the factorization process. W: dic-
tionary matrix. H: activation matrix. Subscript D: drum
components, Subscript H: harmonic components.

for drum transcription in polyphonic signals [34]. Instead
of co-factorization, this method uses a pre-determined drum
dictionary matrix during the decomposition process, and
extracts one activation function for each of the three drums
(Hi-Hat, Snare Drum, and Bass Drum).

In this paper, we apply PFNMF to transcribe drum events
in polyphonic signals, and use the activation functions as
the basis for the extraction of beat histogram features. The
idea of using NMF with prior knowledge of targeting source
within the mixture has been applied in source separation
tasks [32], multi-pitch analysis [26] and drum transcrip-
tion [34]. Furthermore, the use of multiple novelty func-
tions for the extraction of beat histograms has been pro-
posed in [20]. Here, we combine both approaches for the
generation of rhythmic features which are descriptive of
the percussive rhythmic content of polyphonic tracks and
therefore of their general rhythmic character. We focus on
two tasks: the investigation of their overall performance,
in order to determine the salience of the features for genre
classification; and their performance for each percussive
component (drum track) separately, attempting to extract
conclusions regarding the importance of drum based rhythm
features and the salience of NMF activation functions.

3. METHOD

The basic concept of NMF is to approximate a matrix V
with matrices W and H as V ≈WH with non-negativity
constraints. Given a m×nmatrix V , NMF will decompose
the matrix into the product of a m× r dictionary (or basis)
matrix W and an r × n activation matrix H , with r being
the rank of the NMF decomposition. In most audio applica-
tions, V is the spectrogram to be decomposed, W contains
the magnitude spectra of the salient components, and H
indicates the activation of these components with respect to
time [31]. The matrices W and H are estimated through an
iterative process that minimizes a distance measure between
the target spectrogram V and its approximation [30].

To effectively extract drum activation functions from the
polyphonic signals, PFNMF is used in this study. Figure 1
visualizes the basic concept from the work of Yoo et al.:
the matrices W and H are split into the matrices WD and
WH, and HD and HH, respectively. Instead of using co-
factorization, PFNMF initializes the matrix WD with drum
components and to not modify it during the factorization
process. Matrices WH, HH, and HD are initialized with
random numbers. The distance measure used in this paper is
the generalized KL-divergence (or I-divergence), in which
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Figure 2. Flowchart of NMF and beat histogram feature
extraction and classification system.

DKL(x | y) = x · log (x/y) + (y − x). The cost function
as shown in (1) is minimized by applying gradient descent
and multiplicative update rules, the matrices WH, HH, and
HD will be updated according to Eqs. (2)–(4).

J = DKL(V |WDHD +WHHH) (1)

HD ← HD
WT

D (V/(WDHD +WHHH))

WT
D

(2)

WH ← WH
(V/(WDHD +WHHH))H

T
H

HT
H

(3)

HH ← HH
WT

H (V/(WDHD +WHHH))

WT
H

(4)

PFNMF can be summarized in following steps:

1. Construct an m× rD dictionary matrix WD, with rD
being the number of drum components to be detected.

2. Given a pre-defined rank rH, initialize an m × rH
matrix WH, an rD × n matrix HD and an rH × n
matrix HH.

3. Normalize WD and WH.

4. Update HD, WH, and HH using (2)–(4).

5. Calculate the cost of the current iteration using (1).

6. Repeat step 3 to step 5 until convergence.

In our current setup, the STFT of the signals is calcu-
lated using a window size and a hop size of 2048 and 512,
respectively. A pre-trained dictionary matrix is constructed
from the training set, consisting of isolated drum sounds.
The templates are extracted for the three classes Hi-Hat
(HH), Bass Drum (BD) and Snare Drum (SD) as the me-
dian spectra of all individual events of one drum class in
the training set. Next, the PFNMF will be performed with
rank rH = 10 on the test files. More details of the training
process and the selection of rank rH can be found in [34].
Finally, the activation Matrix HD can be extracted from the
audio signals through the decomposition process.

Once the activation functions of the three drum tracks
have been extracted as described above, they are used as
novelty functions for the calculations of beat histograms,
similar to [20]. The complete procedure for the genera-
tion of a feature vector representing each track includes
the following steps: For each activation function, the beat
histogram is extracted through the calculation of an Auto-
correlation Function (ACF) and the retaining of the area
between 30 and 240 BPM. For each beat histogram, the sub-
features listed in Table 1 are extracted. The concatenation

Distribution Peak
Mean (ME) Salience of Strongest Peak (A1)

Standard Deviation (SD) Salience of 2nd Stronger Peak (A0)
Mean of Derivative (MD) Period of Strongest Peak (P1)
SD of Derivative (SDD) Period of 2nd Stronger Peak (P2)

Skewness (SK) Period of Peak Centroid (P3)
Kurtosis (KU) Ratio of A0 to A1 (RA)
Entropy (EN) Sum (SU)

Geometrical Mean (GM) Sum of Power (SP)
Centroid (CD)
Flatness (FL)

High Frequency Content (HFC)

Table 1. Subfeatures extracted from beat histograms.

of all subfeature groups for each novelty function produces
the final feature vector for an audio excerpt. Similar sub-
features as listed in Table 1 can be found in the literature,
e.g., in [33] (Peak), and [4, 13] (Distribution). In total, 3
novelty functions are used for the production of as many
beat histograms, from each of which 19 subfeatures are
extracted, resulting in a total count of 57 features.

4. EVALUATION

4.1 Dataset Description

In order to evaluate the features for multiple track kinds
possessing different rhythmic qualities, two datasets were
considered: the Tzanetakis Dataset (GTZAN) [33], as an
example of a dataset which is widely used, comprising
100 30 sec excerpts for each of 10 diverse musical genres;
and the Ballroom Dataset [5, 13] (Ballroom), comprising
698 very rhythm/dance-oriented tracks of length 10 sec and
therefore suitable for the evaluation of our NMF-based beat
histogram features. Both datasets contain tracks with a
drum section and others with only non-percussive instru-
ments. This does not only allow to investigate if the ex-
tracted features are also suitable for music where a drum
section is present and if they can generalize to other music
styles, but also allows conclusions as to what genres in par-
ticular are represented satisfactory or insufficiently by the
features.

4.2 Evaluation Procedure

The features were tested using the Support Vector Machine
(SVM) algorithm for supervised classification. For our mul-
ticlass setting, an RBF kernel was used and the optimal
parameters (C, γ) were determined through grid search. We
chose the SVM classifier since it has been frequently used
in similar genre classification experiments, shows gener-
ally good results (see [8]) and allows for comparability
with those studies. Since the focus here lay on the features
and not the classification algorithms, we refrained from us-
ing more state-of-the-art approaches such as deep learning
algorithms. All experiments took place with a 10-fold cross-
validation (using 90% of the data for training and 10% for
testing over 10 randomly selected folds, taking the average
accuracy over the folds for each dataset) and standardiza-
tion (z-score) of the training and testing data. After the full
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Figure 3. Classification results for both datasets.

NMF-based feature set (i.e., the features originating from
all three drum activation functions) was tested, the features
from each individual activation function were evaluated in
turn in order to study the importance of each drum track
separately. Finally, the NMF-based features are combined
with other beat histogram features from a current study [20],
extracted from novelty functions of amplitude (RMS), spec-
tral shape (spectral flux, centroid, flatness and the first 13
MFCCs) and tonal components (pitch chroma coefficients
and tonal power ratio) on 3 second-long frames. Those
features resulted from a similar procedure as the one used
here, where 30 different novelty functions were extracted
and their beat histograms computed through the calcula-
tion of an ACF. A subsequent two-stage feature selection
scheme (mutual information with target data [14] using the
CMIM metric [25], followed by a sequential forward selec-
tion with an SVM wrapper [17]) was applied to retain the
best-performing features, resulting in a total of 20 features
in each case.

4.3 Results

The results are shown in Figure 3. On both datasets, the full
NMF feature set (comprising features from all three drum
activation functions) performs better than the individual
ones (BD, SD, HH), with an attained accuracy of 36.6%
and 51.9% for GTZAN and Ballroom, respectively. Those
values lie considerably above the average priors of both
datasets. The differences between the accuracies of the
feature sets are not large (especially between the individual
drum based feature sets) but are significant at the 0.05 level
in all cases (based on a comparison test of the Cohen’s
Kappa extracted from the confusion matrices). Due to
their small values (ranging from 0.2% to 0.6%), standard
deviations between accuracies of the folds for each feature
set are not presented in Figure 3.

The multiple novelty feature set (from [20]) outperforms
the NMF-based features, reaching an accuracy of 59.8% for
the GTZAN and 67.7% for the Ballroom dataset, whereas
the combined set (NMF and multiple novelty) demonstrates
the best performance (accuracy of 65.1% (GTZAN) and
75.5% (Ballroom)). The individual feature sets from each
drum track provide performance inferior to that of the

Ch. Ji. Qu. Ru. Sa. Ta. Vw. Wa.
Ch. 54 10 10 11 14 3 1 8
Ji. 17 13 5 6 10 2 2 5

Qu. 10 2 44 5 3 8 7 3
Ru. 8 3 2 53 4 7 2 19
Sa. 15 4 8 2 50 3 1 3
Ta. 2 1 6 6 2 55 7 7
Vw. 5 3 9 6 0 6 17 19
Wa. 5 0 4 16 1 4 4 76
Acc. 49 22 54 54 58 64 26 69
Pr. 15.9 8.6 11.7 14.0 12.3 12.3 9.3 15 .8

Table 2. Confusion matrix for Ballroom dataset, average
accuracy: 51.9%. Accuracy and Prior are given in %.

Bl. Cl. Co. Di. Hi. Ja. Me. Po. Re. Ro.

Bl. 15 11 16 15 4 7 9 9 11 3
Cl. 4 63 3 1 1 14 5 3 1 5
Co. 6 6 38 12 4 5 6 6 11 6
Di. 13 1 6 43 6 1 8 5 12 5
Hi. 8 4 5 4 21 8 10 20 13 7
Ja. 8 17 5 0 7 38 9 7 7 2

Me. 3 11 7 7 2 6 51 2 2 9
Po. 7 6 6 5 14 5 5 33 12 7
Re. 6 3 6 6 6 4 1 11 53 4
Ro. 6 4 10 10 17 10 11 11 10 11

Acc. 15 63 38 43 21 38 51 33 53 11

Pr. 10 10 10 10 10 10 10 10 10 10

Table 3. Confusion matrix for GTZAN dataset, average
accuracy: 36.6%. Accuracy and Prior are given in %.

full NMF-based set, but still considerably higher than the
prior. The best individual drums are the BD and SD for the
GTZAN and Ballroom datasets, respectively. The worst
individual percussion instrument is in both cases the HH.
For the full NMF-based feature set, confusion matrices re-
sulting from the classification can be seen in Tables 2 and 3.
In general, features achieved better average performance
on the Ballroom dataset than on the GTZAN. In order to
evaluate the misclassifications and the performance of the
individual genres, a closer observation of the confusion
matrices of each dataset should be taken.

For the Ballroom dataset, confusions between genres ap-
pear to be plausible based on what one would expect when
extracting rhythm features only from drums tracks: gen-
res with strongly pronounced, stable rhythm played from a
drum section such as samba and chachacha (Ch.) are con-
fused with each other, whereas the waltz (Wa.) and tango
(Ta.) genres, having no drum section (but still a succinct
rhythm) are not confused much with other genres. The
latter are the two genres which also achieve the best individ-
ual performance, followed by chachacha, quickstep (Qu.),
rumba (Ru.) and samba (Sa.). Jive (Ji.) and viennese waltz
(Vw.) display the worse performance, and are confused with
chachacha and waltz respectively, a result which is also
expected when one considers the rhythmic proximity of
those genres, whether they possess a drum section or not.

For the GTZAN dataset, misclassifications present a
more mixed picture: On the one hand, genres which pos-
sess tracks featuring a well articulated, distinct rhythmic
performed by a drum section (such as reggae (Re.), metal
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(Me.) and disco (Di.)) as well as the only genre without
drums (classical (Cl.)) achieve satisfactory performance
and are confused with genres which are rhythmically rela-
tively close (classical with jazz (Ja.), metal with rock (Ro.),
disco with reggae, and reggae with pop (Po.)). On the
other hand, genres possessing tracks with a more “generic”
rhythm (such as country (Co.) and pop) are confused with
multiple other genres. Finally, hiphop (Hi.), blues (Bl.) and
rock attain the last places in individual performance and are
confused with multiple other genres.

5. DISCUSSION

The results show that beat histogram features based on
NMF activation functions of specific drums can be help-
ful in rhythm-based genre classification, as their accuracy
for the used datasets is comparable to that achieved by
other rhythmic feature sets used up to date (59.8% [20] and
28% [33] for the GTZAN, 67.7% [20] and 56.7% [13] for
the Ballroom dataset). When taking into account that the
features are solely based on drum novelty functions, their
performance, especially for the Ballroom dataset, can be
seen as satisfactory. It is clear, though, that for this rea-
son, our results cannot achieve as high accuracy as other
studies which use very sophisticated methods [8,18,22–24].
Our results are somewhat lower than the state of the art
using rhythm [22,24] or combined features [8,23], however
staying in the same range. For the sake of comparison, we
report here the highest performances reached when using
advanced rhythmic features: on the GTZAN dataset an ac-
curacy of 92.4% [22] has been achieved, for the Ballroom
dataset one of 96.1% [24]. The advantage of our proposed
methods and features lies in the ability to pinpoint the im-
portance of the rhythm patterns from specific drums for
specific genres.

The misclassifications (reported in Tables 2 and 3) show
that genres which do not feature genre-specific rhythm pat-
terns, even if those are clearly articulated by the drum sec-
tion (e.g., a 4/4 BD and SD alternating beat), tend to be
confused with other similar genres (especially when drum
tracks are present, such as in rock). Genres containing
non-percussive tracks (such as classical and waltz) or very
specific rhythmic patterns (reggae) are more easily distin-
guished from others. Those results indicate that the NMF-
based beat histogram features indeed capture rhythmic prop-
erties related to the drum section and the regularities of their
periodicities, pointing towards the suitability of those fea-
tures for the extraction of drum-based rhythmic properties
and the use in the discrimination of musical tracks which
contain drums from ones which do not.

With regards to the feature sets, the satisfactory accuracy
of the NMF-based feature set is a hint towards the appro-
priateness of the features for the analysis of the rhythmic
character of a musical track. However, it is clear that those
features, being derived only from drum tracks, cannot rep-
resent as much information as features resulting from the
use of multiple novelty functions covering many aspects of
the signal temporal progress. The improved performance
of the combined set (NMF and multiple novelty based)

is a consequence of incorporating specific, drum-related
rhythm information in the feature base, showing that the
NMF-based rhythm feature set can contribute information
not provided by more general rhythm features and lead to
significant improvement for the two evaluated datasets. The
analysis of the features derived from the activation function
of a specific drum track showed that mainly the snare drum
and to a lesser extent the kick drum are the most impor-
tant components. The tendency is strong for the Ballroom
dataset, where the SD outperforms the BD, whereas for the
GTZAN dataset the result is reversed but with a smaller
difference. In all cases (also between the individual drum
sets), the differences in accuracies between the feature sets
are significant at the 5% level. Those results can be due
to the very pronounced sound texture and greater power of
those drums which leads to a salient activation function, as
well as their role in providing the basic metric positions in
most of western popular music. However, the accuracy of
each subset lies below that of their combination, leading
to the conclusion that the activation functions of all three
percussion instruments contribute valuable information to
the feature description of musical genre.

Concerning the datasets, the poorer classification perfor-
mance observed for the GTZAN dataset is a sign of the more
diverse character of tracks and genres in this set, containing
music styles which lack a specific rhythmic character and
can therefore not be distinguished effectively through beat
histogram features derived from drum activation functions.
Results were still better than the ones reported in [33],
but their inferiority compared to the ones in other stud-
ies [13, 20] shows that when considering a multitude of
different genres, solely drum based activation functions can
not provide a complete rhythmic characterization. This,
however, points towards the possible goal of using NMF in
order to transcribe not only drums but also other instruments
in order to use their activation functions as a basis for beat
histogram features. The Ballroom dataset shows better per-
formance, which was to be expected since the tracks therein
are selected for belonging to different dance styles, requir-
ing a special rhythmic pattern which is mostly conveyed
by the drum section. The results are in the same range as
those provided in [13] (56.7%) when using only periodicity
histogram features. Furthermore, in the same study it was
shown that using the tempo of the given tracks as a feature
they could achieve very high results using a simple 1-NN
classifier (51.7% for the “naive tempo” derived from the pe-
riodicity histogram and 82.3% for the ground-truth tempo
provided with the recordings), reaching as much as 90%
when combining the correct tempo with other descriptors
(MFCCs) from the periodicity histogram. This shows that
beat histograms (from which the tempo can be extracted)
are a good tool for rhythmic analysis in datasets containing
dance music such as the Ballroom.

Regarding specific genres, it is clear from the results
that the NMF-based features have a twofold use: first, in
representing genres which are characterized by distinct pat-
terns in their drum sections (e.g., reggae or samba) and
second, in characterizing genres which lack a drum section
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at all (waltz, classical) in contrast to genres which do; the
activation functions transcribed in this case are maximally
different, leading to beat histogram features which can be
easily discriminated by a classifier. Such a finding shows
that drum-based rhythm features can be very helpful for
rhythmic characterization of specific genres, which could
be an argument for their further application when a specific
kind of music is involved. As a general remark, it can be
seen that genres possessing a stable rhythm articulated by
a drum section such as reggae and samba or genres lack-
ing drums in general (waltz and classical) perform better,
whereas genres which have a very uncharacteristic rhythm
(such as rock or blues) get more easily confused.

6. CONCLUSIONS

The work presented in this paper focuses on the creation
of novel, NMF-based beat histogram features for rhythm-
based musical genre classification and rhythmic similarity.
The difference in comparison to other well-known studies
for rhythm features based on beat histograms [4, 13, 24, 33]
is the use of the activity functions of specific drums pro-
vided through NMF as a basis for the calculation of the
beat histogram. We showed that the classification accuracy
using these beat histogram features is comparable to that
of other rhythm features, whereas our proposed features
are better especially for characterizing tracks with specific
rhythmic patterns or for distinguishing between songs with
and without a drum section. It was observed that the most
important percussion patterns for dance music classification
were generated by the snare and the kick drum, which un-
derlines the importance of its activation function for further
tasks.

One future goal is the expansion of the use of NMF to
identify more instruments or voices and use them as pos-
sible novelty functions. The goal would be to therefore
capture the rhythmic patterns of every instrument, essen-
tially joining source transcription and rhythm feature extrac-
tion into one module. Another possibility is the use of our
proposed features for larger and more specific datasets, in
order to further investigate their suitability for specific gen-
res, as well as the strengths and weaknesses of the patterns
extracted from individual drums in discriminating between
musical genres. As an expansion of the feature selection
procedure, a further idea would be to profit from the combi-
nation of NMF-based features and other acoustic features
using a classifier that is capable of learning feature impor-
tance (e.g. random forest) to quantitatively investigate the
importance of NMF-derived features. While NMF-based
beat histogram features have been evaluated only in the
context of rhythmic genre classification, we believe that
they can prove useful in other tasks. Future research will
focus on adjusting and using the proposed features for MIR
tasks such as rhythmic similarity computation and structural
analysis.
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ABSTRACT

A cover song is a new performance or recording of a pre-
viously recorded music by an artist other than the original
one. The automatic identification of cover songs is useful
for a wide range of tasks, from fans looking for new ver-
sions of their favorite songs to organizations involved in
licensing copyrighted songs. This is a difficult task given
that a cover may differ from the original song in key, tim-
bre, tempo, structure, arrangement and even language of
the vocals. Cover song identification has attracted some
attention recently. However, most of the state-of-the-art
approaches are based on similarity search, which involves
a large number of similarity computations to retrieve po-
tential cover versions for a query recording. In this pa-
per, we adapt the idea of time series shapelets for content-
based music retrieval. Our proposal adds a training phase
that finds small excerpts of feature vectors that best de-
scribe each song. We demonstrate that we can use such
small segments to identify cover songs with higher identi-
fication rates and more than one order of magnitude faster
than methods that use features to describe the whole music.

1. INTRODUCTION

Recording or live performing songs previously recorded by
other composers are typical ways found by several early-
career and independent musicians to publicize their work.
Established artists also play versions composed by other
musicians as a way to honor their idols or friends, among
other reasons. These versions of an original composition
are popularly called cover songs.

The identification of cover songs has different uses. For
instance, it can be used for estimating the popularity of an
artist or composition, since a highly covered song or artist
is an indicative of the popularity/quality of the composition
or the author’s prestige in the musical world. In a different
scenario, a search engine for cover songs can help music
consumers to identify different versions of their favorite
songs played by other artists in different music styles or
language.

c© Diego F. Silva, Vinı́cius M. A. Souza, Gustavo E. A. P.
A. Batista. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Diego F. Silva, Vinı́cius M. A.
Souza, Gustavo E. A. P. A. Batista. “Music Shapelets for Fast Cover Song
Recognition”, 16th International Society for Music Information Retrieval
Conference, 2015.

Musicians that upload cover versions to websites such
as YouTube, Last.fm or SoundCloud frequently neglect that
the original songs may be copyright-protected. Copyright
is a legal right created by the law that grants the creator of
an original work (temporary) exclusive rights to its use and
distribution. Legally speaking, when an interpreter does
not possess a license to distribute his/her recording, this
version is considered illegal.

For these reasons, cover song recognition algorithms
are essential in different practical applications. However,
as noted by [12], the automatic identification of cover
songs is a difficult task given that a cover may differ from
the original song in key, timbre, tempo, structure, arrange-
ment and language of the vocals.

Another difficulty faced by automatic cover song iden-
tification systems, particularly those based on expensive
similarity comparisons, is the time spent to retrieve record-
ings that are potential covers. For instance, websites such
as YouTube have 300 hours of video (and audio) uploaded
every minute 1 . A significant amount of these videos is re-
lated to music content. Therefore, cover song identification
algorithms have to be efficient in terms of query processing
time in order to handle such massive amounts of data.

This paper proposes a novel algorithm to efficiently re-
trieve cover songs based on small but representative ex-
cerpts of music. Our main hypothesis is that we can char-
acterize a specific music with small segments and use such
information to search for cover songs without the need to
check the whole songs.

Our hypothesis is supported by the success of a sim-
ilar technique used in time series classification, named
shapelets [16]. Informally, shapelets are time series sub-
sequences, which are in some sense maximally represen-
tative of a class. For time series, shapelets provide in-
terpretable and accurate results and are significantly faster
than existing approaches.

In this paper, we adapt the general idea of shapelets for
content-based music retrieval. For this, we evaluate several
different ways to adapt the original idea to music signals.
In summary, the main contributions of our proposal are:

• Our method adds a training phase to the task of
content-based music information retrieval, which
seeks to find small excerpts of feature vectors that
best describe each signal. In this way, we make the
similarity search faster;

1 www.youtube.com/yt/press/statistics.html.
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• Even with small segments, we demonstrate that
we can improve the identification rates obtained by
methods that use features to describe the whole mu-
sic;

• We show how to use our proposal along with a spe-
cific retrieval system. However, we note that our
method can be added to any algorithm based on a
similar sequence of steps, even methods to further
speed-up the query. To do this, we simply need to
apply such an algorithm on the shapelets, instead of
the complete features vectors.

2. BACKGROUND AND RELATED WORK

The task of cover song recognition can be described as the
following: given a set, S, of music recordings and a query
music, q, we aim to identify if q is a version of one of the
songs in S. Thus, a cover song recognition system can be
considered a querying and retrieval system.

The state-of-the-art querying and retrieval systems can
be divided into five main blocks [12]: i) feature extraction;
ii) key invariance; iii) tempo invariance; iv) structure in-
variance; and v) distance calculation. Figure 1 illustrates
these steps. This general framework leaves open which
method will be applied in each step.

Feature 
extraction

Tempo 
invariance

Distance 
calculation

Key 
invariance

Structure 
invariance

Figure 1. General retrieval system blocks. The feature ex-
traction and distance calculation are required and should
appear in this order. The other ones may provide best re-
sults, but are optional

Feature extraction is a change of representation from
the high-dimensional raw signal to a more informative
and lower-dimensional set of features. Chroma-features or
pitch class profiles (PCP) are among the most used features
for computing music similarity. These features are a rep-
resentation of the spectral energy in the frequency range of
each one of the twelve semitones. A good review of PCP,
as well as other chroma-based features, can be found in [7].

Transpose a music for another key or main tonality is a
commonly used practice to adapt the song to a singer or to
make it heavier or lighter. Key invariance tries to reduce
the effects of these changes in music retrieval systems that
use tonal information. A simple and effective method to
provide robustness to key changes is the optimal transposi-
tion index (OTI) [11]. As a first step, this method computes
a vector of harmonic pitch class profiles (HPCP) for each
song, which is the normalized mean value of the energy
in each semitone [5]. When comparing two songs A and
B, the method fixes the HPCP of A. For each shift of the

HPCP of B, it measures the inner product between the two
vectors. The shift that maximizes this product is chosen
and the song B is transposed using such a shift value.

Tempo invariance is the robustness to changes between
different versions caused by faster or slower performances.
One way of achieving tempo invariance is by modifying
the feature extraction phase to extract one or more feature
vectors per beat [4], instead of a time-based window. An-
other possibility is the use of specific feature sets, such as
chroma energy normalized statistics (CENS) [8]. These
features use a second stage in the chroma vector estimation
that provides a higher robustness to local tempo variations.

Structure invariance is the robustness to deviations in
long-term structure, such as repeated chorus or skipped
verses. This invariance may be achieved by several dif-
ferent approaches, such as dynamic programming-based
algorithms [3], sequential windowing [13] or by summa-
rizing the music pieces into their most repeated parts [9].

The last step of a querying and retrieval system is the
similarity computation between the query and reference
data by means of a distance calculation. The most com-
mon approaches for this task are dynamic programming
based algorithms that try to find an optimal alignment of
feature vectors. A well-known example of this approach is
the Dynamic Time Warping (DTW) distance function.

In this paper, we present an approach that adds a train-
ing phase to this process. This step seeks to find the most
significant excerpt of each song in the set S (training set).
These small segments are used in a comparison with the
query song q. Our method is inspired by the idea of time
series shapelets, presented next.

3. SHAPELETS

Time series shapelets is a well-known approach for time
series classification [16]. In classification, there exists a
training set of labeled instances, S. A typical learning
system uses the information in S to create a classification
model, in a step known as training phase. When a new in-
stance is available, the classification algorithm associates
it to one of the classes in S.

A time series shapelet may be informally defined as the
subsequence that is the most representative of a class. The
original algorithm of [16] finds a set of shapelets and use
them to construct a decision tree classification model. The
training phase of such learning system consists of three ba-
sic steps:

• Generate candidates: this step consists in extract-
ing all subsequences from each training time series;

• Candidates’ quality assessment: this step assesses
the quality of each subsequence candidate consider-
ing its class separability;

• Classification model generation: this step induces
a decision tree. The decision in each node is based
on the distance between the query time series and a
shapelet associated to that node.
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In the first step, the length of the candidates is an in-
trinsic parameter of the candidates generation. The origi-
nal algorithm limits the search to a range between a min-
imum (minlen) and maximum (maxlen) length. All the
subsequences with length betweenminlen andmaxlen are
stored as candidates.

Given a candidate s, we need to measure the distance
between s and a whole time series x. Notice that a direct
comparison between them is not always possible since s
and x can have very different lengths. Consider l as the
candidate’s length. The distance(s, x) is defined as the
smallest Euclidean distance between the candidate s and
each subsequence of x with l observations.

The next steps of the shapelet algorithm are directly re-
lated to the classification task. Since this is not our focus,
we suppress details of the algorithm from this point.

The general idea of classifying time series by shapelets
is to use the distances between candidates and training time
series to construct a classification model. First, the algo-
rithm estimates the best information gain (IG) that can be
obtained by each candidate. This is made by grouping the
training examples that are closer – according a distance
threshold – from the training examples that are more dis-
tant from the candidate. The best value for the threshold –
called best split point – is defined by assessing the separa-
tion obtained by different values.

Finally, the algorithm uses the IG to create a decision
tree. A decision node uses the information of the best
shapelet candidate. In order to decide the class of a test
example, we measure the distance between the query and
the shapelet. If the distance is smaller or equal to the split
point, its class is the one associated with the shapelet. Oth-
erwise, the query is labeled as belonging to the other class.

For details on how to find the optimal split point and the
decision tree’s construction, we refer the reader to [16].

4. OUR PROPOSAL: MUSIC SHAPELETS

In this paper, we propose to adapt the idea of shapelets for
a fast content-based music retrieval, more specifically for
cover songs identification. Our adaptations are detailed in
the next sections.

4.1 Windowing

The original approach to finding subsequence candidates
uses sliding windows with different lengths. These lengths
are the enumeration of all values in a range provided by
the user. The sliding window swipes across the entire time
series and such a process is performed for each example
in the training set. We found this process to be very time
consuming, accounting for most of the time spent in the
training phase.

We note that music datasets are typically higher-
dimensional than most time series benchmark datasets, in
both number of objects as well as number of observations.
Thus, we use a reduced set of specific values as window
length instead of an interval of values. We empirically

noted that it is possible to find good candidates without
enumerating all the lengths in a given range.

In addition, the original approach uses a sliding win-
dow that starts at every single observation of a time series.
We slightly modified it so that the sliding windows skip a
certain amount of observations proportional to the window
length. This windowing technique with partial overlapping
is common in audio analysis.

4.2 Dynamic Time Warping

Shapelets use Euclidean distance (ED) as the similarity
measure to compare a shapelet and a whole time series.
However, ED is sensitive to local distortions in the time
axis, called warping. Warping invariance is usually bene-
ficial for music similarity due to the differences in tempo
or rhythm that can occur when a song is played live or by
different artists.

In order to investigate this assumption, we evaluate the
use of ED and Dynamic Time Warping (DTW) to com-
pare shapelets extracted from music data. There is an ob-
vious problem with the use of DTW, related to its com-
plexity. While ED is linear on the number of observations,
DTW has a quadratic complexity. Nevertheless, there is a
plethora of methods that can be used so that we may ac-
celerate the calculation of the distance between a shapelet
and a whole music [10].

4.3 Distance–based Shapelet Quality

Shapelets were originally proposed for time series classi-
fication. In cover song identification we are interested in
providing a ranking of recordings considering the similar-
ity to a query. Therefore, IG is not the best choice to mea-
sure the candidates’ quality.

IG in shapelet context finds the best split points and can-
didates according to class separability. However, music re-
trieval problems typically have a large number of classes
(each class representing a single song) with few examples
(different recordings of a certain song), hindering the anal-
ysis of class separability.

For this reason, we propose and evaluate the substitu-
tion of the IG by a distance-based criterion. We consider
that a good candidate has a small distance value to all the
versions of the related song and a high distance value to
any recording of another song. Thus, we propose the crite-
rion DistDiff, defined in Equation 1.

DistDiff(s) = min
i=1..n

(distance(s,OtherClass(i)))−

1

m

m∑

i=1

distance(s, SameClass(i))

(1)

where s is a candidate for shapelet, SameClass is the set
of m versions of the song from were the candidate come
from, OtherClass is the set of n recordings that does not
represent a version of the same composition than the origin
of s and distance(s, Set(i)) is the distance between the
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candidate and the i-th recording in Set (SameClass or
OtherClass).

Clearly, we are interested in candidates that provide a
high value to the first term and a small value to the second.
So, as higher the value of DistDiff, higher the quality of the
candidate. In case of draw, we use the minimum average
rank of the versions of the song related to s as tie breaking.
In other words, if two candidates have the same value of
DistDiff, the best candidate is the one that provides the
best average ranking positions for the versions of the song
from where s comes from.

4.4 Similarity

Since the technique of time series shapelets is interested in
class separability, it stores at most one shapelet per class.
On the other hand, in our problem we are interested in all
examples of each “class label”. So, we store one shapelet
per recording in the training set, instead one for each com-
position.

The final step, the querying and retrieval itself, is made
in two simple steps. First, our method measures the dis-
tance between the query music and each of the shapelets
found in the training phase. Finally, the ranking is given
by sorting these distances in ascending order.

4.5 Triplets

In a real scenario where the task of music retrieval will be
performed, it is highly probable that a specific song has one
to three authorized versions such as the original recording
in a studio, an acoustic and a live version. Obviously, there
are exceptions such as remix and many versions of live
performances. Thus, when we extract shapelets from these
songs in a conventional way, we have only a few instances
for each class in the training set. This may hamper the
candidate’s quality calculation.

In addition, only a small segment of a song can be unin-
formative. This fact has been observed in other application
domains. For instance, [14] uses features from the begin-
ning, the middle and the end of each recording to perform
the genre recognition task.

For these reasons, we also evaluated the idea of repre-
senting each recording as three shapelets. Figure 2 illus-
trate this procedure. The first step of this procedure di-
vides the feature vector into three parts of the same length.
After that, we find the most representative subsequence of
each segment. Finally, during the retrieval phase, we use
the mean distance from a query recording to each of the
three shapelets. We will refer to these triple of shapelets as
triplets.

5. EXPERIMENTAL EVALUATION

In this section, we present the datasets used in our evalua-
tion and the experimental results. We conclude this section
discussing the advantages of our method in terms of time
complexity in the retrieval phase.

...

...

Music
signals

Chroma
vectors

Candidates
generation

Quality
assessment

Sets of
candidates Triplets

Figure 2. General procedure to generate triplets

5.1 Datasets

We evaluate our proposal in two datasets with different mu-
sic styles. The first dataset is composed by classical music
while the second contains popular songs.

The dataset 123 Classical was originally used in [1].
This dataset has 123 different recordings concerning 19
compositions from Classical (between 1730 and 1820) and
Romantic (between 1780 and 1910) ages. From the 123
recordings, 67 were performed by orchestras and the re-
maining 56 were played in piano.

We also collected popular songs from videos of
YouTube and built a dataset named YouTube Covers. We
made the YouTube Covers dataset freely available in our
website [15] for interested researchers. This dataset was
built with the goal of evaluating our proposal in a more
diverse data since the covers songs in the 123 Classical
dataset in general faithfully resembling their original ver-
sions.

The YouTube Covers dataset has 50 original songs from
different music genres such as reggae, jazz, rock and pop
music accompanied of cover versions. In our experiments,
we divide this dataset in training and test data. The train-
ing data have the original recording in studio and a live
version for each music. In the test data, each music has 5
different cover versions that include versions of different
music styles, acoustic versions, live performances of es-
tablished artists, fan videos, etc. Thus, this dataset have a
total of 350 songs (100 examples for training and 250 for
test). A complete description of YouTube Covers dataset is
available in our website.

As the 123 Classical dataset doesn’t have a natural divi-
sion in training/test sets and has a reduced amount of data,
we conducted our experimental evaluation in this dataset
using stratified random sampling with 1/3 of data to train-
ing and the remaining for test. With this procedure, the
number of examples per class in the training phase varies
from 1 to 5.

5.2 Evaluation Scenarios

In this paper, we consider two different scenarios to evalu-
ate our method: i) test set as query and ii) training set as
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query. In both, the first stage finds shapelets in the training
partition.

In the first scenario, we perform a query when a new
song arrives. This setting simulates the scenario in which
we would like to know if the (test) query is a cover of some
previously labeled song. In other words, we use the unla-
beled recordings to find similar labeled ones.

In the second scenario, we simulate the scenario in
which the author of one of the training songs wants to
know if there are uncertified versions of his/her music in
the repository. Thus, we should use his/her original record-
ing as query. Therefore, the training instances are used as
queries and we use the shapelets to return unlabeled songs
that are potentially covers.

5.3 Experimental Setup

In order to evaluate the proposed method, we compare its
results against two competitors. The first one is the DTW
alignment of the feature vector representing the whole mu-
sic. The second one uses a music summarization algorithm
to find significant segments of the recordings. For this, we
use a method that considers that the most significant ex-
cerpts of music are those that are most repeated [2]. After
finding such excerpts, the similarity search occurs as pro-
posed in this paper.

As feature sets, we used the chroma energy normalized
statistics (CENS), as well as chroma extracted together the
beat estimating. In general, CENS results are slightly bet-
ter. Thus, we focus our evaluation using this feature. To
extract the CENS, we used the Matlab implementation pro-
vided by the Chroma Toolbox [7] with the default parame-
ters settings.

We used the optimal transposition index (OTI) tech-
nique to improve robustness for key variances. Shapelets
are not used to decide the shift to provide such an invari-
ance. This is done by using the harmonic pitch class pro-
files (HPCP) of the complete chroma vector.

Our proposal have two parameters related to the win-
dowing: i) window length and ii) overlapping proportion
of consecutive windows. For the first parameter, we use the
values 25, 50 and 75 for shapelets and 25 for triplets. For
the second parameter, we use 2/3 of the window length as
overlapping proportion

To provide an intuition to the reader about the first pa-
rameter. The mean length of the chroma feature vectors
in the datasets 123 Classical and YouTube Covers are 215
and 527, respectively. Therefore, a window length of 25
represents approximately 11% and 5%, respectively, of the
average length of the recordings in these datasets.

5.4 Evaluation Measures

In order to assess the quality of our proposal, we used three
evaluation measures adopted by MIREX 2 for the cover
song identification task. Such measures take into account
the position of the relevant songs in the estimated ranking
of similarity.

2 http://www.music-ir.org/mirex/wiki/2015:
Audio_Cover_Song_Identification

Given a set of n query songs, a retrieval method returns
a rank ri (i = 1, 2, . . . , n) for each of them. The func-
tion Ω(ri,j) returns the value 1 if the j − th-ranked song
obtained for the i− th query is a relevant song or 0 other-
wise. In the context of this work, a relevant song is a cover
version of the query recording.

The first evaluation measure represents the mean num-
ber of relevant songs retrieved among the top ten positions
of the ranking (MNTop10). Formally, the MNTop10 is de-
fined according to Equation 2.

MNTop10 =
1

n

n∑

i=1

10∑

j=1

Ω(ri,j) (2)

The mean average precision (MAP) is the mean value
of the average precision (AP) for each query song. The AP
is defined in Equation 3.

AP (ri) =
1

n

n∑

j=1

[
Ω(ri,j)

(
1

j

j∑

k=1

Ω(ri,k)

)]
(3)

Finally, we also use the mean rank of first correctly
identified cover (MFRank). In other words, this measure
estimates, on average, the number of songs we need to ex-
amine in order to find a relevant one. The MFRank is de-
fined by Equation 4.

MFRank =
1

n

n∑

i=1

fp(ri) (4)

where fp(ri) is a function that returns the first occurrence
of a relevant object in the ranking ri.

For the first two measures, larger values represent bet-
ter performance. For the last one the smaller values are
indicative of superiority.

5.5 Results

In the Section 4, we proposed several adaptations to the
original shapelets approach to the music retrieval setting.
Unfortunately, due to lack of space, we are not able to show
detailed results for all combinations of these techniques. In
total, we have 16 different combinations of techniques. All
those results are available on the website created for this
work [15].

In this section, we present a subset of the results accord-
ing to the following criteria:

• OTI. We show all results with OTI as key invariance
method. For the dataset YouTube Covers, the use of
OTI led to significant improvements. For the 123
Classical dataset, OTI performed quite similarly to
the same method without OTI. This may occur be-
cause the problem of key variations is more evident
in the pop music. We notice we used the simplest
version of OTI, that assesses just one tonal shift.

• Shapelet evaluation. We evaluate all results with
DistDiff. In most cases, information gain performed
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worst than DistDiff. Even more, there are cases
where the use of IG causes a significant perfor-
mance deterioration. For example, when using a sin-
gle shapelet per recording on YouTube Covers, the
method using information gain achieved MNTop10
= 0.75, MAP = 25.29% and MFRank = 17.52. By
changing this measure by the DistDiff criterion, pro-
posed in this paper, the results become MNTop10 =
1.22, MAP = 47.14% and MFRank = 9.72.

• Triplet. We show the results using triplets. In gen-
eral the use of a single shapelet to describe the train-
ing songs did not outperform the use of triplets. Al-
though obtain an improvement in isolated cases, the
differences are small in these cases.

Therefore, we will fix our analysis to the methods that
use OTI and triplets evaluated by DistDiff criterion. The
last remaining decision concerns the use of Euclidean or
DTW distances. We show the results obtained with both.

Table 1 shows the results obtained on 123 Classical
dataset and Table 2 shows the results obtained on YouTube
Covers dataset.

Table 1. Results achieved on the dataset 123 Classical
Scenario 1 - Test set as query

MNTop10 MAP (%) MFRank
DTW 2.34 97.24 1.12
Summarization 2.27 93.46 1.00
Triplets-DTW 2.39 97.24 1.02
Triplets-ED 2.38 98.05 1.00

Scenario 2 - Training set as query
MNTop10 MAP (%) MFRank

DTW 4.73 98.92 1.00
Summarization 4.44 91.52 1.02
Triplets-DTW 4.78 99.41 1.00
Triplets-ED 4.71 97.92 1.00

Table 2. Results achieved on the dataset YouTube Covers
Scenario 1 - Test set as query

MNTop10 MAP (%) MFRank
DTW 1.14 42.49 11.69
Summarization 0.85 32.11 13.82
Triplets-DTW 1.29 45.55 8.45
Triplets-ED 1.26 47.80 8.49

Scenario 2 - Training set as query
MNTop10 MAP (%) MFRank

DTW 2.11 39.19 6.58
Summarization 1.66 29.20 14.46
Triplets-DTW 2.82 52.87 4.65
Triplets-ED 2.87 54.95 5.18

5.6 Discussion

The results show that triplets outperformed similarity esti-
mation by using music summarization and achieved equal
or better results than the DTW matching of the whole fea-
ture vector.

More importantly, we notice that the querying using
shapelets is significantly more efficient than the matching
between the whole songs. Although our method requires a
training phase that is absent in similarity search with DTW,
such a phase is performed only once.

Let l andm be the length of feature vectors of the query
and the labeled songs. The complexity to find an alignment
based on dynamic programming, such as DTW, is O(lm).
Now, let s be the size of each shapelet of the training song.
The complexity to calculate the shapelet-based Euclidean
distance between the query and the original song is O(ls),
with s� m.

Table 3 shows the time in seconds to perform the re-
trieval step using Triplets-ED and DTW matching the en-
tire feature vectors.

Table 3. Total time (in seconds) to calculate the distance
between all the queries (test set) and the training set by
using DTW and Triplets-ED

Dataset
123 Classical YouTube Covers

DTW 2,294 14,124
Triplets-ED 148 928

The result of this experiment shows that our method is
about 15 times faster to retrieve music by similarity. We
argue that our method may be further faster with the use
of techniques to speed-up the similarity search – to find
the best match between the shapelet and the whole feature
vector.

The identification rates were similar for both triplets ap-
proaches, alternating the best results between them. Al-
though the time spent to calculate Triplets-DTW is poten-
tially lower than the obtained by a straightforward imple-
mentation of Euclidean distance [10], the time spent by our
simple implementation is similar to the DTW alignment of
the whole feature vector.

6. CONCLUSION

In this paper, we propose a novel technique to content-
based music retrieval. Our method is naturally invariant
to structure and open to aggregate invariance to key and
tempo by the choice of appropriate methods, such as OTI
and CENS as feature vector.

We evaluated our method in a cover song recognition
scenario. We achieved better results than the widely ap-
plied approach of DTW alignment and a similar approach
based on a well-known summarization algorithm. Our
method is also more than one order of magnitude faster
than these methods.

There are several possible extensions for this work.
For instance, we can extend our idea to a shapelet-
transform [6]. The evaluated scenario also suggests re-
search on incremental learning of shapelets, the retrieval
considering that novel songs may arrive, among other
tasks. Finally, we intend to investigate how to improve the
time cost of DTW similarity search in order to make the
time of Triplets-DTW be competitive with Triplets-ED.
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[5] Emilia Gómez and Perfecto Herrera. Estimating the
tonality of polyphonic audio files: Cognitive versus
machine learning modelling strategies. In International
Society for Music Information Retrieval Conference,
pages 92–95, 2004.

[6] Jason Lines, Luke M. Davis, Jon Hills, and Anthony
Bagnall. A shapelet transform for time series classifi-
cation. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 289–
297, 2012.

[7] Meinard Müller and Sebastian Ewert. Chroma Tool-
box: MATLAB implementations for extracting vari-
ants of chroma-based audio features. In International
Society for Music Information Retrieval Conference,
pages 1–6.

[8] Meinard Müller, Frank Kurth, and Michael Clausen.
Audio matching via chroma-based statistical features.
In International Society for Music Information Re-
trieval Conference, pages 288–295, 2005.

[9] Bee Suan Ong. Structural Analysis and Segmentation
of Music Signals. PhD thesis, 2007.

[10] Thanawin Rakthanmanon, Bilson Campana, Abdul-
lah Mueen, Gustavo Batista, Brandon Westover, Qiang
Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and
mining trillions of time series subsequences under dy-
namic time warping. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 262–270, 2012.

[11] Joan Serra, Emilia Gómez, and Perfecto Herrera.
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ABSTRACT

Signal decomposition methods such as Non-negative Ma-
trix Factorization (NMF) demonstrated to be a suitable ap-
proach for music signal processing applications, including
sound source separation. To better control this decompo-
sition, NMF has been extended using prior knowledge and
parametric models. In fact, using score information con-
siderably improved separation results. Nevertheless, one
of the main problems of using score information is the mis-
alignment between the score and the actual performance.
A potential solution to this problem is the use of audio to
score alignment systems. However, most of them rely on a
tolerance window that clearly affects the separation results.
To overcome this problem, we propose a novel method to
refine the aligned score at note level by detecting both, on-
set and offset for each note present in the score. Note re-
finement is achieved by detecting shapes and contours in
the estimated instrument-wise time activation (gains) ma-
trix. Decomposition is performed in a supervised way, us-
ing training instrument models and coarsely-aligned score
information. The detected contours define time-frequency
note boundaries, and they increase the sparsity. Finally, we
have evaluated our method for informed source separation
using a dataset of Bach chorales obtaining satisfactory re-
sults, especially in terms of SIR.

1. INTRODUCTION

Sound source separation has been actively addressed dur-
ing the recent years with various applications ranging from
predominant melody transcription [10], to interference re-
moval in close microphone recordings [4]. State of the
art systems particularly target the separation of the pre-
dominant harmonic instrument from the accompaniment
[3, 4, 10, 18], and less often the separation of various in-
struments in classical music [9, 15].

Besides [18](recurrent neural networks), and [9](parti-
cle filters), the aforementioned systems are based on non-
negative matrix factorization (NMF) [19], a technique that
efficiently decomposes a magnitude spectrogram into a set

c© Marius Miron, Julio José Carabias-Orti, Jordi Janer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Marius Miron, Julio José Carabias-Orti,
Jordi Janer. “Improving score-informed source separation for classical
music through note refinement”, 16th International Society for Music In-
formation Retrieval Conference, 2015.

of template (basis) and activation (gains) vectors. How-
ever, when dealing with a non-convex problem, the NMF
can converge to a local minima solution for which the
sources are not well separated. Towards a better separa-
tion, the system can benefit from prior knowledge. On this
account, a set of musical meaningful variables are intro-
duced into the parametric model and estimated jointly.

Furthermore, important improvements are reported
when score information is added to guide the decompo-
sition process [3,9,12,15,17]. In this case, the best perfor-
mance is achieved when the audio is perfectly aligned with
the score [23]. However, in a real-case scenario, a perfect
aligned score is not available, and a score-alignment algo-
rithm is needed [5, 8, 9, 13].

Conversely, as enounced in [3], besides the global mis-
alignments, fixed by score-alignment systems, we can also
encounter local misalignments. With respect to this prob-
lem, source separation systems propose to estimate the on-
set implicitly into the parametric NMF model, by increas-
ing the time boundaries for the onsets in the gains matrix at
the initialization stage [12,15,17]. However, an interesting
question is whether such an initialization results in a better
separation than refining the gains and correcting the local
misalignments prior to the source separation.

Several methods deal with explicitly correcting local
misalignments [21, p. 103], [20,27]. The latter finds shapes
and contours (blobs) in a pitch salience function, obtained
by pre-processing the spectrogram of the signal and then
filtering the spectral peaks for each instrument. However,
this method does not use any information regarding the
timbre, which is more desirable when distributing energy
between different instruments.

The goal of this paper is to use the note refinement in-
formation in order to improve score-informed source sepa-
ration of harmonic instruments. Specifically, we have two
contributions: we adapt the source separation framework
in [24] to the score-informed case, and, notably, we cor-
rect the local misalignments in the score and refine the
time-frequency zones of the gains used in source separa-
tion. First, we compute the initial gains by distributing
the energy among instruments with the source separation
NMF algorithm proposed in [24]. The computed gains
offer a more robust representation than the pitch salience
used in [20], because timbre information is used to deal
with the problem of overlapping partials between the in-
struments, and because the gains are represented on log-
frequency scale and are less noisy than the pitch salience
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in [20]. As a result, detecting and assigning blobs to notes
in the gains matrix can be done more robustly. Second, we
can use the processed gains to reiterate the NMF source
separation. Consequently, instead of initializing the NMF
with the MIDI information, we can use the blobs associ-
ated with each note. On this account, we restrict the po-
tential interferences not only in time but also in frequency,
and achieve better separation.

We evaluate the note refinement and the source separa-
tion on the Bach10 dataset [9]. Accordingly, note refine-
ment is performed on an artificially generated score with
local misalignments, and on the output the DTW based
score alignment algorithm [5]. Furthermore, we evaluate
the score-informed source separation, as we want more in-
sight on which initialization method yields better source
separation.

The remainder of this paper is structured as follows.
First, we describe the existing source separation frame-
work and then, in Section 3, the note refinement method
and its application to monaural score informed source sep-
aration. Then, we evaluate score alignment and source sep-
aration. Finally, we discuss the results and restate the con-
tributions to prior work.

2. NMF FOR SOURCE SEPARATION

In this section we explain the Source Separation Frame-
work used for sound source separation. Further informa-
tion can be found in [24].

2.1 Signal Model

Techniques based on Non-negative Matrix Factorization
(NMF) can be used to efficiently decompose an audio spec-
trogram as a linear combination of spectral basis functions.
In such a model, the short-term magnitude (or power) spec-
trum of the signal x(f, t) in time-frame t and frequency f
is modeled as a weighted sum of basis functions as:

x(f, t) ≈ x̂(f, t) =
N∑

n=1

bn(f)gn(t), (1)

where gn(t) is the gain of the basis function n at frame
t, and bn(f), n = 1, ..., N are the bases. Note that model in
eq. (1) only holds under the assumption of a) strong spar-
sity (only one source active per time-frequency(TF) bin) or
b) local stationarity (only for power spectrogram) [2].

When dealing with musical instrument sounds, it is nat-
ural to assume that each basis function represents a sin-
gle pitch, and the corresponding gains contain informa-
tion about the onset and offset times of notes having that
pitch [4]. Besides, restricting the model in (1) to be har-
monic is particularly useful for the analysis and separation
of musical audio signals since each basis can define a sin-
gle fundamental frequency and instrument. Harmonicity
constrained basis functions are defined as:

bj,n(f) =

H∑

h=1

aj,n(h)G(f − hf0(n)), (2)

where bj,n(f), are the bases for each note n of instru-
ment j, n = 1, ..., N is defined as the pitch range for in-
strument j = 1, ..., J , where J is the total number of in-
struments present in the mixture, h = 1, ...,H is the num-
ber of harmonics, aj,n(h) is the amplitude of harmonic h
for note n and instrument j, f0(n) is the fundamental fre-
quency of note n, G(f) is the magnitude spectrum of the
window function, and the spectrum of a harmonic com-
ponent at frequency hf0(n) is approximated by G(f −
hf0(n)). Therefore, the harmonic constrained model for
the magnitude spectra of a music signal is defined as:

x̂(f, t) =
J∑

j=1

N∑

n=1

H∑

h=1

gj,n(t)aj,n(h)G(f − hf0(n)), (3)

where the time gains gj,n(t) and the harmonic ampli-
tudes aj,n(h) are the parameters to be estimated.

2.2 Augmented NMF for Parameter Estimation

Non-negativity of the parameters is a common restriction
imposed to the signal decomposition method for music sig-
nal processing applications. Furthermore, the factorization
parameters of equation (3) are estimated by minimizing the
reconstruction error between the observed x(f, t) and the
modeled x̂(f, t) spectrograms, using a cost function, which
is this case the Beta-divergence [14]:

Dβ(x|x̂) =





1
β(β−1)

(
xβ + (β − 1)x̂β − βxx̂β−1

)
β ∈ (0, 1)

∪(1, 2]
x log x

x̂
− x+ x̂ β = 1

x
x̂
+ log x

x̂
− 1 β = 0

(4)

For particular values of β, Beta-divergence includes in
its definition the most popular cost functions, Euclidean
(EUC) distance (β = 2), Kullback-Leibler (KL) diver-
gence (β = 1) and the Itakura-Saito (IS) divergence
(β = 0). The parameters in (1) are estimated with an it-
erative cost minimization algorithm based on multiplica-
tive update (MU) rules, as discussed in [19]. Under these
rules, D(x(f, t)|x̂(f, t)) does not increase with each iter-
ation while ensuring the non-negativity of the bases and
the gains. These MU rules are obtained applying diagonal
rescaling to the step size of the gradient descent algorithm
(see [19] for further details).

Lets denote as θl the parameter to be estimated. Then,
the MU rule for θl is obtained by computing the derivative
∇θlD of the cost function with respect to θl. This deriva-
tive can be expressed as a difference between two positive
terms ∇+

θl
D and ∇−

θl
D [25] and thus, the update rule for

parameter θl can be expressed as:

θl ← θl
∇−
θl
D(x(f, t)|x̂(f, t))

∇+
θl
D(x(f, t)|x̂(f, t))

. (5)

2.3 Timbral Informed Signal Model

As showed in [6], when appropriate training data are avail-
able, it is useful to learn the instrument-dependent bases in
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advance and keep them fixed during the analysis of the sig-
nals. In the commented work, the amplitudes of each note
of each musical instrument aj,n(h) are learnt by using the
RWC database [16] of solo instruments playing isolated
notes together with their ground-truth transcription. Thus,
gains are set to unity for each pitch at those time frames
where the instrument is active while the rest of the gains
are set to zero. Note that gains initialized to zero remain
zero because of the multiplicative update rules, and there-
fore the frame is represented only with the correct pitch.

The MU rules are computed from equation (5) for the
amplitude coefficients and the gains as

aj,n(h)← aj,n(h)

∑
f,t x(f, t)x̂(f, t)

β−2gj,n(t)G(f − hf0(n))∑
f,t x̂(f, t)

β−1gj,n(t)G(f − hf0(n))
(6)

gj,n(t)← gj,n(t)

∑
f,m x(f, t)x̂(f, t)β−2aj,n(h)G(f − hf0(n))∑

f,m x̂(f, t)β−1aj,n(h)G(f − hf0(n))
(7)

Finally, the training procedure is summarized in Algo-
rithm 1.

Algorithm 1 Instrument modeling algorithm
1 Compute x(f, t) from a solo performance for each instru-

ment in the training database
2 Initialize gains gj,n(t) with the ground truth transcription

Rj,n(t) and aj,n(h) with random positive values.
3 Update the gains using eq. (6).
4 Update the bases using eq. (7).
5 Repeat steps 2-3 until the algorithm converges (or maximum

number of iterations is reached).
6 Compute basis functions bj,n(f) for each instrument j using

eq. (2).

The training algorithm obtains an estimation of the ba-
sis functions bj,n(f) required at the factorization stage for
each instrument. Since the instrument dependent basis func-
tions bj,n(f) are held fixed, the factorization can be re-
duced to the estimation of the gains gj,n(t) for each of the
trained instruments j.

2.4 Gains estimation

Here, the classical augmented NMF factorization with MU
rules is applied to estimate the gains corresponding to each
source j in the mixture. The process is detailed in Algo-
rithm 2.

Algorithm 2 Gain Estimation Method
1 Initialize bj,n(f) with the values learned in section 2.3. Use

random positive values to initialize gj,n(t).
2 Update the gains using eq. (7).
3 Repeat step 2 until the algorithm converges (or maximum

number of iterations is reached)

2.5 From the estimated gains to the separated signals

In this work, we assume that the individual sources
yj(t), j = 1...J that compose the mixed signal x(t) are

linearly mixed, so x(t) =
J∑
j=1

yj(t). Lets denote the

power spectral density of source j at TF bin (f, t) as
|Xj(t, f)|2, j = 1...J , then, each ideally separated source
yj(t) can be estimated from the mixture x(t) using a gen-
eralized time-frequency Wiener filter over the Short-Time
Fourier Transform (STFT) domain as in [14, 15].

Here we use the Wiener filter soft-masking strategy as
in [24]. In particular, the soft-mask αj of source j repre-
sents the relative energy contribution of each source to the
total energy of the mixed signal x(t) and is obtained as:

αj(t, f) =
Ŷj(t, f)2∑
j Ŷj(t, f)2

(8)

where Ŷj(t, f) is the estimated source magnitude spec-
trogram computed as Ŷj(t, f) = gn,j(t)bj,n(f), gn,j are
the gains estimated in Section 2.4 and bj,n(f) are the fixed
basis functions learnt in Section 2.3.

Then, the magnitude spectrogram X̂j(t, f) is estimated
for each source j as:

X̂j(t, f) = αj(t, f) ·X(t, f) (9)

where X(t, f) is the complex-valued STFT of the mixture
at TF bin (t, f).

Finally, the estimated source ŷj(t) is computed with the
inverse overlap-add STFT over X̂j(f, t), with the phase
spectrogram of the original mixture.

3. PROPOSED METHOD

We adapt the source separation framework described in
Section 2 to the score-informed scenario. The framework
is initialized with the gains ginitj,n (t) derived from a MIDI
score having alignment errors. Next, the resulting gains
after the NMF separation gj,n(t) are refined with a set of
image processing heuristics which we describe in the Sec-
tion 3.2. Finally, the refined gains pj,n(t) are used to reini-
tialize the framework and reiterate the separation, towards
a better result.

3.1 Score-informed gains computation

We use as input a coarsely aligned score and the associated
audio recording. The MIDI score has local misalignments
up to d frames for the onset and the offset times. Thus, we
initialize the source separation system in Section 2 with the
MIDI notes by adding d frames before the onset and after
the offset. Consequently, for an instrument j, and all the
bins in a semitone n associated with a MIDI note (Figure
1B), we set the matrix ginitj,n (t) to 1 for the frames where
the MIDI note is played as well as for the d frames around
the onset and the offset of the MIDI note. The other values
in ginitj,n (t) are set to 0 do not change during computation,
while the values set to 1 evolve according to the energy
distributed between the instruments. The final gains are
computed with the algorithm described in Section 2.4, ob-
taining gj,n(t), the gains which will be used during the note
refinement stage (Figure 1C).
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Figure 1. A. The reconstructed signal can be seen as the
product between the several harmonic components (A) and
the gains (B). After NMF, the resulting gains (C) are split
in submatrices and used to detect blobs (D).

3.2 Note refinement

The shape and contours detected in an image, and asso-
ciated with meaningful objects, are commonly known as
blobs [22, p. 248]. Additionally, if we consider the matrix
associated with a grayscale image, an image patch is any
submatrix of the corresponding matrix.

During the note refinement stage we apply image pro-
cessing on the gains matrix gj,n(t) in order to associate the
entities in an image, namely the blobs, with notes. The
chosen blobs give the onset and offset times. Additionally,
the areas of the blobs are used to reiterate the separation.

The refinement of the gains occurs for each note sep-
arately. Hence, for each note s from the input score we
choose an image patch centered at the semitone n corre-
sponding to its associated MIDI note value. Precisely, we
process a submatrix of gj,n(t), namely ǧsj,n(t), for s =
1...S, where S is the total number of notes in the score for
an instrument j. The size of submatrix ǧsj,n(t), as seen in
Figure 1D, is equal to the one of the submatrices which has
been set to 1 at the initialization for the corresponding note
s. Thus, ǧsj,n(t) has a width of two semitones and a length
corresponding to the prolonged duration of the note s.

3.2.1 Image binarization

Each image patch is preprocessed in two steps before bina-
rization. Initially, each row vector of the submatrix ǧsj,n(t)
is convolved with a smoothing gaussian filter to remove
noise and discontinuities. Then each column of the same
submatrix is multiplied with a gaussian centered at the cen-
tral frequency bin, in order to penalize the values far from
the central bin, but still to preserve vibratos or transitions
between notes.

First, we apply a smoothing filter [22, p. 86] on the
image patch. We choose a one dimension Gaussian filter:

w(t) =
1√
2πφ

e
−−t2

2φ2 (10)

where t is the time axis and φ = 3 is the standard devia-
tion . The first and the last σ elements of each row vector n
of the matrix ǧsj,n(t) are mirrored at the beginning, respec-
tively at the end of the vector. Then each row vector of
ǧsj,n(t) is convolved with w(t), and the result is truncated
in order to preserve the dimensions of the initial matrix by
removing the mirrored frames.

Second, we multiply ǧsj,n(t) with a 1-dimensional gaus-
sian centered in the central frequency bin:

v(n) =
1√
2πν

e−
(n−κ)2

2ν2 (11)

where n is the frequency axis, κ = 4 is the position of
the central frequency bin and the standard deviation ν =
4(one semitone). Then, each column vector of ǧsj,n(t) is
multiplied with v(n).

Image binarization assumes calculating a submatrix
p̌sj,n(t), associated with note s:

p̌sj,n(t) =

{
0 if ǧsj,n(t) < mean(ǧsj,n(t))

1 if ǧsj,n(t) ≥ mean(ǧsj,n(t))
(12)

3.2.2 Blob selection

For a note s we detect blobs the corresponding binary sub-
matrix p̌sj,n(t), using the connectivity rules described in
[22, p. 248] and [20].

Furthermore, we need to determine the best blob for
each note. A simple solution is to compute a score for
each blob by summing all the values in ǧsj,n(t) included
in the area associated with the blob. However, we want
to penalize parts of the blobs which overlap in time with
other blobs from different notes s − 1, s, s + 1. Basically,
we want to avoid picking the same blobs for two adjacent
notes. Thus, we weight each element in ǧsj,n(t) with a fac-
tor γ, depending on the amount of overlapping with blobs
from adjacent notes, and we build a score matrix:

q̌sj,n(t) =





γ ∗ ǧsj,n(t) if p̌sj,n(t) ∧ p̌s−1
j,n (t) = 1

γ ∗ ǧsj,n(t) if p̌sj,n(t) ∧ p̌s+1
j,n (t) = 1

ǧsj,n(t) otherwise

(13)

where γ is a value in the interval 0..1.
Note that we do not use the dynamic programming

method in [20] because the images patches are small, thus
we have to choose between very few blobs and, to that re-
spect, the Dijkstra algorithm is superfluous.

Furthermore, we compute a score for each note s and
for each blob associated with the note, by summing up the
elements in the score matrix q̌sj,n(t) which are a part of a
blob. Furthermore, the selected blob for a note s is the one
having the maximum score. The boundaries of the selected
blob give the note onset and offset. Additonally, the area
of the blob can be used to reiterate source separation.
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3.3 Extension to score informed source separation

Our assumption is that better alignment gives a more sparse
initialization of the gains gj,n(t), which limits the way en-
ergy distributes along instruments during the NMF, and
yields better source separation. Additionally, we can fur-
ther increase sparsity by knowing the frequency bound-
aries of the notes and by initializing the gains with the de-
tected blob contours. However, by limiting the areas in
the activations to the area of the chosen blobs, we discard
energy from the unchosen blobs. This energy which is dis-
carded from an instrument can be redistributed between the
other instruments by reiterating the factorization.

Let psj,n(t) be the matrices derived from the submatri-
ces p̌sj,n(t), containing 1 for the elements associated with
the selected blob for the note s and 0 otherwise. Then,
the new matrix gj,n(t) can be formed with the submatrices
psj,n(t). For the corresponding bins n and time frames f
of a note s, we initialize the values in gj,n(t) with the val-
ues in psj,n(t). Subsequently, we repeat the factorization
using the timbre-informed algorithm described in Section
2.4, this time initializing it with the refined gains. More-
over, the calculate the spectrogram of the separated sources
with the method described in Section 2.5.

4. EXPERIMENTAL SETUP

a) Time-Frequency representation: In this paper we use
a low-level spectral representation of the audio data which
is generated from a windowed FFT of the signal. A Han-
ning window with the size of 92 ms, and a hop size of 11
ms are used (for synthetic and real-world signals). Here,
a logarithmic frequency discretization is adopted. Further-
more, two time-frequency resolutions are used. First, to es-
timate the instrument models and the panning matrix, a sin-
gle semitone resolution is proposed. In particular, we im-
plement the time-frequency representation by integrating
the STFT bins corresponding to the same semitone. Sec-
ond, for the separation task, a higher resolution of 1/4 of
semitone is used, which has proven to achieve better sep-
aration results [4]. These time-frequency representations
are obtained by integrating the short-term Fourier trans-
form (STFT) bins corresponding to the same semitone, or
1/4 semitone, interval. Note that in the separation stage,
the learnt basis functions bj,n(f) are adapted to the 1/4
semitone resolution by replicating 4 times the basis at each
semitone to the 4 samples of the 1/4 semitone resolution
that belong to this semitone.
b) Dataset: We evaluate the note refinement and the source
separation on the Bach10 dataset presented in [9] and com-
prising ten J.S. Bach chorales played by a quartet (violin,
clarinet, tenor saxophone and bassoon), each piece hav-
ing the duration ≈ 30 seconds. The instruments were
recorded separately, then mixed to create a monaural au-
dio sampled at 44.1 kHz. Moreover, the Bach10 dataset
has certain traits which influence the note refinement and
source separation. For instance, the chorales present a ho-
mophonic texture which makes it more difficult when per-
forming source separation. Additionally, the results are

directly related to the tempo of the recordings [9]. For
this dataset, the tempo is slower than other classical mu-
sic pieces, there are very few notes below the quarter note
level, and we have prolonged notes, known as fermata.

The audio files are accompanied by two MIDI scores:
the perfectly aligned ground truth, and a score which has
global and local misalignments. Moreover, in order to test
the note refinement we use two datasets. The dataset disA,
proposed in [20], introduces errors for the ground truth on-
sets and offsets in the interval [100...200] ms. Addition-
ally, we plan to refine the alignment at the note level for
the score alignment method described in [5], denoted as
dataset dtwJ. The method offers solely note onset informa-
tion, therefore we use the onset of the next note as the note
offset for the current note.
c) Evaluation metrics: For score aligment, we evaluate
note onsets and offsets in terms of alignment rate, similarly
to [7], ranging from 0 to 1, defined as the proportion of cor-
rectly aligned notes in the score within a given threshold.
For source separation, the evaluation framework and the
metrics are described in [26] and [11]. Correspondingly,
we use Source to Distortion Ratio (SDR), Source to Inter-
ference Ratio (SIR), and Source to Artifacts Ratio (SAR).
d) Parameters tuning: We picked 50 number of iterations
for the NMF, and we experimentally determined value for
the beta-divergence distortion, β = 1.3.

5. RESULTS

5.1 Score alignment

We measure the aligment rate of the input score present-
ing misalignments (B), the alignment method described in
Section 3.2 (E), and the one in [20] (D), on the two datasets
”disA” and ”dtwJ”. We vary the threshold within the inter-
val [15..200]. Subsequently, in Figure 2 we present the
results for the datasets ”disA” and ”dtwJ”. The errors of
the original scores are presented with dotted and straight
black lines. For the aligned onsets, aligned rates are drawn
with dashed lines and for offsets with straight lines.

We observe that both refinement methods improve the
align rate of the scores with local misalignments (black
line). For lower threshold, the proposed method (red) im-
proves the method in [20] (blue). Moreover, considering
that offsets are more difficult to align, the proposed align-
ment outperforms the one in [20] when it comes to detect-
ing offsets, within a larger threshold.

5.2 Source separation

We use the evaluation metrics described in Section 4c. We
initialize the gains of the separation framework with dif-
ferent note information, as seen in Figure 3. Specifically,
we evaluate the perfect initialization with the ground-truth
MIDI, Figure 3(A), with the score having local misalign-
ments (disA) or the output of a score aligment system dtwJ,
Figure 3(B), the common practice of NMF gains initial-
ization in state of the art score-informed source separa-
tion [12,15,17], Figure 3(C), and the refinement aproaches:
Figure 3(D,E,F). Note that in D and E we initialize the
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Figure 2. Alignment rate for the two datasets; ”B” denotes
the score to be refined; ”E” and ”D” are the scores refined
with the methods in Section 3.2 and [20].

Figure 3. The test cases for initialization of score-
informed source separation, for the submatrix psj,n(t)

gains prior to a note refinement stage with the methods de-
scribed in [20] (refined [20]) and in the Section 3.2 (refined
time), and in F we further refine the gains as proposed in
Section 3.3 (refined time frequency).

The results for the test cases A-F, for the two datasets
disA and dtwJ are presented in Table 1 in terms of means
of SDR, SIR, SAR. Additionally, audio examples of the
separation can be listened online [1].

The proposed system F improves over the other cases in
terms of SDR, for all the input scores. Particularly, when
we refine the gains in frequency we obtain higher SIR val-
ues, hence less interference. Consequently, F yields better
results than A, the initialization with ground-truth MIDI
annotations, and than E, which is note refinement in time,
without tracking the shape of the blob. On the other hand,
the ground-truth A has better SAR values, less artifacts,
but has more interference, since F sets to zero some parts
of the gains matrix for which the energy does not get re-
distributed. Additionally, F improves over C, the implicit
initialization which extends the time span for the gains,
which is the most used approach by the state of the art
score-informed source separation algorithms when dealing
with local misalignments. On the other hand, the worse
decision is not to do any refinement, as in case B.

Moreover, F achieves better results than A-E refining
the alignment of [5] (dataset dtwJ). However, as this dataset
does not have large local misalignments, the difference be-
tween F and C, and even B, is not as high as for dataset
disA, and the improvement is not remarkable. Note that
F is better than A in this case as well, suggesting that our

dataset disA dataset dtwJ

SDR SIR SAR SDR SIR SAR

A 6.31 7.10 25.26 6.31 7.10 25.26
B 3.72 4.04 15.20 6.19 6.99 24.59
C 5.18 5.67 19.62 6.25 6.97 25.31
D 5.89 6.80 22.41 5.79 6.67 23.69
E 6.24 7.08 24.43 6.07 6.99 24.58
F 6.35 7.37 24.18 6.37 7.23 25.45

Table 1. Means of SDR, SIR, ISR for the datasets disA
and dtwJ for test cases A-F, for all the instruments

proposed method is robust with regards to different kinds
of inputs: significant local misalignments as the dataset
disA, or smaller as dataset dtwJ. Additionally, ground truth
offsets are close to the next note onsets, thus dtwJ achieves
better separation compared to disA.

Furthermore, with respect to the performance achieved
by other source separation frameworks, tested on the same
dataset [9], the results in terms of SDR are similar. The
method we propose in this paper is used with the source
separation framework [24], but can be adapted to other
NMF based frameworks. However, due to the TF repre-
sentation used in the method, even for ideal TF masks, the
separated examples might exhibit cross-talk at high fre-
quencies. This fact is reflected in the measures by lower
SIR values.

6. CONCLUSIONS

We proposed a timbre-informed note refinement method to
correct local misalignments and to refine the output of state
of the art audio-to-score alignment systems, for monaural
classical music recordings. We extended the source sepa-
ration framework proposed in [24] for the case of monoau-
ral score informed source separation by refining the gains.
The approach increases the sparseness of the gains initial-
ization, achieving better performance than the implicit ap-
proach of estimating the onset with a parametric model,
as [12,15,17], especially for input scores having large local
misalignments. Particularly, the proposed system reduces
the interference, resulting in higher SIR values. Addition-
ally, the method improves the alignment rate over the one
in [20], and is more robust because it uses meaningful tim-
bre information.

As future work, the selection of the best blob and the
binarization threshold could be included into the factor-
ization framework through the cost function. Moreover,
we plan to test our method with more complex orchestral
recordings, and for multi-channel source separation.
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ABSTRACT 
A widely distributed online survey gathered quantitative 
and qualitative data relating to the use of technology in 
the research practices of musicologists. This survey 
builds on existing work in the digital humanities and pro-
vides insights into the specific nature of musicology in 
relation to use and perceptions of technology. Analysis of 
the data (n=621) notes the preferences in resource format 
and the digital skills of the survey participants. The 
themes of comments on rewards, benefits, frustrations, 
risks, and limitations are explored using an h-point ap-
proach derived from applied linguistics. It is suggested 
that the research practices of musicologists reflect wider 
existing research into the digital humanities, and that ef-
forts should be made into supporting development of 
their digital skills and providing usable, useful and relia-
ble software created with a ‘musicology-centred’ design 
approach. This software should support online access to 
high quality digital resources (image, text, sound) which 
are comprehensive and discoverable, and can be shared, 
reused and manipulated at a micro- and macro level. 

1. INTRODUCTION 

 In the last two decades, an astonishing amount of com-
puter technologies have been created for the processing 
of digitized music and music metadata. Quite a few of 
these are targeted at musicological research. Very often, 
such software, standards, services or resources are the 
outcome of interdisciplinary collaborations between 
computer scientists, audio engineers, musicologists 
and/or library scientists. An ever-present subtext in the 
discourse around these collaborations is the potential of 
technology to transform the discipline of musicology. Yet 
the uptake of these technologies in mainstream musicolo-
gy is not widespread. As a first step in a timely systemat-
ic exploration of the area, this paper presents the results 
of a questionnaire amongst musicologists worldwide, fo-
cussing on the use or non-use of technology resources in 
their daily work processes. Gathering insights into the 
aims and values of the researchers is an important step 
towards creating a ‘musicology-centred’ design practice 
that is founded on human-centred design methods [1]. 
The key characteristic of such methods is to focus on 
human work practices and bottlenecks, and then to select 
or develop the technologies that remove these bottlenecks 
while respecting the aims and values of the humans in-

volved. Whereas human-centred approaches to systems 
design are increasingly used in digital humanities, they 
have been rarely applied to digital musicology. 

The use of modern technology in the digital humani-
ties has been widely explored in the last ten years [2-9]. 
Existing research has identified domain-specific differ-
ences between humanities and scientific researchers in 
their information behaviours. These appear to be predom-
inantly influenced by the analogue or digitised surrogate 
nature of the research objects in humanities, and the prac-
tices of humanities researchers, which are frequently 
around lone research. Research indicates that humanists 
welcome technology when it speeds up workflow [8-9], 
rely on informal peer networks, primarily access mono-
graphs, libraries and private collections, search by brows-
ing and citation chasing, and use exploratory search strat-
egies [2]. The core issue underlying technology adoption 
is thus not so much technophobia as the acceptability  and 
relevance of technology as part of the research process. 

This work sets out to explore the adoption of software 
tools by musicologists in their digital scholarship practic-
es (“the ability to participate in emerging academic, pro-
fessional and research practices that depend on digital 
systems” [10]). These tools, which allow the interrogation 
of digital musical artefacts (including music notation, 
digital audio, or contextual texts such as metadata) have 
been widely reported on and refined through the annual 
ISMIR conference. However it appears that there is some 
disconnect between this research strand and musicologi-
cal users’ needs and requirements [11-14]. Although 
some efforts are made to consider user information needs 
and behaviours [15-19], these are outweighed by a sys-
tems-centred approach to the development of new tools 
[19]. This may reflect the findings that developers deter-
mine the success of their efforts more by the performance 
of the tool than its uptake by users [5, 6]. However, in the 
words of Borgman [20]: “until analytical tools and ser-
vices are more sophisticated, robust, transparent, and 
easy to use for the motivated humanities researcher, it 
will be difficult to attract a broad base of interest within 
the humanities community.”  

Although, for example, the AHRC-funded Transform-
ing Musicology project [21] attempts to encourage closer 
collaboration between musicologists, computer scientists 
and software developers, only a few MIR projects seem 
to be based on an understanding of the work processes 
and related technology needs of musicologists [22-24]. 
Building on recent studies into the adoption of tools and 
resources by humanists [3, 4, 25], this research presents a 
large-scale investigation of the digital scholarship prac-
tices of musicologists. The results will hopefully contrib-
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ute to the development of usable systems which reflect 
work practices and attitudes of this community. 

2. METHODOLOGY 

We created an online survey named ‘What Do Musicolo-
gists Do All Day’ (WDMDAD). With this survey we 
wanted to gather data on the research musicologists do, 
how they use (or don’t use) technology in their research, 
and how they assess positive and negative aspects of 
technology. Our main purpose was to collect rich and de-
tailed stories in their responses, which we did by means 
of open-ended questions, contextualized within demo-
graphic data. We were seeking to explore behaviours and 
attitudes by encouraging the participants to communicate 
their experiences more freely than in a multiple choice 
survey. Our emphasis on rewards, frustrations, risks, 
limitations and benefits was drawn from a desire to en-
courage constructive responses of both a positive and 
negative nature, and enable us to build on previous work 
in digital humanities, particularly [4]. Though the ques-
tions are in English, we encouraged the participants to 
use their own language if they felt more comfortable this 
way. The questions are shown in Table 1. The survey ru-
bric and questions were carefully designed to encourage 
musicologists with a broad range of digital skills and ex-
perience to contribute to the survey. Responses are anon-
ymous. All participants gave informed consent in the use 
of the data they provided, following ethical guidelines of 
the researchers’ institutions. 

The survey was published online using the Opinio sys-
tem. After the final question, participants were linked to a 
Google Form, where they were given the option to leave 
contact details if they wished to be informed about the 
results or participate in follow-up research. These person-
al data were not linked to the survey responses, maintain-
ing the researchers’ commitment to anonymity of the par-
ticipants. The link to the survey was posted on various 
musicological mailing lists (including AMS, IAML (c. 
700 subscribers), ICTM, SMT, musicology-all and sever-
al national lists). To stimulate wide international partici-
pation a mailing was sent to all (c. 700) members of the 
International Musicological Society and the Society for 
Interdisciplinary Music Studies (c. 70 members). Invita-
tions to participate were circulated by national societies 
or lists in Australia, Austria, France, Germany, Nether-
lands (c. 200 members) and other countries. WDMDAD 
was mentioned a few times on social media. It is not 
known whether all participants are ‘genuinely’ musicolo-
gists, but from reviewing the responses it is clear that 
they self-identified as such. It is also possible that partici-
pation was skewed once the survey link was released ‘in-
to the wild’. Responses were collected from 4 December 
2014 until 6 March 2015. Initially, there were some tech-
nical issues in showing the link to the Google Form, 
mainly for IOS devices, resolved after a few days. As a 
consequence, some participants submitted responses mul-
tiple times. Duplicate responses were removed, as were 
responses that didn’t get beyond the first page (Q1-4). 
There was only one fake response. Reponses in languages 
other than English were translated by native speakers in 

collaboration with the research team who were able to 
provide explanatory context. The cleaned dataset re-
sponses were analysed identifying themes and patterns in 
the data, using a combination of Excel, SPSS and Nvi-
vo10. 
 
Question Response 
Q1: What is your gender? male / female / 

prefer not to say 

Q2: What is your age? choose one of 6 
categories 

Q3: Please identify your location from this 
list 

pick country 
from list 

Q4: What is your level of education? bachelor / mas-
ters / PhD / other 
(specify) 

Q5: How confident would you say you are 
using digital systems and materials to find, 
organise and analyse research materials, 
and create and disseminate your findings?  

5-point Likert 
scale (low-high) 

Q6: Where do you do your musicology re-
search? (you can choose more than one, if 
you like) 

select from 4 cat-
egories, if ‘oth-
er’, specify 

Q7: What is your speciality? (you can 
choose more than one, if you like) 

select from 11 
categories, if 
‘other’, specify 

Q8: What are you currently researching? Text 
Q9: Which is the information or music re-
source you use most in your musicology 
research and writing? 

choose one of 10 
categories, if 
‘other’, specify 

Q10: Which [Q9] do you use, why? text 

Q11: If you think you may have a prefer-
ence for using digital or physical resources 
in your work, why do you think this is? 

text 

Q12: Tell a story about a rewarding or a 
frustrating experience (or both, if you like) 
with technology in your music research. 

text 

Q13: What do you think are the risks and 
limitations of the use of technology in mu-
sicology research? 

text 

Q14: What do you think are the benefits of 
using technology in musicology research? 

text 

Table 1. Survey questions 

The full texts were imported into NVivo10 for analy-
sis. After automated removal of stop-words, the remain-
ing terms were ranked by frequency. Recognising the im-
portance of frequency in terms of identifying vocabular-
ies and enabling comparisons between texts, recent work 
in applied linguistics [26] has found some value in apply-
ing the Hirsch index (h-index) [27] citation measure ap-
proach to text analysis. The percentage of appearance of 
key terms is generally around the 1-2% level, which is 
not unusual in this type of work. Most words only appear 
once. The h-point (where term rank = term frequency) 
provides a threshold whereby important thematic words 
(autosemantics) lying above this point are considered to 
be more significant than those below the h-point. Here, as 
stop words (synsemantics) had previously been removed 
from the texts, this approach enabled the identification of 
high-ranking autosemantics which were more likely to be 
related to the theme of the text [26] and was preferable to 
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arbitrarily choosing the ‘top 10/15/20’ terms as it also en-
abled comparison between texts. Visualisations of the 
concordances of the terms in the pre-h domain were ex-
amined to provide insights into their context. This pro-
cess was repeated for each autosemantic term in the pre-h 
domain for each text (rewards, benefits, risks, limitations, 
frustrations). There were between 7,300 and 13,000 
words in each of these corpora, each containing between 
1,500 and 2,400 unique terms. 

3. FINDINGS 

3.1 Demographics  
The data presented here focus on those aspects that are 
relevant to the analysis presented in this paper. The total 
number of usable responses was 621, coming from 46 
different countries. A large majority of survey partici-
pants were from two continents: Europe (306) and North 
America (248). Around two thirds of the respondents 
(385) were from English-speaking countries. 

Responses span all career phases, with the highest rep-
resentation of the 30-39 age group (Figure 1). Females 
(314) and males (294) participated in almost equal num-
bers (13 prefer not to say). The respondents’ level of edu-
cation is high, with ‘PhD /Doctorate’ (449) and ‘Masters’ 
(129) as the largest categories. The two most important 
locations for doing research are ‘Academic institution’ 
(493) and ‘Library, archive or museum’ (197). 
 

Digital skills Count 
1 2 
2 18 
3 132 
4 256 
5 213 

Table 2. Self-evaluated level of digital skills (1=low, 
5=high; mean=4.06, n=621) 

Respondents assess their digital skills quite highly 
(Table 2) but there are considerable age differences (Fig-
ure 1). Although anecdotally there is a tendency for digi-
tal skills to decrease with age, more than half of the 70+ 
respondents rate their digital skills (DS) at 4 or 5. 

 

Figure 1. Age group and digital skills of participants 
(n=621)   

3.2 Preferred type of resource 
Respondents were asked to choose one type of preferred 
resource from a list (Table 3). Although some were reluc-

tant to make a choice, overall 319 respondents prefer dig-
ital resources, 271 prefer physical resources. Musical re-
sources, whether audio or notation, are preferred by only 
43 respondents. However, the responses to Q10 show that 
a considerable part of the archival and manuscript collec-
tions are actually researched for their musical content. 
Resource Count 
Digital books and journals 193 
Physical books and journals 188 
Digitised archives and manuscript collections 104 
Physical archives and manuscript collections 62 
Other resource 31 
Music audio on computer, phone, mobile device 15 
Music audio on tape, record, CD 12 
Physical collection of music editions 9 
Digital collection of music editions 4 
Online music audio collection 3 

Table 3. Preferred resource (n=621) 

It can be seen in Figure 2 that there appears to be a 
correlation between the preferred format and the level of 
digital skills, participants with digital skills 3 (DS3) pre-
ferring physical resources, while those with 5 (DS5) lean 
towards digital resources. 
 

 

Figure 2. Preferred information resource by digital skills 
(n=571) 

The participants were given the option to choose more 
than one speciality subject. The majority selected histori-
cal musicology. The representations in Figure 3 provide 
some insights into the self-evaluated digital skills across 
speciality. While computational and systematic musicol-
ogy shows a higher coverage of DS4 and DS5, perfor-
mance practice, historical and library / archive / museum 
research and other areas of study show a higher propor-
tion of DS1-3. 

3.3 Rewards 
For Q12, an h-point of 23 was identified. Terms from the 
pre-h domain are emboldened hereafter. (Respondent 
code in parentheses.) Access, here, is used in relation not 
only to access to the researchers’ own materials “almost 
wherever I am” (091) but more widely  to digitized pri-
mary and secondary sources such as “databases, online 
journals, digitised books, scores” (168), “newspaper ar-
chives” (201), “quality recordings” (221) and “high-
quality color images” (557). This access allows engage-
ment of a high quality: “It really makes me feel I could be 
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in a library in Italy” (270) and it is not unusual to find 
this being evaluated favourably in terms of time-saved. 
Further deep analysis through close reading of the texts of 
the concordances around these key autosemantics high-
lighted the importance to the participants of using tech-
nology to save time and increase the speed of their work-
flow: “…now I can see them all in one afternoon” (022) 
and minimize the need for travel to engage with a wide 
range of primary and secondary sources. Images of 
manuscripts, scores and digital books are considered to 
be particularly useful, while favourable mentions of li-
brary  catalogues, digital  archives, scholarly databases 
and various types of software (Sonic Visualiser, Audaci-
ty, image manipulation) also feature widely in these texts: 
“I cannot think what I would be able to do without this 
software!” (592).  

3.3 Benefits 
The process was repeated, examining the texts describing 
the participants views on the benefits of technology 
(Q14). The pre-h domain (h=35) vocabulary featured 
some similar terms to those in the ‘rewards’ texts, but in-
cluded a richer, less concentrated use of terms, reflected 
by the higher h value. This indicates there is a wider 
range of issues than in the ‘rewards’ texts. Once again, 
access was considered to be an important term in the vo-
cabulary. It creates the “potential to formulate projects or 
research questions hitherto unthinkable” (003), saving 
time and money, reducing the need for travel to visit ar-
chives and improving efficiency, enabling researchers to 
engage with up-to-date resources or materials (in the 
physical form as manuscripts or other paper-based docu-
ments, or as recordings) located globally which would 
otherwise be out of reach because of distance, cost, or the 
fragility of unique items. Downsides are recognized: “it 
can be really time consuming to separate the wheat from 
the chaff” (313) and “excess of information, lack of a 
methodology for analyzing recorded sound” (203). It is 
not only materials that are accessible: “… people, music, 
documents, can be accessed around the world” (336). 
This accessibility enables the collection and analysis of 
data“in a way which would not be possible for a human 
being” (021) which may lead to “…more accurate find-
ings, as many things can be really 'counted', not the gut 
feeling that musicologists in the past had” (039). Gather-

ing, organising, pro-
cessing, manipulating 
and analyzing data are 
key benefits for some 
members of this com-
munity: “modern tech-
nology provides new re-
search opportunities, it 
helps to work in a time-
saving way and it makes 
communication easier 
and faster.” (286). The 
ability to share research 
data, ideas and findings 

more easily is also highlighted (“whether it be in formal 
'journal' form or informal such as facebook, email, or 
texting” (249).  

3.4 Risks 
For the texts relating to ‘risks’ the h-point was 20. The 
recurring theme of access here (Q13) focuses on how 
“ the vast majority of resources have not been digitized” 
(65) and the risk of loss of knowledge (through lack of 
comprehensive digitized collections, or closed subscrip-
tions) and loss of artefacts (through failure of or devel-
opments in technology). It is suggested that “immediacy 
of access to a wide range of material encourages a rapid-
ity of response and decision” (015) which may lead to 
more superficial research and there are fears that physical 
objects may even “be overlooked” (319) leading to “priv-
ileging digital sources” (188). Some of the views on ac-
cess link to those on availability . Excessive amounts of 
available resources may lead to “complacency and over-
confidence” (052), “an incomplete and imbalanced pic-
ture” (186) or “laziness” (numerous). There is evidence 
of strong feelings in these texts that the wide availability 
of digitized resources may mean that “musicology will be 
too superficial and lose authority as a serious contribu-
tion to society” (604) and that by focusing on electronic 
journals rather than books this may lead to “apparently 
clever new historicist readings that are in fact shallow.” 
(424). This links to a strong view that technological de-
terminism is a problem: “Technology … cannot replace 
using the grey stuff between the ears” (003). While con-
cerns about the risks of losing or corrupting insufficiently 
preserved or stored data appear, there is a fear that the 
problem in concentrating on the interpretation of large 
datasets may be “that is not feasible to listen through and 
analyze. It disincentivizes selective recording” (312) and 
“need[s] to be done with extreme care” (100). The ten-
sion between digital  materials and the materiality  of 
physical sources and resources reinforces this apparent 
fear of superficiality and, particularly, incompleteness of 
research “[s]ome things cannot be gleaned from digitized 
copies only” (090). For some, digital materials are not to 
be trusted because of the “seduction” and “temptation” of 
their (inherent) “shallowness” . This is not the only view: 
“From my informatics-biased standpoint, the use of digi-
tal technology in music research is a clear net-positive as 
a way to augment and enhance traditional musicological 
approaches” (410). 

Figure 3. Percentage digital skills per speciality (n=1395) 
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3.5 Limitations  
The ‘limitations’ texts h-point was 22. The fears around 
materiality  are echoed in the comments on limitations 
(Q13), partly because increased access to the digital  
manifestation of information  objects can be seen to lead 
to decreased availability of the physical item, and those 
which have not yet been digitized are also considered to 
be unavailable. Costly subscriptions to academic journals 
(JSTOR is particularly popular) are a concern to unaffili-
ated researchers and those within academia alike (as sub-
scriptions may be limited to on-site access): “digitization 
thus increasingly creates a dichotomy of researchers” 
(337) and Open Access is not seen to successfully solve 
this issue. The requirement to have access to the Internet 
and competency in the use of technology is also seen as a 
limitation by some. The use of archives continues to re-
flect the concerns around the materiality argument and 
develops on the theme of comprehensive research prac-
tices: “Carl Ludwig's 'Repertorium Organorum' may be 
hellish to use, but it's still indispensable” (058). The op-
portunities for “serendipity” through browsing the physi-
cal library  are particularly highlighted: “Browsing in the 
digital realm is a far less productive activity than brows-
ing in library stacks” (068) and digital archives “do not 
always capture the creative process, or iterations, of ma-
terials” (420). Search for sources may be incomplete, 
“missing the surrounding context” (037) and particularly 
OCR is limited. It seems likely there is a role for librar-
ies here in terms of developing the search skills of their 
users alongside the functionality of their search interfac-
es: “I'm never certain that all bases have been covered in 
a search” (233). When speaking about primary research 
sources, again the materiality is paramount: “It is much 
easier to turn a page physically” (341) as well as authori-
ty: “Digital materials can be posted by anyone” (492). 
Although the participants generally seem happy to either 
read books online or from the shelf (with some strong 
exceptions relating to materiality, eye-strain and the ten-
dency to skim electronic materials), they are wary of the 
problems around e-books’ usability and long term access. 

3.6 Frustration 
Notable in the ’frustrations’ texts (Q12) (h-point=26) was 
the appearance of software brands, particularly Finale, 
Sibelius, Office and Word . These frustrations are im-
portant issues when considering the self-assessed digital 
skills of the participants. Despite most participants de-
scribing themselves as being 3 – 5 in digital skills, they 
are suffering from software (or programmes) being dif-
ficult to integrate with the idiosyncrasies of musical re-
search practices as well as being time-consuming to learn, 
unreliable and unnecessarily updated. Although users 
may be familiar with Linux, LaTeX and Sonic Visualiser, 
some participants are not working with modern software. 

More generally, documents here are generated by the 
researchers and may be unexpectedly reformatted in some 
way by software, while data can be ‘the bane of my ex-
istence’ (198) in terms of entering, and is easily lost or 
corrupted if it has not been backed up (an ‘annoyance’ 
(368)). Books (electronic or physical) and recordings 
can be difficult to find  because library  catalogues are not 

always intuitive, and e-books are difficult to read because 
library e-reader interfaces are ‘unfriendly’ (081) and ‘dif-
ficult to use’ (086). Hardware can create difficulties – 
computers can be ‘very old’, ‘slow’, and can ‘crash’ – 
intervention by intermediaries may be required, although 
these can be unreliable. 

Although there is an understanding that not all re-
sources have been digitized, and that material artefacts 
are still extremely important as research objects in their 
own right, there is clearly frustration that online access, 
facilitated by seamless search, is not comprehensive and 
universal. There are issues around varying levels of 
online access to digital  journals and databases caused by 
“patchy institutional subscriptions” (212) or as an out-
come of being in the field or unaffiliated researcher sta-
tus. This is compounded by problems with search. With-
in e-books or databases there is an expectation that full-
text search is readily available (and fully functional) with 
high precision (“There are a lot of bogus references to 
items .. that show up in search engines” (301)) and recall 
(“ the database search was not picking up articles/reviews 
that I knew should be there” (284)) anticipating user con-
text: “If one searches for 'organum' in the database 'Aca-
demic Search Premier' -- all sorts of medical journal ar-
ticles pop up.” (233). 

Lack of time is a big problem for these participants, 
not to be wasted on “learning software that I don’t end 
up using” (363). Infrequent use of complex software in 
research workflows leads to difficulties: “Every time I 
come back to it, it feels like I have to learn it all over 
again” (363). 

 

 

Figure 4. Key terms ranked by percentage use 

4. DISCUSSION 

On examination of the various pre h-point vocabulary 
analyses discussed above, it is clear that while the partic-
ipants are enthusiastic about the rewards and benefits of 
the use of technology in their research, they have strong 
reservations around the risks and limitations of these 
technologies, which are often realized through frustra-
tions when trying to achieve their research objectives. In 
particular the issues around access, books and sources, 
finding  and searching and time are considered to be 
both positive and negative (Figure 4).  

In Figure 5 the use of the key terms is broken up by 
digital skills of participants: the closer to the centre the 
line becomes, the less frequently the term is used. This 
data is incomplete (n=2 for DL1; n=18 for DL2) and un-
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likely to be representative (reinforced by close examina-
tion of the terms in context) and is not included here. 
However it is interesting to observe that there appears to 
be more emphasis on technical terms (software, data) by 
DL5 while the least frequently used term by DL3 is soft-
ware. Libraries  are emphasized by DL3, while sources 
are ranked lower by DL5 than by their counterparts.  

 

Figure 5. Key terms and digital skills ranked by percent-
age appearances in texts 

The general consistency in the ranking of these terms 
is notable, reinforcing the idea that there is likely to be an 
agreed vocabulary and common practices within this 
community. Also, a common set of disciplinary values 
seem to emerge from the responses, emphasising qualities 
such as completeness, depth of analysis, accuracy, relia-
bility, serendipity and the materiality of resources. It was 
observed above that musical resources were preferred by 
only a minority (7%) of the respondents. One possible 
explanation is that researchers study known musical items 
and mainly gather information about the music. However, 
many researchers study the musical content of archives 
and manuscript collections, and editing music is often 
their core activity. This relates in an interesting way to 
shortcomings that are observed in music printing software 
such as Finale and Sibelius, especially for creating schol-
arly editions of early music. Also, no tool support is re-
ported for managing editorial data. There is clearly a case 
to be made for the development of systems that support 
the entire editorial workflow.  

In summary, the (self-defined) musicologists who 
kindly took this survey and provided us with their 
thoughts clearly have access to technology (they did the 
survey online) and have positive and negative views (of-
ten held simultaneously) about its value in their research 
process. They may work unaffiliated and alone, or in an 
office with colleagues, and it is quite likely they are inter-
ested in historical or cultural musicology, or popular mu-
sic studies. They are really excited about the increased 
access afforded by digital technologies and resources but 
some are wary of how digitization may make research 
superficial, undermining the discipline. They are habitual 
readers and want context-dependent access to physical 
and digital artefacts. They use software when it contrib-
utes to their workflow, and have a range of levels of digi-
tal fluency. Respondents rated their digital skills quite 
highly. However, the problems they report with consumer 
technologies suggest that they often overrated them-
selves. Also, there are many signs of insecurity in work-
ing with digital resources. Digital methodologies are ap-

parently not yet well integrated with mainstream research 
practice. 

5. CONCLUSIONS AND FUTURE WORK 

It is suggested that the research practices of musicologists 
reflect wider existing research into the digital humanities 
and that efforts should be made into supporting the de-
velopment of their digital skills and in providing reliable 
user-centred software. This software should support 
online access to high quality digital resources (image, 
text, sound) which are comprehensive and discoverable, 
and can be shared, reused and manipulated at a micro- 
and macro level. 

In the above we have presented an initial analysis of 
the WDMDAD data, and while the size of the sample al-
lows some generalization we recognize that there are 
likely to be differences amongst sub-disciplines within 
the population. Further work will examine the data at a 
more granular level, providing better understanding of 
work practices within sub-disciplines. Resources and 
software mentioned by participants also merit attention, 
for example for creating a collection of application sce-
narios. Finally, a comparison of the vocabularies used by 
musicologists and MIR researchers to describe technolo-
gy may help to identify areas where misunderstanding 
may arise or values may clash. After completing this 
analysis, we will make the data available in a form that 
guarantees the anonymity of the participants. 

Although it is too early to know in detail what musi-
cologists do all day, we will use the findings of the 
WDMDAD survey to guide the next steps in our re-
search, which will include in-depth interviews, work with 
focus groups and co-design of prototype tools in the pur-
suit of answering this rather big question. Ultimately, we 
hope to raise the awareness of the importance of musicol-
ogy centred design, and to contribute to the systematic 
creation of usable software and resources that enhance 
(and may ultimately transform) musicological research. 
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ABSTRACT

In this paper, we evaluate a set of methods for combining
features for cover song identification. We first create mul-
tiple classifiers based on global tempo, duration, loudness,
beats and chroma average features, training a random for-
est for each feature. Subsequently, we evaluate standard
combination rules for merging these single classifiers into
a composite classifier based on global features. We further
obtain two higher level classifiers based on chroma fea-
tures: one based on comparing histograms of quantized
chroma features, and a second one based on computing
cross-correlations between sequences of chroma features,
to account for temporal information. For combining the
latter chroma-based classifiers with the composite classi-
fier based on global features, we use standard rank aggre-
gation methods adapted from the information retrieval lit-
erature. We evaluate performance with the Second Hand
Song dataset, where we quantify performance using multi-
ple statistics. We observe that each combination rule out-
performs single methods in terms of the total number of
identified queries. Experiments with rank aggregation me-
thods show an increase of up to 23.5 % of the number of
identified queries, compared to single classifiers.

1. INTRODUCTION

Recent years have seen an increased interest in cover song
recognition problems in the Music Information Retrieval
(MIR) community. Such systems deal with the problem
of retrieving different versions of a known audio query,
where a version can be described as a new performance
or recording of a previously recorded track [26]. Cover
song recognition is a challenging task because the different
renditions of a song may differ from the original work in
terms of tempo, pitch, instrumentation or singing style. It
is therefore an ongoing challenge to design features which
are robust to variation in these musical characteristics.

Several approaches have been studied for cover song
recognition problems. In existing work, retrieving cov-

c© Julien Osmalskyj, Peter Foster, Simon Dixon, Jean-
Jacques Embrechts.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Julien Osmalskyj, Peter Foster, Si-
mon Dixon, Jean-Jacques Embrechts. “Combining Features for Cover
Song Identification”, 16th International Society for Music Information
Retrieval Conference, 2015.

ers is usually done by performing pairwise comparisons
between audio queries and a reference database [10, 13,
14, 26], or by using index-based methods [2, 3, 16, 18]. A
comprehensive review of existing methods is given in [24].
All these methods are based on single chroma representa-
tion, and do not consider using multiple features. Only
few authors have considered the combination of features
and distance measures. In the work of Foster et al. [11],
multiple chroma-based distances are computed, then com-
bined after ranking distances. Similarly, in an investigation
performed by Ravuri et al. [22], the authors compute mul-
tiple chroma-based input features at multiple time scales,
and combine them using a linear model. Finally, authors
in Osmalskyj et al. [20] compare a range of methods for
combining multiple spectral features for cover song iden-
tification.

In this paper, we make a distinction between cover song
retrieval and cover song identification. In the first case,
given an audio query, the goal is to retrieve as many covers
as possible in a database. In the second case, the goal is
to extract some information about the query, similarly to
what fingerprinting systems do [27]. In that case, it is suf-
ficient to retrieve only one version of the requested song as
a human listener will act as the final expert by confirming
a match in the returned set of results. Cover song identifi-
cation covers a different set of applications, such as identi-
fication of live music, query by example, or retrieving any
information related to an unknown version.

To take into account multiple sources of musical infor-
mation, we propose to process an audio query using several
methods based on different features. First, supervised ma-
chine learning is used to build classifiers that return prob-
ability estimates of similarity based on global features, in-
cluding the tempo, the duration, the loudness, the num-
ber of beats and the average chroma features. We then
merge these classifiers using standard probabilistic fusion
rules to build a composite classifier. Then, we combine
the latter with two methods based on chroma features. The
first one is based on comparing histograms of quantized
chroma features, to take into account the harmonic content
of the songs. The second one is based on the cross-correla-
tion of chroma sequences and further accounts for tempo-
ral information. As the scores returned by all these meth-
ods have different scales, we propose to combine them at
the rank level using standard rank aggregation techniques
inspired by the information retrieval literature, especially
techniques used in web search engines [9, 21, 23]. We
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demonstrate that combining global features with chroma
based features for cover identification improves the results
over methods based on single features.

The remaining of this paper is organized as follows.
Section 2 gives an overview of our approach and describes
our methodology. Section 3 details the combination rules
evaluated throughout this research. In Section 4, we de-
scribe our experimental setup as well as the evaluation pro-
cedure. Section 5 presents the realized experiments and the
results obtained. Finally, Section 6 concludes the paper.

2. APPROACH OVERVIEW

Cover songs are different versions of underlying original
works. The notion of cover therefore closely relates to mu-
sical similarity between two songs. A cover song identifi-
cation system may therefore be conceived as measuring the
similarity between two songs to classify them into a similar
or a dissimilar class. We consider a binary notion of cover
song identity. Our approach is based on several pairwise
comparison functions called rejectors, as used in [19]. A
rejector is a functionR that takes two audio tracks as an in-
put and returns a score ranking the similarity between two
tracks. In a cover song identification scenario, one track is
the query while the other one is any track of the database.
Rejectors aim to filter out result candidates, while retain-
ing a subset of the database containing at least one match
with respect to the query.

We design several rejectors based on different features
and combine them such that the global output takes the
information brought by each rejector into account. We
make the assumption that the outputs of rejectors based
on different features are independent, and therefore con-
tribute to improving the performance of the system. We
first design multiple probabilistic rejectors based on sev-
eral global features using random forests [5]. We next de-
sign a rejector based on the quantization of chroma fea-
tures. Finally, to take into account temporal information,
we implement a rejector that computes cross-correlations
between sequences of beat synchronous chroma features.
This technique was first proposed by Ellis et al. [10] and is
used as a baseline in our research.

2.1 Probabilistic Rejectors

Previous work, performed by Osmalskyj et al. [19,20], de-
monstrates that features such as tempo, duration, or spec-
tral features perform better than random. However, as such
features are global and low-dimensional, they do not bring
much information when taken individually. Based on that
observation, we select several of these global features and
combine them in order to build a composite classifier that
takes advantage of each single feature. For each feature,
we build a probabilistic rejector using supervised machine
learning. To determine the similarity of candidates with
respect to a query, we perform pairwise comparisons using
the rejectors. Features are extracted from the tracks and
used as an input for the learned model to predict a probabil-
ity. The probabilistic rejectors are furthermore combined

using several rules to build a composite rejector.

2.2 Codebook Rejector

To take into account the harmonic content of the songs, we
build a rejector based on the quantization of chroma fea-
tures. Similar features have been used in [19] and [11].
For each track, chroma features are mapped to specific
codewords. A track is then represented by a histogram
of the frequency of each codeword, known as a bag-of-
features representation [12]. Codewords are determined
using an unsupervised K-Means clustering of 200,000 beat
synchronous and unit-normalized chroma vectors. We eval-
uated the number of codewords in the range 25 to 100. Best
performance was achieved with a clustering of 100 code-
words. To account for key transpositions, we make use
of the Optimal Transposition Index (OTI) [25] as it is a
straightforward approach that has been used in many other
investigations [1, 11, 19, 24].

The similarity between two bag-of-features representa-
tions is computed as the cosine similarity between both
histograms. We evaluated the cosine similarity against Eu-
clidean and Bhattacharyya distances, as well as a super-
vised learning based distance. However, best results were
achieved with the cosine similarity. Furthermore, the co-
sine similarity is fast to compute, especially when the input
vectors are normalized to unit norm, as it can be computed
as a simple dot product.

2.3 Cross Correlation Rejector

To take into account temporal information, we implement a
baseline algorithm, initially proposed by Ellis et al. in [10].
In that method, songs are represented by beat-synchronous
chroma matrices. Beat-tracking is used to align chromas
on detected beats. Comparing songs is then performed by
cross-correlating entire chroma-by-beat matrices. Sharp
peaks in the resulting signal indicate a good alignment be-
tween the tracks. The input chroma matrices are high-pass
filtered along time. We re-implemented existing work us-
ing a high-pass filter with the alpha coefficient set to 0.99.
To compute the cross-correlation, we used a 2-dimensional
FFT. This, on one hand, allows to find the optimal lag in
the time dimension, and on the other hand, to find the best
transposition shift along the chroma pitches. To emphasize
sharp local maxima, the resulting cross-correlation signal
is high-pass filtered. The final distance between two songs
is taken as the reciprocal of the peak value of the cross-
correlated signal.

3. COMBINING REJECTORS

The core of our method lies in the combination of rejectors.
We first build probabilistic rejectors based on global fea-
tures and combine them to produce a composite rejector.
We evaluate several probabilistic fusion rules. Then, we
combine that composite rejector with two other rejectors
based on chroma features, using rank aggregation meth-
ods. This section details both kinds of combinations.
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3.1 Score-based Combination

As stated in Section 2.1, previous work shows that rejec-
tors based on global features such as the tempo or the du-
ration of the songs do not produce satisfying results, when
taken individually. It makes therefore sense to investigate
their combination so that more information is taken into ac-
count when comparing two songs. As the global rejectors
estimate probabilities of cover identities, we evaluate sev-
eral combination rules to take advantage of each feature.
Multiple rules have been proposed as a mean of combining
probability estimates for classification [7, 8, 15]. We select
in particular the product, the sum and the median rules [15]
and evaluate the combination of our probabilistic rejectors
with them.

3.1.1 Product Rule

The probabilistic product decision rule combines the a pos-
teriori probabilities generated by the individual rejectors
by a product rule. For N rejectors, the rule is given by

p =
1

Cs
N−1

∏N
j=1Rj,s

1
Cs

N−1

∏N
j=1Rj,s +

1
Cd

N−1

∏N
j=1Rj,d

(1)

where Cs is the a priori probability of the similar class,
Cd is the a priori probability of the dissimilar class, and
Rj,s (respectively Rj,d) is the probability that the rejector
Rj considers the input tracks similar (respectively dissim-
ilar). According to [15], it is a severe rule as it is sufficient
for one rejector to inhibit a particular interpretation by out-
putting a close to zero probability for it.

3.1.2 Sum Rule

The sum probabilistic rule computes the final probability
by computing the sum of each probability and averaging it
by the number of rejectors. It is expressed as

p =
1

N

N∑

i=1

Rj (2)

where N is the number of rejectors and Rj is the probabil-
ity returned by rejector j. For a set of classifiers that show
independent noise behavior (e.g. based on different sets of
features), the errors in the probability estimates are aver-
aged by the summation [7]. In particular, the sum rule can
be useful in reducing the noise for large sets of classifiers.

3.1.3 Median Rule

The median probabilistic rule is computed by taking the
median of the individual probabilities. It is well estab-
lished that the median is a robust estimate of the mean.
The probabilistic sum in Equation 2 computes the average
of the a posteriori probabilities. Therefore, if one rejector
outputs an outlier probability, it will affect the final prob-
ability and it could lead to an incorrect decision. In that
case, it might be more appropriate to use the median rule
rather than the sum rule [15].

3.2 Rank Aggregation

While the composite global rejectors built by probabilis-
tic fusion rules output probability estimates, two remain-
ing rejectors, based on chroma features, return scores on
different scales. Consequently, the rules described in Sec-
tion 3.1 do not apply for fusing all rejectors together. As
each rejector returns a list of ordered tracks, we propose
to fuse all rejectors based on rank aggregation techniques,
adapted from the information retrieval literature. Rank ag-
gregation methods have been particularly studied in the
web literature [9, 21, 23]. Compared to score-based com-
bination, rank-aggregation is more suited as it is naturally
calibrated and scale insensitive [21]. Indeed, using the re-
turned scores requires to rescale the score values to the
same range (e.g. between 0 and 1) so that different scales
do not influence the aggregation results. Another advan-
tage of rank aggregation is that the methods are usually
computationally cheap as they usually consist in arithmetic
operations on integer ranks. Furthermore, they require none
or few parameters to set up.

In the case of cover song identification, each rejector
compares queries to the entire search database and returns
a full permutation of the database. Rank aggregation meth-
ods look at the position of each track in each list, and com-
pute an aggregated rank to be associated to each track in
the final list. A new list of results is then built by set-
ting each track at the new rank position.We evaluated three
rank aggregation rules: minimum rank, mean rank, median
rank. For each track, we retrieve its rank in each input list,
which allows us to aggregate ranks by respectively com-
puting the minimum, the mean and the median of the ranks
for each track. The final aggregated list is then sorted ac-
cording to the new rank. Details of the experiments and
the results are given in Section 5.

4. EXPERIMENTAL SETUP

4.1 Evaluation Database

For evaluation, we use the Second Hand Song dataset 1

(SHS), which is a subset of the Million Song Dataset [4]
(MSD). The SHS is organized into 5,854 cliques, which
correspond to groups of cover songs of original works.
It contains on average 3.097 versions for 5,854 original
songs. The SHS does not provide audio files, but con-
tains pre-computed features such as the tempo, the dura-
tion, the beats, the loudness and the chroma features for
18,196 tracks, which makes it suitable for our research.
Furthermore, it has been used in several research papers [3,
13,14,18], which allows us to compare our results to other
methods.

The SHS proposes a pre-defined learning set (LS) and
test set (TS), respectively containing 70% (12,960 tracks)
and 30% (5,236 tracks) of the samples. However, to evalu-
ate our method with variable LS and TS sizes, we merged
both provided sets into one large set of 18,196 songs so that
we can split it to different LS and TS sizes. Typically, since

1 http://labrosa.ee.columbia.edu/millionsong/secondhand
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Figure 1: Distribution of the size of the cliques in the SHS
dataset. Most of the cliques have a constant size of 2 or 3.
However, some cliques contain more elements. The evalu-
ation is therefore specific to that dataset as songs contain-
ing more versions will be more likely to be identified.

supervised learning algorithms such as the random forests
require a decent amount of training samples, we set the LS
to 70% and the TS to 30% of the SHS. However, to inves-
tigate how the system behaves on a larger scale, we also
experimented with a larger TS containing 10,870 tracks.
As the SHS provides a list of known duplicate tracks, we
removed them from the dataset. Note that due to the re-
moval of the duplicates, the number of cliques is reduced
to 5,828, losing 26 cliques in the process.

It should be noted that the cliques in the SHS do not
have a constant size, as can be seen in Figure 1. Although
most of the cliques contain two elements, some cliques
contain a lot more cover versions. Such songs containing
many cover versions will be more likely to be identified in
that evaluation set. The interpretation of the evaluated met-
rics remains therefore limited to the SHS dataset, as they
characterize not only the identification algorithm, but also
the dataset used to assess them.

4.2 Rejectors

Each rejector described in Section 2 makes use of the fea-
tures pre-computed in the SHS. We specifically make use
of the tempo, the duration, the loudness, the beats as well
as the chroma features. The chroma features provided in
the SHS are aligned on onsets rather than on the beats.
As our chroma rejectors make use of beat-synchronous
chroma features, we aligned the provided chromas on the
provided beats, therefore approaching the beat-aligned rep-
resentation proposed in Ellis et al. [10]. Note that in the
work of Khadkevich et al. [14], the authors computed their
own chroma features and compared them to the ones pro-
vided in the SHS. They report an improvement of 9.87% in
terms of mean average precision against the chromas pro-
vided in the SHS with their chroma extraction algorithm.
We therefore expect our method to perform better using a
different chroma implementation (compared to the results
presented in Section 5).

To account for differences in key for our probabilistic
rejector based on average chroma features, we compute the

OTI [25] between average chromas and shift one chroma
accordingly, similarly to what is done in Section 2.2 with
the codebook rejector.

For the random forest algorithm, we use both a LS con-
taining 70% of the cliques (selected at random) of the SHS,
and a LS containing 40% of the cliques to study how the
system behaves on a larger scale. A model is learned for
each feature by processing the samples of the learning set.
Note that to avoid overfitting during the learning phase,
the depth of the trees is limited and the optimal depth is
found by maximizing the area under the Receiver Oper-
ating Characteristic (ROC). The models are learned with
100 trees and with a maximal depth of 11.

4.3 Evaluation Algorithm and Metrics

For evaluation, each track of the TS is taken as a query
and compared to the remaining tracks of the TS using our
rejectors. As the results are provided for each query as a
list of tracks ordered by descending order of similarity, we
compute scores such as the Mean Rank (MR) of the first
identified cover, the Mean Reciprocal Rank (MRR) and
the Mean Average Precision (MAP) [17]. The MR cor-
responds to the mean position of the first identified query
(lower is better). The MRR is computed as the average
of the reciprocal of the rank of the first identified query
(higher is better). The MAP for a set of queries corre-
sponds to the mean of the average precision scores for each
query (higher is better). Note that since we are interested in
cover song identification rather than retrieval, we are only
interested in retrieving at least one match for each query.
Therefore, MR and MRR are more suited than the MAP as
the latter takes into account the position of all matches in
the list of results and is therefore only given as indicator.
We also report the results in terms of the number of queries
identified in top-k position, with k set to 10, 100 and 1000.
This metric is also used in the MIREX evaluation [6].

5. RESULTS

5.1 Combining global rejectors

To investigate the behavior of probabilistic combination
rules, as presented in Section 3.1, we combined our proba-
bilistic rejectors based on global features using the product
rule, the sum rule and the median rule. We first analyzed
how each single rejector behaves on an evaluation database
containing 5,464 tracks, compared to random classifica-
tion. For the latter case, we simply built a rejector that
outputs a probability sampled at random from a uniform
distribution. Figure 2 shows curves corresponding to each
rejector. Examination of the curves of the single rejectors
shows that the rejector based on average chroma features
performs better than the others (+92.5 % for top-10 and
+18.5 % for top-100 compared to tempo). The tempo,
beats and duration rejectors have similar curve shapes and
perform similarly when taken individually. The composite
median rule (in dark bold), obtained by fusing all single re-
jectors using the rule described in Section 3.1.3, performs
better than the individual rejectors. In terms of the number
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Figure 2: Single rejectors based on global features and
composite rejector resulting from the probabilistic median
combination rule, with an evaluation set of 5,464 tracks.
The composite rejector outperforms any single rejector.

of tracks identified in the top-10, 100 and 1000, there is an
improvement of respectively 62.5 %, 43.7 % and 16.4 %,
compared to the average chroma rejector. In terms of MR
and MRR, the composite rejector improves the scores by
24.9 % and 63.2 % respectively. To establish how all com-
bination rules behave, Figure 3 displays the curves corre-
sponding to each rule. Overall, all rules behave similarly.
Zooming in the lower left corner (higher cutoff), the sum
rule outperforms the product and the median. Compared to
the median, the number of tracks identified in the top-5000
(lower-left area) is increased by 0.39% (5,419 tracks over
5,398). Similarly, the product rule outperforms other rules
in the upper right corner (lower cutoff), with an increase of
24 % and 4 % for the top-10 and top-100 over the median
rule. Our final choice is the median rule, as it produces a
MR of 979.6 compared to 1127 and 1090 with the sum and
product rules respectively.

5.2 Rank aggregation results

We combined the composite rejector based on global fea-
tures with chroma based rejectors based on the quantiza-
tion of chroma features and based on the cross correlation
of chroma sequences. The three rank aggregation methods
described in Section 3.2 are evaluated. We first report the
results on a TS containing 30% of the SHS samples con-
taining 1,745 cliques and 5,464 queries. Table 1 shows the
number of queries identified in the top 10, 100 and 1000
for each single rejector and for each aggregation rule. Ex-
amining the results, we observe that each aggregation rule
outperforms each single rejector. Best results for the top-
10 returned tracks are achieved with the minimum aggre-
gation rule. The number of identified tracks in the top-10
goes from 871 with the cross correlation rejector to 1004
with the minimum rule, which corresponds to an improve-
ment of 15.2%. Best results for the top-100 and top-1000
returned tracks are both achieved with the mean rule, with
improvements of respectively 23.5% and 7.19%. Figure 4
shows the performance of the minimum rank aggregation
rule against each single rejector. The zooms in the lower
left and upper right corners indicate that the aggregated

Top Proba Cluster XCorr Min Mean Median

10 169 560 871 1004 972 916

100 1064 1731 1523 2042 2139 2113

1000 3732 3931 3386 4177 4214 4129

Table 1: Results for a TS of 1745 cliques and 5,464 tracks.
Rank aggregation combinations increase the number of
identified queries for each rule.

Proba Cluster XCorr Min Mean Median

MR 979.6 861.4 1166 718.3 704.3 749.5

MRR 0.016 0.059 0.122 0.107 0.112 0.104

MAP 0.008 0.027 0.067 0.055 0.059 0.054

Table 2: Results for a TS of 1745 cliques and 5,464. Each
rank aggregation combination outperforms single rejectors
in terms of the Mean Rank (MR).

rejector performs better across the whole range of cutoff
values. We also report the standard metrics (described in
Section 4.3) in Table 2. Surprisingly, the MRR and MAP
values are slightly decreased when compared to the best
performing single rejector (cross-correlation, XCorr in the
table). This might be due to the fact that when we aggre-
gate the lists of results (Section 3.2), several tracks can be
ranked at the same position. This might therefore affect
the metrics. Note however that in terms of the Mean Rank,
each combination outperforms each single rejector.

To establish how the aggregated rejectors scale on a
larger dataset, we evaluated it on a TS containing 60% of
the samples of the SHS. The LS used for learning the prob-
abilistic rejectors is therefore smaller (40%) and produces
decreased performance for the machine learning models
built with random forests. That new TS contains 10,870
tracks, and is chosen to approach the size of the original
SHS training set (12,960 tracks), to compare our results to
results proposed in existing research papers [2,13,14]. We
further increased the size of the TS by decreasing the size
of the LS to 30% and 20% of the SHS. However, the pro-
duced results with the probabilistic rejectors showed worse
performance, due to the lack of enough learning samples
for the random forest algorithm. Table 3 shows the results
of our method against existing work. Note that care should
be taken while reading these results as our probabilistic
models do not perform as well as with a larger LS, and as
the sizes and the contents of both evaluation databases dif-
fer. In terms of the MR, our method is ranked at the second
position.

6. CONCLUSION

In this paper, we evaluated multiple techniques for com-
bining distances and features for cover song identification.
We first made use of random forests to design probabilistic
rejectors based on global features. We evaluated several
standard combination rules such as the sum, the product
and the median rules to build a composite rejector. Results
show that combining single rejectors based on global fea-
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Figure 3: Performance of the probabilistic sum, product and median combination rules to build a composite rejector based
on multiple global features. The second figure is a zoom of the left lower part (high cutoff). The sum rule performs slightly
better in that area. The third figure is a zoom of the upper right area. The product rule performs slightly better there.
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Method MR MAP

Khadkevich et al. [14] 958.2 0.10

Rank Aggregation (10,870 tracks) 1,455.6 0.048
Bertin-Mahieux et al. 2D-FTM (200 pcs) [3] 3,005 0.09

Humphrey et al. [13] 1,844 0.28

Table 3: Comparison of the rank aggregation method
against existing methods evaluated on the SHS original
training set. Care should be taken when reading the results
as the original SHS training set contains 12,960 songs, and
our subset contains 10,870 tracks sampled from the SHS.

tures improves the performance compared to single clas-
sifiers. We proposed to combine the composite rejector
based on global features with rejectors based on chroma
features. To take into account the harmonic content of
the songs, we introduced a rejector based on comparing
histograms of quantized chroma features. To account for
temporal information, we further implemented a baseline
rejector performing cross-correlations between sequences
of chroma features. As all these rejectors return values
on different scales, we proposed to combine them at the
rank level. We evaluated several rank aggregation meth-
ods such as the mean, the median and the minimum ag-
gregation rules. We conducted experiments on the Second

Hand Song dataset and observed that aggregation meth-
ods outperform methods in isolation for cover song identi-
fication. Results are provided in terms of standard metrics
such as the mean rank of the first match, the mean recip-
rocal rank and the mean average precision, as well as in
terms of the total number of queries identified in the top-k
results. Compared to single rejectors, the minimum ag-
gregation rule shows an improvement of up to 23.5 % of
the number of queries identified in the top-100 returned
tracks. Comparing our results to existing work, we observe
that our method does not perform as well as other methods
in terms of mean average precision. However, in terms
of mean rank of the first identified query, the results are
comparable to related methods and rank our method at the
second position. Although our method does not produce
state-of-the-art results, we showed that aggregating multi-
ple features and distance measures does increase the num-
ber of identified queries. These results suggest that com-
bining many other features as well as multiple comparison
algorithms could lead to significant improvements in any
cover song identification system. Future work therefore in-
cludes more experiments with features taking into account
e.g. the melodic line of the songs, or structural informa-
tion. In any case, many combining experiments should still
be performed to improve state-of-the art results.
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ABSTRACT

One challenge in score following (i.e., mapping audio frames
to score positions in real time) for piano performances is
the mismatch between audio and score caused by the us-
age of the sustain pedal. When the pedal is pressed, notes
played will continue to sound until the string vibration nat-
urally ceases. This makes the notes longer than their no-
tated lengths and overlap with later notes. In this paper,
we propose an approach to address this problem. Given
that the most competitive wrong score positions for each
audio frame are the ones before the correct position due to
the sustained sounds, we remove partials of sustained notes
and only retain partials of “new notes” in the audio repre-
sentation. This operation reduces sustain-pedal effects by
weakening the match between the audio frame and previ-
ous wrong score positions, hence encourages the system to
align to the correct score position. We implement this idea
based on a state-of-the-art score following framework. Ex-
periments on synthetic and real piano performances from
the MAPS dataset show significant improvements on both
alignment accuracy and robustness.

1. INTRODUCTION

1.1 Audio-Score Alignment

Audio-score alignment is the problem of aligning (syn-
chronizing) a music audio performance with its score [8].
It can be addressed either offline or online. Offline algo-
rithms may “look into the future” when aligning the current
audio frame to the score. Online algorithms (also called
score following), on the other hand, may only use the past
and current audio data to align the current audio frame to
the score. Provided with enough computational resources,
online algorithms can be applied in real-time scenarios.
As online algorithms utilize less input data than offline al-
gorithms, they can support broader applications including
those in offline scenarios. However, they are also more
challenging to achieve the same alignment accuracy and
robustness as offline algorithms do.

c© Bochen Li, Zhiyao Duan. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Bochen Li, Zhiyao Duan. “Score Following for Piano Perfor-
mances with Sustain-Pedal Effects”, 16th International Society for Music
Information Retrieval Conference, 2015.

Audio-score alignment has many existing and poten-
tial applications. Offline algorithms have been used for
audio indexing to synchronize multiple modalities (video,
audio, score, etc.) of music to build a digital library [28].
Other applications include a piano pedagogical system [3]
and an intelligent audio content editor [11]. Online algo-
rithms further support online or even real-time applica-
tions, including automatic accompaniment of a soloist’s
performance [8], automatic coordination of audio-visual
equipment [18], real-time score-informed source separa-
tion and remixing [11], and automatic page turning for mu-
sicians [1]. Potential applications of audio-score alignment
include musicological comparison of different versions of
musical performances, automatic lyrics display, and stage
light/camera management.

1.2 Related Work

In this section, we briefly review existing approaches to
audio-score alignment with an emphasis on score follow-
ing for piano performances, which is the problem addressed
in this paper.

Audio-score alignment has been an active research topic
for two decades. Early researchers started with monophonic
audio performances. Puckette [25], Grubb and Dannen-
berg [16], and Cano et al. [4] proposed systems to follow
vocal performances. Orio and Dechelle [23] used a Hid-
den Markov Model (HMM)-based method to follow dif-
ferent monophonic instruments and voices. Raphael [26]
applied a Bayesian network to follow and accompany a
monophonic instrument soloist.

For polyphonic audio, a number of offline systems using
Dynamic Time Warping (DTW) have been proposed for
different kinds of instruments, including string and wind
ensembles [24] and pop songs [17]. For online algorithms,
Duan and Pardo [12] proposed a 2-dimensional state space
model to follow an ensemble of string and wind instru-
ments. All the abovementioned methods, however, have
not been tested on piano performances.

There are a few systems that are capable of aligning pi-
ano performances. Joder and Schuller [20] proposed an
HMM system with an adaptive-template-based observa-
tion model to follow piano performances. In [19], Joder
et al. further improved the system by exploring different
feature functions for the observation model and using a
Conditional Random Field (CRF) as the alignment frame-
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work. Wang et al. [29] employed DTW to achieve align-
ment in three passes of the audio performance and used
score-driven NMF to refine the audio and score representa-
tions in later passes. All the abovementioned systems have
been systematically evaluated and shown with good perfor-
mance on about 50 classical piano performances from the
MAPS dataset [14], however, they are offline algorithms
and require the entire audio piece to find the alignment.
Dixo and Widmer [10] developed a toolkit to align differ-
ent versions of music audio performances including piano
based on an efficient DTW algorithm. However, this is
again an offline algorithm, although an extension to online
scenarios can be made through online DTW algorithms [9].

For online algorithms capable of following piano per-
formances, Cont [5] proposed a hierarchical HMM approach
with Nonnegative Matrix Factorization (NMF). However,
this system was not quantitatively evaluated. Later, Cont
[6] proposed another probabilistic inference framework with
two coupled audio and tempo agents to follow general poly-
phonic performances. This algorithm has been systemati-
cally evaluated on 11 monophonic and lightly polyphonic
pieces played by wind and string instruments, but just 1
polyphonic piano performance (a Fugue by J.S. Bach).

1.3 Our Contribution

In this paper, we are interested in following piano perfor-
mances. Their specific properties, such as sustain pedal
effects, the sympathetic vibration of strings, and the wide
pitch range, may impose challenges to systems that are de-
signed to follow ensembles of voices, strings, and wind in-
struments. In particular, we argue that the sustain-pedal ef-
fects are especially challenging. When the pedal is pressed,
notes played will continue to sound until the string vibra-
tion naturally ceases. This makes the notes longer than
their notated lengths and overlap with later notes, which
causes potential mismatch between audio and score.

Note that Niedermayer et al. reported negligible influ-
ence of sustain-pedal effects on alignment results in their
experimental study on audio-score alignment [22]. How-
ever, they further reasoned that this might be because the
dataset used for evaluation contains only Mozart pieces, in
which “the usage of pedals plays a relatively minor role”.
In fact, the sustain pedal has been commonly used since
the Romantic era (after Mozart) in the Western music his-
tory, and is widely used in modern piano performances of
many different styles. Another reason for Niedermayer et
al.’s observation, we argue, is that the algorithm used for
evaluation was an offline algorithm, which is more robust
to the local mismatch between audio and score as a global
alignment is employed. For online algorithms, however,
they are more sensitive to local audio-score mismatch and
they can be totally lost during the following process.

In this paper, we build a system to follow piano per-
formances, based on the state-space framework proposed
by Duan and Pardo [12]. More specifically, we propose
an approach to deal with the mismatch issue caused by
sustain-pedal effects. In each inter-onset segment of the
audio, we remove partials of all notes extended from the

previous segment and only retain partials of the new notes.
This operation reduces sustain-pedal effects by weakening
the match between an audio frame and the previous wrong
score positions, which are the most competitive wrong can-
didates. But we need to mention another case that the
match between this audio frame and the current correct
score position may be also reduced, if notes in previous
frames are actually extended because they are not released
yet according to the score instead of due to the sustain
pedal. Nevertheless, as explained in detail in Section 3.4,
this operation still favors the correct position even in this
case. We conduct experiments on 25 synthetic and 25 real
piano performances randomly chosen from the MAPS dataset
[14]. Results show that the proposed system significantly
outperforms the baseline system [12] on both alignment
accuracy and robustness.

2. SYSTEM FRAMEWORK

We build our system based on the state-space model pro-
posed in [12], which follows polyphonic audio with its
score. Music audio is segmented into time frames and fed
into the system in sequence. Each frame yn is associated
with a 2-dimensional state vector sn = (xn, vn)T , repre-
senting its underlying score position (in beats) and tempo
(in beats-per-minute), respectively. The goal of score fol-
lowing is to infer the score position xn from current and
previous audio observations y1, · · · ,yn. This is formu-
lated as an online inference problem of hidden states of a
hidden Markov process, which is achieved through particle
filtering. The hidden Markov process contains two parts: a
process model and an observation model.

The process model describes state transition probabili-
ties p(sn | sn−1) by two dynamic equations for xn and vn,
respectively. The score position advances from the previ-
ous position according to the tempo. The tempo changes
through a random walk or does not change at all, depend-
ing on where the position is.

The observation model p(yn | sn) evaluates the match
between an audio frame and the hypothesized state on the
pitch content. A good match is achieved when the audio
frame contains exactly the pitches described on the score
at the hypothesized score position in the state. Otherwise, a
bad match is achieved. This is calculated using the multi-
pitch likelihood model proposed in [13], which evaluates
the likelihood of a hypothesized pitch set in explaining the
magnitude spectrum of an audio frame.

The multi-pitch likelihood model detects prominent peaks
in the magnitude spectrum of the audio frame and repre-
sents them as frequency-amplitude pairs:

P = {〈fi, ai〉}Ki=1, (1)

whereK is the total number of peaks detected in the frame.
The likelihood would be high if the harmonics of the hy-
pothesized pitch set match well with the detected peaks
in terms of both frequency and amplitude. The likelihood
would be low otherwise, for example, if many harmonics
are far away from any detected peak.
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3. PROPOSED METHOD

3.1 Properties of Piano Music

There are many specific properties of piano music, such as
the wide pitch range and the inharmonicity of note partials.
In this section, we discuss two properties considered in the
proposed approach: strong onset with exponential decay of
the note waveform, and the sustain-pedal effects.

Figure 1. Waveform and energy envelope of a piano note.

Figure 1 shows the waveform and energy envelope of
a piano note. We see a sudden energy increase at the on-
set followed by an exponential decay. When a piano key
is pressed, its damper is released and its hammer strikes
the strings, which yields an impulse-like articulation. The
damper continues to be released as the key is being pressed.
This lets the string vibration decay naturally, which may
take as long as 10 seconds. The damper comes back to
the strings when the key is released, and the string vibra-
tion ceases quickly. However, when the sustain pedal is
pressed, all dampers of all keys are released no matter if a
key is pressed or not. This allows all active notes to con-
tinue to sound, and even activate some inactive notes due to
sympathetic vibrations, which enriches the sound timbre.

Figure 2. Mismatch between audio and score caused by
the sustain-pedal effects.

A detailed analysis of the sustain-pedal effects is given
by Lehtonen et al. in [21]. Here we focus on its resulted
mismatch problem between audio and score. Figure 2 shows
the MIDI score (in pianoroll) and waveforms of four notes.
According to the score, the first two notes are supposed to
end when the latter ones start. However, due to the sustain
pedal, the waveforms of the first two notes are extended

into those of the latter. This causes potential mismatch be-
tween the audio and the score, especially in frames right
after the onset of the latter notes. In other words, the audio
is unfaithful to the score in those frames. The degree and
the length of the unfaithfulness, however, is not notated in
the score. It depends on the the notes being played as well
as how hard the performer presses the pedal. If the pedal
is pressed partially, then the damper will slightly touch the
strings and the effects are slighter. While some composers
and music editors use pedal marks to notate it, appropriate
use of the sustain pedal is more often left to the performer.

The main idea of the proposed approach to deal with
the sustain-pedal effects is to first detect audio onsets to
locate the potentially unfaithful frames. Then partials of
the extended notes are removed in the peak representation
of these frames. We describe the two steps in the following.

3.2 Onset Detection

Although not all frames right after an onset are unfaith-
ful, as notes could be extended because their keys are still
pressed according to the score, many unfaithful frames do
appear right after onsets. Therefore, onset detection helps
to locate potentially unfaithful frames. Many onset detec-
tion methods have been proposed in the literature [2]. In
this paper, we adopt the widely used spectral-based ap-
proach, since it is effective for polyphonic signals. We
adapt it to online scenarios for our score following system.

Figure 3. Illustration of onset detection. (a) Spectrogram.
(b) Spectrogram after compression. (c) Spectral flux. (d)
Normalized spectral flux by signal energy.

Figure 3 illustrates the onset detection process. We first
calculate the audio magnitude spectrogram Y(n, k) through
Short-time Fourier Transform (STFT) in Figure 3(a), where
n and k are frame and frequency bin indices, respectively.
We then apply logarithmic compression on it to enhance
the high-frequency content by

Ỹ(n, k) = log (1 + γ ·Y(n, k)) , (2)

where γ controls the compression ratio. This is because
high frequency content is indicative for onsets but rela-
tively weak in the original spectrogram [27]. Figure 3(b)
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shows the enhanced magnitude spectrogram with γ = 0.2.
We then compute the spectral flux ∆Y(n) by summing
positive temporal differences across all frequency bins as

∆Y(n) =
∑

k

∣∣∣Ỹ(n, k)− Ỹ(n− 1, k)
∣∣∣
≥0
, (3)

where |·|≥0 denotes half-wave rectification, i.e., keeping
non-negative values while setting negative values to 0. The
calculated spectral flux is shown in Figure 3(c). We can see
that all onsets in the example are associated with a clear
peak, however, peak heights vary much. Spurious peaks
in the middle of louder notes are as high as true peaks of
softer notes. One could set an adaptive threshold which
varies with the moving average of the spectral flux, but this
would make the onset detection algorithm offline. Instead,
we normalize the spectral flux by the energy of the audio
signal in the current frame by

∆̃Y(n) = ∆Y(n)/E(n), (4)

where E(n) is the Root-Mean-Squre (RMS) value of the
n-th frame of the audio. After this operation, a simple
threshold can detect the onsets, as shown in Figure 3(d).

Note that onset detection has been used in several on-
line [5] and offline [15] alignment algorithms, where a spe-
cial matching function is used to match audio and score
onsets. In our system, however, onset detection is to locate
potentially unfaithful audio frames. Their audio represen-
tations are modified but no special matching function is
defined.

3.3 Reduce Pedal Effects by Spectral Peak Removal

Frames within a period after a detected onset are poten-
tially unfaithful frames due to the sustain pedal. Conser-
vatively, without knowledge of the degree and length of
the effects, we just reduce them in the first 200ms (i.e.,
20 frames) following an onset. As described in Section 2,
each audio frame is represented by a set of significant spec-
tral peaks in Eq. (1). The match between the audio frame
and a hypothesized score location is evaluated through the
multi-pitch likelihood model on how well the harmonics of
the score notes match with spectral peaks in the audio. As
the spectrum of an unfaithful audio frame contains unex-
pected peaks corresponding to partials of notes extended
by the sustain pedal, we propose to remove these peaks to
reduce the mismatch between audio and score.

Figure 4 illustrates the idea. For each potentially un-
faithful frame (e.g., the n-th frame), we compare its spec-
tral peaks with those in a frame before the onset (e.g.,
the m-th frame), and remove peaks that seem to be ex-
tended from the earlier frame. Let Pm = {〈fmi , ami 〉}Km

i=1

be the total Km peaks detected in the m-th frame, and
Pn =

{〈
fnj , a

n
j

〉}Kn

j=1
be the totalKn peaks detected in the

n-th frame. A peak in the n-th frame whose frequency is
very close to and whose amplitude is smaller than those of
a peak in the m-th frame is considered as an extension and
is removed. Note that repeated notes will not be removed
in this way as the amplitude criterion is not met. Extended

Figure 4. Illustration of the spectral peak removal idea. (a)
Audio performance representation before and after peak
removal. (b) Magnitude spectra with spectral peaks in the
m-th and n-th frames. Peaks marked by crosses corre-
spond to the first two notes. Peaks marked by circles cor-
respond to the latter two notes.

partials that are overlapped with a partial of a new note
will not be removed either due to the same reason. Af-
ter peak removal, a new spectral peak representation of the
n-th frame is obtained as

P∗
n = Pn−

{
〈fni , ani 〉 : ∃j s.t. |fni − fmj | < d, ani < amj

}
,

(5)
where 〈fni , ani 〉 ∈ Pm. d is the threshold for the allowable
frequency deviation, which is set to a quarter tone in this
paper. Finally, the match between the n-th frame and a hy-
pothesized score position is evaluated through the multi-
pitch likelihood of score-indicated pitches in explaining
the modified peak representation of the spectrum. Note
that this operation only modifies the peak representation of
the audio instead of the audio itself.

The peak removal operation emphasizes new notes in
the representation and discards old ones. This is in accor-
dance to music perception, as we always pay more atten-
tion to new notes even though the old notes are as loud.

3.4 New Mismatch Introduced by Peak Removal

The peak removal operation removes notes extended by the
sustain pedal in the audio representation, however, it also
removes notes that should remain according to the score,
e.g, D4 in Figure 5(a). This causes new mismatch between
audio and score. Ideally, we could differentiate these two
kinds of notes from the note offset information in a well-
aligned score, which we do not have during score follow-
ing. Nevertheless, we explain in the following that the new
mismatch actually still helps with score following.
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Figure 5. Illustration of mismatch reduced and introduced
by the peak removal operation. (a) MIDI score and its
piano-roll representation. (b) Audio performance repre-
sentation before peak removal. (c) Audio performance rep-
resentation after peak removal.

Figure 5 illustrates the mismatch reduced and introduced
by the peak removal operation. A MIDI score with two
inter-onset segments α1 and α2 is shown in Figure 5(a).
Notes 1 and 2 are supposed to end when Notes 4 and 5
start, while Note 3 is supposed to span both segments. For
an audio frame right after the onset (e.g., the n-th frame)
in Figure 5(b), we can see that it contains all the five notes,
including Notes 1 and 2 due to the sustain pedal. It is
therefore unfaithful to the correct segment α2 in the score.
Which segment is a better match to this audio frame? Out
of the 5 notes in the n-th frame, α1 contains 3 (Notes 1,
2, and 3) and α2 also contains 3 (Notes 4, 5, and 3). The
correct segment α2 does not show a better match than α1.

Suppose the audio onset of Note 4 and 5 is detected,
then the peak removal operation will remove spectral peaks
corresponding to Notes 1, 2, and 3 in the n-th frame. The
mismatch between the n-th frame and the correct segment
α2 due to the sustain pedal is reduced, while new mis-
match is introduced as Note 3 is supposed to stay in α2 in
the score but is removed in the audio. This leaves 2 notes
(Notes 4 and 5) shared by the score and the audio, although
the score has 1 more note (Note 3). The mismatch between
the n-th frame and α1, on the other hand, is increased sig-
nificantly. There becomes no intersection at all between
notes remained in the n-th frame (Notes 4 and 5) and notes
in α1 (Notes 1, 2, and 3). Therefore, the correct segment
α2 is clearly a better match to the n-th frame.

In general, the peak removal operation may introduce
mismatch between an audio frame and its correct score lo-
cation as it may remove peaks that are supposed to stay,
but the mismatch between the audio frame and the previ-
ous wrong score location will be increased much more. In
fact, there will be no match at all. This is true even if all
notes in α1 stay in α2 according to the score. Therefore,
the mismatch introduced by the peak removal operation is
not harmful to but actually helps with score following.

In Figure 5, we only consider the previous segment α1

as a wrong segment to compete with α2. This is because
it is the most common error caused by the sustain pedal
in score following. The peak removal operation, however,
can help eliminate non-immediate segments that are prior
to the current segment as well.

4. EXPERIMENTS

4.1 Data Set and Evaluation Measures

We use the MAPS dataset [14] to evaluate the proposed
approach. In this dataset, performers first play on a MIDI
keyboard, then the MIDI performances are rendered into
audio by a software synthesizer or a Yamaha Disklavier.
The former are synthetic recordings while the latter are real
acoustic recordings. Both have exactly the same timing as
the MIDI performances. We randomly select 25 synthetic
pieces and 25 real pieces from the dataset. The synthetic
pieces simulate the “Bechstein D 280” piano in a con-
cert hall, and the real pieces are recorded with an upright
Disklavier piano. Approximately 18 synthetic pieces and
10 real pieces are played with substantial sustain pedal us-
age. We then download their MIDI scores from http://
piano-midi.de/. Note that the MIDI performances
have minor differences from the MIDI scores besides their
tempo difference. These include occasionally missed or
added notes, different renderings of trills, and slight desyn-
chronization of simultaneous notes. We therefore perform
an offline DTW algorithm to align the MIDI performances
to the MIDI scores and then manually correct minor errors
to obtain the ground-truth alignment.

We calculate the time deviation (in ms) between the
ground-truth alignment and the system’s output alignment
of the onset of each score note. This value ranges from 0ms
to the total length of the audio. We define its average over
all notes in a piece as the Average Time Deviation (ATD).

We also calculate the Align Rate (AR) [7] for all pieces.
It is defined as the percentage of correctly aligned notes,
those whose time deviation is less than a threshold. Com-
monly used thresholds range from 50ms to 200ms depend-
ing on the application. For an automatic accompaniment
system, a deviation less than 50ms would be required, while
for an automatic page turner, 200ms would be fine.

4.2 Implementation Details

Our score following system is built upon the system pro-
posed in [12], whose source code can be downloaded at
the authors’ website. We therefore take it as the baseline
system for comparison. We use the authors’ original code
and parameter settings in both the baseline system and the
proposed system. The multi-pitch likelihood model in [12]
was trained on thousands of randomly mixed chords using
notes of 16 kinds of Western instruments excluding piano.
We stick with this model in the proposed system for a fair
comparison. For unique parameters of the proposed sys-
tem, we set γ to 0.2 in Eq. (2), the threshold in Figure 3
to 225, the length of unfaithful region to 200ms after each
detected onset, the frame to compare with to the 5-th frame
before the onset, and the peak frequency deviation d in Eq.
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(5) to a quarter tone. All these parameters are fixed for
all pieces. Due to the probabilistic nature of the baseline
system and the proposed system, we run 10 times of each
system on each piece for the comparison.

4.3 Results

(a) The 25 synthetic pieces.

(b) The 25 real pieces.

Figure 6. Align Rate comparisons between the baseline
[12] (grey) and the proposed (white) systems using differ-
ent time deviation tolerrances. Numbers above the figures
show medians of the boxes.

Figure 6 shows box plots of align rates of the two sys-
tems with different onset deviation tolerance values on both
synthetic and real pieces. Each box in Figure 6(a) repre-
sents 250 data points (10 runs on 25 pieces) and each box
in Figure 6(b) represents 250 data points. We can see that
for the synthetic pieces, the median align rate is signifi-
cantly improved for all tolerance values. The dispersion of
the distribution is also significantly shrunk, making the im-
provement on some low-performing piece-runs especially
significant. For the real pieces, the median align rate is sig-
nificantly improved for all tolerance values except 200ms.
The dispersion of the distribution is shrunk significantly
for all tolerances except 50ms. This shows that the pro-
posed approach improves the alignment accuracy and ro-
bustness significantly on both synthetic and real pieces.
The improvement on synthetic pieces is more remarkable
because there are more synthetic pieces with a substantial
pedal usage. However, the proposed system also has more
low-performing outliers on the real pieces, some of which
correspond to piece-runs when the system is lost.

Figure 7 compares the Average Time Deviation (ATD)
between the two systems on all piece-runs. Again, each
box in the synthetic setting contains 250 points and each
box in the real setting contains 250 points. We can see

Figure 7. Average time deviation comparison between the
baseline [12] and the proposed system. Outliers that ex-
ceed 500ms are not shown in this figure. Several outliers
are higher than 3 seconds. Numbers above the figure show
medians of the boxes.

that the median ATD in both cases is reduced by the pro-
posed system. The reduction on the synthetic pieces is
even more significant. The dispersion of the distribution is
also shrunk significantly, reducing the worst ATD (exclud-
ing outliers) from 200-300ms to the range under 200ms.
After the improvement, a fair amount of synthetic and real
piece-runs have ATD under 50ms, which would enable real-
time applications such as automatic accompaniment.

Examples of alignment results can be found at
http://www.ece.rochester.edu/users/
bli23/projects/pianofollowing.

5. CONCLUSIONS

In this paper we proposed an approach to follow piano per-
formances with sustain-pedal effects. The usage of the
sustain pedal extends notes even if their keys have been
released, hence causes mismatch between audio and score,
especially in frames right after note onsets. To address this
problem, we first detect audio onsets to locate these po-
tentially unfaithful frames. We then remove spectral peaks
that correspond to the extended notes in these frames. This
operation reduces the mismatch caused by the sustain-
pedal effects at the expense of introducing potential new
mismatch caused by the removal of notes whose keys have
not been released. However, we analyzed that this opera-
tion still helps the system to favor the correct score position
even in this case. Experimental results on both synthetic
and real piano recordings show that the proposed approach
improved the alignment accuracy and robustness signifi-
cantly over the baseline system.

For future work, we plan to consider other specific prop-
erties of piano music to improve the alignment perfor-
mance. For example, alignment of audio and score onsets
can provide “anchors” for the alignment, and we can define
a special matching function that models the transient-like
property to align onsets. In addition, for the sustain part,
a time-varying matching function that considers the expo-
nential energy decay would improve the alignment accu-
racy within a note.
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ABSTRACT 

Most of the previous literature on music users’ needs, 

habits, and interactions with music information retrieval 

(MIR) systems focuses on investigating user groups of 

particular demographics or testing the usability of specif-

ic interfaces/systems. In order to improve our understand-

ing of how users’ personalities and characteristics affect 

their needs and interactions with MIR systems, we con-

ducted a qualitative user study across multiple commer-

cial music services, utilizing interviews and think-aloud 

sessions. Based on the empirical user data, we have de-

veloped seven personas. These personas offer a deeper 

understanding of the different types of MIR system users 

and the relative importance of various design implications 

for each user type. Implications for system design include 

a renegotiation of our understanding of desired user en-

gagement, especially with the habit of context-switching, 

designing systems for specialized uses, and addressing 

user concerns around privacy, transparency, and control. 

1. INTRODUCTION 

Designing music information retrieval (MIR) systems 

such as music recommenders or music management sys-

tems is challenging due to the wide variety of organiza-

tional and listening strategies of music users [3]. Alt-

hough the number of studies on music users, specifically 

related to their needs and interactions with MIR systems, 

has been increasing since the early 2000s [15], our under-

standing on how to understand and model these users for 

system design is still lacking. 

Previous studies of MIR system users tend to focus on 

investigating needs, perceptions, and opinions of general 

users (represented by subjects recruited online or in aca-

demic settings) or specific user groups. Studies involving 

specific user groups tend to investigate users based on 

particular demographic information or users of particular 

MIR systems. However, few studies attempt to categorize 

the “personalities” of music listeners surrounding their 

interaction behavior on multiple MIR systems. In addi-

tion to demographic information, what kinds of personal 

characteristics can we use to model commercial MIR sys-

tem users for system design? Our study aims to fill this 

gap in prior research and answer the following questions: 

RQ1. What kinds of user personas can we identify 

from real users of commercial MIR systems? 

RQ2. What are the expressed needs and behavior of 

each of these user personas, and what are the implica-

tions for system design for each persona? 

Our research will contribute by providing a framework 

for understanding users of MIR systems based on their 

needs and interaction behavior, beyond typical demo-

graphic information. This will help inform system de-

signers to develop systems that are better targeted for 

their user groups representing particular personas, rather 

than creating a “one size fits all” mass production model. 

2. RELEVANT WORK 

2.1 HCI Studies Related to Music 

A number of studies in the human computer interaction 

(HCI) domain explore different user behavior related to 

music discovery or sharing. Most of the literature focuses 

on testing the usability of a particular system interface, or 

investigating user behavior related to music discovery or 

sharing within a particular application.  

The literature reflects a growing understanding that 

current music listening habits are changing. Voong & 

Beale [26] highlight the fact that playlist generation is 

done differently now than in the past, whether users cre-

ate playlists by mood, theme, or other criteria. In our re-

search, we aim to understand these criteria that are rele-

vant to users when generating playlists and judging the 

playlists created by music services, and how to use those 

criteria to influence user experience (UX) design. 

The social aspect of music consumption also seems to 

be a key area for investigation. Research around social 

playlists illustrates how friends can learn more about each 

other and can strengthen relationships through under-

standing the preferences of others ([18][21]). Bonhard et 

al. [4] further illustrate that “friends from whom we seek 

recommendations are not just a source of information for 

us: we know their tastes, views and they provide not only 

recommendations, but also justification and explanations 

for them. (p. 1064)” The impact of new online music re-

positories to people’s music discovery and sharing has 

also been discussed in [18].  

Some studies looked at the problem of how personality 

affects recommenders. Researchers have borrowed theo-

ries from psychology literature about personality, as in 

[6], exploring the impact of personality values on users’ 

needs for recommendation diversity. Their preliminary 

research shows a causal relationship between personality 

attributes, including openness, conscientiousness, extro-

version, agreeableness, and neuroticism, and users’ diver-

sity preferences when using a recommender system. In 

our work, we take a more empirical approach, looking at 
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user data to understand various types of personas present 

in music services users and how the user experience can 

be designed to better accommodate these personas. 

2.2 User Studies in MIR 

Prior studies of MIR system users can be categorized in-

to: 1) empirical investigation of music information needs, 

behavior, perceptions, and opinions of humans, 2) exper-

iments, usability testing, interface design involving hu-

mans focusing on a particular MIR system, and 3) analy-

sis of user-generated data such as queries or tags [15].  

Of the first category, a few studies focus on “general 

music users,” often represented by queries in search en-

gines, or human subjects recruited on various websites or 

a game (e.g., [8][17]). A majority of them, however, fo-

cus on a particular group of users based on demographic 

information. Several researchers have investigated the 

effects of age (e.g., young adults in [14][27]) and nation-

ality [10][12][23]. These studies revealed that age group 

and cultural background do affect how people perceive, 

use, and search for music. A number of studies also re-

search needs and behaviors of users in specific music-

related professions (e.g., musicologists [2], DJs [20], 

film-makers [9]). In order to complement the findings 

from these studies, we look beyond demographic infor-

mation and model users based on their goals/behavior 

within MIR systems.    

A few studies focused on investigating users’ experi-

ences with existing commercial music services, and thus 

are more closely related to the current paper. Barrington 

et al. [1] and Lamere [13] evaluated the quality of provid-

ed music recommendations or system-generated playlists. 

Barrington et al. [1] compare Apple iTunes’ Genius to 

two canonical music recommender systems: one based on 

artist similarity, and the other on acoustic similarity. They 

demonstrate the strength of collaborative filtering com-

bined with musical cues for similarity (similar artists and 

other display metadata) and discuss factors that influence 

playlist evaluation, such as familiarity, popularity, trans-

parency, and perceived expertise of the system. Lamere 

[13] also compares the playlists generated from Google’s 

Instant Mix, Apple iTunes, and the Echo Nest Playlist 

engine, and notes how personal preference of music or 

the context of music can affect the user experience with 

music services. Some factors that influence users’ evalua-

tions of playlist (e.g., familiarity, popularity, transparen-

cy) as well as the overall perception of the quality of mu-

sic service (e.g., inexpensiveness, convenience, customi-

zability) were also identified in [1] and [17], respectively. 

Celma [5] discusses varied recommendation needs for 

four different types of listeners (i.e., savants, enthusiasts, 

casuals, indifferents) based on their degrees of interest in 

music. Lee & Price [16] also evaluated commercial music 

services based on Nielsen’s ten usability heuristics, advo-

cating for more holistic evaluation of MIR systems.  

Some studies focused on investigating the factors that 

impact people’s music listening or sharing behavior. Baur 

et al. [3] analyzed a sample of 310 music listening histo-

ries collected from Last.fm and 48 variables describing 

user and music characteristics. They found that temporal 

aspects such as seasons and the degree of users’ interests 

in novelty were important factors affecting people’s mu-

sic listening behaviors. Additionally, a number of pat-

terns regarding users’ music seeking and consumption 

behavior were observed in a large-scale survey [17]: an 

increased consumption in mobile streaming services, an 

increased desire for serendipitous music discovery and 

music videos, as well as a strong desire to customize and 

personalize their music experiences.  

The scope and approach of our work differ from these 

studies on user experience with music services in that we 

investigate users of ten different MIR systems (Spotify, 

Pandora, YouTube, Songza, SoundCloud, Grooveshark, 

Bandcamp, Rdio, Last.fm, iTunes), and we take a qualita-

tive approach, asking questions and observing users’ in-

teractions with MIR systems. Our work aims to build up-

on these studies and provide more detailed information 

about how user contexts or characteristics affect actual 

usage of music services. 

3. RESEARCH DESIGN AND METHODS 

Table 1 provides an overview of the methods and activi-

ties used for different phases for this study. The user data 

were collected through interviews and think-aloud ses-

sions. All recruited participants were over 18 years old, 

and actively use at least one music service/application. 

All participants were undergraduate or graduate students 

at University of Washington. All the interviews were 

conducted between January and March 2014, either in-

person or via Adobe Connect video conferencing. A total 

of 40 participants were interviewed and compensated 

with a $15 Amazon gift card. 

Methods Activities 

User  

interview 

Semi-structured interview asking about how 

participants use music services and how they 

evaluate the quality of the services. 

Think-

aloud  

sessions 

Participants narrate their actions out loud as 

they use their preferred music service as they 

would in a typical session. 

Card  

sorting 

Identify task-based user segments and create 

personas for each segment. 

Table 1. Overview of the study design 

The study session consists of two parts: first, subjects 

were interviewed about their preferred music services, 

discussing their interactions with the service, how they 

navigate the system, why they prefer one service over 

others, frustrations they experience with the service, and 

how they interact with the service in a typical session. 

Secondly, participants were asked to “think-aloud” or 

narrate their actions out loud to an investigator as they 

use their preferred music service in a typical session. 

These tasks include known-item search, browsing al-

bums, artists, or genres, interacting with recommenda-

tions, playlists, and radio stations, and other tasks as they 

arose. Each study session, consisting of the interview and 

think-aloud, lasted for approximately an hour.  

The user data was used to generate a list of behaviors 

exhibited around MIR systems. A card sorting activity 
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was used to identify user groups with similar behaviors as 

a basis for deriving useful personas. Personas are “hypo-

thetical archetypes of actual users (p.124)” representing 

their needs, behavior, and goals which allows for a goal-

directed design of a system [7]. Persona development has 

been used to aid design and gain user insights across 

many fields [22], and can be beneficial for prioritizing 

audiences’ and users’ goals in product development [24].   

We created a comprehensive list of user activities from 

the interview transcripts and think-aloud activities as well 

as the notes taken during observation. A total of 77 user 

behaviors related to music services were identified (e.g., 

read reviews, judge others’ tastes, seek recommenda-

tions). Through a card sorting activity, similar behaviors 

were grouped, organized, and named. We then attempted 

to identify which types of users would show these kinds 

of behaviors and tentatively named these user groups 

(e.g., genre fans, tech savvy). Afterwards, we identified 

two relevant dimensions to express the differences among 

these user groups organized by their common behavior, 

or “task-based audience segments” [28]: Companionship 

(willingness to engage in social aspects of music recom-

mendation and listening: social - neutral - private) and 

Investment (willingness to invest time/effort to interact 

with the system: positive - neutral - none). As a result, we 

derived these seven personas: 

 Active Curator: Neutral companionship + Positive 

investment 

 Music Epicurean: Social + Positive investment 

 Guided Listener: Neutral companionship + No in-

vestment 

 Music Recluse: Private + Neutral investment  

 Wanderer: Neutral companionship + Neutral in-

vestment 

 Addict: Private + No investment 

 Non-believer: Social + Neutral investment 

Any user may exhibit a combination of these personas 

as they are not mutually exclusive. Each of these per-

sonas is explained in detail in the following section. 

4. USER PERSONAS 

4.1 Active Curator 

This persona takes great pride in their music listening, 

and enjoys seeking new music and curating music he/she 

is already familiar with. This may come in the form of 

playlist creation, “saving” albums in online collections, or 

light music “research”, such as previewing songs or tak-

ing recommendations from friends, blogs, and live shows. 

Of all the personas, this one is the most actively engaged 

with music services (“I’m definitely an active listener 

98% of the time.” (P21)). 

This persona tends to utilize known-item search along-

side other discovery tools, often searching rather than 

browsing (“I [search for song or artist] at least once a 

day.” (P26)). An active curator may often find discovery 

tools to be disappointing (“I feel like I end up listening to 

stuff I already know. It’s a little frustrating” (P1)). They 

tend to have higher expectations for music recommenda-

tion services and may not always trust a service to make 

good recommendations. 

“One of the reasons I use these services is because I’m 

looking for linkages from music to music to music…I’m a 

little bit pedantic...In fact, I would love to have a little bit 

more information [about recommendations].” (P1) 

“I would love to see the metadata that goes into choosing 

each song…[I’d love to] be able to pick and choose those 

attributes, so I could say, ‘ok, I do like those smooth jazz 

elements, but I don’t like the saxophone solos.’” (P30) 

4.2 Music Epicurean 

This persona may be considered a “music snob.” Music 

epicureans take an immense amount of pride in the music 

they collect and listen to, although they may not neces-

sarily own all that music. Although streaming music is 

still an acceptable form of listening, this persona is more 

inclined to purchase music after listening to it than other 

personas as he/she genuinely cares about sound quality. A 

great amount of time is spent “hunting” for new music. 

This persona tends to focus on relationships between 

bands that may not be typically identified by a music rec-

ommender, such as similar “scene”, overlapping band 

members, and a nuanced understanding of genre relation-

ships, and thus expresses dissatisfaction towards the giv-

en recommendations (“It looks like it’s only making rec-

ommendations of artists based on artists.” (P23)). 

The music epicurean persona is unlikely to use music 

system recommendations; users representing this persona 

tend to also represent “The Non-believer” persona de-

scribed below. The Music Epicurean leans on trusted 

sources for recommendations, whether it is a small group 

of friends with trusted taste or other “vetted” sources. 

“I’m very self-directed in listening to music. When I listen 

to the radio, it’s KEXP, and it’s usually a really short 

amount of time in the morning. I know what I want to listen 

to, why am I just going to let a random radio station tell 

me?” (P8) 

“For me it’s not really worth the time. I think it’s just going 

to recommend stuff that’s also tagged [similarly]...I do my 

own ways of [finding], and I rely on my friends and people 

I write with to recommend stuff...” (P6) 

4.3 Guided Listener 

The Guided Listener’s most prominent quality is the de-

sire to hand over control of the music to someone else. 

This persona mildly enjoys radio’s serendipitous nature, 

may have slight preferences over genre or artist, but ulti-

mately just wants to hear something playing. This perso-

na is not picky; he/she may occasionally interact with a 

service to indicate preferences or dislikes but will not go 

out of his/her way to curate albums or playlists. 

This persona may provide “seed” songs or artists to 

help a system generate a playlist or radio station, and in-

frequently, will browse new music or artists for fun or out 

of boredom. For the most part, the guided listener is a 

“set it and forget it” kind of person. 

“It’s definitely ‘log in’, get to where I’m going, and it even 

goes back to the default station that I was listening to before. 
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I mean, I can get this thing booted up and going within 

seconds, and then I’m off doing dishes or whatever, which 

contributes to my satisfaction. It’s going to do what I want 

it to do immediately. Boom. Off I go.” (P17) 

4.4 Music Recluse 

The primary characteristic of the Music Recluse is that 

he/she is a very private listener; this persona does not 

need to discuss his/her music listening habits with many 

people, and guards his/her privacy when using a music 

recommendation service. The music recluse actively 

avoids the social functions of music services like Spotify 

or Pandora and considers listening to be very personal. 

This persona may have sporadic listening habits, may lis-

ten to music he/she is not proud of or would not want others 

to know about. Music recluses do not want people making 

assumptions about them based on the music they listen to. 

“I would allow zero information. I already think YouTube 

is too invasive. They’re already forcing users to create 

Google Plus accounts to comment on videos.” (P25) 

“I turned off sharing functionality. I made sure that I 

wasn’t putting it up on Facebook or sharing it...I definitely 

listen to a lot of embarrassing stuff and I don’t want every-

body to know that. And I’m not really part of musical com-

munities or anything, so I don’t feel like scrolling through 

my friends’ music gives me any useful information or 

songs to listen to.” (P34) 

4.5 Non-believer 

The non-believer is a persona who does not believe that a 

machine can make adequate music recommendations for 

a variety of reasons: they do not understand how an algo-

rithm can make “good” recommendations, they are able 

to see the limitations of recommendation algorithms, they 

prefer getting recommendations from friends, or they 

simply have not had good past experience with music 

recommendation services. Non-believers also have a ten-

dency to dislike sharing personal information or listening 

histories with the service/system because they do not see 

the benefit of doing so. This persona often uses human-

curated music services such as Songza or 8-Track, 

friends’ playlists, or their own collections, which may or 

may not be heavily curated. 

“Pandora will give me mainstream blues because it’s simi-

lar rhythmically and in instrumentation, but that’s not the 

vibe I’m looking for. It seems like they go off of something 

really mechanical. They’re missing out on something and I 

don’t know what it would be called, like context, and how 

the music makes me feel.” (P23) 

4.6 Wanderer 

The Wanderer primarily enjoys serendipitous music dis-

covery, and listens to new music with an open mind 

(“…when it recommends me things that I never would have 

thought of, so I think, ‘yeah, I’ll give it a shot’.” (P11)). 

This persona enjoys the discovery process in general as a 

fun pastime, and is willing to put in some effort to dis-

cover new music. The wanderer will likely accept rec-

ommendations from a system as equally as she will ac-

cept them from a friend, a blog, or a stranger. 

The wanderers tend to listen to music from a wider va-

riety of music genres, although they may also have pre-

ferred favorites. They enjoy discovering music/artists that 

are less popular and are willing to listen to new artists or 

genres. Wanderers may like recommendations based on 

“playful” themes such as “Monday morning” or “Coffee 

music.” They are more likely to use a variety of tools and 

also new features in the tools they regularly use. 

“Honestly, the serendipity of finding new music is what I 

enjoy the most. Generally if I’m listening to new music it 

will be because a friend recommended it or I came across it 

on YouTube through NPR Tiny Desk or something like that. 

I prefer that model...I listen to pretty diverse things.” (P13) 

4.7 Addict 

The Addict exemplifies a known-item searcher and 

strongly utilizes a service that features search. This per-

sona may listen to the same song multiple times in a row, 

or for a whole week (e.g., “I sort of fixate.” (P1)). This 

persona tends to use services like YouTube or Spotify 

where it is easy to repeat albums or songs. Their musical 

tastes may be all over the map, and they tend to listen to 

things on a whim, rather than curating any collections. 

They may listen sporadically, for short periods of time, 

and rely on easy access to music (web-based) from a va-

riety of devices. The addict typically does not save 

his/her preferences by creating playlists for later access.  

“I prefer Grooveshark…because I have a tendency to listen 

to a song, and then listen to it on repeat until I hate it for-

ever, and Pandora doesn’t let you do that at all, whereas in 

Grooveshark you can do that.” (P23) 

5. THEMES AND DESIGN IMPLICATIONS 

5.1 Engagement, Ownership, and Specialization 

Our user data suggest that we may need to rethink the 

concept of “engagement” and how that affects peoples’ 

preferences for music services. If we consider engage-

ment as users interacting with the system by exploring 

available features, then while it may be counter-intuitive, 

some users have no desire to engage with their preferred 

system. The way these users measure the success of the 

system is based on how little they have to interact with it. 

“As soon as I figured out the basics...as soon as I found 

that I could look at some friends’ playlists, and that I could 

find a few artists and make a radio station, I just, I was like, 

I’m done. I’m done learning how to make this work.” (P1) 

“There’s nothing I don’t like about Pandora...It might just 

be because I’m content enough...And I think I’m old 

enough, you know, I’m 45, I'm not into that 'music is my 

world' type of mentality. So it’s not high on my list.” (P17) 

A strong satisficing theme was identified among these 

users, consistent with the finding in [16]. As long as the 

system does what it is “supposed to do”, then it is “good 

enough” and users do not expect much more. This is es-

pecially exhibited by participants representing the “guid-

ed listener” persona, who tends to prefer music services 

like Pandora. The “addict” also tends to exhibit shallow 

engagement with the services. During the interview, it 
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became evident that most participants who can be catego-

rized as guided listeners had never gone beyond the sur-

face level of system. In fact, many participants discov-

ered some of the features offered by their preferred ser-

vice for the first time during the think-aloud sessions. 

They tend to have very specific needs and do not explore 

the service beyond their immediate needs. 

Personas such as active curator and music epicurean 

showed higher levels of engagement with the systems and 

seemed to have a stronger sense of ownership over their 

music collections. Active curators in particular would 

spend much time curating playlists even though they do 

not technically “own” the music. While guided listeners 

would most likely be satisfied with a streaming or sub-

scription-based model, active curators and music epicure-

ans hesitate to abandon the collection-based model. For 

this reason, we expect that cloud-based music services 

will appeal more to the latter group of users. For them, 

providing a way of creating their own access points into 

their collection will become an important issue, as the 

size of their collection will continue to grow. Organizing 

and accessing their collection by play frequency, name of 

the person who recommended a track, release date, or us-

er in households where multiple members share the music 

service, were some examples that respondents specifical-

ly mentioned as potentially useful.  

In order to meet the needs of different personas, it may 

make sense to release different versions of the ser-

vice/app so users can decide the appropriate version 

based on how much interaction they desire (“If [Spotify] 

had a light version then I would use that more. Like 

iTunes had a little mini-player, for example.” (P13)). 

Based on general observation, it does seem like speciali-

zation works better than generalization; each service def-

initely tends to attract particular types of user personas. 

For example, Pandora tends to attract users who do not 

want to spend time and effort curating music collections 

or listening experiences. On the other hand, Spotify users 

tend to invest more time in organizing their collections 

and providing input to improve their listening experience. 

Although users also rely on Spotify for music recommen-

dations, they tend to be more critical about the results due 

to higher expectations. Websites like YouTube also serve 

a specific purpose, which is to stream videos, rather than 

attempting to work as some sort of Web portal that offers 

a variety of services. Many users, especially with need for 

known-item searches, will go to YouTube. Users’ strong 

desire to customize and personalize their music experi-

ences was also noted in [17].  

5.2 Awareness and Preserving User Trails 

Another theme emerged around a user’s general aware-

ness within a system. Most users expressed a habit of 

“digging” and following “wormholes” while using mid- 

to high-level curation tools such as Spotify, Grooveshark, 

and YouTube. Many of these systems do a poor job of 

indicating the user’s location within the site, or helping 

them retrace their steps, which often results in users feel-

ing the sense of “being lost.” 

“It’s constant digging. Click, click, scroll...wait, where am 

I? Click, scroll. For almost everything I want to do, I can 

never get there on the first try, or even if I get there on the 

first try, it feels like an accomplishment. Most of the time, I 

have an idea of where I am, but I don’t always know how to 

get back to where I was.” (P11) 

“I feel like I’m not as adventurous in wormholing sometimes 

as I can be or want to be, because I’m afraid of getting lost. 

If it were a little bit easier to just go back to where you 

started from or some sort of chain-of-command of what 

you had just done that you could click through (like a 

breadcrumb trail), then I probably would feel a little bit 

more comfortable.” (P3) 

This was also related to the general lack of error ex-

planation in the systems, which would ideally help users 

recognize and prevent errors (“It just says, ‘There was an 

error.’ I almost never know what's going on when some-

thing goes wrong.” (P11)). 

Users who discussed digging, wormholes, and the like, 

tended to be those who actively engaged with the service. 

This may span across any persona, but there appears to be 

a correlation between concern for user trails and engaged 

personas like the active curator and the music epicurean. 

Ideally the system should support the expression and 

preservation of a user trail and use breadcrumb trails to 

give users locational clues. 

Users also indicated that more transparency over rec-

ommendations would improve their likelihood of trusting 

the system. Not knowing why the system wants them to 

listen to a particular song made them less inclined to fol-

low the recommendation, especially for the active cura-

tor, non-believer, and music epicurean personas.  

“Sometimes I wonder why things are on there. I guess I 

need more insight on why I should choose to click on this 

thing...if it’s a band I’ve never heard of, I’m not going to 

click on it unless there’s a reason for me to...A lot of times 

it’s like, ‘You listened to this song by Rihanna once. All of a 

sudden we think you should listen to Justin Bieber.’ That 

doesn’t work for me.” (P31) 

5.3 Privacy Concerns 

Several participants discussed privacy concerns around 

using music services. Our data suggest that the levels of 

privacy concerns are possibly affected by the following 

three factors: a) user’s interest in/belief of a machine’s 

ability to accurately recommend music, b) level of under-

standing of privacy issues, and c) overall tech savviness. 

A user who has a higher interest in/belief of a machine’s 

ability, a better understanding of privacy issues, and is 

more tech savvy, tended to be more concerned about 

sharing their personal information. This trait was exhibit-

ed across personas regardless of music listening habits, 

and most dominantly in non-believers. 

“When you download the software, the automatic preference 

is that Spotify will open every time you turn on your com-

puter. I don’t like that. The first time I ever downloaded 

Spotify, that was the reason I didn’t use it [right away]. I 

felt like it was hijacking my computer.” (P1) 

“I wouldn’t want to give a system more information about 

me even if it would provide a perfect playlist, because I still 
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want to have control of that [information]…It’s creepy…I 

like having some degree of control and privacy.” (P13) 

“I'm split between 'that's really cool' and 'that's kind of 

creepy'. If I had the option to control it then that might be 

something I accept.” (P30) 

Being transparent about information collection and allow-

ing more user control over privacy may help alleviate fears. 

This desire for control was also observed in [11], where us-

ers wanted to be in control of logging what they considered 

as the most private information. They found that “users pre-

fer sharing some information automatically such as listening 

history, sharing some information at will and keeping some 

information private (p. 171)” [11]. This aligns with concerns 

that arose during our interviews about privacy of infor-

mation or activities. While listeners may be willing to share 

listening history, either discretely or publicly, those same 

users may be concerned about other information being 

shared without their knowledge. 

In addition to “what” is being shared, two other aspects 

worth noting are the different reaction to “who” is accessing 

users’ personal information and the directionality in sharing 

information. There seemed to be a distinction between keep-

ing private information from the system versus from other 

people. Users exhibiting the music recluse persona, for in-

stance, were much more concerned with the latter aspect. 

Music epicureans seemed interested in sharing their music 

listening history in a limited social circle (“I talk to about 

five people who like the same music as me. I just feel weird 

about posting videos on Facebook like ‘Listen to this’.” 

(P31)). Also a number of users acted like “lurkers” in that 

they wanted to see what other people listen to but did not 

want to share their own listening habits with others. 

During our work identifying the personas, we initially 

thought there may be a persona “Public broadcaster,” some-

one who is very social and publicizes his or her listening 

choices. Careful examination of the transcripts, however, 

revealed that none of the users interviewed were “public 

broadcasters” themselves, but many made mention of that 

characteristic in friends or acquaintances who also use digi-

tal music services. Most of the comments alluding to the ex-

istence of this persona described how people have seen this 

kind of “broadcasting” behavior on social media (and were 

often annoyed by it). We believe that this persona may still 

exist, as previous research such as [11] found that their users 

were willing to share and seek shared information such as 

music listening habits, and some were already publicly do-

ing so on websites such as Last.fm. Although users did want 

to keep some information private, music listening history 

was not such information. However, it may also be the case 

that we are simply seeing other’s music listening history be-

cause of the default setting in some music services to public-

ly share such information, and as previously discussed, 

many users do not spend much time trying to master their 

service’s feature settings. We plan to further explore this 

through a survey with a larger number of music service us-

ers. 

5.4 Context-switching  

In addition to the different personas, the user’s context 

seemed critical in determining which services they use. 

“It really depends. If I’m upstairs in the office and coding 

data, I generally listen to music that I already know and 

like, because I don’t want it to take my focus away. If I am 

taking my dog for a walk or going for a drive, I may use the 

recommendations just to listen to new songs.” (P13) 

This resonates with previous MIR studies discussing 

how perceived qualities of music are affected by the con-

text of the user [19], and how mood, activities, and social 

context among other factors influence music perception 

[25]. There were several aspects of user’s context that 

seemed particularly relevant: 

1) Level of attention: This was often dependent on 

other activities in which users were concurrently engaged 

(e.g., driving or working). 

2) Level of energy/motivation: This is closely related 

to users’ willingness to interact with the system. General-

ly, tech savvy music listeners were more willing to do so, 

but depending on the time of the day, this also seemed to 

change (e.g., acting passively while fatigued after work).  

3) Mood: The user’s mood constantly changes based 

on different events he/she is experiencing, and thus, the 

user may want to listen to songs with different “feels”. 

4) Temporal aspect: This can be seasonal or about the 

time of day. Depending on work schedules, the early 

morning or evening may be the best time for users to in-

teract with a system. Seasonality also means that users 

are engaged in different activities or in seasonal moods. 

User needs appear to continually shift depending on 

these contextual elements. A system allowing context-

switching based on a combination of system logs of geo 

data, device usage, etc. (for attention level and temporal 

aspects) and users’ input (for level of energy/motivation 

and mood) would be desirable. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we present seven personas surrounding the 

use of commercial music information systems, derived 

from user interview data and observation of use sessions. 

These personas, each representing specific traits and atti-

tudes of users, will be helpful in designing music infor-

mation systems that are more highly tailored to specific 

user groups. Analyzing the user data made it clear that 

there is a relationship between persona placements on 

spectrums and types of services preferred. For instance, a 

user who is an active curator and music recluse would be 

more likely to use a “fringe” service such as Songza, 

whereas a guided listener user would likely end up rely-

ing on an online radio service like Pandora. Based on us-

ers’ opinions and observations of their interactions with 

the services, we discussed several design implications. 

In our future work, we plan to expand this study and 

test the applicability of these personas with a larger user 

population since they were derived from a relatively 

small sample. We will verify our results obtained from a 

qualitative approach by surveying a larger number of us-

ers to identify appropriate personas reflecting their char-

acteristics, using a stratified user sample based on their 

most preferred commercial music service.  
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ABSTRACT

This paper presents a corpus-based study on rhythmic pat-
terns in the RAG-collection of approximately 11.000 sym-
bolically encoded ragtime pieces. While characteristic mu-
sical features that define ragtime as a genre have been de-
bated since its inception, musicologists argue that specific
syncopation patterns are most typical for this genre. There-
fore, we investigate the use of syncopation patterns in the
RAG-collection from its beginnings until the present time
in this paper. Using computational methods, this paper
provides an overview on the use of rhythmical patterns of
the ragtime genre, thereby offering valuable new insights
that complement musicological hypotheses about this genre.
Specifically, we measure the amount of syncopation for
each bar using Longuet-Higgins and Lee’s model of syn-
copation, determine the most frequent rhythmic patterns,
and discuss the role of a specific short-long-short synco-
pation pattern that musicologists argue is characteristic for
ragtime. A comparison between the ragtime (pre-1920)
and modern (post-1920) era shows that the two eras differ
in syncopation pattern use. Onset density and amount of
syncopation increase after 1920. Moreover, our study con-
firms the musicological hypothesis on the important role of
the short-long-short syncopation pattern in ragtime. These
findings are pivotal in developing ragtime genre-specific
features.

1. INTRODUCTION

This paper presents a corpus-based study into rhythmic
patterns in a ragtime corpus (RAG-collection) of approx-
imately 11000 pieces (rags), collected by an international
group of ragtime lovers 1 . The RAG-collection (RAG-C)
was introduced in [16], together with an overview of open
questions and a computational confirmation of musicolog-
ical hypotheses of ragtime music.

Esparza et al. [3] argue that in MIR, genre classification
has often been used as a proxy for measuring the success

1 Ragtime Admirers Group, see http://ragtimecompendium.
tripod.com/

c⃝ Hendrik Vincent Koops, Anja Volk, W. Bas de Haas.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Hendrik Vincent Koops, Anja Volk,
W. Bas de Haas. “Corpus-Based Rhythmic Pattern Analysis of Ragtime
Syncopation”, 16th International Society for Music Information Retrieval
Conference, 2015.

of rhythmic similarity measures, based on the assumption
that “rhythmic content is more or less homogeneous within
certain musical styles”. Their research shows that even for
dance music this is often a problematic assumption. There-
fore, a better understanding of the relation between rhythm
and genre is important. Musicologists and ragtime fans
have argued that rhythmic patterns and syncopation pro-
vide the most distinct features of the genre [1]. Edward
Berlin argues that syncopation is “at the core of the con-
temporary understanding of ragtime” [2]. However, mu-
sicologists also argue that the use of rhythmic patterns has
not been stable within the development of the genre over
time. Therefore, we investigate ragtime’s syncopation, its
typical rhythmical patterns and their evolution over time.

Huron et al. [7] have shown for related genres that syn-
copation increases through history, something we hypoth-
esize will be the case for ragtime as well. We reflect on the
rhythmical patterns of the genre: what are the most char-
acteristic rhythmic patterns used in ragtime syncopation,
and does their use change over time. Berlin [2] argued for
the importance of a specific short-long-short pattern in the
ragtime genre, of which Volk and De Haas [16] showed
that its use increased through history. We extend the re-
search in [16] by investigating all patterns, to find the rel-
ative importance of this specific pattern. We hypothesize
that compared to other patterns appearing in ragtime syn-
copation, this short-long-short pattern is one of the most
characteristic patterns for the ragtime genre.

Our corpus-based study of syncopation complements
extensive research on syncopation in music cognition, in
which predominantly short rhythmic patterns are studied.
Syncopation is considered to create violations in listen-
ers’ expectations [11], to contribute to rhythmic complex-
ity [17] and to contribute to a sense of groove in music [12,
13]. Studying syncopation for entire compositions instead
of short stimuli contributes to understanding how much vi-
olation and complexity is used in real compositions of a
genre that is considered to be “highly syncopated”.

Contribution. The contribution of this paper is three-
fold. We present a first full, systematic analysis of all
rhythmic patterns in melodies appearing in a large corpus
of ragtime music. Through a statistical analysis of the fre-
quency of patterns over time, this study shows which pat-
terns are more important in different time periods. Sec-
ond, by using a formal model of syncopation, this study is
able to focus on the syncopated parts of rags, commonly
thought to be the most characteristic element of ragtime
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music. Through this model, it shows the increase of synco-
pation use together with its most important rhythmical pat-
terns over time. Third, a tactus finding algorithm is intro-
duced that is capable of correctly identifying the number of
beats in a bar of a ragtime piece. These three contributions
are pivotal in understanding the characteristic features of
ragtime music.

Synopsis. The remainder of this paper is structured as
follows: Section 2 provides an introduction to ragtime mu-
sic and its use of syncopation. Section 3 details the main
methodology for analysing patterns and syncopation in the
RAG-C. Section 4 details the results of syncopation analy-
sis and pattern finding. The paper closes with conclusions
and discussion in section 5.

2. RAGTIME

Musicologists agree that ragtime’s most striking element
can be found in its use of syncopated rhythmical patterns.
Berlin [2] even argues that other musical features are of
hardly any importance: ragtime music has no unique musi-
cal form, and its melodies do not bear any distinctive traits
(except with regard to rhythm). Although rags with hardly
any syncopation exist, musicologists do agree that synco-
pation is the dominant and distinctive element in the evo-
lution of the ragtime genre. It is therefore that a study into
ragtime will invariably involve the analysis of rhythmical
patterns and syncopation.

In this research, we divide the history of ragtime music
into two eras: the pre-1920 ragtime era and the post-1920
modern era. The two eras are distinguished by a remark-
able increase in rhythmic experimentation and syncopation
around 1920 [8, page xix]. This change was in part influ-
enced by the French Impressionist music and piano per-
formers mimicking the very complex rhythms of piano-roll
music that were in style.

2.1 Syncopation

Syncopation is “the displacement of the normal musical
accent from a strong beat to a weak one”, often used by
composers to avoid regular rhythm by varying position of
the stress on notes [14]. Musicologists have argued that
ragtime’s main identifying trait is its “ragged”, or synco-
pated rhythm. A specific syncopated pattern is thought to
be of extra importance by Harer [6] and Berlin [2]: the
‘short-long-short’ 121 pattern. The 121 pattern appears as

1. Untied (in U bar parts):
�

�
�� �

�
�

|IOIOOOIO OOOOOOOO|
� � ���

��

|OOOOOOOO IOIOOOIO|
2. Tied (in T bar parts):

� �� �� � �
|OOOOIOIO OOIOOOOO|

��� �� �� ��
OOOOIOIO|OOIOOOOO

3. Augmented:
� �� �

|IOOOIOOO OOOOIOOO|

Figure 1: 121 patterns in musical notation (left) and equivalent
binary onset pattern (right).

ˇ “( ˇ “ ˇ “( in 4
4 and as ˇ “===̌ “ ˇ “=== in 2

4. The next sections detail three
variants of the 121 pattern: untied, tied and augmented.
Examples of these three types of syncopation in 2

4 can also
be found in Figure 1.

Untied syncopation. In untied syncopation, a pattern
starts on a strong metrical position and does not pass over
a bar line. In 2

4, the pattern either starts on the first quar-
ter note position or the second quarter note position. In 4

4,
the 121 pattern ( ˇ “( ˇ “ ˇ “( ) would start on either the first quar-
ter note position or the third quarter note position. This is
visualized in Figure 2 as the U bar parts. This way, the
121 pattern always constitutes the first or second half of a
bar. Musicologists have argued that this type of syncopa-
tion is more characteristic of rags from the early pre-1920
ragtime era, being more prominent at the turn of the cen-
tury [10], [2, p. 84].

Tied syncopation. Tied syncopation refers to a pattern
starting on a weak metrical position. Just like untied syn-
copation, the tied version appears in two variants: either
creating a tied note over the center of the bar, or over the
barline to the next bar. This is visualized in Figure 2 as the
T bar parts. In 4

4 this means the pattern starts at the second
or fourth quarter note position. In 2

4 this means the pattern
starts at the first or third eighth note position.

The tied pattern was found to increase during the pre-
1920 era by [16]. Musicologists have argued that com-
posers increasingly relied on tied syncopation in the late
1910s and 1920s as the ragtime style matured [10, p. 76].

Augmented syncopation. A third version of syncopa-
tion often found in ragtime music is called augmented syn-
copation. This type of syncopation augments the 121 to the
length of a complete bar (3 of Figure 1). The augmented
pattern appears as ˇ “ ˘ “ ˇ “ in 4

4, and as ˇ “( ˇ “ ˇ “( in 2
4. This results in

a weaker syncopated pattern, which is more characteristic
of early ragtime era [2, page 83], but became relatively rare
after 1903.

3. METHODOLOGY

This study investigates the use of syncopation and rhyth-
mical patterns in the RAG-C, and how these change over
time. We hypothesize that syncopation is an important fea-
ture of the ragtime genre, that increases over time. To test
this hypothesis, we first extract rhythmical onset patterns
rags in the RAG-C, as detailed in Section 3.1. Then, to be
able to group the onsets in bars for analysis, the number of
beats per bar need to be determined. To achieve this, a tac-
tus finding algorithm (Section 3.2) that finds the number of
beats in a bar of a ragtime piece is implemented.

Differentiating between bars with and without syncopa-
tion provides insight in the patterns that are most important
within ragtime syncopation. To measure the degree of syn-
copation of a bar, a model by Longuett-Higgins and Lee is
used, as detailed in Section 3.3. These syncopation mea-
surements are then used in a pattern recognition step (Sec-
tion 3.4), to find the frequencies of all possible patterns
and the relative 121 frequencies. The following sections
describe each of these steps in detail.
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3.1 Onset Extraction

Characteristic of ragtime music is a ragged or syncopated
melody over a stable accompaniment that reinforces the
meter. The importance of first separating a piece into its
individual rhythmic layers for syncopation measurements
was shown in [13]. Therefore, to be able to analyse synco-
pation of the melody of a rag, we split it from its accom-
paniment. The accompaniment is used in a tactus finding
step (detailed in Section 3.2), and the melody is used in a
pattern finding step (section 3.3).

The melody and accompaniment are split using the sky-
line with dip-detection method detailed in [15, 16], which
performs a near-perfect splitting of a melody and its ac-
companiment on a subset of the RAG-C. To be able to
analyse rhythmical patterns properly, both the melody and
accompaniment are quantized. We use the technique de-
scribed by Volk & De Haas [16], with the exception of
using four bins per quarter note, instead of twelve. This
results in quantisation to a sixteenth note grid, which we
can apply to the formal model of syncopation described
in Section 3.3. Because of different normalized average
quantisation deviations (the average deviation of notes di-
vided by the MIDI quarter note length, see [16]) between
files in the dataset, we keep track of the quantisation er-
ror, and disregard all MIDI files with a normalized average
quantisation error above 2%.

This results in two sequences of onsets per rag, one rep-
resenting the rhythm of the melody, and one representing
the rhythm of the accompaniment. The onsets in the se-
quences are represented with I’s as sounding events and
O’s as non-sounding events. See the bottom two rows of
the tree in Figure 2 for an example with its music notation
equivalent.

3.2 Tactus Finding

This study analyses the onset patterns that appear in syn-
copated bars of rags. The method in Section 3.1 results
in a sequence of onsets, therefore we need a way to seg-
ment this sequence into bars. One way to achieve this is
to use the annotated MIDI time signature of the rags, but
from a manual inspection this information was found to be
not always reliable. Therefore, a tactus finding algorithm
is created that is able to find the number of beats in a bar.
This information is used to group the right number of on-
sets into bar representations: from a sequence of onsets to
segments representing bars.

Two features of ragtime music facilitate time signature
detection from onset patterns with greater ease, compared
to other genres. First, most rags are written in either 2

4 or
4
4, other meters are rare. Secondly, a characteristic feature
of ragtime is a stable metre pattern in the accompaniment
underneath a syncopated melody [9]. As a general rule, the
accompaniment “reinforces the meter with a regular alter-
nation of low bass notes or octaves on the beat, alternating
with mid-range chords between the beats” [1].

In 4
4 (and 2

2), this alternation appears as ˇ “ ˇ “ ˇ “ ˇ “ . In 2
4, this

pattern appears as ˇ “==̌“ ˇ “==̌“ . This pattern can be used to esti-
mate the number of beats in a bar for duple time signatures.
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Figure 2: Example of a hierarchical metric tree with values. U
and T denote the bar parts where we search for patterns. The
onset pattern (I’s and O’s) represents the 121-pattern ( ˇ “( ˇ “ ˇ “( ) in a
U part of a bar. The LHL value of this bar is ((−2) − (−3)) +
((−1) − (−3)) = 1 + 2 = 3.

The algorithm presented in this paper finds the number of
beats of a rag by assuming that in 2

4 the onset density in the
accompaniment is higher than in 4

4. The onset density d for
a sequence of onsets is calculated by dividing the number
of onsets on even positions by the number of onsets on odd
positions. If d is larger than a certain threshold, it is as-
sumed that the onset density is low, and a time signature of
4
4 is assumed. If the fraction is lower than a threshold, the
onset density is high and the time signature is assumed to
be 2

4. Using this information, the onset sequence is either
segmented in 16 onsets per bar in the case of 4

4 and 8 onsets
per bar in the case of 2

4. These bar onset patterns are then
used in a next step in which the amount of syncopation is
measured, as explained in Section 3.3.

Evaluation. The tactus finding algorithm is evaluated
in an experiment using 200 randomly selected rags from
the RAG-C. After quantization and selecting rags with a
normalized average quantization error below 2%, 72 rags
remain. The rags are manually annotated with their cor-
rect time signature by a music expert. Using the technique
described in 3.2, the algorithm predicts the correct number
of beats in a bar in 92% (66) of the rags using a threshold
of d = 0.8. Of the six songs that were incorrectly iden-
tified, two are not in a 2

4 or 4
4 time signature (34 and 6

8) and
four lack the typical accompaniment pattern. These results
show that this method is highly useful as a preprocessing
step for segmenting onsets into bars.

3.3 Longuet-Higgins & Lee Syncopation
Measurement

For pattern analysis, we differentiate between bars with
and without syncopation and analyse the former, to find
its most characteristic patterns. A formal model of synco-
pation introduced by Longuet-Higgins & Lee (LHL) [11]
provides a numerical representation of syncopation in a
bar by assuming that a rhythm in a meter is interpreted
by a listener by minimizing the amount of syncopation.
In an experimental comparison between different syncopa-
tion measurements, Goméz et al. [5] found that the LHL

agrees closely with the human judgement of syncopation.
The notion of minimizing syncopation is expressed in the
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algorithm, in which syncopation is defined to occur when
a note occurs on a weaker position than its succeeding rest
(or tied note). This was also shown empirically by Fitch et
al. [4], who showed that the recall of a rhythm decreased
with higher LHL syncopation.

The LHL model computes syncopation using a tree of
metric hierarchy (see Figure 2 for an example). This tree
is built to a minimal depth needed to represent the notes.
For example, if a 4

4 bar only contains two half notes ( ˘ “ ˘ “), a
tree of depth 1 is used. In case a note appears on a deeper
level, a deeper tree is used (e.g. depth 4 in ˘ “ @ ˇ “) ˇ “).

The nodes of the tree are populated with values k given
to the left children and −d to right children, where k is the
value of the parent of a node and −d is the negative value
of the depth of the tree at that node. The value of the root
of the tree is 0.

In the LHL model, syncopation occurs where a note (I)
with a lower value is followed by a rest (O) with a higher
value. The example in Figure 2 contains two of these (I,O)
pairs, the second eighth note followed by a rest, and the
third eighth note followed by a rest. The amount of synco-
pation for a pair is the difference in values: O-I, (−2) −
(−3) = 1 for the first example. The total syncopation
value of an entire bar is the sum of syncopation pairs within
that bar:

n∑

i=1

(ν(Oi+1) − ν(Ii)) if ν(Ii) < ν(Oi+1) (1)

where the subscript denotes the ith position in the bar of
length n and ν(φ) denotes the metric tree value of φ.

3.4 Pattern finding

To find the frequencies of onset patterns in the RAG-C, a
pattern finding algorithm is created. We are interested in
the bar parts where the tied, untied and augmented 121
pattern can appear. Therefore, this algorithm finds the fre-
quency of candidate patterns in U and T bar parts (see
Figure 2). With this quantitative measurement of pattern
frequencies, we measure whether the 121 pattern is in-
deed characteristic for ragtime music in these bar parts,
and what other patterns are important. To be able to search
for patterns in U bar parts, each bar from the RAG-C is
concatenated with half of the bar that follows it.

To find the frequencies of patterns in U and T , all pos-
sible combination of I’s and O’s’ are generated for the
length of half a bar. For example, in the case of a bar in 4

4

quantized on sixteenth notes, a full bar contains 16 onsets.
Therefore, all candidate patterns (Π) of length 8 are gener-
ated: [O,O,O,O,O,O,O,O]. . . [I,I,I,I,I,I,I,I]. The frequen-
cy of each candidate pattern ρ ∈ Π is calculated by count-
ing how often each one appears in one of the U and T parts,
normalized over the total number of bars. Calculating the
frequency of all pattern results in distributions of patterns
in U and T bar parts.

4. RESULTS

This section describes statistics of syncopation and the re-
sults of finding the most frequently used patterns in U and

T parts of syncopated bars. First, results of finding the
most frequent patterns in the entire RAG-C are presented
(Section 4.1). Then, the RAG-C is split into rags from
the ragtime era (before 1920) and the modern era (after
1920) to find which patterns are characteristic for these
eras. These results are presented in Section 4.2. In the next
sections, x̄ denotes an average and σ denotes a variance.

4.1 Syncopation in the RAG-C

From the RAG-C, 356519 bars are extracted, of which 46%
(163197) are syncopated (i.e. LHL > 0). The average LHL

value of syncopated bars is x̄ = 2.02, σ = 1.08. The
largest LHL syncopation is 15, corresponding with only 28
bars in the RAG-C. Nevertheless, a little over half of the
bars (54% = 193322) in the RAG-C is devoid of any synco-
pation (i.e. LHL=0).

Finding the most frequenly used patterns in T and U
bar parts of bars with LHL> 0 yields the results in Fig-
ure 3. Note that patterns are part of a syncopated bar,
and not necessarily syncopated themselves. For example,
a bar consisting of |IOIOOOIO OOOOOOOO| is synco-
pated because of the 121 pattern in the first half of the bar
(IOIOOOIO), however, the second half (OOOOOOOO) is
devoid of any syncopation.

The figure shows that the 121 pattern appears as the
most frequent pattern in T bar parts, and as a third most
frequent pattern in U bar parts. This affirms the hypothesis
that when taking rags from all time periods in considera-
tion, the 121 pattern is indeed one of the most character-
istic ragtime patterns. The figures show that for the whole
RAG-C, the 121 is more characteristic in T than in U .

Ragtime and Modern era. We split the RAG-C into
pre-1920 ragtime era bars and post-1920 modern era bars,
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Figure 3: The 10 most frequent patterns in T and U parts of bars
with LHL > 0. The 121 pattern is visualized darker.
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Figure 4: Percentage of bars with LHL>0 in ragtime era (dark)
and modern era (light). Values > 7 are too small to be visible.
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to find the change in syncopation degree over time. The
average LHL syncopation of a ragtime era bar with LHL>0
is x̄ = 1.9, and x̄ = 2.4 in the modern era. In a Wilcoxon
test for the null hypothesis that two related paired samples
come from the same distribution, we find that p ≪ 0.001,
which shows that the modern era is significantly stronger
syncopated. Also taking into account the non-syncopated
bars shows a significant difference, with x̄ = 0.83 (ragtime
era) and x̄ = 1.26 (modern era), again with p ≪ 0.001.

Figure 4 shows distibution of LHL syncopation found in
syncopated bars from these two eras. The figure shows that
bars with LHL=1 are more common in the ragtime era, and
LHL=2 is almost equally common in the ragtime era as in
the modern era. Nevertheless, it also shows that bars with
LHL>3 are more characteristic for bars from the modern
era. Bars with LHL>5 occur twice as often in the modern
era compared to the ragtime era.

Syncopation per rag. To find the distribution and de-
gree of syncopated bars of complete rags in the RAG-C, we
computed statistics on rags. The average syncopation per
rag for the whole RAG-C is x̄ = 0.95, σ = 0.6. An LHL

value of 1 roughly corresponds with a single syncopation
inside one of the U parts, resulting in a bar of ˇ “==̌“ > <.

For the ragtime era, the average syncopation per rag is
x̄ = 0.85, σ = 0.52. For the modern era this is x̄ = 1.28,
σ = 0.74. Therefore, in the modern era, syncopation more
often appears on weaker metric positions that correspond
with lower values in the LHL tree, thereby increasing the
LHL value of the bar. An example of this is ? ˇ “ > ˇ “ ? . For both
eras, we find that the number of syncopated bars per rag
is around 50%, which means that not the number of syn-
copated bars increases, but the use of syncopation inside
bars does. We found that the difference in syncopation be-
tween ragtime and modern era to be highly significant with
p ≪ 0.001. When only taking into account the syncopated
bars, we find x̄ = 1.84, σ = 0.54 per rag for the ragtime
era, and x̄ = 2.29, σ = 0.67 per rag for the modern era,
again with p ≪ 0.001.

Both the statistics on rags and bars show that overall,
stronger syncopation is more characteristic of modern era
rags. In the modern era, syncopation occurred more of-
ten on weaker metric positions, thereby increasing the LHL

syncopation. The next section details the difference in pat-
terns found between these eras.

4.2 Frequent Patterns in Ragtime and Modern Era

To find a change in pattern use in syncopation over time,
we look at the patterns found in syncopated bars from the
ragtime era and modern era. Figure 5 and Figure 6 show
the 10 most frequent patterns found in U and T bar parts
In the figures, the 121 pattern is visualized darker.

Patterns appearing in U bar parts. The left side of
Figure 5 shows that the 121 pattern in U occurs more fre-
quently in the modern era compared to the ragtime era.
Secondly, it shows that the 121 pattern in U also became
more important over time compared to other patterns. Al-
though the 121 pattern in the modern era is the second most
frequent pattern, the difference between the first and third
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Figure 5: The 10 most frequent U patterns found in bars with
LHL > 0 in ragtime and modern era. 121 pattern is visualized
darker.
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Figure 6: The 10 most frequent T patterns found in bars with
LHL > 0 in ragtime and modern era. 121 pattern is visualized
darker.
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Figure 7: Frequency of augmented pattern in U (left) and T
(right) bar parts of ragtime era and modern era bars.

most frequent pattern ( ? ˇ “( ˇ “==̌“) is minimal, The figure af-
firms the hypothesis that the 121 pattern is an important
pattern amongst other patterns, and its importance for the
ragtime genre in U increased over time.

Another difference between the ragtime and modern era
can be found in the onset density and metrical position of
onsets. In the ragtime era, the top most frequent patterns
have a lower onset density and have more notes on strong
metrical position, indicating that the patterns used in the
ragtime era are less complex. In the modern era, the top
most frequent patterns are more dense and have more notes
occurring on weaker metrical positions.

Patterns appearing in T bar parts. Figure 6 shows the
10 most frequent patterns found in T parts of syncopated
bars. The figure shows that the 121 pattern is an impor-
tant pattern in T , being the second most frequent pattern
in the ragtime era and by far the most frequent pattern in
the modern era. These results affirm the hypothesis that
both the importance and use of the 121 pattern in T has
increased over time. In a study by Huron et al. [7], a top
10 of most frequently found syncopation patterns in sound
recordings of American popular music spanning the period
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1890 to 1939 is presented. The most frequently found syn-
copation pattern appears here as well, as the fifth most im-
portant pattern in the modern era bars: ? ˇ “ ˇ “( (OOIOOOIO).

Furthermore, an increase in onsets on weak metrical po-
sitions is observed. The first couple of most frequent pat-
terns in the ragtime era are simple rhythms on strong met-
rical positions. Conversely, in the ragtime era we observe
denser patterns. Both the increase of 121 use and use of
denser patterns is in line with the argument of Jasen [8]
that after around 1920, rags became more difficult to play,
because “[. . . ] writers were no longer writing for the at-
home amateur pianist, [. . . ], but were writing for them-
selves and for other professional performers”.

U and T patterns between eras. A comparison be-
tween the leftmost figures of Figure 5 and Figure 6 shows
that for both T an U , the most frequent ragtime era pattern
is the same regular sparse pattern ( ˘ “ ˘ “). Since this pattern
itself is not syncopated according to the LHL model, this
shows that in syncopated bars from the ragtime era most
often only one half of a bar contains syncopation, indicat-
ing a lower amount of overall syncopation compared to the
modern era. The 121 pattern is an important pattern for the
ragtime era, being the fourth most important pattern in U
bar parts and second most important pattern in T bar parts.
The use of the 121 pattern increased over time, both in U
as in T . In the modern era, the 121 pattern is by far the
most important pattern in T bar parts, and the second in U .

Overall, the most frequent patterns in the ragtime era
show more sparse onset patterns on strong metrical posi-
tions, indicating simpler rhythms. The most frequently ob-
served pattern in the ragtime era ( ˇ “ ˇ “) corresponds with a
part of the third most common syncopation pattern found
by Huron et al. [7] in sampled music from 1890 to 1939.
Nevertheless, the research by Huron et al. does not focus
specifically on ragtime music, so further cross-genre re-
search is needed to find if this pattern is specifically impor-
tant for ragtime. Conversely, it is observed that the patterns
in the modern era are more dense. Onsets appear more fre-
quently on weaker metrical positions, increasing the com-
plexity of patterns in terms of onset density over time. This
agrees with the musicological hypotheses that earlier rag-
time is simpler, and the exceptional renewed rhythmical
creativity from around 1920 onwards [2, 8].

Augmented syncopation. Figure 7 shows the frequen-
cies of the augmented 121 pattern in U and T bar parts.
In U , a difference of around 60% is observed, which re-
flects the argument by Berlin [2] that the pattern becomes
“quite rare” at the end of the ragtime era. Although rare
to begin with in T , the occurrence drops with 50% in the
modern era compared with the ragtime era. Care should be
taken with drawing conclusions from these results because
of the low frequency. The observations on the augmented
pattern underline the overall trend of ragtime moving to-
wards using onsets on weaker metrical positions and in-
creased onset density of patterns, thereby becoming more
syncopated.

5. DISCUSSION AND CONCLUSION

Through this study, we were able to confirm new and ex-
isting hypotheses on increasing syncopation and rhythmic
pattern use in the ragtime genre.

Ragtime music is often described as ‘highly syncopated’.
Through the RAG-C, we showed for the first time that in
a large corpus this translates into about half of the bars
of rags being syncopated. Musicologists have argued that
syncopation is important for the ragtime genre. Through
the computational means in this study, we can affirm the
hypothesis syncopation is a characteristic feature of the
genre. We can also confirm the hypothesis that the amount
of syncopation is not stable over time, but increased after
1920. More specifically, by exploring this notion of in-
creased syncopation we discovered that the number of syn-
copated bars is approximately equal in ragtime and modern
era rags, but that the LHL values of bars increases.

In an analysis of all patterns used in ragtime syncopa-
tion, we showed the top 10 most frequently used patterns in
syncopated bars. We found that over time, onset patterns
became more dense with more notes on weaker metrical
positions. This finding is consistent with the increase of
LHL. We can affirm the findings by Volk and De Haas [16]
on the increase of 121 after the ragtime era. In addition, we
showed that the 121 pattern is a highly important rhythmi-
cal pattern for the genre, being one of the most frequently
used patterns compared to all other patterns.

Our corpus-based study on syncopation complements
studies in music cognition research, which have investi-
gated syncopation’s role on violating listeners’ expecta-
tions, thereby contributing to listening pleasure of the mu-
sic [17]. These studies are predominantly carried out on
short rhythmic stimuli. Understanding the full power of
syncopation requires its study within entire compositions
as realized within this paper. Violating listeners’ expecta-
tion through the use of syncopation in this ragtime corpus
is realized on average in half of the bars in the melody.
Whether or not there are other genres that use even more
violations, while still providing a clear sense of meter, will
have to be addressed in future research.

To study what ‘highly syncopated’ means in the con-
text of other genres, we plan on comparing the amount of
syncopation in the RAG-C to other genre datasets. Further-
more, a study into the use of the 121 pattern in other genres
would shed light on the relative importance of the pattern
to ragtime and other genres.
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ABSTRACT

Voice and stream segmentation algorithms group notes
from polyphonic data into relevant units, providing a bet-
ter understanding of a musical score. Voice segmentation
algorithms usually extract voices from the beginning to the
end of the piece, whereas stream segmentation algorithms
identify smaller segments. In both cases, the goal can be
to obtain mostly monophonic units, but streams with poly-
phonic data are also relevant. These algorithms usually
cluster contiguous notes with close pitches. We propose an
independent evaluation of four of these algorithms (Tem-
perley, Chew and Wu, Ishigaki et al., and Rafailidis et al.)
using several evaluation metrics. We benchmark the al-
gorithms on a corpus containing the 48 fugues of Well-
Tempered Clavier by J. S. Bach as well as 97 files of pop-
ular music containing actual polyphonic information. We
discuss how to compare together voice and stream segmen-
tation algorithms, and discuss their strengths and weak-
nesses.

1. INTRODUCTION

Polyphony, as opposed to monophony, is a music created
by simultaneous notes (see Figure 1) coming from several
instruments or even from a single polyphonic instrument,
such as the piano or the guitar. Polyphony usually implies
chords and harmony, and sometimes counterpoint when
the melody lines are independent.

Voice and stream segmentation algorithms group notes
from polyphonic symbolic data into layers, providing a
better understanding of a musical score. These algorithms
make inference and matching for relevant patterns easier.
They are often based on perceptive rules as studied by
Huron [7] or Deutsch [6]. Chew and Wu gathered these
rules into four principles [2]:

• (p1) Voices are monophonic;

c© Nicolas Guiomard-Kagan, Mathieu Giraud, Richard
Groult, Florence Levé.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Nicolas Guiomard-Kagan, Mathieu
Giraud, Richard Groult, Florence Levé. “Comparing Voice and Stream
Segmentation Algorithms”, 16th International Society for Music Infor-
mation Retrieval Conference, 2015.

Figure 1: In this piano-roll representation, each segment
describes a note. The horizontal axis represents time and
the vertical axis represents the pitch.

• (p2) At least once, all voices must be played simul-
taneously;

• (p3) Intervals are minimized between successive notes
in the same stream or voice (pitch proximity);

• (p4) Voices tend not to cross.

Voice segmentation algorithms extract voices from the
beginning to the end of the piece. Usually, the resulting
voices are monophonic (p1) and, at some point, all the
voices do appear (p2). The algorithms described by Chew
and Wu [2] and Ishigaki et al. [9] first identify contigs of
notes, then link these contigs. These algorithms will be dis-
cussed later. De Valk et al. [5] proposed a machine learning
model with a neural network to separate voices in lute tab-
latures. The study of Kirlin and Utgoff [13] uses another
machine learning model to separate voices, taking in con-
sideration both actual polyphony and implicit polyphony,
such as the one obtained with arpeggios.

Stream segmentation algorithms identify segments gen-
erally smaller than complete voices. A stream is a group
of coherent notes, usually respecting principles such as
p3 and p4. Temperley’s algorithm [17] extracts streams
with respect to several constraints. Rafailidis et al.’s al-
gorithm [16], based on an earlier work by [11], uses a k-
nearest neighbors clustering technique on individual notes.
Both algorithms will be discussed in Sections 3.1 and 3.2.
The study by Madsen and Widmer [15], inspired by Tem-
perley [17], allows crossing voices. The method of Kilian
and Hoos [12] starts by cutting the input score into sec-
tions called slices such that all the notes of a slice overlap;
Then, an optimization method involving several evaluation
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functions is applied to divide and combine the slices into
voices; The output voices can contains chords.

Depending on the algorithms, the predicted streams can
thus be small or large. However, such algorithms do pre-
dict groups of notes, especially contiguous relevant notes,
and may thus be compared against full voice segmentation
algorithms. De Nooijer et al. [4] made a comparison by
humans of several voice and stream separation algorithms
for melody finding.

In this paper, we independently evaluate some of these
algorithms, benchmarking in the same framework voice
and stream segmentation algorithms. We compare some
simple and efficient algorithms that were described in the
litterature [2, 9, 16] and added the algorithm in [17] for
which an implementation was freely available. Our corpus
includes Bach’s fugues (on which many algorithms were
evaluated) but also pop music containing polyphonic ma-
terial made of several monophonic tracks. The next two
sections detail these algorithms. Section 4 presents the
evaluation corpus, code, and methods. Section 5 details
the results and discusses them.

2. VOICE SEPARATION ALGORITHMS

2.1 Baseline

To compare the different algorithms, we use a very simple
reference algorithm, based on the knowledge of the total
number of voices (p2). The baseline algorithm assigns a
reference pitch for each voice to be predicted, then assigns
each note to the voice which has the closest reference pitch
(Figure 2).

Figure 2: The baseline algorithm assigns each note to the
voice having the closest reference pitch. This reference
pitch is computed by averaging pitches on segments having
the highest number of simultaneous notes. Here the middle
voice, Voice 1, has a reference pitch that is the average of
the pitches of notes 7, 9 and 11.

2.2 CW

The CW algorithm separates voices by using the four prin-
ciples (p1, p2, p3, p4) [2].

Contigs. The first step splits the input data into blocks
such that the number of notes played at the same time dur-
ing one block does not change. Moreover, when a note

crosses the border of two blocks and stops or starts to sound
inside a block, the block is split in two at this time. The
obtained blocks are called contigs (Figure 3). By construc-

Figure 3: Four contigs: Contig 3 contains three fragments,
{6}, {7, 9, 11} and {8, 10}.

tion, the number of played notes inside a contig is constant.
Notes are grouped from the lowest to the highest pitch in
voice fragments (Figure 3).

Figure 4: Connection Policy: All fragments are connected
with respect to p3.

Connection Policy. The second step links together frag-
ments from distinct contigs (see Figure 4). The contigs
containing the maximal number of voices are called max-
imal voice contigs (p2). The connection starts from these
maximal contigs: Since the voices tend not to cross, the
order of the voices attributed to fragments of these contigs
has a strong probability to be the good one (p2 and p4).

Given two fragments in contiguous contigs, CW defines
a connection weight, depending on n1, the last note of the
left fragment, and on n2, the first note of the right frag-
ment. If n1 and n2 are two parts of the same note, this
weight is −K, where K is a large integer, otherwise the
weight is the absolute difference between the pitches of
the two notes (p3). The fragments connected between two
contigs are the ones which minimize the total connection
weight (Figure 5).

2.3 CW-Prioritized

Ishigaki et al. [9] proposed a modification of CW algo-
rithm in the merging step between the contigs. Their key
observation is that the entry of a voice is often non am-
biguous, contrary to the exit of a voice that can be a “fade
out” which is difficult to precisely locate. Instead of start-
ing from maximal voice contigs, they thus choose to start
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Figure 5: Connection between contigs: The selected links
are the ones minimizing the total weight (3 + 4 = 7).

only from adjacent contigs with an increasing number of
voices. For example in Figure 3, the procedure starts by
merging Contig 1 with Contig 2. The choice of merged
fragments is identical to the method described in CW al-
gorithm. After the merge of all fragments of two adjacent
contigs c1 and c2, we get a new contig containing the same
number of voices than in c2 (see Figure 6).

Figure 6: Contig combining: Contigs 1, 2, then 3 are com-
bined, resulting in a Contig 1+2+3 with 3 voices.

The procedure described above is reiterated as long as
two adjacent contigs have an increasing number of voices.
If at the end of this procedure, there is more than one con-
tig, they are merged by the original CW connection policy.

3. STREAM SEGMENTATION ALGORITHMS

We also study stream segmentation algorithms, which do
not segment a score into voices but into streams that may
include overlapping notes. Streams can be melodic frag-
ments, but also can cluster related notes, such as chords. A
voice can be thus split into several streams, and a stream
can cluster notes from different voices.

3.1 Streamer

The algorithm proposed by Temperley extracts streams while
respecting several constraints [17]. The first constraint is
pitch proximity: two contiguous notes with close pitches
are placed in the same stream (p3). The second constraint
is temporal: when there is a long rest between two notes,
the second note is put into a new stream (Figure 7). The
last principle allows the duplication of a note in two voices
(provided that the streams do not cross, p4).

Figure 7: Due to the rest after
note 2, Streamer assigns notes 1
and 2 to a stream that does not
include any other notes.

Figure 8: Stream Segment as-
signs notes 12, 13, 14, and 15 in
a same stream. The notes 13-15
can be seen as a transposition of
notes 12-14, forming a succes-
sion of chords.

3.2 Stream Segment

The algorithm by Rafailidis et al. [16] clusters notes based
on a k-nearest-neighbors clustering. The algorithm first
computes a distance matrix, which indicates for each pos-
sible pair of notes whether they are likely to belong to the
same stream. The distance between two notes is computed
according to their synchronicity (Figure 8), pitch and onset
proximity (among others criteria); then for each note, the
list of its k-nearest neighbors is established.

3.3 CW-Contigs

We finally note that the first step of the CW algorithm (con-
tig creation) can be considered as a stream segmentation al-
gorithm. We call this first step CW-Contigs. For example,
on the Figure 3, this method creates 8 streams correspond-
ing to the 8 voice fragments of the four contigs.

4. EVALUATION CORPUS AND METRICS

4.1 Evaluation corpus

Usually these algorithms are evaluated on classical music,
in particular on counterpoint music such as fugues, where
the superposition of melodic lines gives a beautiful har-
mony. As a fugue is made up several voices, this naturally
constitutes a good benchmark to evaluate voice separation
algorithms [2, 5, 9–11, 15–17]. We thus evaluated the al-
gorithms on the 48 fugues of the two books of the Well-
Tempered Clavier by J.-S. Bach 1 .

We also wanted to evaluate other forms of polyphonic
writing. The problem is to have a ground truth for this task.
From a set of 2290 MIDI files of popular music, we formed
a corpus suitable for the evaluation of these algorithms. We
focused on MIDI tracks (and not on MIDI channels). We
kept only “monophonic” tracks (where at most one note is
played at any time) of sufficient length (at least 20 % of
the length of the longest track). We deleted the tracks cor-
responding to the drums. We considered each remaining

1 .krn files downloaded from kern.ccarh.org [8]
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corpus wtc-i wtc-ii pop
files 24 24 97

voices 3.5 3.4 3.0
notes 1041 1071 874

Table 1: Files, and aver-
age number of voices and
notes for each corpus.

track as an independant voice. Finally, we kept 97 MIDI
files with at least 2 voices, composed on average of 3.0
voices (see Table 1).

4.2 Evaluation code

We implemented the algorithms CW-Contigs, CW, CW-
Prioritized and Stream Segment, using a Python frame-
work based on music21 [3]. The Streamer algorithm 2 was
run with default parameters. As it quantizes input files, the
offset and duration of notes in the output are slightly dif-
ferent from the ones in our original files: We thus had to
associate notes to the correct ones.

4.3 Evaluation metrics

4.3.1 Note-based evaluation.

A first evaluation is to ask whether the voices are correctly
predicted. The note precision (NPR) is the ratio between
the number of notes correctly predicted (in the good voice)
over the total number of notes. On one voice, this mea-
sure is the same than the average voice consistency (AVC)
defined by [2]. However on a piece or on a corpus, we
compute the ratio on the total number of notes, instead of
averaging ratios as in [2]. Especially in the pop corpus, the
distribution of notes is not equal in all pieces and all voices,
and this measure better reflects the ability of the algorithm
to assign the good voice to each note.

Computing NPR requires to assert which voice in the
prediction corresponds to a given voice of the ground truth.
In a fugue, there may be a formal way to exactly define the
voices and number them, from the lowest one to the high-
est one. But, in the general case, this correspondance is not
always obvious. By construction, the two voice segmen-
tation algorithms studied here predict a number of voices
equal to the maximal number of voices, whereas the stream
segmentation algorithms have no limit for the number of
streams. In the general case, one solution is to compare
each voice predicted by the algorithm with the most simi-
lar voice of the ground truth, for example taking the voice
of the ground truth sharing the highest number of notes
with the predicted voice.

Note-based evaluation tends to deeply penalize some er-
rors in the middle of the scores: When a voice is split in
two, half of the notes will be counted as false even if the
algorithm did “only one” mistake. Moreover, this is not

2 downloaded from www.link.cs.cmu.edu/melisma

a fair way to evaluate stream segmentation algorithms, as
they may predict (many) more streams than the number of
voices. We thus use two other metrics, that better measure
the ability of the algorithms to gather notes into voices,
even when a voice of the ground truth is mapped to several
predicted voices. These metrics do not require to make the
correspondence between predicted voices and voices of the
truth.

4.3.2 Transition-based evaluation.

The result of voice or stream segmentation methods can
be seen as a set of transitions, that are pairs of succes-
sive notes in a same predicted voice or stream. We com-
pare these transitions against the transitions defined by the
ground truth, and compute usual precision and recall ratios.

The transition precision (TR-prec) (called soundness by
[13]) is the ratio of correctly assigned transitions over the
number of transitions in the predicted voices. This is re-
lated to fragment consistency defined in [2] – but the frag-
ment consistency takes only into account the links between
the contigs, and not all the transitions. The transition recall
(TR-rec) (called completeness by [13]) is the ratio of cor-
rectly assigned transitions over the number of transitions in
the truth. This is again related to voice consistency of [2].

For each piece, we compute these ratio on all the voices
– taking the number of correct transitions inside all the
voices, and computing the ratio over the number of tran-
sitions inside either all the predicted voices or all the truth.
When the number of voices in the ground truth and in the
prediction are equal, the TR-prec and TR-rec ratios are
thus equal: we simply call this measure TR. Figure 12, at
the end of the paper, details an example of NPR and TR
values for the six algorithms.

4.3.3 Information-based evaluation.

Finally, we propose to adapt techniques proposed to eval-
uate music segmentation, seen as an assignation of a label
to every audio (or symbolic) frame [1, 14]. Lukashevich
defines two scores, So and Su, based on normalized en-
tropy, reporting how an algorithm may over-segment (So)
or under-segment (Su) a piece compared to the ground
truth. The scores reflect how much information there is in
the output of the algorithm compared to the ground truth
(So) or conversely (Su). Here, we use the same metrics
for voice or stream segmentation: both the ground truth
and the output of any algorithm can be considered as an
assignation of label to every note. On the probability dis-
tribution of these labels, we then compute the entropies
H(predicted|truth) andH(truth|predicted), that become So

and Su after normalization [14]. As these scores are based
on notes rather than on transitions, they enable to measure
whether the clusters are coherent, even in situations when
two simultaneous voices are merged in a same stream (giv-
ing thus bad TR ratios).
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wtc-i wtc-ii pop
avg. NPR TR So Su avg. NPR TR So Su avg. NPR TR So Su

Baseline 3.5 71.4% 63.7% 0.48 0.48 3.4 71.9% 62.6% 0.45 0.45 3 89.5% 87.1% 0.77 0.75
CW 3.5 83% 95.9% 0.73 0.73 3.4 87.8% 95.6% 0.73 0.73 3 84.6% 88.7% 0.76 0.76

CW-Prioritized 3.5 82.5% 97.4% 0.72 0.72 3.4 86.5% 97.1% 0.74 0.74 3 64.8% 89.4% 0.51 0.5
avg. TR-prec TR-rec So Su avg. TR-prec TR-rec So Su

Streamer 16 75.6% 68.3% 0.46 0.62 15.4 75.6% 65.2% 0.42 0.57
Stream Segment 191.1 76.5% 62.1% 0.23 0.79 214 77.4% 61.9% 0.21 0.79

CW-Contigs 226.2 99.4% 86.7% 0.34 0.98 282.3 99.4% 86.8% 0.34 0.98

Table 2: Results on the fugues and on the pop corpora. “avg.” is the average number of voices or streams predicted.

5. RESULTS AND DISCUSSION

We evaluated the six algorithms on the 48 fugues of Well-
Tempered Clavier by J. S. Bach, and moreover the voice
separation algorithms were evaluated on the 97 pop files.
Table 2 details the results.

5.1 Results

Note and transition-based evaluation. Between 80 % and
90 % of the notes are assigned correctly to the right voice
by at least one of the voice separation algorithms. The re-
sults confirm that these NPR metric is not very meaningful.
The baseline has good NPRs, and on the pop corpus, the
baseline NPR is even better than CW and CW-Prioritized.
Compared to the baseline algorithm, all algorithms output
longer fragments (see Figure 9). As expected, the transi-
tion ratio (TR) metrics are better to benchmark the ability
of the algorithms to gather relevant notes in the same voice:
all the algorithms have better TR metrics than the baseline.

The three stream segmentation algorithms predict more
streams that the number of voices in the ground truth, hence
low TR-rec ratios. The TR-prec ratios are higher, better
than the baseline, and the CW-Contigs has an excellent
TR-prec ratio.

Information-based evaluation. An extreme case is perfect
prediction, with NPR = TR = 100%, So = 1 and Su = 1
(like in Bach’s Fugue in E minor BWV 855 for both CW
and CW-Prioritized). In a pop song (allsaints-bootiecall)
where two voices play mostly same notes, the baseline al-
gorithm merges all notes in the same voice, so NPR and
TR are close to 50%, but So is close to 1 and Su close to 0.

Figure 9: Notes attributed to the wrong voice with
the baseline (left) and CW (right) algorithms on Bach’s
Fugue #2 – book II (in C minor, BWV 871). When
CW makes errors, the voices are kept in a same predicted
voice.

In the general case, Su is correlated with TR-prec, and
So with TR-rec. As expected, in stream segments algo-
rithms, Su is better than So. Note that the Stream Segment
has not the best TR-prec ratio (sometimes, it merges notes
that are in separate voices), but it has a quite good Su score
among all the algorithms (when it merges notes from sep-
arate voices, it tends to put in the same stream all notes
that are in related voices). The best Su scores are obtained
by the CW-Contigs, confirming the fact that the contig cre-
ation is a very good method that makes almost no error.

Figure 10: A note spanning two
contigs is split in A and A′.
CW and CW-Prioritized link the
fragments (A + A′), (B + C),
keeping A in the same voice.
The original implementation of
Ishigaki et al. links the frag-
ments (A +D), (B,A′), dupli-
cating the whole note A+A′.

Figure 11: Fragments A and
B are in different contigs due
to the overlap of previous notes.
Both CW-Prioritized and the
original implementation of Ishi-
gaki et al. link the fragments
(A+B +D) and (C), whereas
CW links the fragments (A+C)
and (B +D).

5.2 Partitioned notes and link weights

With CW algorithm, when a note is cut between two con-
tigs and the voices assigned to those two fragments are dif-
ferent, the predicted voices contain more notes than in the
input data. This case was not detailed in the study [2]. To
avoid split notes in the output of the algorithm, we choose
to allow voice crossing exactly at these points (Figure 10).

Our results for CW-Prioritized differ from the ones ob-
tained in [9]: Their AVC was better compared to CW. In
our implementation, the NPR ratio is lower for CW-Prio-
ritized compared to CW. In our implementation (as in the
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original algorithm of CW), there is a−K weight to the link
between two parts of the same note. In the Ishigaki et al.
implementation, this weight is −1, and thus the algorithm
keeps partitioned notes in the output (see Figure 10). De-
spite this difference, our CW-Prioritized implementation
gives good results by considering TR both on the fugues
and on the pop corpus. even if it merges incorrectly some
contigs (see Figure 11).

5.3 A challenging exposition passage in a fugue

Figure 12 shows the results of the algorithms on a extract
of Bach’s Fugue #16 – book I. This passage is quite chal-
lenging for voice separation: all the four voices enter in
succession, and there is a sixth interval in the head of the
subject that often put voices very close. In the last measure
of the fragment, there is even a crossing of voices when the
soprano is playing this sixth interval.

The algorithms behave differently on this passage, but
none of them perfectly analyze it. Only CW-Prioritized
predicts correctly the first three measures, especially the
start of the alto voice at the first two beats of measure 12.
CW selects a bad link at the third beat of measure 14, re-
sulting in a bad prediction in measures 12/13/14 (but a high
TR ratio overall). Except on the places where almost all the
algorithms fail, Streamer has a correct result. Stream Seg-
ment creates many more streams, and, as expected, assigns
notes that overlap in the same stream, as on the first beat
of measure 12.

Finally, none of the algorithms successfully handles the
voice crossing, measure 15. CW-Contigs made here its
only clustering error (otherwise it has an excellent TR-
prec), linking the D of the soprano with the following G of
the alto. As expected, this error is found again in CW and
CW-Prioritized, and Streamer also splits apart the notes
with the highest pitch from the notes with the lowest pitch.
At this point, Stream Segment creates streams containing
both voices. Handling correctly this passage would require
to have a knowledge of the patterns (including here the
head of the subject with the sixth leap) and to favor to keep
these patterns in a same voice, allowing voice crossing.

6. CONCLUSIONS

Both voice and stream segmentation methods cluster notes
from polyphonic scores into relevant units. One difficulty
when benchmarking such algorithms is to define a ground
truth. Beside the usual fugues corpus, we proposed some
ideas to establish a pop corpus with polyphonic data suit-
able for evaluation.

Even stream segmentation algorithms give good results
in separating voices, as seen by the TR ratios and the Su

score. The Streamer algorithm is very close to a full voice
separation, predicting monophonic streams. The Stream
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Figure 12: Output of the five algorithms on the measures
12 to 15 of Bach’s Fugue #16 – book I (in G minor, BWV
861). After the initial chord with almost all the voices, the
voices enter in succession (alto and tenor: m12, bass: m13,
soprano: m15).

Segment algorithm further enables to output some poly-
phonic streams that may be relevant for the analysis of the
score.

Focusing on voice separation problem, the contig ap-
proach, as initially proposed by [2], seems to be an excel-
lent approach – very few transition errors are made inside
contigs, as shown by the raw results of the CW-Contigs al-
gorithm. The challenge is thus to do the right connections
between the contigs. The ideas proposed by [9] are inter-
esting. In our experiments, we saw a small improvement
in our CW-Prioritized implementation compared to CW,
but details on how partitioned notes are processed should
be handled carefully. Further research should be done to
improve again the contig connection.
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ABSTRACT

Due to the scarcity of labeled data, most melody extrac-
tion algorithms do not rely on fully data-driven processing
blocks but rather on careful engineering. For example, the
Melodia melody extraction algorithm employs a pitch con-
tour selection stage that relies on a number of heuristics
for selecting the melodic output. In this paper we explore
the use of a discriminative model to perform purely data-
driven melodic contour selection. Specifically, a discrim-
inative binary classifier is trained to distinguish melodic
from non-melodic contours. This classifier is then used
to predict likelihoods for a track’s extracted contours, and
these scores are decoded to generate a single melody out-
put. The results are compared with the Melodia algorithm
and with a generative model used in a previous study. We
show that the discriminative model outperforms the gen-
erative model in terms of contour classification accuracy,
and the melody output from our proposed system performs
comparatively to Melodia. The results are complemented
with error analysis and avenues for future improvements.

1. INTRODUCTION

Melody extraction has a variety of applications in music
retrieval, classification, transcription and analysis [15]. A
precise definition of melody that takes into account all pos-
sible scenarios has proven elusive for the MIR commu-
nity. In this paper we consider two different definitions
of melody [1]: The f0 curve of the predominant melodic
line drawn from a single source (melody type 1), and the
f0 curve of the predominant melodic line drawn from mul-
tiple sources (melody type 2).

Some approaches to melody extraction are source
separation-based [4, 18], first isolating the melodic source
from the background and then tracking the pitch of the re-
sulting signal. The most common approaches are based
on the notion of salience [3, 7, 13, 14], and are variants of
the following steps (1) audio pre-processing, (2) salience

c© Rachel M. Bittner, Justin Salamon, Slim Essid, Juan P.
Bello. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Rachel M. Bittner, Justin Salamon,
Slim Essid, Juan P. Bello. “Melody Extraction by Contour Classifica-
tion”, 16th International Society for Music Information Retrieval Confer-
ence, 2015.

function computation, (3) f0 tracking, and (4) voicing de-
cisions. Steps (3) and (4) for these methods are each based
on a series of carefully chosen heuristic steps, and are lim-
ited to the data they were designed for. A recent trend in
Music Information Retrieval research is to combine do-
main knowledge with data driven methods [8], using do-
main informed feature representations as input to data-
driven models. To the best of our knowledge, only one
melody extraction approach [5] has been proposed to date
using a fully data driven method. However, the features
employed were poor for the task (magnitude Fourier co-
efficients), and used only limited temporal modeling via
HMM smoothing. Additionally, at the time, only a small
amount of data was available. The recent availability of an-
notated melody data allows for new exploration into data
driven methods for melody extraction.

In this paper, we present a system for melody extraction
which replaces the common series of heuristic steps with
a data-driven approach. We propose a method for scoring
extracted contours (short, continuous pitch sequences) us-
ing a discriminative classifier, and a Viterbi-based method
for decoding the output melody. We show that our method
performs competitavely with Melodia [14]. The imple-
mentation of the proposed method and the code used for
each experiment is available on Github 1 . The remainder
of this paper is organized as follows: in Section 2 we give
an overview of Melodia; Section 3 describes our proposed
method for melody extraction; in Section 4 we present ex-
periments evaluating the effectiveness of our method, in-
cluding a comparison with Melodia, and in Section 5 we
discuss the conclusions and avenues for future work.

2. MELODIA

Melodia [14], a salience-based melody extraction algo-
rithm, has proved to perform particularly well. The algo-
rithm is comprised of four processing blocks: sinusoid ex-
traction, salience function computation, contour creation
and characterization, and finally melody selection. In the
first block, spectral peaks are detected, and precise fre-
quencies of each component are estimated using their in-
stantaneous frequency. In the second stage a harmonic
summation-based salience function is computed. In the
third block, the peaks of the salience function are tracked

1 www.github.com/rabitt/contour_classification
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into continuous pitch contours using auditory streaming
cues. Additionally, a number of features are computed for
each contour:
• Duration (seconds)
• Pitch mean and standard deviation (in cents)
• Salience mean, standard deviation, and sum
• Vibrato presence (binary), rate (Hz), extent (cents),

coverage (fraction of contour with vibrato)
The melody f0 trajectory is obtained in the fourth block

by filtering out non-melodic contours based on their fea-
tures in combination with an iterative estimation of the
global melodic trend. This step exploits the contour fea-
ture distributions to perform the filtering, but does so in a
heuristic fashion. For further details the reader is referred
to [14].

Recently, Melodia was evaluated on the MedleyDB [1]
dataset which contains considerably more variety in musi-
cal style than previous datasets. The results were shown to
be substantially lower than for the existing datasets. In par-
ticular, it was reported that Melodia’s performance on mu-
sic with vocal melodies was better than on music with in-
strumental melodies. This indicates that the heuristic steps
at the contour selection stage may be well tuned for singing
voice, but less so for instrumental melodies. Since these
heuristics are hard coded, the algorithm cannot be adjusted
for different kinds of data or different concepts of melody.
We will show that these steps can be replaced by a data
driven approach.

In [16], Salamon, Peeters, and Röbel proposed to re-
place the heuristic melodic selection block of Melodia with
a generative classification model. The contour features
were used to estimate two multivariate Gaussian distribu-
tions, one for melodic and another for non-melodic con-
tours. These distributions were used to define the “melodi-
ness” score, computed as the likelihood ratio of the two
distributions.

The final f0 sequence was obtained by taking the f0 of
the contour with the highest “melodiness” at each frame.
The authors showed that the generative model could pro-
duce similar (albeit not equally good) results in terms of
pitch accuracy, but the model lacked a voicing detection
step. This was addressed by combining the model with the
voicing detection filter of the original Melodia algorithm.

Finally, in [17] the authors combined Melodia’s contour
features with additional features to train a discriminative
model for classifying different musical genres. Their ex-
periments showed that the contour features carry discrim-
inative melodic information. This outcome, together with
that of [16] and the release of MedleyDB, gives compelling
motivation for the exploration of discriminative models
using pitch contour features for solving the problem of
melodic contours selection.

3. METHOD

The proposed system uses the pitch contours and contour
features generated by Melodia 2 . The method consists of

2 These are taken from intermediate steps in the Vamp plugin’s imple-
mentation

a contour labeling stage, a training stage where a classifier
is fit to discriminate melody from non-melody contours,
and a decoding stage which generates a final f0 sequence.
Melody output is computed using a trained classifier as
shown in Figure 1.

3.1 Contour Labeling

To generate contours for a musical audio signal, we use
the first three processing blocks of the Melodia algorithm
directly (see [14] for details). Each contour is represented
by a sequence of tuples (time, frequency, salience). As
described in Section 2, the third block also computes a set
of descriptive features for each contour, which we use to
train the model in Section 3.2.

During training, extracted contours are assigned binary
labels: 1 if the contour should be considered as a part of
the melody and 0 otherwise. The labels are chosen by
comparing the amount of overlap between each contour
and the ground truth annotation. Given an annotation a(t)
with 0 ≤ t ≤ T , a contour c(t) spanning the time interval
t1 ≤ t ≤ t2 is compared with a(t) over the time range
t1 ≤ t ≤ t2. The amount of overlap between these two
sequences is computed using “Overall Accuracy” [15], de-
fined as:

Accov =
1

L

L−1∑

i=0

viT [|ϕ̂i − ϕi|] + (1− vi)(1− v̂i) (1)

where L is the number of reference/estimate examples, vi
and v̂i are the (binary) voicings of the reference and esti-
mate respectively, ϕi and ϕ̂i are the f0 values in cents of
the reference and estimate respectively, and T is a thresh-
old function equal to 1 if the argument is less than 0.5,
and 0 otherwise. Given a minimum overlap threshold α, if
Accov > α the contour is labeled as melody. Note that if
α = 1, because of the strict inequality, all contours would
be labeled as non-melody. Despite containing extraneous
information, a contour with a small degree of overlap still
contains part of the melody. Labeling it as non-melody re-
moves any possibility of the melody-portion of the contour
ending up in the final extracted melody (i.e., lower recall).
On the other hand, labeling it as melody potentially results
in having non-melody information included in the melody
(i.e., lower precision). Thus, there is an inherent trade-off
between melody precision and recall based on the value of
the overlap threshold α.

3.2 Contour Classification

We normalize the features per track to remove variance
caused by track-level differences. The salience features are
each divided by the maximum salience value in the track
to remove differences based on overall track salience. The
duration feature is normalized so that across the track the
minimum value is 0 and the maximum value is 1. The fea-
ture “total salience” is additionally re-scaled to reflect the
normalized duration.

These features and the computed labels are used to train
a random forest classifier [2]. We use the random forest im-
plementation in scikit-learn [11] with 100 trees and
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Figure 1. Block diagram of the proposed system (left to right): pitch contours are extracted from an audio signal, a classifier
is used to score the contours and remove those below a threshold, the final f0 sequence is obtained using Viterbi decoding.

choose the maximum depth parameter by cross validating
over the training set. In our experiments, the classifier was
trained with roughly 11,000 examples for melody 1 and
roughly 15,000 for melody 2. Because our class distribu-
tions tend to be biased towards non-melody examples, the
classifier is trained with class weights inverse to the class
distributions. Once the classifier is trained, we use it to
predict the probability that a given contour is melody. In
the case of a random forest, the melody likelihood is com-
puted as the fraction of trees that classify a given example
as melody.

3.3 Melody Decoding

We create an output melody by first removing contours
whose likelihood falls below a threshold β and then de-
coding to generate a final melody. The thresholding step
is necessary because there may be regions of time where
only non-melody contours are present. Since decoding
only chooses the best path through available contours, hav-
ing regions with contours which are all non-melody would
result in false positives. Aside from the contour extraction,
the choice of this threshold is the single most important
step for determining the voicing of the output melody.

This raises the question: what is the best way to de-
termine the likelihood threshold β? A natural choice is
β = 0.5, as this is the threshold that has been opti-
mized by the machine for maximum classification accu-
racy. While this threshold gives us nearly perfect preci-
sion for the melody class, the recall is extremely low. We
instead choose the threshold that yields the highest class-
weighted F1 score on a validation set. The chosen value
of β in this manner is consistently much lower than 0.5
(typically β ≈ 0.1), resulting in higher recall at the cost
of lower precision. It is interesting to note that for our end
goal – selecting a single melody sequence – we do not nec-
essarily need perfect precision because false positives can
be removed during decoding.

After this filtering step, contours that do not overlap
with any other contour are immediately assigned to the
melody. The remaining contours have partial overlap with
at least one other contour, requiring the melody line to
be chosen from within the overlapping segments. Thus,
we divide these remaining contours into groups: contours
{C1[t], . . . , Cn[t]} each spanning some time interval are
assigned to the same group if the union of their intervals
forms a contiguous interval.

The path over time through each group of contours is
computed using Viterbi decoding [6]. Given a group of
n contours, our state space is the set of contour numbers

{1, 2, . . . , n}. We create a matrix Y of emission probabili-
ties using each contour’s likelihood score [p1, p2, . . . , pn]:

Yit =

{
pi if Ci is active at time t
0 otherwise (2)

The transition matrix A, defined to encourage continu-
ity in pitch space, is computed for each group as:

Aij =

∑n
k 6=j |log2(fi)− log2(fk)|

(n− 1)
∑n

k=1
|log2(fi)− log2(fk)|

(3)

where fi is the average frequency (in Hz) of contour i.
This transition matrix, simply put, assigns a high transi-
tion probability between contours whose (log) frequencies
are near one another, and a lower transition probability be-
tween contours which are far from one another in log fre-
quency. The prior distribution is set to be uniform. Given
the sequence of contour states S[t] computed by Viterbi,
for each time point t, the frequency CS[t][t] is assigned to
the melody.

4. EXPERIMENTS

For each of the following experiments we use the Med-
leyDB Dataset [1]. Of the 122 tracks in the dataset, we
use the 108 that include melody annotations. We create
train/test splits using an artist-conditional random parti-
tion (i.e., tracks from the same artist cannot be in both
the train and test set). The complete training set is fur-
ther split randomly into a training and validation. A given
train, validate, and test split contains roughly 78%, 7%,
and 15% respectively of the 108 tracks. We repeat each
experiment with five different randomized splits to get a
sense of the variance of the results when using different
data. In Figures 2, 3, and 4, vertical lines indicate the
standard deviation over the five splits. Recall that we con-
sider two definitions of melody (Section 1). Consequently,
when we report scores for melody type 1, the classifier was
trained using the melody 1 annotations, and likewise for
melody type 2. All evaluation metrics were computed us-
ing mir eval [12].

4.1 Experiment 1: Generative vs. Discriminative
Contour Classification

Before evaluating components of the proposed system, we
first examine the recall of Melodia’s contour extraction on
this dataset. That is, given all extracted contours, what is
the percentage of the reference melody that is covered by
the contours (in terms of pitch overlap)? We tested this by
selecting the “oracle” (i.e., best possible) f0 curve from the
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Figure 2. Maximum F1 score achieved per overlap thresh-
old α by the generative and discriminative models.

contours. The oracle output yielded an average Raw Pitch
Accuracy of 0.66 (σ = 0.22) for melody type 1, and 0.64
(σ = 0.20) for melody type 2. Thus, the best raw pitch
accuracy we (or Melodia) could hope to achieve on this
dataset is upper bounded by these numbers.

Acknowledging the existence of this glass ceiling, we
compare the generative model for scoring contours with
the proposed discriminative model. The features used for
the discriminative model are those described in Section 2,
while the generative model used only the continuous fea-
tures (i.e., none of the vibrato features) 3 . The features for
the multivariate Gaussian were transformed using the box-
cox transformation as in [16], where the transformation’s
parameter λ was estimated from the training set and ap-
plied to the testing set.

To evaluate the effectiveness of these two methods, we
compare the F1 scores achieved by selecting the optimal
likelihood threshold β. Figure 2 shows the best achieved
F1 scores on the validation set for the two models. We see
that the random forest classifier obtains a better F1 score
for all values of α. Interestingly, the F1 score achieved
by the multivariate Gaussian is less affected by α than the
Random Forest, which decreases as α increases. Note that
neither classifier achieves an F1 score above 75%. This
suggests that either the models are not complex enough or
that the classes are not completely discriminable using this
set of features. Since our feature set is relatively small, the
latter is likely, and the performance of both of these mod-
els would likely benefit from a larger feature set. However,
fitting a high dimensional multivariate Gaussian requires a
large amount of data. Thus, another advantage of using a
random forest classifier is that increasing the dimensional-
ity of the feature space does not necessarily require more
data.

One might argue that the difference in performance
of the two methods could be due to the fact that the vi-
brato features are not used in the multivariate Gaussian
model. However, a post-hoc analysis of the importance
of the vibrato features within the random forest classifier
(for melody 1 with α = 0.5) showed that they were by a

3 We initially included the vibrato features for the generative model,
but the results were extremely poor.

Melody Type OA RPA RCA

1 1.6 2.5 2.5
2 2.4 4.2 2.1

Table 1. Percentage point difference between Viterbi de-
coding and taking a simple maximum.

large margin the least important features in the set. In fact,
the presence of vibrato contributed to discriminating only
≈ 0.03% of the training samples. The most discriminative
features for the random forest were the salience standard
deviation, followed by pitch mean, followed by pitch stan-
dard deviation.

Overall, we see that the random forest consistently out-
performs the multivariate Gaussian, and has the additional
benefit of scalability to a much larger feature set.

4.2 Experiment 2: Decoding Method

Our second experiment examines the effect of our Viterbi
decoding strategy. First, we compare it with an approach
based on the one used in [16], where the f0 value at each
point in time was chosen by taking a simple maximum over
the “melodiness” score. For our comparison, we take the
maximum over the likelihoods produced by the classifier
after thresholding.

We found that Viterbi decoding consistently showed an
improvement in the melody evaluation metrics on each
track. For some particular tracks, Viterbi decoding im-
proved the output by up to 10 percentage points. Ta-
ble 1 shows the average percentage point increase per track
by using Viterbi over the simple maximum. The metrics
shown are the Overall Accuracy (OA), Raw Pitch Accu-
racy (RPA), and Raw Chroma Accuracy (RCA) [15]. We
see a particularly good improvement for melody 2, where
Viterbi decoding increases the average raw pitch accuracy
by more than 4 percentage points.

Figure 3 shows each melody evaluation metrics across
the different overlap thresholds α. The values plotted are
averages over each of the 5 experiments, where the error
bars indicate the standard deviation. Surprisingly, we see
very little difference in any of the metrics for both melody
types. We saw in Figure 2 that the F1 score decreased as
α increased, which implies that unlike what we might ex-
pect, the final melody output is not strongly affected by the
F1 score. Note, however, that the F1 score is computed on
a different set of labels for each value of α. The resilience
may be due to the fact that the labels that change as we
sweep α are the “noisier” labels, and thus the hardest to
classify, whereas the contours that are not affected by the
value of α (i.e., very high overlap or no overlap with the an-
notation) are easier to classify. We conjecture that for each
value of α the classifiers are probably performing equally
poorly on the noisy contour examples and equally well on
the clean examples.

All in all, the deviations in metrics are minor across val-
ues of α, and we conclude that the value of α does not have
a strong impact on the final melody accuracy. The values
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Figure 3. Melody metrics for each overlap threshold α and
melody type.

of α that yield the highest scores on the validation set (by a
small margin) were α = 0.5 for melody 1 and α = 0.4 for
melody 2, and these values are used for our final system.

4.3 Experiment 3: Melodia vs. Proposed Method

As a final experiment, we compare the proposed method
with Melodia. This experiment essentially evaluates the
two different contour selection methods, since both meth-
ods begin with the same set of contours. Melodia’s param-
eter ν controls the voicing decision, and is the parameter
with the largest impact on the final output. The scores re-
ported for Melodia in this experiment use the value of ν
that achieved the best overall accuracy on the training set.
The final scores are reported for the test set.

The results for each algorithm are shown in Figure 4.
The proposed method performs quite competitively with
Melodia. In particular, Melodia only outperforms our sys-
tem in overall accuracy by 4 percentage points for melody
1 and 2 percentage points for melody 2. The primary met-
ric where the algorithms differ is in the voicing recall and
voicing false alarm rates. Our system has significantly bet-
ter recall than Melodia (33 percentage points higher for
melody 1, 9 for melody 2), but also a much higher false
alarm rate (34 percentage points higher for melody 1, 14
for melody 2) - in other words, our system assigns con-
tours to the melody much more often than Melodia does.

An interesting example to this point is shown in Fig-
ure 5. Both methods achieve the same overall accuracy
of ≈ 0.50, but their output is quite different. Our output
gets almost all of the voiced frames correct, but has spu-
rious mistakes outside of the annotation as well. In con-
trast, Melodia has nearly perfect precision, but misses large
segments. This example is characteristic of the difference
between the two algorithms – our approach over-predicts

melody, and Melodia under-predicts it. Notice that the pro-
posed method produces spurious frequency values, caused
by slight differences in contour start and end points within
contour groups. These values could be removed in a future
post processing stage.

Figure 5. Segment of melody output for “Clara Berry and
Wooldog: The Bad Guys”.

This difference is especially significant for tracks con-
taining instrumental melodies. Figure 6 shows a segment
from a track with a flute melody. Our approach works
quite well for this example, while Melodia misses most
of the melodic line. In Figure 4 we also report the over-
all accuracy for the portions of the data containing vocal
(OA-V) and instrumental melodies (OA-I). We see that for
instrumental melodies, our method matches Melodia’s per-
formance for melody 1 and slightly outperforms Melodia
for melody 2. Conversely, we see the opposite trend for
vocals, with Melodia outperforming our method for both
melody types. This trend can be largely attributed again to
the differences in voicing statistics – vocal melodies in this
dataset tend to have many more unvoiced frames than in-
strumental melodies, so our method’s high false alarm rate
hurts our performance for vocal tracks.

Despite the slight difference in metrics, the two algo-
rithms perform similarly, with inversely related pitfalls. It
is interesting to note that when the current approach com-
pletely fails, so does Melodia. This first and foremost oc-
curs when output from the contour extraction stage is poor,
which dooms both methods to failure.
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Figure 6. Segment of melody output for “Phoenix: Lark
on the Strand/Drummond’s Castle”.

Overall, we see that the proposed method is quite good
at correctly choosing melody examples, but the high false
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alarm rates hurt its overall scores. This speaks to the clas-
sifier’s need for better discrimination between melody and
non melody examples. To do this, we need more/better
features, a more powerful classifier, or both. This ties back
to Ellis and Poliner’s observation in [5]: a large percentage
of contours are very easy to distinguish, and the remaining
contours are difficult for data driven and heuristic methods
alike. This is likely due to the lack of longer time scale fea-
tures describing the relationship between observations. We
as humans are able to distinguish melody from non-melody
in a song, but in ambiguous cases, we make our distinction
based on what we heard earlier in the song [10].

As a final illustration, Figure 7 shows the output of both
algorithms for melody 1 (top) and melody 2 (bottom) for
a segment containing a flute and a trumpet. The melody is
carried by the flute for most of the track, but in this segment
is carried by the trumpet. For melody 1, both methods track
the flute, matching the annotation, whereas for melody 2
both methods still track the flute whereas the trumpet line
is annotated. Without long-term context giving the algo-
rithm information about which lines have happened previ-
ously as background or melody, there is no way for either
of these methods to choose the “correct” line.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that replacing Melodia’s
heuristic decisions with a series of fully data driven de-
cisions can nearly match Melodia’s overall performance,
and there many open avenues for improving our results.
In particular, we have shown that a discriminative model
can outperform a generative model for labeling contours,
and we have provided a detailed evaluation of how each
step in the proposed approach influences the final results.
Compared to Melodia, we noted that the proposed method
has better melody recall, but a considerably worse voicing
false alarm rate. To improve the discrimination ability of
the classifier, future iterations of this method will first in-
corporate a wider set of features, including features that de-
scribe neighboring contours (octave duplicates, etc.), and
features that describe a contour’s relationship with the rest
of the track on a longer time scale, potentially including
timbre similarity. Additionally, since we are using a rel-

Figure 7. Outputs for melody 1 (top) and melody 2 (bot-
tom) for a segment of “Music Delta: Latin Jazz”.

atively small training set, we would like to explore aug-
menting our training data through sets of time and pitch
deformations.

With a slight adjustment to the evaluation metrics, our
method can be easily extended to be trained on and pre-
dict melody type 3 [1] annotations, which give all feasible
melody candidates at each time point, and is the most in-
clusive melody definition for MedleyDB. A limitation of
the current method is that it assigns a single likelihood to
each contour. Since the extracted contours virtually never
overlap completely with the annotation, it would be de-
sirable to be able to assign time-varying scores to each
contour. To do this, we plan to explore the use of Condi-
tional Random Fields [9] for assigning scores to contours
because of their ability to incorporate temporal informa-
tion. Finally, to raise the glass ceiling on performance,
future work will include revisiting the contour extraction
stage.
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ABSTRACT 

Performing schools (liupai) in jingju (also known as Pe-

king or Beijing opera) are one of the most important ele-

ments for the appreciation of this genre among connois-

seurs. In the current paper, we study the potential of MIR 

techniques for supporting and enhancing musicological 

descriptions of the singing style of two of the most re-

nowned jingju schools for the dan role-type, namely Mei 

and Cheng schools. To this aim, from the characteristics 

commonly used for describing singing style in musico-

logical literature, we have selected those that can be stud-

ied using standard audio features. We have selected eight 

recordings from our jingju music research corpus and 

have applied current algorithms for the measurement of 

the selected features. Obtained results support the de-

scriptions from musicological sources in all cases but 

one, and also add precision to them by providing specific 

measurements. Besides, our methodology suggests some 

characteristics not accounted for in our musicological 

sources. Finally, we discuss the need for engaging jingju 

experts in our future research and applying this approach 

for musicological and educational purposes as a way of 

better validating our methodology. 

1. MOTIVATION 

This paper is a joint work between an ethnomusicologist 

(the first author) and a team of MIR researchers in the 

framework of the CompMusic project. In this project we 

exploit jingju music characteristics (and other music tra-

ditions) with the aim of pushing forward the state of the 

art in MIR. In last ISMIR Conference (Taipei, 2014) 

jingju music received significant attention, with a specific 

tutorial and several papers published by members of our 

team [1-3], as well as the work by Tian et al. [4]. In the 

present paper though, the motivation has been to test the 

potential of current MIR methodologies to support and 

enhance qualitative and descriptive musicological anal-

yses of jingju music. To this aim, we have selected one of 

the more relevant aspects of jingju music appreciation, 

which is the singing style of different performing schools; 

specifically, we have focused on two of the more popular 

ones, Mei school and Cheng school. 

The paper is structured hence in the following sec-

tions. In the introduction we present the concept of jingju 

schools and the importance of singing style, as well as 

explain the purpose of the research undertaken for this 

paper. In the following two sections, we introduce the 

collection of recordings selected and the methodology 

proposed, and analyse the obtained results. In the discus-

sion section we reflect on the challenges for expanding 

our research and present the direction of our future work. 

We conclude by summarising the musicological out-

comes of the current research. 

2. INTRODUCTION 

Jingju is one of the genres of Chinese traditional theatre 

arts, arguably the most widespread and acclaimed one. 

Originally a folk art form, the actor traditionally was in 

charge of the whole creative process, from costumes and 

make-up, to acting, dancing, reciting, arranging the music 

and sometimes even writing (or improvising) the lyrics. 

In order to structure their performance, actors drew on a 

vast repertoire of predefined conventions handed down 

by tradition and which concerns every single aspect of 

this art. Characters of jingju plays are classified in acting 

categories or role-types, which define which set of con-

ventions the actor who plays that role-type should master. 

The high complexity of such conventions requires the ac-

tor to specialize in the performance of just one role-type 

during his life-time career. Along jingju history, there 

were some outstanding actors that excelled in the mastery 

of these conventions and pushed forward the artistic 

standards of their respective role-types or the genre as a 

 
Figure 1. Mei Lanfang (left) and Cheng Yanqiu (right) 
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whole. Some of these masters would bring their own per-

sonalities to their performances and created personal 

styles. In a tradition that is orally transmitted, this would 

result in the appearance of liupai, or performing schools.
1
 

The first half of the 20
th

 century was the period of ma-

jor development of jingju and when the most renowned 

schools appeared. It saw the extraordinary development 

of the dan role-type, that portraying young or mid-aged 

female characters, but performed by male actors, due to 

social and political constrictions. Four of them gained the 

title of “four great dan actors” (si da ming dan),
2
 and 

founded their own schools. Their strong personality, the 

context of market competition, and even their own physi-

cal condition caused schools of dan to be the ones with a 

greater degree of difference within one specific role-type. 

Among these four schools, those founded by Mei Lan-

fang (1894-1961) and Cheng Yanqiu (1904-1958) (Figure 

1),
3
 respectively named Mei and Cheng schools, are the 

most widespread and followed ones today, currently per-

formed in its vast majority by female actresses. These are 

precisely the ones we chose for our study. 

Each jingju school is highly associated to a particular 

repertoire of plays and generally to a predominant per-

formance skill. In fact, this repertoire is formed of plays 

arranged by the school founder to precisely showcase its 

mastery in that specific skill. In the case of Mei and 

Cheng schools, singing is the most representative and ac-

claimed aspect of their art. This aspect concerns mainly 

two elements, the arrangement of new tunes
4
 and the 

singing style. Among these two, the singing style is the 

feature that makes a performance instantly recognizable 

as belonging to any of these schools, and also one of the 

skills that performers, both professional and amateurs, put 

more effort to master. At the same time, it is one of the 

most important criteria for appreciating a performance 

among connoisseurs. The features that define singing 

style not only consist in the way voice is used in singing, 

but also in the very quality of the voice. Both of them 

should be considered not as natural personal qualities of 

particular actors, but as conventions that have to be 

trained and mastered. The resulting voice is to be under-

stood hence as “an artificial voice, in the sense of display-

ing artifice, or art” [5], and followers of each school aim 

at mastering this voice quality as well. 

Descriptions made in jingju musicology about singing 

style generally focus on its perceptual characteristics and 

                                                           
1 The translation of liupai as school can be subject to misinterpretation. 

Differently to other traditions, jingju schools do not imply training in 

specific institutions or affiliation to specific lineages. They consist in 
the transmission of the performance style of individual great masters, so 

that the reference is always the founder of the school, and not the teach-

er from whom the new actors or actresses learn. 
2 Quotes from Chinese sources are given in our translation. 
3 Picture from http://zh.wikipedia.org/wiki/程砚秋#/media/File:梅兰芳

与程砚秋.JPG (detail). 
4 Since jingju music is created by applying pre-existing melodic conven-

tions, it is customary to use the term arrangement (bianqu) instead of 
composition to refer to this process. 

the psychological profile of the characters conveyed 

through those characteristics. Wichmann [5] quotes a typ-

ical description of Mei school’s singing style from 

Zhongguo da baike quanshu (China Great Encyclopedia) 

by Hu Qiaomu, in which timbre is described as “‘sweet, 

fragile, clear and crisp, round, embellished and liquid.’ 

This timbre is considered ideal for portraying ‘natural, 

graceful and poised, dignified, gentle and lovely tradi-

tional women. ’” In all the musicological sources consult-

ed for this paper [5-10], description of singing style al-

ways includes this kind of terminology. However, since 

the aim of our research is add precision to musicological 

description, we have selected those characteristics for 

which audio features can be objectively computed. Table 

1 shows the musicological characteristics selected and 

their corresponding audio features. 

In the last few years there have been several studies 

about singing characteristics in different Chinese tradi-

tional theatre genres, like jingju [11-12] and kunqu [13-

14]. In these studies different role-types have been com-

pared in terms of several singing characteristics by ana-

lysing monophonic recordings produced by the authors. 

In our work, we look in depth to one particular role-type, 

dan, and analyse singing characteristics with explicit ref-

erence to its musicological descriptions and using com-

mercial recordings. In the following section we describe 

the collection of recordings and explain the methodology 

proposed. 

3. METHODOLOGY 

For this study, we have selected a collection of recordings 

from our jingju music research corpus [1], according to 

two criteria: representativeness and comparability. In or-

der to assure that these recordings are representative of 

their school, we have considered both the recording artist 

and the recorded aria. We have looked for artists whose 

school filiation is explicitly stated in the release’s book-

let, and arias belonging to plays for which we have liter-

ary evidence (mostly from [8]) that are representative of 

their school. In order to maximize comparability, we have 

searched for plays for which musicological literature spe-

cifically acknowledges a particular rendition from each of 

these two schools, as it is the case of Su San qijie accord-

ing to [5, 8]. Since these are rare cases, due to the fact 

Characteristics Audio features 

Pitch register Pitch histogram (1
st
 degree) 

Vibrato rate variability Vibrato rate (SD) 

Volume variability Loudness (SD) 

Brightness 

Spectral centroid (mean) 

LTAS 

Tristimulus 

Timbre variability Spectral flux (mean) 

Table 1. Musicological characteristics and their corre-

sponding audio features considered in our study. 

508 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



  

 

 

Figure 2. Block diagram of the methodology. 
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that each school has developed its own specific reper-

toires, we have also searched for arias with similar music 

structure. This is the case of fhc and sln, arranged in the 

same shengqiang and similar banshi.
1
 The resulting col-

lection of recordings is described in Table 2, together 

with the abbreviations used throughout the paper. We ar-

gue that the size of this collection is appropriate for the 

current research since we are not performing a quantita-

tive study. Instead we are using MIR methodologies for 

supporting qualitative descriptions. 

Figure 2 describes the methodology proposed for this 

paper. Each of the recordings is ripped in a lossless com-

pressed format with a sampling rate of 44.1 kHz. We 

manually identify the sections containing singing voice, 

for which we compute the predominant melody using the 

vamp plug-in version of Salamon and Gómez’s algorithm 

[15], setting a pitch range threshold of 100 Hz to 1000 

Hz, and the voicing parameter at its maximum level, 3.0. 

Given that a percentage of error results, pitch tracks are 

manually corrected (an average of 7.16% from the com-

puted frames). In order to measure pitch register, we use 

the methodology proposed in [16] to compute pitch his-

tograms and obtain the pitch of the first degree
2
 from 

their peaks values. The algorithm presented in [17] is 

used to measure vibrato rate and extent, of which we cal-

culate mean and standard deviation (SD). To measure the 

remaining features, we separate the singing voice from 

the accompaniment by computing a harmonic model 

analysis and synthesis using the methodology presented 

                                                           
1 Shengqiang is the musical convention in jingju that determines the 
melodic skeleton; banshi refers to the metrical pattern. For more de-

tailed information about these concepts, please refer to [1, 5]. 
2 We use “first degree” to translate gongyin. This term refers to the first 
degree of the sung scale, and in jianpu notation is notated with the num-

ber 1 (http://en.wikipedia.org/wiki/Numbered_musical_notation). Alt-

hough common functions are shared, we consciously avoid the term 
tonic, for its implications with tonality, absent in jingju music. 

in [18], and apply to it standard algorithms for the com-

putation of those features as implemented in the Essentia 

library [19]. For loudness we use the Loudness algorithm, 

normalizing the resulting mean to a factor of 0.5, so that 

SD is better comparable. To measure brightness, we 

compute mean and SD of the spectral centroid using the 

Centroid algorithm. In order to better understand timbre 

qualities, we also compute tristimulus using the Tristimu-

lus algorithm, and long-term-average spectrum (LTAS) 

using the implementation presented in [20]. Finally, to 

measure timbre variability, we compute spectral flux 

mean and SD using the Flux algorithm from Essentia. 

In the following section, we analyse the results ob-

tained for each school and relate them with their corre-

sponding musicological characteristics. 

School Work: Play. “Aria” (Character) Recording: MusicBrainz ID Length Artist 

Mei 

fhc: 

Feng huan chao. “Ben ying dang 

sui muqin Haojing bi nan” (Cheng 

Xue’e) 

fhc-LYf: 

a1e4b77b-88b0-4003-b688-66e39f579dc6 
7:33 Li Yufu 

fhc-SYh: 

4e3b46b2-9db7-4f52-af95-e43239a6c0e1 
6:56 Shi Yihong 

fhc-LSs: 

83d2fc7f-e1c1-4359-b417-ed9e519ecbb7 
7:34 

Li Shengsu 
ssqj: 

Su San qijie. “Yu Tangchun han 

bei lei mang wang qian jin” (Su 

San) 

ssqj-LSs: 

067b8f25-888a-4a08-a495-cbc402846b10 
7:15 

Cheng 

ssqj-CXqd: 

87dbdf41-37ff-4f4a-83d4-7169d674579a  
6:20 

Chi Xiaoqiu 

sln: 

Suo lin nang. “Chunqiu ting wai 

feng yu bao” (Xue Xiangling) 

sln-CXq: 

11a44af7-e29a-4c50-aa38-6139d37ca306  
3:21 

sln-LPh: 

3dcae41a-795c-4b7d-979b-1b52aa42dd3a  
3:06 Li Peihong 

sln-LGj: 

1e705224-0b44-48aa-a0de-6386cda9d517 
3:15 Liu Guijuan 

Table 2. Description of the recordings used in this paper. When applicable, short forms are provided. 
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4. ANALYSIS OF THE RESULTS 

Table 3 shows a summary with the average measurement 

values from each of the features computed for each 

school.
1
 In this section we analyse how these results re-

late to the musicological descriptions of their corre-

sponding musical characteristics. 

According to our musicological references, pitch reg-

ister in Mei is higher than in Cheng. Since pitch range of 

arias for the dan role-type is consistent across plays, ap-

proximately an octave and a major third, we take the 

pitch of the first degree as an indicator of pitch register. 

However, this degree is rarely sung in arias of this role-

type. This is due to one singing convention, according to 

which female role-types shift their pitch register a fifth 

higher than male role-types, so that the modal center be-

comes the fifth degree. To measure the pitch of the first 

degree hence, we compute a pitch histogram and assign a 

modal degree to each peak by listening to the recordings 

with the aid of scores. Since we observed that the peak 

corresponding to the sixth degree is usually the cleanest 

one, we take it as reference by assigning the value of 900 

cents. Figure 3 shows the resulting pitch histograms for 

ssqj-LSs and ssqj-CXq, compared with the equal 

tempered scale. It has to be noted that in jingju there is 

no absolute standard pitch for tuning, but it depends on 

the actor’s or actress’ needs. Notwithstanding this, a 

pitch is commonly assumed as reference for each role-

type; for the dan role-type first degree is expected to be 

around E4 (329.63 Hz) [21]. Results in Table 3 show that 

this is the case for both schools, although first degree in 

Cheng is in average 6.28 Hz (33.30 cents) lower than E4, 

and Mei 5.78 Hz (30.09 cents) higher. Consequently, 

first degree in Cheng is in average 63.39 cents lower 

than Mei, more than a semitone. Results for all the re-

cordings show that in every case first degrees from Mei 

are higher than those for Cheng, although the smallest 

difference between recordings from each school is 1.31 

Hz. These results hence invite us to support the musico-

logical description for pitch register. 

Besides the aforementioned results, Figure 3 suggests 

that pitch histograms can shed light upon other aspects of 

singing style. Chen [22] has used histograms to study 

                                                           
1 Detailed results and more plots can be found in 
https://github.com/jingjuschools/jingjuschoolsISMIR2015  

that, as Figure 3 shows, compared with the equal tem-

pered scale the fourth degree, although seldom used, is 

sung at a higher pitch, what is common knowledge in 

musicological literature. Unexpectedly, the higher octave 

of the first degree appears in the histograms slightly 

shifted higher, especially in Mei school, for which we 

have not found literary evidence. Besides, peak shape 

differences, cleaner and with lower valleys for Cheng, 

also suggest differences in singing style, probably re-

garding vibrato and ornamentation. These observations 

invite us to argue that pitch histograms could be further 

exploited for the characterisation of singing style and ex-

plore features unnoticed or not explicitly accounted for 

in our references.
2
 

According to the sources consulted, Cheng “excels in 

                                                           
2 Differences in peaks height indicate different melodic preferences in 

each school, what concerns tune arrangement, an issue not considered in 
this paper. 

School Features 

 1
st
 deg. 

(Hz) 

Vibrato Loudness Spectral centroid 

(Hz) 

Spectral flux 

Rate (Hz) Extent (cents) 

Mean SD Mean SD SD Mean SD Mean SD 

Mei 335.41 4.757 0.728 137.325 37.466 0.279 2536.739 366.968 0.121 0.063 

Cheng 323.35 6.090 0.963 111.101 41.157 0.387 2136.555 451.642 0.087 0.058 

Table 3. Average measurement values from each of the features computed for each school. 

 

 
Figure 3. Pitch histograms for ssqj-LSs (top) and 

ssqj-CXq (bottom). Vertical lines show the equal 

tempered scale, solid red line marks the first degree, 

and dotted red line marks its higher octave. 
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using slow and fast vibratos” [9]. Consequently, the fea-

ture that can better reflect this characteristic is the stand-

ard deviation of vibrato rate. As can be seen in Table 3, 

this value is higher in Cheng than in Mei, and this is also 

the case for every recording. However, the difference is 

less than 0.3 Hz, what is barely appreciable by human 

ear. Variability in vibrato extent, as reflected in our re-

sults, is slightly higher in Cheng than in Mei, but the dif-

ference in this case is even less significant. Besides, spe-

cific results from each recording are less consistent, since 

some instances from Mei school show higher SD in vi-

brato extent than others from Cheng, and vice versa. 

What our results clearly show though, is that vibrato in 

Mei is considerably slower and wider than in Cheng, a 

feature that is consistent across all the recordings. Inter-

estingly enough, we have not found such a remark in our 

musicological sources. 

Results obtained for loudness variance also support 

musicological description, which takes volume variabil-

ity as a characteristic of Cheng school compared to Mei. 

Results for each recording are less consistent than for 

other features, finding one case in Mei with higher SD 

than the lowest value for a recording in Cheng. These 

results, however, ought to be taken carefully. Firstly, 

they might have been affected by possibly different mix-

ing levels in the production process. Secondly, being 

loudness a perceptual feature, the algorithm used is an 

approximation to it by a simple modification of ampli-

tude values, what prevent us to take them as a faithful 

representation of the characteristic measured. 

Our musicological references agree that timbre in Mei 

school is brighter than in Cheng. To measure brightness, 

we have computed spectral centroid mean and SD. Val-

ues for the mean effectively show that Mei has brighter 

timbre than Cheng, as an average and for every recording 

in each school. Given the complexity of timbre, we have 

also looked at LTAS, a feature that has been used in [23] 

to study and compare vocal tract and formant structure. 

Figure 4 shows the LTAS for the three performances of 

fhc and sln. To focus on the region with greater loud-

ness, plots show the region between 200 Hz and 5000 

Hz, with a logarithmic scale in the x-axis. In these plots 

it can be observed how frequencies over 1000 Hz are 

considerably higher in Mei than in Cheng, as well as the 

peaks with the highest loudness, contributing thus to 

timbre brightness. Besides this information, LTAS al-

lows us to compare vocal tract between performers in 

each school, so that we can observe that timbre similarity 

is higher in Cheng than in Mei. This method hence 

seems promising in order to characterise individual ac-

tors’ or actresses’ particularities within the overall re-

quirements of the school. 

Tristimulus has also been used to study and compare 

timbre qualities [24]. Figure 5 shows that in average both 

the second and the third of the three output components 

measured by tristumulus have higher values for Mei than 

for Cheng, what once more support the higher weight of 

higher partials in Mei. This figure also suggests a prom-

ising tool for classification according to timbre quality.  

Finally, results for spectral flux, computed with the 

aim of measuring timbre variability, show a greater value 

in Mei than in Cheng, a difference which is consistent 

across all the recordings, with special homogeneity in 

Mei. Literature however remarks Cheng’s timbre varia-

bility as a defining trait of this school. It is also interest-

ing to notice that the SD value for spectral centroid also 

shows a higher value in Cheng, although is not as con-

sistent as the spectral flux values across all the record-

ings. Since this descriptor was computed only for the 

sections of the recordings that contained singing, we re-

 

 
Figure 4. LTAS for the three recordings of fhc (top)  

and the three recordings of sln (bottom). 

 
Figure 5. Scatter plot displaying values for the 2

nd
 

and 3
rd

 tristimulus components for each recording and 

the mean for each school. 
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computed it setting different loudness thresholds for the 

transition frames in order to discard an influence of the 

segmentation. Results didn’t change any tendency to-

wards a higher value in Cheng than in Mei. How to ap-

proach timbre variability in jingju singing using audio 

analysis features remains hence an issue for future re-

search, as discussed in the following section. 

5. DISCUSSON 

The analysis of the results presented in the previous sec-

tion suggests that the methodology proposed in this paper 

is promising for the intended task, namely, supporting 

musicological description using audio analysis features. 

However, there are also some challenges that have to be 

addressed when extending this research in future work.  

We aim to improve our methodology in the following 

two senses: automatizing most of the steps for audio 

analysis and improving existing algorithms to better fit 

jingju music characteristics. Some researchers in our 

team are currently working on improving the automatic 

segmentation method by Chen [22], adapting Ishwars’ 

methodology [25] to jingju music for better extraction of 

predominant melody, and developing new algorithms for 

automatic computation of the first degree. Improvement 

of the harmonic model analysis and synthesis as present-

ed in [18] is also to be undertaken in the near future. 

Arguably, the bigger challenge for the continuation of 

this research is gaining the engagement of jingju musi-

cologists. In this paper we have aimed to show how the 

present approach can benefit musicological work. Yet to 

that aim we have consciously avoided most of the termi-

nology that is more commonly used by experts when de-

scribing singing style. The authors have not yet agreed on 

a methodology from an MIR point of view for approach-

ing descriptions such as “sweet” (tian), “mellow” (run), 

“fragile” (cui), “round” (yuan), or “wide” (kuan). Even 

when considering a characteristic like timbre variability, 

whose study by means of spectral flux disagrees with 

musicological descriptions, we wonder how much of this 

disagreement is due to difficulties in establishing a com-

mon terminology between these two disciplines. From the 

field of MIR there have been recent calls for a better un-

derstanding of the musical content of commonly comput-

ed descriptors [26]. The authors argue that collaborative 

research as the one undertaken here would also encourage 

jingju experts to reflect on their terminology in terms of 

audio analysis features, and hopefully would gain com-

plementary precision for those concepts. 

Besides supporting musicological research, the use of 

audio features for qualitative analysis can be exploited for 

educational purposes. Jingju is a tradition that relies on 

oral transmission for training young actors and actresses. 

The key method in this training tradition consists on 

“teaching by mouth and heart” (kou chuan xin shou), that 

is, the teacher sings and the student repeats as many times 

as needed for achieving an acceptable standard. Recently, 

new technologies are being used as part of this process. 

Students use their cell phones to record their teachers, 

and audio and video recordings of performances are easi-

ly accessible in the web. Technologies that could auto-

matically evaluate the degree of similarity between the 

teacher’s and the student’s performance, and moreover 

offer a precise description of dissimilarities, would guide 

the trainee in better understanding his or her own learning 

process. The aim of such technologies would be perform-

ing qualitative analysis of audio recordings, similar to the 

ones implemented in this paper. Building upon the results 

obtained and the methodology tested in the current work, 

we have started to develop such educational tools. To this 

goal we will require closer collaboration with jingju ex-

perts. The involvement of these experts and the ac-

ceptance of the educational tools by jingju trainees will 

also provide better evaluation methods for our research. 

6. CONCLUSIONS 

The current paper has studied the potential of using audio 

analysis features for supporting and enhancing the musi-

cological description of singing style in two jingju 

schools for the dan role-type, namely Mei and Cheng. 

Our results support the description given in musicological 

literature for most of the characteristics analysed, and add 

precision to them. Pitch register in Cheng school is in av-

erage 63.39 cents lower than Mei. Variability in vibrato 

rate is slightly higher in Cheng, what agrees with musico-

logical description, but less than 0.3 Hz. Volume variabil-

ity as a characteristic of Cheng school has been supported 

by the measure of loudness, whose SD is 38.71% higher 

in this school than in Mei. That this school is brighter in 

timbre than Cheng is supported by the mean value of its 

spectral centroid, 18.73% higher, but also by measure-

ments in LTAS and tristimulus. Besides supporting these 

descriptions, our method also suggests some characteris-

tics not explicitly accounted for in the sources consulted: 

vibrato in Mei is in average 1.33 Hz slower and 26.22 

cents wider than in Cheng, pitch histograms suggest new 

characterisations for tuning and intonation, and LTAS 

looks promising for comparing vocal tracts of singers 

within a school. Only in the case of spectral flux, com-

puted for studying timbre variability, the results do not 

support the musicological description, an issue that will 

be addressed in future research. In the light of these re-

sults, we have started to extend this methodology for the 

development of educational tools, a project in which we 

hope to gain the engagement of jingju experts, who could 

benefit from this approach for their own research. 
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ABSTRACT 

Current software for Optical Music Recognition (OMR) 
produces outputs with too many errors that render it an 
unrealistic option for the production of a large corpus of 
symbolic music files. In this paper, we propose a system 
which applies image pre-processing techniques to scans 
of scores and combines the outputs of different commer-
cial OMR programs when applied to images of different 
scores of the same piece of music. As a result of this pro-
cedure, the combined output has around 50% fewer errors 
when compared to the output of any one OMR program. 
Image pre-processing splits scores into separate move-
ments and sections and removes ossia staves which con-
fuse OMR software. Post-processing aligns the outputs 
from different OMR programs and from different 
sources, rejecting outputs with the most errors and using 
majority voting to determine the likely correct details. 
Our software produces output in MusicXML, concentrat-
ing on accurate pitch and rhythm and ignoring grace 
notes. Results of tests on the six string quartets by Mozart 
dedicated to Joseph Haydn and the first six piano sonatas 
by Mozart are presented, showing an average recognition 
rate of around 95%. 

1. INTRODUCTION 

Musical research increasingly depends on large quantities 
of data amenable to computational processing. In com-
parison to audio and images, the quantities of symbolic 
data that are easily available are relatively small. Millions 
of audio recordings are available from various sources 
(often at a price) and images of tens of thousands of 
scores are freely available (subject to differences in copy-
right laws) in the on-line Petrucci Music Library (also 
known as IMSLP). In the case of data in formats such as 
MEI, MusicXML, Lilypond, Humdrum kern, Musedata, 
and even MIDI, which give explicit information about the 
notes that make up a piece of music, the available quanti-
ties are relatively small. The KernScores archive [21] 
claims to contain 108,703 files, but many of these are not 
complete pieces of music. Mutopia, an archive of scores 

in the Lilypond format, claims to contain 1904 pieces 
though some of these also are not full pieces. The 
Musescore collection of scores in MusicXML gives no 
figures of its contents, but it is not clearly organised and 
cursory browsing shows that a significant proportion of 
the material is not useful for musical scholarship. MIDI 
data is available in larger quantities but usually of uncer-
tain provenance and reliability.  

The creation of accurate files in symbolic formats such 
as MusicXML [11] is time-consuming (though we have 
not been able to find any firm data on how time-
consuming). One potential solution to this is to use Opti-
cal Music Recognition (OMR) software to generate sym-
bolic data such as MusicXML from score images. Indeed, 
Sapp [21] reports that this technique was used to generate 
some of the data in the KernScores dataset, and others 
have also reported on the use of OMR in generating large 
datasets [2, 3, 6, 23]. However, the error rate in OMR is 
still too high. Although for some MIR tasks the error rate 
may be sufficiently low to produce usable data [2, 3, 23], 
the degree of accuracy is unreliable. 

This paper reports the results of a project to investigate 
improving OMR by (i) image pre-processing of scanned 
scores, and (ii) using multiple sources of information. We 
use both multiple recognisers (i.e., different OMR pro-
grams) and multiple scores of the same piece of music. 
Preliminary results from an earlier stage of this project 
were reported in [16]. Since then we have added image 
pre-processing steps, further developments of the output-
combination processes, and mechanisms for handling pi-
ano and multi-part music. We also report here the results 
of much more extensive testing. The basic idea of com-
bining output from different OMR programs has been 
proposed before [4, 5, 13] but this paper presents the first 
extensive testing of the idea, and adds to that the combi-
nation of outputs from different sources for the same 
piece of music (different editions, parts and scores, etc.).  

In view of our objective of facilitating the production 
of large collections of symbolic music data, our system 
batch processes the inputted scores without intervention 
from the user. The basic workflow is illustrated in Figure 
1. Each step of the process is described in subsequent sec-
tions of this paper, followed by the results of a study that 
tested the accuracy of the process.  

Music notation contains many different kinds of in-
formation, ranging from tempo indications to expression 
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markings, and to individual notes. The representation var-
ies in both score and symbolic music data formats. In this 
study we assume the most important information in a 
score to be the pitch and duration of the notes. Therefore, 
we have concentrated on improving the accuracy of 
recognition of these features alone. Grace notes, dynam-
ics, articulation, the arrangement of notes in voices, and 
other expression markings, are all ignored. However, 
when a piece of music has distinct parts for different in-
struments (e.g., a piece of chamber music) we do pay at-
tention to those distinct parts. For our purposes, a piece of 
music therefore consists of a collection of “parts”, each of 
which is a “bag of notes”, with each note having a 
“pitch”, “onset time” and “duration”. 

Broadly speaking, we have been able to halve the 
number of errors made by OMR software in recognition 
of pitches and rhythms. However, the error rate remains 
relatively high, and is strongly dependent on the nature of 
the music being recognised and the features of the in-
putted score image. We have not tested how much time is 
required to manually correct the remaining errors. 

2. BACKGROUND 

2.1 Available Score Images 

In the past it was common for research projects to scan 
scores directly. For example, in [2, 3], pages were 
scanned from the well-known jazz ‘Fake Book’. Now, 
however, many collections of scans are available on-line. 
The largest collection is the Petrucci Music Library (also 
called IMSLP),1 which in April 2015 claimed to contain 
313,229 scores of 92,019 works. Some libraries are plac-
ing scans of some of their collections on-line and some 
scholarly editions, such as the Neue Mozart Ausgabe 
(NMA),2 are also available on-line. Scores available on-
line are usually of music which is no longer in copyright, 
and date from before the early twentieth century. 

Most of these scans are in PDF format and many are in 
binary images (one-bit pixels). Resolution and qualities 
of the scans varies.  

2.2 OMR Software 

Eight systems are listed in a recent survey as ‘the most 
relevant OMR software and programs’ [18]. Of these we 
found four to be usable for our purpose: Capella-Scan 
8.0, SharpEye 2.68, SmartScore X2 Pro and PhotoScore 
Ultimate 7.3 All four pieces of software produce output in 
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instead a toolkit for image processing and recognition. 

MusicXML format [11]. They differ in the image formats 
which they take as input, and also in whether they can 
take multiple pages as input. The lowest common denom-
inator for input is single-page images in TIFF format.  

Although our objective was not to evaluate the differ-
ent OMR programs, we did find that the programs dif-
fered considerably in their accuracy when applied to dif-
ferent music. No one OMR program was consistently bet-
ter than the rest. An indication of the differences between 
them is given in the results section below. 

3. OUR MULTIPLE-OMR SYSTEM FOR 
IMPROVED ACCURACY 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 1. Basic workflow of the proposed system. 

3.1 Image Pre-Processing 

As stated above, the common required input for the OMR 
programs is single-page TIFF images. The first steps in 
the image pre-processing are therefore to split multiple-
page scores into individual pages, and to convert from 
PDF, which is the most common format used for down-
loadable score images, including those from IMSLP.  

The other pre-processing steps depend on the detection 
of staves in the image. In general we use the Miyao [14] 
staff finding method as implemented in the Gamera soft-
ware,4 which locates equally spaced candidate points and 
links them using dynamic programming. This method did 
not perform well at detecting short ossia staves. For this 
we applied the Dalitz method (in class StaffFinder_dalitz) 
from the same library [9].5  

Further processing is required to recognise systems in 
the images. Contours are detected using the findContours 
function [22] of the OpenCV library for computer vi-
sion, 6 with those containing staves marked as systems. 
Each of the remaining contours are then assigned to the 
nearest system, looking for the largest bounding box 
overlap, or simply the nearest system on the y-axis. 

None of the OMR programs used handled divisions 
between movements properly: the music in an image was 
always assumed by the software to be a single continuous 

                                                           
4 gamera.informatik.hsnr.de   
5 music-staves.sf.net 
6 opencv.org 
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piece of music. This is not problematic in a process which 
depends on the intervention of a human operator. Howev-
er, this is inefficient and not scalable for large-scale batch 
processing. Therefore, we implemented a process which 
recognises the beginnings of movements, or new sec-
tions, from the indentation of the first system of staves. 
Where indented staves are detected, the output is two or 
more TIFF files containing images of those staves which 
belong to the same movement or section. This procedure 
correctly separated all cases in our test dataset. 

A second common source of error was found to be ‘os-
sia’ segments. An ossia is a small staff in a score, gener-
ally placed above the main staff, that offers an alternative 
way of playing a segment of music, for example, giving a 
possible way of realising ornaments. The OMR programs 
tended to treat these as regular staves, leading to signifi-
cant propagation errors. Since, as indicated above, our 
aim was to improve the recognition accuracy of pitches 
and rhythms only, ossia staves would not contain useful 
information consistent with this aim. The best course of 
action was to simply remove them from the images. 
Therefore, the minimum bounding rectangle which in-
cluded any staff that was both shorter than the main staff 
and smaller in vertical size, and any symbols attached to 
that staff (in the sense of there being some line of black 
pixels connected to that staff), was removed from the im-
age. We did not separately test the ossia-removal step, but 
found that a few cases were not removed properly. 

3.2 Post-Processing: Comparison and Selection 

The images resulting from the pre-processing steps de-
scribed above are then given as input to each of the four 
OMR programs. Output in MusicXML from each OMR 
program for every separate page for each score is com-
bined to create a single MusicXML file for that score and 
that OMR program. As mentioned above, we chose to 
concentrate on the most important aspects of musical in-
formation, and so the post-processing steps described be-
low ignored all grace notes and all elements of the Mu-
sicXML which did not simply describe pitch and rhythm. 
Most of the processing is done using music21 [8], using 
its data structures rather than directly processing the Mu-
sicXML. 

The most common errors in the output are incorrect 
rhythms and missing notes. Occasionally there are errors 
of pitch, most often resulting from a failure to correctly 
recognise an accidental. Rests are also often incorrectly 
recognised, leading to erroneous rhythms. Sometimes 
larger errors occur, such as the failure to recognise an en-
tire staff (occasionally a result of curvature in the scan), 
and the failure to correctly recognise a clef, can lead to a 
large-scale propagation of a single error. 

The aim of our post-processing of MusicXML outputs 
was to arrive at a single combined MusicXML output 
which contained a  minimum number of errors. However, 
this aim was challenging to fulfil because it was not pos-

sible to determine, based on the MusicXML alone which 
details are correct and which are incorrect. Our general 
approach, following Bugge et al. [4] is to align the out-
puts and to use majority voting as a basis for deciding 
which details are correct and which are incorrect. 

The first post-processing steps apply to music with 
more than one voice on a single staff (as is common in 
keyboard music). Different OMR programs organise their 
output in different ways and some reorganisation is nec-
essary to ensure that proper matching can take place. The 
steps in this part of the process are: 
a) Filling gaps with rests. In many cases, rests in voices 
are not written explicitly in the score, and the OMR soft-
ware recognises rests poorly. Furthermore, while music21 
correctly records the timing offsets for notes in voices 
with implied rests, MusicXML output produced from 
music21 in such cases can contain errors where the offset 
is ignored. To avoid these problems, we fill all gaps or 
implied rests with explicit rests so that all voices in the 
MusicXML contain symbols to fill the duration from the 
preceding barline. 
b) Converting voices to chords. The same music can be 
written using chords in some editions but separate voices 
in others. (See Figure 2 for an example.) To allow proper 
comparison between OMR outputs, we convert represen-
tations using separate voices into representations that use 
chords.  
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Extracts from the NMA and Peters editions of 
Mozart piano sonata K. 282, showing chords in the 
NMA where the Peters edition has separate voices. 

c) Triplets. In many piano scores, triplets are common, 
but not always specified. Some OMR programs correctly 
recognise the notes, but not the rhythm. Our application 
detects whether the length of a bar (measure) matches 
with the time signature in order to determine whether tri-
plets need to be inserted where notes beamed in threes are 
detected. 

A grossly inaccurate output can lead to poor alignment 
and poor results when combining outputs. Therefore, it is 
better to exclude outputs which contain a lot of errors 
from subsequent alignment and voting, but again it is not 
possible to determine whether an output is grossly inac-
curate on the basis of its contents alone. We once again 
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employed the idea of majority voting: an output which is 
unlike the others is unlikely to be correct. 

 

Figure 3. Example of phylogenetic tree with pruning of 
distant branches. 

To determine how much outputs are like each other, 
we adopted the mechanism of ‘phylogenetic trees’ by 
UPGMA [24]. This mechanism is designed to cluster 
DNA sequences according to their similarity.  Instead of 
a DNA string, each staff can be converted into a pitch-
rhythm sequence and compared in pairs using the 
Needleman-Wunsch algorithm [15]. This process leads to 
the establishment of a similarity matrix and phylogenetic 
tree. Once the tree is configured, distant branches can be 
removed by a straightforward operation. So far, our best 
results have been obtained by using the three or four 
closest OMR outputs and discarding the rest. An evalua-
tion of a more complex algorithm for pruning trees is left 
for future research. 

3.3 Post-Processing: Alignment and Error-Correction 

In order to determine the correct pitch or duration of a 
note, on the basis of majority voting, we need to know 
that the possible values in the different outputs refer to 
the same note. Therefore, it is necessary to align the out-
puts so that: the appropriate details in each output can be 
compared; a majority vote can be made; the presumably 
correct details can be selected; and a composite output 
can be constructed using these details.  

There are two methods to align outputs, which we re-
fer to as ‘top-down’ and ‘bottom-up’. The first method 
aims to align the bars (measures) of the outputs so that 
similar bars are aligned. The second method aims to align 
the individual notes of the outputs irrespective of bar-
lines. The first works better in cases where most barlines 
have been correctly recognised by the OMR software but 
the rhythms within the bars might be incorrectly recog-
nised due to missing notes or erroneous durations. The 
second works better in cases where most note durations 
have been correctly recognised but the output is missing 
or contains extra barlines. In the following section, we 
explain the bottom-up process and how we combine the 
outputs from parts in order to obtain a full score. An ex-
planation of our top-down approach used in earlier work 
can be found in [16]. 

3.3.1 Bottom-Up Alignment and Correction, Single Parts 

Bottom-up alignment is applied to sequences of symbols 
from a single staff or a sequence of staves that correspond 
to a single part in the music. This might come from Mu-
sicXML output of OMR applied to an image of a single 
part in chamber music, such as a string quartet, full score, 
or keyboard music in which the staves for the right and 
left hands are separated. Each non-ignored symbol repre-
sented in the MusicXML (time signature, key signature, 
note, rest, barline, etc.) is converted to an array of values 
to give the essential information about the symbol. The 
first value gives the type of symbol plus, where appropri-
ate, its pitch and/or duration class (i.e., according to the 
note or rest value, not the actual duration taking into ac-
count triplet or other tuplet indications). Alignment of 
OMR outputs, once again using the Needleman-Wunsch 
algorithm, is done using these first values only. In this 
way we are able to avoid alignment problems which 
might otherwise have occurred from one edition of a 
piece of music indicating triplets explicitly and another 
implicitly implying triplets, or from one OMR recognis-
ing the triplet symbol and another not recongising the 
symbol. All outputs are aligned using the neighbor-
joining algorithm [20], starting with the most similar pair. 
A composite output is generated which consists of the 
sequence of symbols which are found to be present at 
each point in at least half of the outputs. 

 
Figure 4. Example of removal of voices for alignment 
and subsequent reconstruction. 

In the case of music where a staff contains more than 
one voice, such as in piano music, we adopt a procedure 
which creates a single sequence of symbols (see Figure 
4). To achieve this, notes and rests are ordered first by 
their onset time. Next, rests are listed before notes and 
higher notes listed before lower notes. The result is a ca-
nonical ordering of symbols that make up a bar of multi-
voice music. This means that identical bars will always 
align perfectly. Voice information (i.e., which voice a 
note belongs to) is recorded as one of the values of a 
note’s array. However, this information is not taken into 
account when the correct values are determined by major-
ity voting. Instead, voices are reconstructed when the 
aligned outputs are combined. Although, this means that 
the allocation of notes to voices in the combined output 
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might not match any of the inputs (and indeed might not 
be deemed correct by a human expert), we found consid-
erable variability in this aspect of OMR output and there-
fore could not rely upon it. At the same time, as in the 
pre-processing of MusicXML outputs from the OMR 
programs, additional rests are inserted into the combined 
output in order to ensure that every voice is complete 
from the beginning of each bar. 

3.3.2 Top-Down Combined Output, Full Score 

To generate a MusicXML representation of the full score, 
the results of alignment of the separate parts/staves need 
to be combined. Often the results for the constituent parts 
do not contain the same number of bars (measures), usu-
ally because of poor recognition of ‘multi-rests’ (i.e., sev-
eral bars of rest that look like a single bar), or because of 
missing barlines. Sometimes OMR software inserts bar-
lines where there are none. To achieve parts with the 
same number of bars and the best construction of the full 
score, the following steps are implemented: 
a) Finding the best full score OMR. As a result of er-
rors in recognising systems and staves, OMR is more 
likely to increase than reduce the number of bars. In the 
case of chamber music (e.g., string quartets), it is com-
mon to find OMR putting bars from one part in another 
part, adding extra rest bars and increasing the global 
number of bars. A simple algorithm is therefore used to 
select the OMR output that contains the smallest number 
of bars and the correct number of parts. We have found 
this to work correctly in most cases. As an example, the 
724 bars in Mozart’s string quartet K. 387 can be con-
verted into 747, 843, 730 and 764 bars by different OMR 
programs. Figure 5 shows the result of OMR errors in in-
terpreting the arrangement of staves, in this case causing 
two bars to be converted into four. One system of staves 
is mis-interpreted as two staves, and what is actually the 
second violin part is read as a continuation of the first vi-
olin part. In this case there is also the very common error 
of misreading the alto clef. 

 

  

Figure 5. Displacement of parts in a string quartet. 

b) Aligning parts against the best full score. Every bar 
of each part is converted into a sequence of hash values 
on the basis of the pitch and rhythm of the contents of the 
bar. The parts are aligned bar-by-bar (top-down ap-
proach) using the Needleman-Wunsch algorithm, and 
empty bars are introduced where needed. To determine 

the similarity of each pair of bars, the Needleman-
Wunsch algorithm is used to align the contents of the two 
bars, and the aggregate cost of the best alignment taken as 
a measure of the similarity of the bars. For further detail, 
see [16]. This procedure results in correct vertical align-
ment of most of the bars and adds multi-rests that were 
not properly recognised in single parts. 

3.4 Implementation 

Our research was conducted using the Microsoft Win-
dows operating system. This was because SharpEye only 
operates with this system. (The other three have versions 
for Windows and Macintosh systems.) Software was 
written in Python and made use of the Gamera and mu-
sic21 libraries. 

The items of OMR software used were designed for 
interactive use, so it was not a simple matter to integrate 
them into a single workflow. For this purpose we used 
the Sikuli scripting language.1 

A cluster of six virtual machines running Windows 
Server 2012, controlled by a remote desktop connection, 
was setup to run the OMR software and our own pre- and 
post-processing software. To generate MusicXML from a 
set of scans of a piece of music, the required scans need 
to be stored in a particular directory shared between the 
different machines. The setup also provides different lev-
els of Excel files for evaluating results.  

With the exception of the commercial OMR programs, 
the software and documentation are available at 
https://code.soundsoftware.ac.uk/projects/multiomr and at 
http://github.com/MultiOMR.  

4. EVALUATION 

4.1 Materials 

To test our system, we chose to use string quartets and 
piano sonatas by Mozart, because both scans and pre-
existing symbolic music data for these pieces are availa-
ble. The pieces tested were the string quartets dedicated 
to Joseph Haydn (K. 387, 421, 428, 458, 464 and 465) 
and the first six piano sonatas (K. 279, 280, 281, 282, 283 
and 284). The sources have been taken from IMLSP (Pe-
ters edition, full scores and parts) and NMA (full scores). 
Ground truth files in Humdrum Kern format or Mu-
sicXML (when available) were downloaded from 
KernScores. 2  Two movements, (K. 428, mov. 4 and 
K. 464, mov. 1) are not yet complete on KernScores and 
so have not been evaluated. The string-quartet dataset in-
cluded a total of 459 pages of music notation and the pi-
ano-sonata set 165 pages. 

4.2 Results 

For each piece, the output resulting from our system was 
compared with the data derived from KernScores and the 

                                                           
1 www.sikuli.org 
2 kern.ccarh.org 
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recognition rate for notes was calculated (i.e., the per-
centage of notes in the original which were correctly rep-
resented in the output). Errors found in the output of our 
system compared to the ground truth were recorded in 
Excel and MusicXML files. These provided information 
about each incorrect note and its position in the score, the 
accuracy of the overall result, and the accuracy of each 
OMR program, plus colour-coding in the MusicXML file 
to indicate omissions, errors and insertions.  

 

 

Table 1. Overall recognition rates. OUT = our system; 
CP = Capella-Scan; PS = PhotoScore; SE = SharpEye; 
SS = SmartScore. 

 

 

Figure 8. Overall recognition rates. For codes see the 
caption to Table 1. 

Summary results are shown in Figure 8 and Table 1. 
As can be seen, overall, the output of our system was 
found to be better than all the OMR programs. The dif-
ference in recognition rates is higher for the string quar-
tets due to very poor recognition in some cases for the 
Peters full score edition. One of the main strengths of our 
system rests with having consistent recognition rates of  
around 95% in most cases. This can be attributed to the 
automatic removal of scores poorly recognised at the 
phylogenetic-tree stage. This pruning removes a large 
amount of noise introduced by some OMR systems. A 
second strength is the lack of hard-coded rules. For in-
stance, some OMR programs are better at recognising tri-
plets and others at detecting pitch. Furthermore, the situa-
tion can change with new versions of OMR software and 
the introduction of new OMR programs. For our system 
to incorporate new versions and new OMR programs, all 
that is required is to add the necessary scripts in Sikuli to 
use those programs to generate MusicXML output from a 
given set of score images. 

The entire process (six complete string quartets using 
parts and full scores), employing six virtualised machines 
in parallel, with an Intel Xeon processor of 3.30GHz, 
takes around 3 hours to complete.  

5. FUTURE PROSPECTS 

We have shown that by using pre-processing techniques 
and combining results from different OMR programs and 
different sources, we can significantly reduce the number 
of errors in optical music recognition. For those compil-
ing corpuses of musical data in symbolic format, this 
would increase efficiency and save considerable effort. 
Furthermore, the reduction in error rate means that re-
search which relies on large quantities of musical data 
which was previously impossible because it would be too 
costly to compile the data might now become possible. 
Large quantities of data can now be easily derived from 
scans available from IMSLP and elsewhere. Although 
errors remain in the output, the reduced error rate com-
pared with raw OMR programs output will enable more 
valid results to be derived from statistical studies which 
previously lacked validity. Nevertheless, it should be not-
ed that the number of errors which remain will still be too 
high for musicological research which assumes near 
100% accuracy in the data.  

Our research has made clear the limitations of current 
commercial OMR software. For example, in [16] we pro-
posed the image pre-processing to extract separate bars in 
order to arrive at a better alignment of outputs that come 
from different OMR programs. However, we discovered 
that the OMR programs were generally incapable of pro-
ducing any useful output from a single bar of music so 
we had to abandon this idea. It is our judgement, based on 
the project reported here, that further improvement of our 
system will require the limitations associated with current 
OMR software to be overcome. This may require a fun-
damentally different approach to currently available 
OMR programs.  

Some possible directions have been proposed in the 
literature. For instance, Fahmy & Blostein [10] proposed 
a method based on rewriting graphs arising from raw 
symbol-recognition to produce graphs that conform more 
closely to musical constraints. Bainbridge & Bell [1] have 
also proposed making greater use of the semantics of mu-
sical notation. Raphael and co-workers [12, 17] have pro-
posed a Bayesian approach based on likelihood, again 
taking account of musical constraints. Church & Cuthbert 
[7] proposed correcting errors by using information from 
similar musical sequences in the same piece of music. 
Finally, Rossant & Bloch [19] proposed the use of fuzzy 
logic. Since all of these approaches aim to take an image 
of a score and output the symbols which are represented 
in that score, they could be incorporated into the work-
flow described here, and its output combined with other 
outputs to further improve recognition.  
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OUT CP PS SE SS
Piano 95,11     74,26     86,13     91,86     85,40    
String Quartet 96,12     47,84     81,47     86,65     82,40    
Average 95,61     61,05     83,80     89,25     83,90    
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ABSTRACT 

There is a vast body of musicological literature 

containing detailed analyses of musical works. These 

texts make frequent references to musical passages in 

scores by means of natural language phrases. Our long-

term aim is to investigate whether these phrases can be 

linked automatically to the musical passages to which 

they refer. As a first step, we have organised for two 

years running a shared evaluation in which participants 

must develop software to identify passages in a 

MusicXML score based on a short noun phrase in 

English. In this paper, we present the rationale for this 

work, discuss the kind of references to musical passages 

which can occur in actual scholarly texts, describe the 

first two years of the evaluation and finally appraise the 

results to establish what progress we have made. 

1. INTRODUCTION 

A traditional Information Retrieval (IR) system takes as 

input a short textual query and a document collection and 

returns a list of documents which match the query [27]. 

By combining IR with Natural Language Processing 

(NLP) the field of Question Answering was born [13], 

leading to systems which could take a query as input and 

produce an exact answer [17-20,24]. In the meantime, 

Music Information Retrieval (MIR) has become a very 

active area in which various kinds of query are matched 

against music recordings or electronic forms of score 

such as MEI [11] (inspired by TEI [25]) or MusicXML 

[15]. 

However, music involves text as well as scores; there 

is a vast body of textual information concerned with 

Western classical music. First and foremost, Grove’s 

Dictionary of Music and Musicians has developed from a 

four-volume printed dictionary published in 1879-1889 

into Grove Online which contains around 50,000 signed 

articles and 30,000 biographies contributed by over 6,000 

scholars [6]. In addition, there are countless scholarly 

books, journal articles and conference papers as well as 

numerous online sources such as the Wikipedia. All these 

sources contain detailed analyses of musical works which 

necessarily make reference to specific passages in scores. 

Our long-term objective is to investigate whether these 

references – expressed in a natural language such as 

English – can be automatically matched to the musical 

passages to which they refer. 

In pursuit of our objective we organised in 2014 [23, 

10] and 2015 [to appear] shared evaluations called 

C@merata (Cl@ssical Music Extraction of Relevant 

Aspects by Text Analysis) – http://csee.essex.ac.uk/ 

camerata/ – in which a number of participants each built a 

system which could take as input a question in English 

and a score in MusicXML and identify one or more 

passages in the score which matched the question. We 

describe those evaluations and the rationale behind them. 

We first outline the background to this work and its 

origins in Question Answering (QA). Second, we present 

an analysis of text examples, taken from the writings of 

three important musicologists, which refer to musical 

passages. Third and Fourth we describe the two 

C@merata campaigns. Finally we discuss what we have 

learned and draw some conclusions. 

2. BACKGROUND TO OUR EVALUATIONS 

Our work is derived from three existing areas of research. 

First, the considerable body of MIR work concerned with 

finding passages in music scores based on inputs of 

various kinds, e.g. [5]. 

Secondly, the Music Information Retrieval Evaluation 

Exchange has been organised by J. Stephen Downie since 

2005 [4,12]. These landmark evaluations have been 

concerned with many different tasks over the years and 

are related to parallel evaluations concerning IR and NLP 

at TREC [26], CLEF [1] and NTCIR [16]. While MIREX 

has often been concerned with audio-based systems, it 

has regularly featured score-based tasks which, in the 

light of our work, could be combined with natural 
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language input. 

Thirdly, there have been QA tracks at CLEF, starting 

in 2003 [20]. However, these were not concerned with 

music until 2011. In that year, the Question Answering 

for Machine Reading (QA4MRE) task featured difficult 

multiple-choice questions in four domains, one being 

Music and Society [18]. Four documents in this domain 

were used, each taken from transcripts of talks delivered 

at the TED Conferences. In the 2012 task [19], the music 

texts used were drawn from Wikipedia, Project 

Gutenburg and the 1911 Encyclopedia Britannica. 

Finally, in 2013, the four documents were taken with 

permission from Grove Online [6]. This gave us the idea 

of combining text processing with core processing. 

3. REFERENCES TO SCORES IN MUSIC TEXTS 

In this section, we motivate our work by providing a 

short description of the references to musical passages in 

three important text sources. The first is an analysis of the 

Beethoven Symphonies by Antony Hopkins (Chapter 2: 

Symphony No. 1 in C Major Op. 21) [7] (henceforth ah). 

The second is the study of Domenico Scarlatti by Ralph 

Kirkpatrick (Chapter 10: Scarlatti's Harmony, Section 

Cadential vs. Diatonic Movement of Harmony) [9] 

(henceforth rk). The third is the entry for Anton Bruckner 

by Deryck Cooke (Section 7. Music) [2] from the New 

Grove Dictionary of Music and Musicians [21] 

(henceforth dc). 

We extracted phrases from the above works by hand − 

261 in all − and organised them into 14 categories: notes, 

intervals, scales, melodies, rhythms, tempi, dynamics, 

keys, harmony, counterpoint, texture & instrumentation, 

bar numbers, passages & sections and structures & 

sequences. Furthermore, they are classed as Specific or 

Vague. Examples of each category can be seen in Table 

1, with two Specific and two Vague for each phrase type. 

The source is indicated in square brackets: [ah26] means 

ah (i.e. Hopkins) p26; [dc364lh] means dc (i.e. Cooke) 

p364 in Grove, left hand column. 

It is important to note that the categories in Table 1 are 

for illustration only and are neither exhaustive nor 

mutually exclusive. The examples are given purely to 

illustrate the kinds of references to musical passages 

which one might find in a musicological text. Moreover, 

the binary categorisation into Specific and Vague is also 

purely for illustration purposes as specificity lies on a 

scale. We now draw some conclusions from this table. 

The first point to note is that the references vary in 

specificity; some are clear and unambiguous (C#-D rising 

semitone, D major, eight-part choir, bars 189-198); others 

are much more difficult to pin down (alien F#, disturbing 

syncopations, anguished D minor chromaticism, varied 

alternation of two long-drawn themes). Secondly, 

however, all the phrases are meaningful – an expert 

familar with the works concerned is likely to be able to 

identify the points mentioned in the score with a fair 

accuracy (high Precision even if not necessarily high 

Recall). This suggests that they are interesting and 

worthwhile to study. 

Thirdly, some categories of phrase lend  themselves  to 

Category 
S/

V 
Examples 

Notes 

S [ah26] giant unison G from the entire orchestra 

[rk220] based on nothing else but A, D, E, and A 

V [ah12] alien F# in the ascending scale 

[dc364lh] pedal point 

Intervals 

S [ah24] C#-D rising semitone 

[dc363lh] an ascending diminished fifth 

V [ah19] fragment of five rising crotchets 

[dc364lh] themes based on falling octaves 

Scales 

S [dc363lh] parts entering successively on the degrees of 

the ascending scale of D major 

[dc363rh] old church modes ... Phrygian and Lydian 

V [ah28] the initial scale 

[ah29] little scales dart to and fro 

Melodies 

S [ah13] semiquaver descent in bar 18 

[ah19] fragment of five rising crotchets 

V [ah19] Second Subject appearing in the tonic key 

[dc363rh] the chorale themes in the symphonies 

Rhythms 

S [ah15] quaver pattern 

[ah25] repeated crotchet chords 

V [ah18] disturbing syncopations 

[dc364lh] hammering ostinatos 

Tempi 

S [ah11] slow tempo 

[dc366lh] slow movements 

V [ah28] rustic oom-pah bass 

[dc364rh] intense and long-drawn string cantabile 

Dynam- 

ics 

S [ah26] violins in bar 126 come in FF 

[ah29] sudden fortissimo outburst 

V [ah29] sudden roaring 

[dc364lh] murmering tremolando 

Keys 

S [ah10] D major 

[dc366lh] in Bb minor 

V [rk221] modulatory excursion of the second half 

[dc363rh] unusual key changes 

Harmony 

S [rk221] major dominant 

[dc364lh] tonic triad of E major 

V [rk220] departure from three-chord harmony 

[dc363lh] anguished D minor chromaticism 

Counter- 

point 

S [ah23] cellos provide a delicate countertune 

[dc363lh] parts entering successively on the degrees of 

the ascending scale of D major 

V [rk220] dominated by diatonic movement of parts 

[dc363lh] bold polyphonic imitation of a single point 

Texture, 

Instru- 

menation 

S [dc363lh] eight-part choir 

[dc363rh] a piece of unison plainsong 

V [ah29] decked with garlands of scales from flutes, 

clarinets and bassoons 

[dc364rh] a faint background sound, emerging almost 

imperceptibly out of silence 

Bar 

Numbers 

S [ah15] bars 189-198 

[rk220] measure thirteen to measure fifteen 

V [ah24] sixteen or at most thirty-two bars long 

[dc365rh] over periods of 16, 32 or even 64 bars 

Passages, 

Sections 

S [dc363rh] whose slow movement and finale 

[dc364rh] far-ranging first movement 

V [rk220] series of small sequential passages 

[dc362rh] a passage from the Gloria 

Structures, 

Sequences 

S [ah18] First Subject 

[rk221] Phrygian cadence 

V [dc365rh] exposition (nearly always built on three 

subject groups rather than two) 

[dc366rh] varied alternation of two long-drawn themes 

Table 1. Fourteen types of referring expressions, 

categorised into Specific (S) and Vague (V). 

rather simple and clear expression. Examples include 

Notes (G), Intervals (ascending diminished fifth), Scales 

(D major), Rhythms (repeated crotchet chords), 

Dynamics (FF), Keys (Bb minor) and bar numbers 

(measure thirteen). If we set ourselves the task of 
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searching for such passages in a score, we are likely to be 

quite successful. 

Fourthly, some categories of phrase tend conversely to 

be complex and often imprecise as well. Examples 

include Texture & Instrumentation (a faint background 

sound, emerging almost imperceptibly out of silence), 

Passages  &  Sections  (a  passage  from  the  Gloria)  and 

Structures & Sequences (exposition (nearly always built 

on three subject groups rather than two)). Western 

classical music excels in structure and in harmony, so 

treatment of these topics tends to be particularly 

interesting and important. The richness and ambiguity of 

language are its strengths in this context as a great deal 

can be suggested in relatively few words. Moreover, to 

the expert, the references remain quite clear, though a 

considerable amount of knowledge and background 

information is being brought to bear. 

Fifthly, it is interesting to observe that many of the 

examples in Table 1 are noun phrases; this construct can 

express very complicated and detailed concepts in a 

musicological text. 

Sixthly and finally, phrases in natural language can 

never be replaced by expressions in a pattern language 

(such as regular expressions applied over text strings). 

Such expressions are by their nature unambiguous and in 

practical contexts they are usually concise. Therefore, the 

study of natural language in musicology is not made 

unnecessary by the existence of such languages. On the 

other hand, such expression languages are extremely 

useful and worthwhile [28]; one possible application of 

them here is to map a natural language phrase onto a 

pattern (possibly extremely complex) in such an 

expression language in order to initiate a search. 

In the next section we will describe our evaluations. 

4. THE 2014 C@MERATA TASK 

4.1 Input Provided 

In a QA evaluation such as ResPubliQA [17], the input is 

normally a short question such as ‘Who is President of 

the United States’ and the output is an exact answer such 

as ‘Barack H. Obama’. As we have discussed earlier, 

many of the real examples in Table 1 are in fact noun 

phrases. So it seemed reasonable to use a noun phrase as 

the input for an initial evaluation, rather than a complete 

question. The top of Table 2 shows the question types 

which were adopted. For all the types mentioned below, 

there are several examples in the right hand column. 

As we observed above, entries in the Notes category of 

Table 1 are some of the simplest and clearest. As this was 

a new task, it was decided to include three simple query 

types in the evaluation which correspond broadly to Note: 

simple_pitch, simple_length and pitch_and_length. 

Perf_spec queries combine a note with some 

performance indication. Stave_spec queries restrict the 

answer to a particular stave in the score which may be 

specified in various ways, including the instrument 

concerned, the hand being used (for keyboard music) or 

the clef on which the music appears. Similarly, 

word_spec queries link a note to the word which is sung 

on it in one of the parts. 

Question Types for 2014 Task 

Type No Examples 

simple_pitch 30 G5, E, A natural, C flat, F#4, F2 sharp 

simple_length 30 
dotted quarter note, quarter note rest, 

semiquaver rest, whole note, semibreve 

pitch_and_length 30 
D# crotchet, half note C, quarter note B5, 

semiquaver G#, half note Db, quaver F# 

perf_spec 10 
D sharp trill, fermata A natural, staccato 

B flat, marcato D flat, F trill, down bow E 

stave_spec 20 

D4 in the right hand, half note D in the 

viola, treble clef A sharp, F3 sharp in the 

″alt″, quarter note F in the Alto 

word_spec 5 

word "Se" on an A flat, minim on the 

word ″Der″, minim B on the word ″im″, 

G on the word ″praise″ 

followed_by 30 

crotchet followed by semibreve, D 

followed by G, quarter note G followed 

by eighth note G, dotted quaver E 

followed by semiquaver F sharp, crotchet 

rest followed by crotchet, dotted quarter 

note followed by A4 

melodic_interval 19 

melodic octave, rising major sixth, 

melodic descending fifth, falling major 

third, melodic rising minor third, octave 

leap, falling tone, melodic fourth 

harmonic_interval 11 

harmonic major sixth, harmonic second, 

nineteenth, seventh, harmonic fifth, 

harmonic octave, major seventeenth 

cadence_spec 5 perfect cadence 

triad_spec 5 
tonic triad, Ib triad, triad in first inversion, 

Ia triad 

texture_spec 5 
polyphony, melody with accompaniment, 

monophony, homophony 

All 200  

Question Types for 2015 Task 

Type No Examples 

1_melod 40 D4 minim, eighth note in measure 9 

1_melod qualified 

by perf, instr, clef, 

time, key 

40 

trill on a quaver A; G# in the Cello part in 

measures 29-39; sixteenth note C# in the 

left hand; half note E3 in 2/2; sixteenth 

note G in G minor in measures 1-5 

n_melod 20 

F# E G F# A; Do Mi Do Sol Do Mi Sol Do 

in bars 1-20; twenty semiquavers; five note 

melody in bars 1-10 

n_melod qualified 

by perf, instr, clef, 

time, key 

20 

two staccato quarter notes in the Violin 1; 

crotchet, crotchet rest, crotchet rest, 

crotchet, crotchet rest, crotchet, crotchet, 

crotchet, crotchet, crotchet in the Timpani; 

melodic octave leap in the bass clef in 

measures 70-80; G4 B4 E5 in 3/4; rising G 

minor arpeggio 

1_harm possibly 

qualified by perf, 

instr, clef, time, key 

20 

eighth note chord Bb, C, E; chord of D 

minor in measures 109-110; harmonic 

minor sixth in the Violas; dotted minim 

chord in the left hand 

texture 6 

monophonic passage; homophony in 

measures 1-14; polyphony in measures 10-

14; Alberti bass in measures 0-4 

follow possibly 

qualified on either 

or both sides by 

perf, instr, clef, 

time, key 

40 

quavers F4 E4 in the oboe followed by 

quavers E2 G#2 in the bass clef; quarter 

note minor third followed by eighth note 

unison; C followed by mordent Bb; chord 

C4 G4 C5 E5 then a quaver; three eighth 

notes in the Violin I followed by twelve 

sixteenth notes in the Violin II in measures 

87-92 

synch possibly 

qualified in either 

or both parts by 

perf, instr, clef, 

time, key 

14 

four eighth notes against a half note; 

crotchet D3 on the word “je” against a 

minim D2; four staccato quavers in the 

Violoncello against a minim chord Ab3 C4 

F4 in the Harpsichord 

All 200  

Table 2. Summary of question types in tasks. 
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Q:  G flat 

A:  [ 4/4, 2, 67:5-67:5 ], [ 4/4, 2, 71:2-71:2 ] 

Q: semibreve 

A:  [ 4/4, 1, 76:1-76:4 ] 

Q:  minim F 

A:  [ 4/4, 1, 67:1-67:2 ] 

Q:  minim C in the bass 

A:  [ 4/4, 1, 72:1-72:2 ], [ 4/4, 1, 72:3-72:4 ] 

Q:  crotchet followed by semibreve 

A:  [ 4/4, 1, 75:4-76:4 ] 

Q:  melodic octave 

A:  [ 4/4, 2, 69:5-69:8 ], [ 4/4, 2, 72:1-72:8 ], [ 4/4, 2, 73:5-73:8 ],  

[ 4/4, 2, 74:5-74:8 ], [ 4/4, 2, 75:5-75:8 ] 

Figure 1. Extract from Scarlatti K466 with 

questions and answers from the 2014 task. 

So far, all the query types are simple notes in isolation. 

Queries of type followed_by specify two adjacent notes. 

As Table 1 showed, intervals are discussed in real 

texts, so we wished to include some queries of this type. 

We divided them into two kinds, melodic and harmonic. 

melodic_interval specifies two adjacent notes on the same 

stave which are a specified distance apart. Conversely, a 

harmonic_interval specifies two simultaneous notes. 

Unlike melodic intervals, harmonic intervals were 

permitted to occur across staves because they are integral 

to the concept of harmony which is often created by 

instruments or voices in different parts. Intervals are 

considered harmonic by default, thus ‘fifth’ is assumed to 

be a harmonic fifth. 

The last three question types were more experimental, 

though still being relatively straightforward and 

unambiguous in musical terms. cadence_spec requires a 

cadence to be identified. A triad_spec specifies triads in 

various forms of notation. Finally, texture_spec states the 

required texture to be found. Referring back to Table 1, 

cadences touch upon Structures & Sequences and Triads 

are a fundamental element of Harmony. 

There were 200 queries in a fixed distribution as 

shown in the middle column of Table 2. The four 

simplest query types (simple_pitch, simple_length, 

pitch_and_length, followed_by) were the most numerous 

in the test set with 30 each. After this came stave_spec 

and melodic interval with twenty each followed by 

perf_spec and harmonic_interval with ten each. (One 

melodic interval was changed for a harmonic_interval at 

a  late  stage,  so  in fact there were nineteen of the former  

 
Q:  dotted minim F#4 

A:  [ 3/4, 1, 65:1-65:3 ] 

Q: F4 crotchet in the oboe 

A:  [ 3/4, 2, 64:3-64:4 ] 

Q:  minim A2 in 3/4 time 

A:  [ 3/4, 1, 62:2-62:3 ], [ 3/4, 1, 64:2-64:3 ] 

Q:  chord D2 E5 G5 in bars 54-58 

A:  [ 3/4, 2, 57:1-57:1 ] 

Q:  quavers F3 A3 followed by crotchet A4 in the violin 

A:  [ 3/4, 1, 57:2-57:3 ] 
Q:  four quavers in the violin against a minim in the bass clef 

A:  [ 3/4, 1, 62:2-62:3 ], [ 3/4, 1, 64:2-64:3 ] 

Figure 2. Extract from Bach BWV1047 Andante 

with questions and answers from the 2015 task. 

and eleven of the latter.) Finally, there were five each of 

word_spec, cadence_spec, triad_spec and texture_spec. 

Thus some more experimental types of query were 

represented in the task but played a relatively minor role. 

In summary, most of the question types used in 2014 

were straightforward and were derived from Notes, 

Intervals and (partly) Harmony, Texture & 

Instrumentation and Structures & Sequences. Other 

phrase types of Table 1 were not catered for. 

4.2 Output Required 

As we have seen, an input query was simply a short 

noun phrase. To make the evaluation as simple as 

possible, an answer was defined to be a subsection of a 

score, starting and ending at a particular place. The 

answer was not required to specify which stave (or 

staves) contained the answer. 

Initially, we planned to measure beats in a bar in terms 

of the shortest note (hemidemisemiquaver, one sixteenth 

of a crotchet). However, this does not allow for triplets 

(where, say, a crotchet is divided into three) or any other 

sort of n-tuplet. So instead, we adopted the concept of 

divisions from MusicXML. The divisions value is the 

number of beats into which the crotchet is divided. A 

suitable value depends on what we wish to demarcate as 

an answer. So for simplicity, we specified for each query 

the divisions value to be used for the answers. 

Based on these ideas we developed the concept of a 

passage which would contain, for both start and end, a 

time signature, a divisions value, and a bar and beat. 
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The start bar and beat is where the passage is defined 

to commence. More precisely, the passage begins in the 

denoted bar immediately before the start beat, measured 

from the beginning of the bar in the unit of time denoted 

by the stated divisions value. Similarly, the passage is 

defined to end immediately after the end beat. We 

adopted this before-the-start and after-the-end after 

careful thought and discussion. The advantage of it is that 

it is intuitive: As can be seen in Figure 1, above, the first 

two crotchets in bar 67 are denoted 67:1-67:2 which can 

be understood at a glance. 

We developed three equivalent ways of stating a 

passage: Ascii Long Form, Ascii Short Form and XML 

form. The Ascii forms are convenient for discussions in 

papers etc. while the XML form is useful as the input to, 

and output from programs. 

Here is an example in short form: [4/4,1,1:1-2:4]. The 

time signature is 4/4 and divisions value is 1. The passage 

starts in bar 1 before the first crotchet (i.e. 1:1) and ends 

in bar two after the fourth crotchet (i.e. 2:4). We take bar 

numbers from the MusicXML score. 

We use the XML format for specifying the test queries 

for participants as well as for the queries plus correct 

answers (often called the Gold Standard in QA).  

In summary, our passage specifies two vertical lines 

drawn through the score and does not distinguish between 

the different staves. We thus assume that any answer can 

be exactly demarcated in this way. We will return to this 

point in the conclusions. 

4.3 Evaluation 

Precision, Recall and F-Measure are commonly used in 

IR and NLP [27]. We wished to determine all the correct 

answer passages by hand to produce a Gold Standard and 

then to compare the results returned by a system to that. 

It is useful to have both strict and lenient measures in 

an evaluation. At the fourth TREC QA track onwards  

(starting in 2002) there were four judgements of each 

answer, Right, ineXact, Unsupported and Wrong [29]. In 

the TREC context a correct answer could be ‘Bill 

Clinton’ while an ineXact one could be ‘Clinton’ or 

perhaps ‘Bill Clinto’. Unsupported answers were Right 

but not shown to be so from a document in the collection. 

We decided that a passage returned which began at the 

right bar and beat within the bar and also ended at the 

right bar and beat within the bar was correct. On the other 

hand, an answer which started and ended at the right bar 

(but not necessarily the right beat in the bar) was still 

very useful and could be considered the equivalent of 

TREC’s ineXact. If an expert is looking for a particular 

cadence, for example, and is told the bar numbers, they 

can usually see it at a glance. However, searching through 

hundreds of bars looking for the cadence is time 

consuming. The concept of Unsupported is not applicable 

to our task. The measures were thus defined as follows: 

Beat Precision (BP) is the number of beat-correct 

passages returned by a system divided by the number of 

passages (correct or incorrect) returned. 

Beat Recall (BR) is the number of beat-correct 

passages returned by a system divided by the total 

number of answer passages known to exist. 

2014 

Results 
BP BR BF MP MR MF 

Maximum 0.713 0.904 0.797 0.764 0.967 0.854 

Minimum 0.113 0.150 0.185 0.155 0.154 0.226 

Average 0.420 0.654 0.483 0.460 0.734 0.534 

2015 

Results 
BP BR BF MP MR MF 

Maximum 0.817 0.739 0.620 0.817 0.809 0.656 

Minimum 0.061 0.175 0.108 0.073 0.175 0.129 

Average 0.351 0.564 0.348 0.370 0.619 0.375 

Table 3. Results of the 2014 & 2015 tasks. 

As is usual, Beat F-Score (BF) is the harmonic mean 

of BP and BR. 

Measure Precision (MP) is the number of bar-correct 

passages returned by a system divided by the number of 

passages (correct or incorrect) returned. 

Measure Recall (MR) is the number of bar-correct 

passages returned by a system divided by the total 

number of answer passages known to exist. 

Finally, Measure F-Score (MF) is the harmonic mean 

of MP and MR. 

4.4 Scores 

After consideration of several notations including kern 

[8], MusicXML was chosen because it is widely used and 

is supported by music21 [3] and musescore [14]. 

Twenty MusicXML scores were used and ten 

questions were set on each, forming the question type 

distribution of Table 2. We incorporated both European 

(crotchet, bar etc) and American (quarter note, measure 

etc) terms into the task by setting American queries for 

ten of the twenty scores and English queries for the rest. 

Scores for 2014 were chosen from the Renaissance and 

Baroque in order to avoid more heavily-scored works 

from the Classical period onwards. The composers 

chosen were Bach, Carissimi, Charpentier, Corelli, F. 

Cutting, Dowland, Lully, Monteverdi, Purcell, A. 

Scarlatti, D. Scarlatti, Tallis, Telemann, Vivaldi and S. L. 

Weiss. Scores were chosen on a predefined distribution: 

six on two staves, six on three staves, four on one stave 

and two each on four staves and five staves.  There were 

works for solo cello, harpsichord and lute; one, three, 

four and five voices; soprano or cello and harpsichord; 

two violins and cello; two violins, viola and two cellos. 

The scores were obtained from two sources. Most 

came from musescore.com. Two Bach chorales were used 

and both came from www.jsbchorales.net. We required 

scores to have a license ‘to share’ rather than just ‘for 

personal use’. Moreover, we required scores to be well 

presented, transcribed in a scholarly manner and provided 

in valid MusicXML Version 2 or lower. 

4.5 Questions 

Each score was sent to one of the organisers who was 

asked to set questions according to the target distribution 

of Table 2. It was specified for each score whether the 

questions were to be in American or English. For each 

question, answers were to be provided in the Ascii short 

form for specifying passages. The organiser in question 
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was asked to find all answers for all the questions. The 

question data was returned in an Ascii format which 

incorporates the score filename, the questions, the 

answers in Short Ascii form and also any comments 

concerning the questions or answers. 

On receipt of the files, the questions and answers were 

checked by a second expert who noted any changes or 

observations using comments in the Ascii file. The 

second expert also carried out an independent search for 

answer passages within the scores. When all changes 

were checked and validated, the complete set of twenty 

Ascii files was transformed automatically into XML 

format in order to form the Gold Standard for the task.  

4.6 Participants, Runs and Results 

The task was announced in January 2014. Five 

participants registered; two were from Ireland and the 

other three came from Australia, England and India. 

Participants had one week to complete their runs starting 

from 16th June 2014. 

Each participant was allowed to submit up to three 

runs. The overall results are shown in Table 3. The best 

BF (strict) score was 0.797 which was remarkably good. 

Averages for BF and MF are 0.483 and 0.534 so 

systems scored better under lenient measures than under 

strict measures but the difference is not large − only 11%. 

Concerning the top run, the difference between 

MF=0.854 and BF=0.797 is only 7%. So if a system finds 

the correct bar, it tends to find the exact beat in the bar as 

well. Generally, the average figures suggest that 

participants had all made a very good attempt at building 

a system for this very complicated task.  

4.7 Approaches to the Task 

Concerning software, most participants opted to use 

Python and to adapt a baseline system using music21 [3] 

which we wrote and distributed [22]. Others used their 

own tools in Lisp or C. 

Only basic NLP was used. Typically the query was 

scanned looking for terms (e.g. down bow) and 

converting them to concepts (down_bow). Some systems 

adopted a QA approach and assigned the query to a pre-

define set of types, each with its method of solution. 

Others converted the concepts to a structured 

representation by parsing the concepts. The final stage 

was a search of the score. Some varied the representation 

of the score according to the query type (e.g. using 

music21 chordify for cadence questions). As all answers 

to a given query were defined to lie in exactly one of the 

scores, no one opted to use any inverted indexing of the 

music data. 

5. THE 2015 C@MERATA TASK 

5.1 Changes from 2014 

This year’s campaign has just concluded. The use of 

MusicXML scores, the XML formats for questions and 

answers, the passage concept and the evaluation measures 

remained the same in 2015. However, there was a wider 

range of score types from the Renaissance to the early 

Romantic periods, scores were more complicated – up to 

nineteen staves – and questions were differently 

organised and generally more difficult (see Table 2). For 

example, an n_melod question can specify quite 

complicated melodies while the synch type can link two 

simultaneous features. 

5.2 Participants, Runs and Results 

The same five participated as in 2014. The maximum 

BF was 0.620 and the average BF was 0.348 (Table 3), 

both lower than last year. However, the task was 

considerably harder and the participants did very well.  

6. DISCUSSION AND CONCLUSIONS 

First, in both years, participants were able to build a 

working system and submit valid runs. 

Second, all systems could make a good attempt at 

answering at least one of the question types.  

Third, the best systems (see Table 3) achieved very 

good results and several others were not far behind. 

Fourth, the technical basis of the task was shown to be 

sound and all the steps of the campaigns were fulfilled. 

Fifth, the development of strict measures (BP, BR, BF) 

and lenient measures (MP, MR, MF) specifically for this 

task worked well. 

Sixth, the ability to evaluate runs automatically 

showed the practicality and scalability of the evaluation. 

There were also some shortcomings; first, our passage 

concept does not distinguish between staves. Suppose a 

minim F starts in the first beat of bar 1 in the treble clef 

and in the second beat of bar 1 in the bass clef (of a 

keyboard work). The two answer passages thus overlap 

which is anomalous. On the other hand, consider a texture 

such as homophony where some instruments have rests 

for some or all of the passage − are those instruments part 

of the passage or not? 

Second, not all passages of interest in a score can be 

demarcated exactly. For example, a polyphonic passage 

may commence in a madrigal when a homophonic 

section is still drawing to a close. If we say ‘most’ parts 

must be participating in polyphony is that the start of it, 

or must ‘all’ participate? Also, what about the start and 

end of a triad? Sometimes the bass note is only 

established after the other notes. 

Third, some ‘passages’ may turn out to have no length. 

Consider the perfect cadence. The V chord can be set up 

in many different ways such that it can be hard to say 

where exactly that chord starts. Then, the onset of the I 

chord can be equally ambiguous: there may be a trill on 

the V; or the I in the treble may be set up either before or 

after the bass moves to I. For the future, we would 

consider defining a perfect cadence as a point in a score, 

not a passage; the instant the bass moves from V to I. 

Finally, consider again Table 1 (real phrases) against 

Table 2 (actual phrases used in 2014 and 2015). There is 

a considerable difference in complexity and subtlety. 

Many of our queries were simple notes which present few 

problems for either NLP or MIR. Future campaigns can 

include more complex query types which delve further 

into the subtleties of musical language while still being 

practical for use in MIR. 
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ABSTRACT

The determination of structural boundaries is a key task
for understanding the structure of a musical piece, but it
is also highly ambiguous. Recently, Convolutional Neural
Networks (CNN) trained on spectrogram features and hu-
man annotations have been successfully used to tackle the
problem, but still fall clearly behind human performance.
We expand on the CNN approach by combining spectro-
grams with self-similarity lag matrices as audio features,
thereby capturing more facets of the underlying structural
information. Furthermore, in order to consider the hier-
archical nature of structural organization, we explore dif-
ferent strategies to learn from the two-level annotations of
main and secondary boundaries available in the SALAMI
structural annotation dataset. We show that both measures
improve boundary recognition performance, resulting in a
significant improvement over the previous state of the art.
As a side-effect, our algorithm can predict boundaries on
two different structural levels, equivalent to the training
data.

1. INTRODUCTION

The decomposition of a piece of music into parts known
as movements, phrases, chorus and verse, etc., also com-
monly referred to as musical form, is an important task and
a major challenge in music analysis. However, the identifi-
cation and exact placement of transition points, or, bound-
aries between such structural elements is often indistinct,
even for trained human annotators. Figure 1 represents an
excerpt of the piece “The Wet Spot” by “Southern Culture
On The Skids” (index 1358 in the SALAMI collection,
see Section 4.1). Two different sets of human-annotated
boundaries (ground truth) are depicted by vertical marks
at the top and bottom of the plots. They clearly illustrate
the ambiguity of annotating boundaries at a certain level of
detail. The annotators agreed well on the positions of the
boundaries, but for some of these they disagreed whether
they should be considered strong (or ‘coarse’, delimiting

c© Thomas Grill and Jan Schlüter.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Thomas Grill and Jan Schlüter. “Mu-
sic boundary detection using neural networks on combined features and
two-level annotations”, 16th International Society for Music Information
Retrieval Conference, 2015.

‘large scale’, resp., ‘functional’ sections) 1 or weak (‘fine’,
delimiting ‘small scale’ sections). This poses a problem as
the common methodology used for the evaluation of struc-
tural annotation ignores the hierarchical nature and consid-
ers only one level of detail, usually the coarse boundaries.

The currently by far best-performing methods for
boundary detection use Convolutional Neural Networks
(CNNs), trained on large corpora of human-annotated
structural annotations. The algorithms are based on mel-
scaled log-magnitude spectrograms (MLSs), taking into
account a relatively short context of a few seconds, depend-
ing on the desired precision. As shown in Figure 1a, the
CNN based solely on an MLS or a variation such as MLS-
HPSS (Harmonic-Percussive Source Separation, see [1]),
has difficulties of identifying certain boundaries, indicated
by low probabilities in the prediction curve (Figure 1b).
We have investigated in [3] that self-similarity lag matrices
(SSLMs, see Figures 1c and 1d) can be used as additional
alternative structural information to significantly improve
boundary detection.

In this contribution, we expand on our approach by
combining more input features, and put particular fo-
cus on the integration of multiple and two-level annota-
tion ground-truth, as available in the SALAMI dataset.
The structure of the paper is as follows: After giving an
overview over related work in Section 2, we propose our
method in Section 3. In Section 4, we describe the ex-
perimental setup and our evaluation strategy. Section 5
presents our main results. We wrap up in Section 6 with
a discussion and outlook.

2. RELATED WORK

Following the overview paper by Paulus et al. [12], three
fundamental approaches to music structure analysis can
be distinguished: Novelty-based, detecting transitions be-
tween contrasting parts, homogeneity-based, identifying
sections that are consistent with respect to their musical
properties, and repetition-based, building on the determi-
nation of recurring patterns. Novelty is typically computed
from self-similarity matrices (SSMs) or self-distance ma-
trices (SDMs) by sliding a checkerboard kernel along the
diagonal [2], building on audio descriptors like MFCCs,
pitch class profiles, or rhythmic features [10]. Turnbull

1 See [16] and SALAMI Annotator’s Guide, http://www.music.
mcgill.ca/˜jordan/salami/SALAMI-Annotator-Guide.
pdf, accessed 2015-05-04
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(b) CNN predictions for coarse boundaries on HPSS-decomposed
mel spectrogram
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(c) Self-similarity lag matrix, 88 seconds context (SSLM far)

1:15 1:30 1:45 2:00 2:15
0
2
4
6
8

10
12

S
S
LM

 n
e
a
r

la
g
 (

se
c)

(d) Self-similarity lag matrix, 14 seconds context (SSLM near)
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(e) CNN predictions for coarse boundaries on SSLMs near and
far combined
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(f) CNN predictions for coarse boundaries on MLS-HPSS and
SSLMs near and far combined
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(g) CNN predictions for fine boundaries on MLS-HPSS and
SSLMs near and far combined

Figure 1: Boundary recognition using CNNs on dif-
ferent underlying audio features, illustrated on the
piece “The Wet Spot” by “Southern Culture On The
Skids”. Two sets of human annotation ground-truth
are shown in red on top and bottom of each plot.
Coarse boundaries are thick, fine boundaries are thin.
Visit http://www.ofai.at/research/impml/
projects/audiostreams/ismir2015 for a
version with audio.

et al. [17] compute difference features on more com-
plex audio feature sets and use trained Boosted Decision
Stumps for boundary detection. In order to capitalize on
repeated patterns, SSMs or SDMs are used with various
heuristic rules and optimization schemes for structure for-
mation [4, 9, 11]. McFee and Ellis employ spectral clus-
tering [6], or add a supervised learning scheme using or-
dinal linear discriminant analysis and constrained cluster-
ing [5]. When using end-to-end neural network techniques
such as Ullrich et al.’s CNNs [18], the separation between
the fundamental approaches becomes blurred as the CNN
infers the relationships between audio features and ground
truth from the provided training data. In a similarly integral
fashion, Serrà et al. [15] propose an unsupervised method
explicitly combining all three domains.

3. PROPOSED METHOD

Our approach is derived from the work by Ullrich et al.
[18]. In the following, we will mainly describe our exten-
sions to this method.

3.1 Feature extraction

For each audio file under analysis, we first compute a STFT
magnitude spectrogram with a window size of 46 ms (2048
samples at 44.1 kHz sample rate) and 50% overlap, and ap-
ply a mel-scaled filterbank of n = 80 triangular filters from
80 Hz to 16 kHz and scale magnitudes logarithmically.

From this MLS we compute a HPSS decomposition
with a kernel size of 21×21 bins. Preliminary experiments
showed that the actual size is a rather insensitive parame-
ter. We either use MLS only or MLS-HPSS (two parallel
channels) as one part of the network input.

Our method of generating the SSLMs, which represent
similarities of the MLS at one point in time in relation to
points in the past, up to a certain lag time, is derived from
work by Serrà et al. [15] and described in detail in [3].
We use the MLS time series xi=1...N from above, down-
sample it by max-pooling of a factor p = 2, and apply a
DCT-II transformation on each frame with the static com-
ponent omitted. Several of these frames are concatenated
within a local time context of L bins, equivalent to 0.1 sec-
onds, resulting in the time series x̂i. A cosine distance
function δcos (x,y) = 1−

〈
x
‖x‖ ,

y
‖y‖

〉
is used to build the

bNp c × bLp c recurrence matrix

Di,l = δcos (x̂i, x̂i−l) , l = 1 . . . bLp c. (1)

To reveal relationships between distances across this ma-
trix, adaptive thresholding is performed with a smooth sig-
moid transfer function σ (x) = 1/ (1 + e−x), yielding

Ri,l = σ

(
1− Di,l

εi,l

)
. (2)

The adaptive threshold, or, in this context, equalization fac-
tor εi,l is set to a quantile Qκ with κ = 0.1 of the distances
δcos (x̂i, x̂i−j) and δcos (x̂i−l, x̂i−l−j) for j = 1 . . . bLp c,
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or

εi,l = Qκ

(
Di,1, . . . , Di,bLp c, Di−l,1, . . . , Di−l,bLp c

)
.

(3)
All indices i < 1 are wrapped around to i′ = i + bNp c,
resulting in a time-circular SSLM.

3.2 Feature preprocessing

Like [18], for the MLS features, we pad the spectrogram
with pink noise of −70 dB FS as needed to process the
beginning and end of a piece. For the MLS-HPSS vari-
ant, the harmonic and percussive components are sepa-
rated at this point. After subsampling the MLS by taking
the maximum over 6 adjacent time frames without overlap
(max-pooling), we normalize to zero mean and unit vari-
ance for each frequency band. For the SSLM features, we
use circular padding and pooling factors examined in [3]:
A factor of 3 for a time context of 14 seconds (feature
‘SSLM-near’), and a factor of 19 for a context of 88 sec-
onds (feature ‘SSLM-far’). We then also normalize each
lag band to zero mean and unit variance.

3.3 Convolutional neural network

CNNs are feed-forward networks that include convolu-
tional layers computing a convolution of their input with
small learned filter kernels of a given size. This allows
processing large inputs with few trainable parameters, and
retains the input’s spatial layout. When used for binary
classification, the network usually ends in one or more
dense layers integrating information over the full input at
once, discarding the spatial layout. Our architecture for
this work is based on the one used by Ullrich et al. [18] on
MLS features for their MIREX submission [14]. It has a
convolutional layer of 32 8× 6 kernels (8 time frames and
6 frequency bands), a max-pooling layer of 3× 6, another
convolution of 64 6× 3 kernels, a dense layer of 128 units
and a dense output layer of 1 unit.

We employ a variant of this architecture to support mul-
tiple input features instead of one. A comparison of differ-
ent architectural variations has been shown in [3], where
a late ‘time-synchronous fusion’ of the input features, per-
formed in the last convolutional layer, yielded the best re-
sults: since the input features cover the same temporal con-
text at the same resolution, their feature maps can be syn-
chronously convolved over time. Figure 2 shows the un-
derlying CNN architecture used for all experiments in our
study. The inputs (bottom) are varied, e.g., MLS only is
used instead of MLS-HPSS, or one of the input legs is left
out. For the outputs (top), either only the coarse unit is
used, or both coarse and fine.

Training is done by mini-batch gradient descent, us-
ing the same hyper-parameters and tweaks as Ullrich et al.
[18]. Likewise, we follow the peak-picking strategy de-
scribed therein to retrieve likely boundary locations from
the network output.

conv

pool

conv

pool

dense

MLS-HPSS SSLM-near

conv conv

conv

conv

pool

SSLM-far

conv

coarse fine

dense

Figure 2: The CNN architecture in use for all the models.
The full model is shown here, inputs or outputs were varied
for the different experiments.

4. EXPERIMENTS

4.1 Data set

We base our experiments on the data set described by Ull-
rich et al. [18] which is a subset of the Structural Analysis
of Large Amounts of Music Information (SALAMI) [16]
version 1.2 database. A part of this SALAMI 1.2 data set
was also used in the “Audio Structural Segmentation” task
of the annual MIREX evaluation campaign in the years
2012 through 2014. 2 Lately, the data set has been up-
dated to version 2.0 3 with a large number of issues fixed.
The entire data set contains over 1600 musical recordings
of different genres and origins. In SALAMI version 2.0,
a total of 1164 recordings (with 763 double-annotated) are
publicly available. Identically to [18], we used 633 musi-
cal pieces for training, 100 for validation and 487 pieces
as a test set for final evaluation of our models against the
published results of the various MIREX submissions.

4.2 Evaluation

For the MIREX campaign’s boundary retrieval task, three
different evaluation measures are used: Hit rate for time
tolerances ±0.5 and ±3 seconds, and Median deviation.
The latter computes the median time distance between
each annotated boundary and its closest predicted bound-
ary, and vice versa. The former checks which predicted
boundaries fall close enough to an unmatched annotated
boundary (true positives), records remaining unmatched
predictions and annotations as false positives and nega-
tives, respectively, and computes the precision, recall and
F1 scores. The Hit rate F1 score is the measure most fre-
quently used in the literature.

2 Music Information Retrieval Evaluation eXchange, http://www.
music-ir.org/mirex, accessed 2015-04-30

3 https://github.com/DDMAL/salami-data-public/
releases/tag/2.0, accessed 2015-04-30
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As explicated in [18], baseline scores can be estimated
using variations of regularly or randomly spaced grids as
synthetic boundary estimates. For an evaluation tolerance
of ±0.5 seconds, the baseline within our test data set is
F1 ≈ 0.15. Upper bounds, on the other hand, can be de-
rived from the differences between two independent anno-
tations of the same musical pieces. By analyzing the items
within our test data set that have been annotated twice (439
pieces), we calculated F1 ≈ 0.74.

In the existing literature, both tolerances of ±0.5 and
±3 seconds are commonly used. For this contribution,
due to space constraints, we only evaluate for ±0.5 sec-
onds, where the explorable space, that is, the distance be-
tween the lower baseline and the upper bound exhibited
in human ground-truth annotations is much greater than
for ±3 seconds (with lower and upper bounds at 0.33 and
0.80, respectively). Our evaluation code is equivalent to
the boundary detection implemented in mir eval [13],
omitting the borders at the beginning and end of sound
files.

Nieto et al. [8] have identified the F0.58 measure to be
more perceptually informative than the typically used F1

measure. As this is a relatively new finding and it is not as
well established as the F1 measure (which is, e.g., used in
MIREX), we base threshold optimization and model selec-
tion on the latter.

4.3 Combination of features

Building on [3], we combine mel-scaled log-magnitude
spectrograms (MLS) and self-similarity lag matrices
(SSLM) as input features to the CNN. A decomposition
of MLS into harmonic and percussive components (fea-
ture ‘MLS-HPSS’) and the combination of two SSLMs,
one a high-resolution, low lag matrix, the other one a low-
resolution, high lag matrix, provides even more structural
information to the network. We mainly compare two mod-
els: ‘MLS + SSLM-near’ (the model developed in [3]),
and the more complex and computationally more expen-
sive model ‘MLS-HPSS + combined SSLM’, integrating
all available input features.

The different input features are fused at a relatively
late stage in the network (see Figure 2), using a convo-
lutional layer which spans all the vertical (frequency or
lag time) components, but only a very short time context.
This is motivated by the assumption that the input features
are strongly correlated in time. Figure 3 shows boundary
recognition scores for the ‘MLS + SSLM-near’ model and
three different context widths (1, 3 and 5 bins), evaluated
on the validation set. As can be seen, a temporal context
for the fusion layer of more than a single bin does not im-
prove the results.

4.4 Consideration of multiple annotations

Up to now, CNN-based boundary recognition algorithms
have been trained on data sets with just one annotation
version per music piece. SALAMI data contains dou-
ble annotations for the majority of training examples. It

Figure 3: Comparison of boundary recognition F1 scores
for different widths of the CNN fusion layer.

Figure 4: Comparison of boundary recognition F1 scores
for different models trained with single and multiple anno-
tations.

is worth inspecting whether multiple, potentially contra-
dicting annotations help or confuse the CNN training pro-
cess. Figure 4 shows the results for three different models
trained with single and multiple annotations, respectively,
evaluated on the validation set. Employing multiple anno-
tations by duplicating audio features and applying the alter-
native target annotations, the number of training examples
increase from 1198707 (with 70317×3 positive examples)
to 1670944 (98913×3 positive examples) data points, cor-
responding to +39%. A positive effect can be observed for
models with more versatile structural information available
for the network. In these cases, the increase of the F1 score
is in the range of 1–2%.

4.5 Integration of fine annotation

Traditionally, boundary detection in MIR has been per-
formed on only one structural level. As motivated in Sec-
tion 1, we would like to deal with the ambiguity of anno-
tating boundaries at a certain level of detail by capitalizing
on the two-level annotations present in the training data
set. This way, the neural network should be able to refine
its distinction between main and secondary boundaries.

We explored three different modes for the combination
of coarse and fine boundaries: Firstly, by using only one
target output vector by assigning full training weights to
coarse labels and reduced training weights (e.g., factors of
0.3 or 0.5) to fine labels. Secondly, by using two target
outputs with equal weights, one for the coarse labels and
one for the fine labels (‘concat’ mode). And finally, using
two target outputs, with coarse labels and full weights as-
signed to the first output vector. Fine labels are assigned to
the second output vector, but only where they are distinct
from a coarse label (‘contrast’ mode). This should create a
more pronounced contrast between coarse and fine labels
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Figure 5: Comparison of boundary recognition F1 scores
for different integration modes of the second-level ‘fine’
annotation, evaluated on our validation set.

with the potential danger of some contradiction.
Not for all of our training data two-level annotations

were available. We tried two variations: For the first one,
we put coarse boundaries where fine ones were not avail-
able (‘fine + coarse’), and for the second one, we used only
those annotations with two levels available (‘fine only’),
effectively reducing the number of training examples in-
cluding multiple annotations to 1224891 (with 74400 × 3
positive examples).

Figure 5 shows the results for the three combination
modes (with different weighting parameters) and two data
set variations, computed on MLS input features and eval-
uated on the validation set. The combination modes for
coarse and fine data with two output vectors perform bet-
ter than the ones with only one output. The ‘contrast’ mode
exhibits instabilities for the results, most probably due to
the relatively small validation data set. We selected the
best-performing and reliable ‘concat’ mode with two out-
put units as our working model. The distinction between
‘fine + coarse’ and ‘fine only’ variations is more or less in-
conclusive, with very little advantage for the latter. How-
ever, as the spreading of F1 scores is less for ‘fine only’,
we settled for this variation of the ‘concat’ mode.

5. RESULTS

Figure 6 shows boundary recognition scores (on the pri-
mary ‘coarse’ boundaries) of several of our models, with
peak-picking thresholds optimized on the validation set,
and results evaluated on the test set. Each model variation
has been trained and evaluated five times. The individual,
mean and ‘bagged‘ results are shown in the graph. ‘Bag-
ging’ means that the outputs of all five models are aver-
aged and peak-picking is performed on the result, thereby
reducing statistical variations. Using a MLS-HPSS de-
composition does not score significantly higher than MLS
only. Likewise, using a combination of SSLM ‘near’ (14
seconds lag, high resolution) and ‘far’ (88 seconds lag,
low resolution) does not score higher than SSLM ‘near’
only. However, in combination, it can be seen that all
‘MLS-HPSS + combined SSLM’ results are higher than
their respective equivalents of ‘MLS + SSLM-near’. For
both combined models, using multiple annotations raises
the scores relative to single annotations. Additional fine

Algorithm F1 F.58 Rec. Prec.
Upper bound (est.) .74 .74
All features, multi+fine ann. .508 .529 .502 .572
MLS+SSLM-near, multi+fine .496 .506 .509 .536
MLS+SSLM-near, single ann. .469 .466 .504 .475
SUG1 (2014) .422 .442 .422 .490
MP2 (2013) .294 .280 .362 .271
MP1 (2013) .276 .270 .311 .269
NB1 (2014) .270 .246 .374 .229
KSP2 (2012) .263 .231 .422 .209
Baseline (est.) .15 .21

Table 1: Boundary recognition scores for coarse bound-
aries at a tolerance of ±0.5 seconds, evaluated on our
SALAMI 2.0 test dataset. Comparison of our models
(in italics) with the five best-performing algorithms of the
MIREX campaigns 2012 through 2014.

Algorithm F1 F.58 Rec. Prec.
Upper bound (est.) .75 .76
All features, multi+fine ann. .485 .523 .443 .587
MLS+SSLM-near, multi+fine .478 .515 .439 .576
Baseline (est.) .23 .17

Table 2: Boundary recognition scores of two of our mod-
els for ‘fine’, second-level boundaries at a tolerance of
±0.5 seconds, evaluated on our SALAMI 2.0 test dataset.

annotations for CNN training further increase the scores.
On the right-hand-side of Figure 6 different feature com-
binations using multiple fine annotations are shown. The
more perspectives on the audio provided as input, the
higher the scores.

See Table 1 for a listing of our results in comparison to
the best-performing algorithms of the MIREX campaigns
2012 through 2014. All results have been evaluated on
SALAMI 2.0 data. Note that the scores are generally lower
than for SALAMI 1.2 annotations (cf. [18]). The reason
is that in the new data set version many formerly ‘trivial
boundaries’ (sitting at the beginning or end of sound files)
have been corrected. These boundaries have moved away
from the borders and are now headed, or trailed, respec-
tively, by silence or crowd noise, and are therefore more
difficult to predict. The ‘MLS+SSLM-near’ model trained
with single annotations is equivalent to the model used
in [3], with an additional dense layer in the present work.
‘All features’ denotes the ‘MLS-HPSS + combined SSLM’
model, yielding the best boundary prediction results.

Table 2 lists boundary recognition results of the ‘fine’
output unit of our network, trained and evaluated on the
‘small-scale’, second-level annotations of the SALAMI 2.0
data set. To our knowledge, only McFee and Ellis [6] have
so far evaluated their algorithms (as well as SMGA [15])
on the secondary boundaries. They report F1 scores up to
0.292± 0.15 on the SALAMI 1.2 dataset.

Table 3 presents boundary recognition results on the
Beatles-ISO dataset, 4 comprised of all 12 Beatles al-
bums with 180 songs in total. We used the best-scoring
model from above, using all input features, trained on

4 http://isophonics.net/content/
reference-annotations-beatles, accessed 2015-04-30
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Figure 6: Comparison of boundary recognition F1 scores on SALAMI 2.0 data for different models under examination.
Threshold optimization performed on validation set, evaluation done on test set.

Algorithm F1 F.58 Rec. Prec.
All features, multi+fine ann. .558 .590 .522 .640
MLS+SSLM-near, multi+fine .526 .553 .500 .597
SUG1 .424 .457 .385 .510
MP2-beatles .334 .321 .376 .311
MP2-salami .322 .313 .355 .309
NB1 .286 .274 .332 .266
MP1 .278 .280 .285 .285
NB2 .266 .255 .302 .247
NB3 .227 .211 .287 .200
Baseline (est.) .15 .22

Table 3: Boundary recognition scores at a tolerance of
±0.5 seconds, evaluated on the Beatles-ISO dataset (180
songs). Two of our models are compared to several pub-
lished state-of-the-art algorithms.

SALAMI 2.0 with multiple coarse and fine annotations.
We were able to compare the predictions of our CNN to
the best-performing algorithms of last years’ MIREX sub-
missions by Schlüter et al. (SUG1, personal communica-
tion), McFee and Ellis [5] (MP1 and MP2, the latter opti-
mized either for SALAMI and Beatles data), 5 and Nieto
and Bello [7] (NB1, NB2, NB3), 6 respectively. Note that
the scores of our models are above those of other state-of-
the-art algorithms by a large margin, although we have not
trained or tuned our models in any way specifically on the
kind of music realized by the Beatles.

6. DISCUSSION AND OUTLOOK

In this contribution, we have dealt with the prediction of
musically relevant structural boundaries, focused primarily
on the stylistically mixed SALAMI data set in its latest
version 2.0, with additional evaluation on the Beatles-ISO
data set.

We have re-used the CNN architecture developed in [3]
with some modifications. On the one hand, we have fed it a

5 https://github.com/bmcfee/olda, accessed 2015-05-01
6 https://github.com/urinieto/

SegmenterMIREX2014, accessed 2015-05-01

combination of different input features and have been able
to show that the CNN is able to produce highest-scoring
results with HPSS-decomposed mel-scaled spectrograms
(MLS) in combination with self-similarity lag matrices
(SSLMs) on two different time-scales, covering both struc-
tural detail and longer time context. On the other hand, we
have taken advantage of the fact that the SALAMI data set
is annotated on two structural levels, and, for the most part,
by two independent annotators. The integration of this sup-
plementary data helps the CNN to take better informed de-
cisions between primary and secondary boundaries. Eval-
uated on SALAMI 2.0 data, we have been able to raise
the state of the art from the best MIREX submission [14]
at F1 = 0.422, and our previous point of reference [3] at
F1 = 0.469 to the score of F1 = 0.508 for the best model,
integrating all available input features, as well as multiple
and two-level annotations. As the CNN model trained on
two-level annotation possesses two output units, its subse-
quent application also yields two independent predictions
for ‘coarse’ and ‘fine’ boundaries.

Although we have not touched (nor listened to) music
by the Beatles while developing our models, evaluation on
this data set reveals that our models are quite robust, yield-
ing a boundary recognition score of F1 = 0.558, which is
significantly higher than the previously published state of
the art.

We are still actively exploring the possibilities of CNNs
applied to music structure discovery. That said, we have
neither exhaustively researched the space of possible input
features, nor all meaningful variations of model architec-
ture and learning parameters. There is plenty of remaining
headroom to the ‘upper bound’ inter-annotator F1 scores.
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ABSTRACT

Over the past decade and a half, music information re-
trieval (MIR) has grown into a robust, cross-disciplinary
field spanning a variety of research domains. Collabo-
rations between MIR and neuroscience researchers, how-
ever, are still rare, and to date only a few studies using
approaches from one domain have successfully reached
an audience in the other. In this paper, we take an initial
step toward bridging these two fields by reviewing studies
from the music neuroscience literature, with an emphasis
on imaging modalities and analysis techniques that might
be of practical interest to the MIR community. We show
that certain approaches currently used in a neuroscientific
setting align with those used in MIR research, and discuss
implications for potential areas of future research. We ad-
ditionally consider the impact of disparate research objec-
tives between the two fields, and how such a discrepancy
may have hindered cross-discipline output thus far. It is
hoped that a heightened awareness of this literature will
foster interaction and collaboration between MIR and neu-
roscience researchers, leading to advances in both fields
that would not have been achieved independently.

1. INTRODUCTION

Since its inception, music information retrieval (MIR) has
been characterized as an interdisciplinary and multifaceted
field, drawing from such diverse domains as information
science, music, computer science, and audio engineering
to explore topics ranging from indexing and retrieval to
musical analysis and user studies [22, 24]. The field has
become increasingly collaborative over time, and cross-
disciplinary output has grown [33].

However, one field that has yet to establish itself as a
definitive sub-discipline of MIR is that of neuroscience.
Recent papers by Aucouturier and Bigand [6,7] have high-
lighted the challenges faced by MIR researchers attempt-
ing to publish in cognitive science and neuroscience jour-
nals, pointing out that MIR approaches have occupied at

c© Blair Kaneshiro, Jacek P. Dmochowski.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Blair Kaneshiro, Jacek P. Dmochowski.
“Neuroimaging Methods for Music Information Retrieval: Current Find-
ings and Future Prospects”, 16th International Society for Music Infor-
mation Retrieval Conference, 2015.

best a marginal or incidental role in that literature. The au-
thors cite as a main obstacle a fundamental lack of interest,
or understanding, from the cognitive science/neuroscience
community. At the same time, the few brain-based MIR
studies published to date [16, 40, 52] have emphasized
application over background, potentially leaving readers
lacking sufficient introduction to the imaging technique
and brain response of interest. As things currently stand,
the fields of MIR and neuroscience operate largely inde-
pendently, despite sharing approaches and questions that
might benefit from cross-disciplinary investigation.

In an effort to begin reconciling these two fields,
the present authors—whose backgrounds collectively span
music, neuroscience, and engineering—present a review
of studies drawn from the music neuroscience literature
and examine their relevance to MIR research. While
such a review will not immediately resolve the signifi-
cant philosophical issues described above, it may perhaps
open a window between the two disciplines by highlight-
ing shared approaches and potential collaborations while
acknowledging differences in aims and motivations. Envi-
sioned outcomes are twofold: First, that MIR researchers
may find, in brain responses, a new setting to apply analy-
sis techniques already developed for other types of data;
and second, and more importantly, that heightened aware-
ness of this literature will increase collaborations between
MIR and neuroscience researchers, advancing both fields
and leading to the formation of a robust cross-discipline.

Since a review of the entire literature on music and neu-
roscience would be beyond the scope of this paper, we
narrow the present focus to approaches that align closely
with MIR applications. For rigor, we include only peer-
reviewed papers, though interested readers are encour-
aged to visit other venues—including but not limited to
ICMPC, SMPC, and late-breaking ISMIR proceedings—
for a wealth of additional ideas and findings. The primary
focus here is on EEG, though behavioral and fMRI studies
will be touched upon as appropriate.

The remainder of this paper is structured as follows.
First, we evaluate the suitability of various neuroimaging
modalities for MIR research (§2). We then review three
neuroimaging approaches used in music research (§3) and
consider how these methods, and others, might be used for
MIR research (§4). We conclude with a discussion of di-
verging objectives between the two fields, and opportuni-
ties for future cross-disciplinary research (§5).
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2. NEUROIMAGING METHODS FOR MIR

Neuroimaging is the use of magnetic, electrical, hemody-
namic, optical, or chemical means to measure activity in
the central nervous system, most often the cerebral cortex
(Table 1). The central idea behind bridging neuroimag-
ing with MIR is that music is encoded by the brain, and
thus can be “read out” or decoded using imaging tech-
niques. In order to exploit this idea, it would be advan-
tageous to track neural activity at the temporal resolution
of music (i.e., milliseconds), which necessitates the use of
techniques that provide direct electromagnetic measures
of neural activity. While techniques measuring hemody-
namic responses, such as functional magnetic resonance
imaging (fMRI), provide superb spatial resolution that can
indirectly probe neural activation on a millimeter scale and
elucidate the functional brain networks recruited to process
music, the sluggishness of these responses makes them less
likely to play a role in MIR.

EEG MEG ECoG fMRI DTI

Temporal Resolution high high high low NA
Spatial Resolution low low high high high
Invasiveness low low high low low
Mobility/Portability high low low low low
Field of View large large small large large
Expense to Operate low high NA high high

Table 1. Characteristics of neuroimaging techniques fre-
quently used in music and auditory research. Adapted from
Mehta and Parasuraman [39].

On the other hand, electroencephalography (EEG) and
magnetoencephalography (MEG) provide millisecond tem-
poral resolution that can in principle be used to infer prop-
erties of the stimuli evoking encephalographic responses.
EEG and MEG consist of sensors placed at or near the
scalp surface that detect mass superpositions of activity
in the cerebral cortex. The signal-to-noise ratio (SNR)
of EEG/MEG is inherently low, typically on the order of
-20 dB. However, as activity is usually collected over a
spatial aperture consisting of tens or hundreds of sensors,
multivariate approaches can be used to derive spatial filters
that will enhance the desired signal while suppressing the
noise. The limitation of EEG/MEG is low spatial resolu-
tion that results from a spatial smoothing of the evoked sig-
nal and renders it difficult to localize the underlying source.
In order to achieve fine resolution in both space and time,
electrodes can be placed directly on the cortical surface, an
invasive practice that is feasible only in the case of neuro-
logical disease where it is known as electrocorticography
(ECoG), which has been recently employed to study pro-
cessing of music [47, 48, 55]. Note, however, that in the
context of MIR, precise spatial localization is likely not a
fundamental requirement. All of the above techniques re-
fer to imaging the function of the brain; methods that mea-
sure the connections among brain areas, such as diffusion
tensor imaging (DTI), have also been used in the context
of music research (e.g., [38]).

In order to feasibly integrate neuroimaging with MIR,
a form of imaging that is inexpensive, noninvasive, and

finely temporally resolved is required. For these reasons,
our primary focus in the present paper is on EEG, which
represents the most promising modality for bridging neural
responses with MIR. Moreover, EEG offers a whole-brain
field of view that allows for studying the interaction of dis-
tributed brain areas during musical processing.

3. APPROACHES OF INTEREST

In this section we review three approaches that may prove
useful for MIR. The first is an early-latency response gen-
erated by the auditory brainstem, while the latter two in-
volve longer latency cortical responses.

3.1 The Frequency-Following Response

The frequency-following response (FFR) is an early-
latency subcortical response generated by the auditory
brainstem less than 10 msec after an auditory stimulus oc-
curs. It is a sustained, phase-locked response that oscil-
lates at the same frequency as an auditory stimulus to such
an extent that the stimulus can be “played back” from an
average of many trials of the brain response [25].

The FFR is typically recorded from a single electrode
at the vertex of the head, plus reference and ground elec-
trodes. The response is averaged over many stimulus pre-
sentations, and is usually analyzed in the frequency or
time-frequency domain. The FFR has an especially low
SNR; therefore, FFR experiments require on the order of
hundreds or thousands of stimulus presentations. The fre-
quency range of interest for this response is primarily un-
der 1,000 Hz, and studies presented here generally use
complex, synthesized stimuli with fundamental frequen-
cies no greater than 300 Hz. An introduction to the re-
sponse and technique can be found in the 2010 tutorial by
Skoe and Kraus [51], and recent findings pertaining to mu-
sic are summarized in a 2013 review by Bidelman [9].

Despite being an early, low-level auditory response, the
FFR has been found to show effects of learning-based neu-
ral plasticity. Its involvement in the music literature grew
out of speech studies that compared subcortical responses
of speakers of tone languages, such as Mandarin and Thai,
to those of English speakers. These studies showed that
FFRs to certain pitch-varying phonemes and phoneme-
like stimuli were more robust in the tone-language speak-
ers than in the English speakers, pointing to experience-
dependent processing enhancements [29–32, 56]. Trained
musicians, who possess a complementary type of pitch
expertise, became a population of interest in generalizing
these findings. For example, a study by Wong et al. [62]
showed that musicians exhibited more robust encoding of
Mandarin phonemes than did nonmusicians, despite not
being tone-language speakers.

The first study to investigate the FFR specifically in re-
sponse to musical stimuli was a 2007 study by Musacchia
and colleagues [41]. Here, musicians’ enhanced subcor-
tical encoding of speech and musical stimuli presented in
audio, visual, and audiovisual modalities could be identi-
fied in both the time and frequency domains of the brain
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response. Subsequent studies have investigated encoding
of musical intervals by musicians and nonmusicians [34],
as well as encoding of music by both musicians and Man-
darin speakers [10, 11].

Musical characteristics of the stimuli have also been
found to modulate the strength of the FFR. A 2009 study
by Bidelman and Krishnan [12], revealed enhanced encod-
ing for consonant versus dissonant musical intervals. The
authors later found a similar effect in responses to pleasant
(major/minor) versus unpleasant (augmented/diminished)
triads [13]. It should be noted that these results cannot be
merely a reflection of the acoustical properties of the stim-
uli, as the consonant and dissonant intervals are interleaved
(e.g., the dissonant tritone lies between the consonant P4
and P5), as are the constituent intervals (major and minor
thirds) comprising the different types of musical triads.

3.2 Single-Trial EEG Classification

We now move from the auditory brainstem to the cerebral
cortex, where responses begin roughly 50 msec after stim-
ulus onset and are typically recorded from between 32–
256 electrodes arranged across the surface of the scalp at
regular intervals, often by means of a cap or net. Corti-
cal responses are generally analyzed in a lower frequency
range than FFRs, usually below 50 or 60 Hz.

Cortical EEG research has a long history of univari-
ate analysis. Readers may be familiar with time-averaged
event-related potential (ERP) studies, which focus on am-
plitudes and latencies of particular waveform peaks from
selected electrodes. Some recent studies have taken a dif-
ferent approach to EEG analysis by classifying single tri-
als of the brain response. The goal in this case is to cor-
rectly predict, from the brain response, which stimulus the
participant was experiencing (see Blankertz et al. [15] for
an introduction and tutorial). This multivariate approach
enables data from multiple electrodes and time points to
be analyzed at once. Classification of neuroimaging data
has a longer history in fMRI (as multi-voxel pattern analy-
sis [43]) than in EEG; however, the overarching methodol-
ogy lends itself well to extracting stimulus- or task-relevant
components out of noisy, high-dimensional EEG data, as is
done with other types of data used in music research [50].

The first single-trial EEG classification study focusing
on musical stimuli was published in 2011 by Schaefer and
colleagues [49]. They found that brain responses to seven
short excerpts of naturalistic music 1 from a variety of gen-
res could be classified significantly above chance. More
recently, Stober et al. recorded EEG responses from East
African listeners who heard twelve Western and twelve
East African rhythms, and used deep-learning techniques
to predict both the rhythm family of a stimulus (2-class
problem) as well as the individual rhythm (24-class prob-
lem) from the EEG [52]. The prediction task of EEG clas-
sification has also extended beyond characterizing the stim-
uli to labeling listeners’ emotional states—for example, in
response to music videos [28] and musical excerpts [16].

1 The term “naturalistic music” is used to refer to ecologically valid
musical material as opposed to controlled, synthesized stimuli.

A brain-computer interface (BCI) is often cited as a
general application of single-trial EEG classification [14].
In a musical context, a successful BCI would enable a user
to communicate mentally by selectively interacting with an
ongoing musical stimulus. Studies by Vlek and colleagues
showed that subjective (mentally imposed) metrical ac-
cents on a beat sequence could be detected in the EEG
response [60], and that a classifier trained upon responses
to perceived accents could be used to detect the imagined
accents [61]. In a recent EEG study by Treder et al. [58],
also working toward BCI application, listeners were played
polyphonic musical stimuli wherein each stream produced
intermittent “oddball” musical events, and attended to just
one of the streams. The authors leveraged the fact that
the brain responds differently to attended oddball auditory
stimuli than to unattended oddballs, and classified brain re-
sponses to just the oddball events in the music in order to
identify the attended stream.

3.3 Tracking Temporal Dynamics of Acoustical
Features

Certain music cognition studies have drawn explicitly from
MIR techniques, utilizing acoustical features developed
specifically for music analysis [59]. These studies use
short-term (e.g., spectral flux, spectral centroid) and long-
term (e.g., musical mode, pulse clarity) acoustical features,
computationally extracted from musical stimuli, as a basis
for quantitatively comparing stimuli with responses.

A 2010 behavioral study by Alluri and Toiviainen [1]
set the foundation for this approach in the music cognition
literature. The authors formulated perceptual scales suit-
able for assessing timbre of naturalistic music, and then
linked human ratings of short musical excerpts to the ex-
cerpts’ constituent short-term acoustical features. Subse-
quent fMRI studies used a refined set of short-term fea-
tures, as well as long-term features, to characterize their
musical stimuli. Alluri and colleagues identified brain re-
gions whose fMRI time series correlated with those of the
acoustical features of a tango piece [2], and later predicted
brain activations from the features of a variety of musical
excerpts [3]. A 2014 study by Toiviainen and colleagues
took the inverse approach, predicting acoustical features
from fMRI-recorded responses to Beatles songs [57].

Acoustical feature representation has also been studied
in ongoing EEG. In contrast to relatively short epochs used
in FFR and classification analysis, ongoing-EEG epochs
can span many minutes, and are thus well suited to the
analysis of responses to longer musical excerpts such as
songs [17]. A 2013 study by Cong and colleagues used
the same stimulus and long-term acoustical features as the
2012 Alluri study [2] in an ongoing-EEG paradigm, de-
composing the EEG response into temporally independent
sources using Independent Component Analysis (ICA),
and then identifying sources whose frequency content
corresponded to the time courses of the acoustical fea-
tures [17]. More recently, Lin and colleagues also used
EEG ICA sources to link ongoing-EEG responses to musi-
cal mode and tempo in shorter musical excerpts [36].
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4. MIR APPLICATIONS

In the previous section, we reviewed three approaches used
to study brain responses to music: The FFR, which directly
encodes the pitch of an auditory stimulus, and two analy-
sis techniques used for classifying and characterizing cor-
tical responses. We will now discuss MIR applications of
neuroimaging data. We consider the relevance of each ap-
proach to MIR research and assess the added value of an-
alyzing the brain response—over analyzing, for example,
the auditory stimulus directly.

4.1 Transcription

The FFR is unique among the auditory responses presented
here in that it directly reflects the stimulus. As described
above, the FFR has been used primarily as a measure of en-
coding. To date, its robustness has been the main attribute
of interest, reflecting effects of expertise (tone-language
speaker or musician) and stimulus properties (musical con-
sonance or pleasantness) in the brain response.

The FFR could prove to be a powerful transcription
tool; to our knowledge, this application has not yet been
explored. From an MIR perspective, there would be little
added value in transcribing responses to the simple musi-
cal stimuli used in the FFR studies described here (mostly
monophonic, sometimes intervals or triads—see §3.1), as
transcription could be easily accomplished directly from
the audio. However, selective attention has been found
to enhance FFR amplitudes for simultaneously presented
speech stimuli [26, 35]; therefore, future research could
study this topic further using musical stimuli, for exam-
ple to extract a melody from polyphonic music—an open
topic in audio MIR research, but something a human can
accomplish effortlessly. Though FFRs to imagined sounds
have yet to be confirmed, an FFR-based transcription sys-
tem of this kind would certainly open another exciting and
novel avenue for future research.

As described above, FFR studies typically involve up to
thousands of stimulus repetitions due to low SNR. There-
fore, signal-processing techniques that could efficiently ex-
tract the FFR out of the EEG—perhaps by recording the re-
sponse from a montage of multiple electrodes, analogous
to the use of multiple microphones in a source-separation
scenario—would provide a useful resource for more flex-
ible experiment design, and provide a critical step toward
FFR-based transcription.

4.2 Tagging and Annotation

Characterizing musical attributes and listener responses is
a recurring goal in MIR research, and has also been ex-
plored in EEG research [28, 37, 40]. In their 2010 pa-
per, Alluri and Toiviainen [1] draw explicit connections
between their proposed approach and the use of acousti-
cal features in computational systems for music categoriza-
tion. Along these lines, the acoustical feature following
approach used in neuroimaging studies could extend be-
yond the prediction of the features from the brain response
(as in [57]), toward a global prediction of musical genre

from combinations of these features over time, as is done
in audio-based genre classification.

Interestingly, a fine-grained temporal representation of
acoustical musical features in the brain response has yet to
be explored using noninvasive imaging techniques. While
short-term acoustical features were used in the behavioral
and fMRI studies discussed above (§3.3), they were aver-
aged or downsampled to match the length of the behav-
ioral stimuli (1.5 seconds) or the sampling rate of fMRI
(0.45–0.5 Hz) [1–3, 57]. At the same time, the studies us-
ing EEG—arguably the best modality for investigating rep-
resentation of short-term acoustical features—considered
only long-term acoustical features in their analysis [17,36].
It may be the case, too, that neurally encoded features of
music do not correspond exactly to the hand-crafted acous-
tical features discussed here; therefore, feature-learning
approaches could also prove useful for connecting tem-
porally resolved stimulus features to the brain response,
whether to study feature processing and representation, or
to develop an annotation tool.

Single-trial EEG classification could also be applied to
this problem. Of the classification studies discussed here,
only one used naturalistic music as stimuli [49]; the oth-
ers used rhythmic patterns [52, 60, 61] or short events seg-
mented from an ongoing stimulus [58]. One possibility
for future MIR application could be to classify responses
to a larger set of naturalistic musical excerpts to build,
for example, a classification model that surpasses excerpt-
level specificity and instead predicts genre, mood, or other
global attributes from responses to new musical excerpts.

4.3 Predicting Large-Scale Audience Preferences

Brain responses can also be used to model listener prefer-
ences. This topic has been explored to some extent in the
music neuroscience literature (e.g., [4]). However, to ac-
complish a widespread application of this goal—for exam-
ple, in a neuromarketing setting [5]—would require that re-
sponses of the experimental sample generalize beyond that
sample to a large-scale measure of success, such as sales of
a product or ratings collected from the general public [8].

Recent studies have successfully used brain responses
from a small sample to predict large-scale audience prefer-
ences. In a 2012 study, Berns and Moore collected fMRI
responses and subjective ratings from participants who lis-
tened to a set of unknown songs. The authors then tracked
the sales of the songs over the next three years and found
a brain region whose activity correlated significantly with
eventual song popularity [8]. Recent studies by Falk et
al. [23] and Dmochowski et al. [21] showed that large-
scale success of television commercials could be predicted
from fMRI and EEG responses, respectively. In all three
of these studies, the brain responses of the experimental
sample correlated more strongly with large-scale measures
of popularity and success than they did with self-reported
preferences of that same sample. These findings lend cre-
dence to the theory that brain responses provide objective
measures of preference, and that generalizations may be
drawn from these responses with greater validity than sub-
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Company Product Application Website Features

Emotiv EPOC commercial http://emotiv.com/ fixed montage, wireless, iOS, Android
NeuroSky MindWave, MindSet commercial http://neurosky.com/ fixed montage, wireless, iOS, Android
EGI Avatar research http://avatareeg.com/ flexible montage and sensors, wireless, Android
Grass Comet research http://www.grasstechnologies.com/ flexible montage and sensors
Neuroelectrics StarStim research http://www.neuroelectrics.com/ flexible montage and sensors, wireless, stimulation

Table 2. Selected portable/mobile EEG systems.

jective ratings from a small experimental sample—even
the very sample providing the brain responses. Therefore,
MIR researchers may find brain-based measures of pref-
erence or success to be a useful channel of information in
predicting or modeling large-scale music popularity.

4.4 Portable/Mobile EEG

While not an application per se, another area of growing
interest in neuroscience involves portable and mobile EEG
systems. It should be noted that nearly all of the studies
reviewed here were conducted in controlled laboratory set-
tings; thus, the listening experiences of the experimental
participants likely did not reflect their experiences of music
in everyday life. However, a number of commercial- and
research-grade systems have come to market over the past
decade (Table 2), and have recently begun to gain traction
in the scientific literature as valid data-acquisition tools.

In an MIR context, a 2013 study by Morita et al. used
the NeuroSky MindSet to assess mental states in response
to music [40], and the 2014 study by Stober and col-
leagues (§3.2) used a portable Grass system for data col-
lection [52]. Other recent scientific publications report
real-time 3D imaging implementations using wireless EEG
with a smartphone interface built using Emotiv equip-
ment [44, 54], and a 2014 study by De Vos and colleagues
showed that usable single-trial auditory responses could be
recorded from a custom portable apparatus, also built off of
the Emotiv system [18, 19]. The adoption of such method-
ologies by the scientific community presents an opportu-
nity for MIR researchers to study music consumption and
music processing in real-world listening situations [36].

5. DISCUSSION

In this review, we have surveyed neuroimaging techniques
that can be used in MIR research, and highlighted a number
of potential research topics spanning the two fields. Why,
then, have collaborations not flourished to date?

One answer may emerge from a consideration of fun-
damental motivational differences between the two fields.
Neuroscience, by definition, is the study of the brain; there-
fore, the thrust of much neuroscientific research is to gain
an understanding of brain functioning underlying process-
ing of various stimuli, including music. As a result, exper-
iment design, data analysis, and interpretation of results
will tend toward this goal, even when analysis involves de-
coding or prediction of stimulus or response features. A
useful perspective on this topic is provided by Naselaris
and colleagues [42], who characterize encoding versus de-
coding approaches used in fMRI research: Encoding ap-

proaches assess variations in neural space in response to
variations in stimulus space, or perhaps seek to predict the
brain response from the stimulus. Decoding, on the other
hand, seeks to predict information about the stimulus from
the brain response. In a neuroscientific setting, both ap-
proaches are used to map stimulus features to responses in
order to better understand brain processing.

This objective is clearly evident in the studies reviewed
above (§3). The FFR, providing arguably the most decod-
able brain signal, is used primarily to study neural encod-
ing of auditory stimuli. One outcome of single-trial clas-
sification is the identification of temporal and spatial EEG
components that best discriminate or differentiate stimuli
or stimulus categories. The acoustical feature studies also
focused upon identifying brain areas whose activity covar-
ied with the stimuli, and not specifically on transcription.
Of the approaches described above, perhaps only the BCI-
focused EEG classification studies are purely application-
based, with system performance taking priority over an ex-
ploration of the underlying neural processing—though an
understanding of the latter is often a design consideration
in the development of a high-performing BCI system.

MIR, on the other hand, tends to be a more application-
and goal-oriented field [7]. For MIR researchers, then,
brain data may serve more as a medium through which in-
formation about music may be recovered, than as the fun-
damental object of investigation. This disparity in what the
brain, and brain data, represent in the overall goal of the re-
search may be partly responsible for the lack of connection
and collaboration between the two fields to date.

Another likely hinderance to the incorporation of neuro-
scientific techniques in MIR is access to data. Historically,
researchers have had to acquire their own data, which re-
quires access to equipment as well as domain-specific ex-
pertise in experiment design and data collection. Follow-
ing that, data preprocessing and analysis can require sig-
nificant signal-processing proficiency to extract stimulus-
related information from noisy EEG recordings, especially
for the single-trial and ongoing-EEG approaches discussed
above. Luckily, the global scale of music neuroscience re-
search now underway should provide many opportunities
for collaboration, whereby MIR researchers may bypass
some of the above steps if they wish. In addition, the
creation of publicly available repositories of neuroimag-
ing data has become a recent area of focus in the fMRI
community [45, 46], and the EEG community is following
suit (music-related EEG datasets include Koelstra et al.’s
DEAP [27] and Stober et al.’s OpenMIIR [53]). Such pub-
lic datasets, as well as open-source analysis packages such
as EEGLAB [20], can facilitate cross-disciplinary research
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even in the absence of formal collaborations.
While the fields of MIR and neuroscience have yet to

form a strong connection, there exist many opportunites
for collaboration that could advance both fields. It is hoped
that the studies and ideas presented in this review will prove
useful to both MIR researchers and neuroscientists. It is
likely that the two fields will take some time to grow closer;
therefore, MIR output using neuroscientific data may not
immediately reach the neuroscientific audience (nor should
it be intended to). Even so, we hope that a greater knowl-
edge of neuroscientific approaches and findings will spark
the interest of MIR researchers and lead to future intersec-
tions between these two exciting fields.
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ABSTRACT

Visualizations of music databases are a popular form of
interface allowing intuitive exploration of music catalogs.
They are often based on lower dimensional projections of
high dimensional music similarity spaces. Such similarity
spaces have already been shown to be negatively impacted
by so-called hubs and anti-hubs. These are points that ap-
pear very close or very far to many other data points due
to a problem of measuring distances in high-dimensional
spaces. We present an empirical study on how this phe-
nomenon impacts three popular approaches to compute two-
dimensional visualizations of music databases. We also
show how the negative impact of hubs and anti-hubs can
be reduced by re-scaling the high dimensional spaces be-
fore low dimensional projection.

1. INTRODUCTION

Visualization via low dimensional projections is one way
to produce interfaces that allow navigation and access to
music data sets. A very popular and influential approach is
the islands-of-music metaphor [14], where representations
of similar music form islands on a two-dimensional dis-
play. Numerous variations of this approach have been pub-
lished within the music information retrieval (MIR) com-
munity (see e.g. [5, 9, 16, 24]). A recent trend towards
more holistic MIR approaches [18, 23] including human
computer interaction aspects is likely to increase interest
in visualization in the near future. State-of-the-art visu-
alization algorithms are said to be able to visualize high-
dimensional data [28]. Precisely for such high-dimensional
data a new aspect of the curse of dimensionality, the so
called hubness, has been discovered and described within
the MIR community [1, 8]. This paper investigates the im-
pact of hubness on visualization of high-dimensional mu-
sic similarity spaces. In an empirical evaluation of three
methods for dimensionality reduction the negative impact
of hubness is explored and it is shown how re-scaling of
the similarity spaces as a preprocessing step can greatly
improve the visualizations.

c© Arthur Flexer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Arthur Flexer. “Improving visual-
ization of high-dimensional music similarity spaces”, 16th International
Society for Music Information Retrieval Conference, 2015.

2. RELATED WORK

Hubness is a general problem of learning in high-dimensional
space which has been discovered in MIR [1], but then gained
attention in a general machine learning context where it has
been discussed as a new aspect of the curse of dimension-
ality [15,20]. Hub objects appear very close to many other
data objects and anti-hubs very far from most other data
objects. The effect is related to the phenomenon of concen-
tration of distances and has been shown to have a negative
impact on many tasks including classification [15], near-
est neighbor based recommendation [3] and retrieval [21],
outlier detection [15] and clustering [19, 26].

Visualization of music similarity spaces via low dimen-
sional projections has a long tradition within MIR. Starting
from the influential islands-of-music approach [14,16], nu-
merous extensions and variations have been developed (see
e.g. [5, 9, 24]). Although different methods for dimension-
ality reduction have been explored, the most popular ap-
proach seems to be self-organizing maps [10]. Despite the
popularity of these interfaces based on lower dimensional
projections, it has not yet been clarified how hubness in-
fluences these visualizations. To the best of our knowl-
edge, there is only a single publication concerned with
the impact of hubness on visualization [6]. In an anal-
ysis of dimensionality reduction of three audio databases
to two dimensions using multidimensional scaling, the au-
thors show that projected data tends to be concentrated in
a single large cluster centered around the largest hub.

It is important to note that simple dimensionality reduc-
tion does not reduce hubness. On the contrary it has been
shown that only projections to very few dimensions, well
below the intrinsic dimensionality of a data set, are able
to reduce hubness, but at the cost of a loss of distance in-
formation [15]. On the other hand, results on re-scaling
methods to reduce hubness [20] show that it is possible
to decrease hubness without changing the intrinsic dimen-
sionality and therefore the information content of the data.
Thus a good approach to visualization of high dimensional
data might be to first re-scale to reduce hubness without
changing the intrinsic dimensionality, and then to apply di-
mensionality reduction to the re-scaled data.

3. DATA

For our experiments we used two standard music databases:
the “GTZAN” collection consisting of N = 1000 audio
tracks (each 30 s length) evenly spread over ten music gen-
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res [27]; the “ISMIR2004” 1 collection containing N =
1458 tracks of six genres, with full-length audio being avail-
able and exhibiting a highly imbalanced genre distribution
with classical music comprising almost half of the tracks.

We decided to compute timbre information from the au-
dio, since this is an integral part of many MIR systems and
at the same time has already been shown to be suscepti-
ble to hubness [3]. Every track is divided into overlapping
frames for which 20 MFCCs are being computed which
are modeled via a single Gaussian with full covariance
matrix. To compute a distance value between two Gaus-
sians the symmetrized Kullback-Leibler (SKL) divergence
is used [11]. This results in N × N distance matrices DI

and DG for the ISMIR and GTZAN data sets. Please note
that SKL is symmetric and non-negative, but does not ful-
fill the triangle inequality and therefore is not a full metric.

4. METHODS

In what follows we present three methods for dimension-
ality reduction (TSNE, SAMMON, SOM) and two meth-
ods to re-scale distance matrices in order to reduce hub-
ness (MP, SNN). In Section 5 we will use MP and SNN
as a preprocessing step before dimensionality reduction.
This gives nine different combination of methods to com-
pare: TSNE, MP TSNE, SNN TSNE, SOM, MP SOM,
SNN SOM, SAMMON, MP SAMMON, SNN SAMMON.
But first we present evaluation indices that will be used
to measure the performance achieved in original and re-
scaled data spaces.

4.1 Evaluation measures

Hubness (Sn): To characterize the strength of the hubness
phenomenon in a data set we use the so called hubness
measure [15]. This is based on the n-occurrences of points
x, which is the number of times x occurs in the n-nearest
neighbor lists of all other objects in the collection. Hub-
ness is then defined as the skewness of the distribution of
n-occurrences On:

Sn =
E
[
(On − µOn)3

]

σ3
On

. (1)

A data set having high hubness produces few hub ob-
jects with very high n-occurrence and many anti-hubs with
n-occurrence of zero. This makes the distribution of n-
occurrences skewed with positive skewness indicating high
hubness. Previous results [22] show that values above 1.4
are problematic.
Nearest neighbor overlap (Lk): To quantify the degree to
which neighborhood relations are preserved we compute
the overlap between nearest neighbor lists in the high di-
mensional input space (NN(x)) and the low-dimensional
output space (NN(x̂)):

Lk =
1

N

∑

i=1...N

|NN(x) ∩NN(x̂)|/k. (2)

1 http://ismir2004.ismir.net/genre_contest/
index.htm

Nearest neighbor classification accuracy (Ck): We re-
port the k-nearest neighbor (kNN) classification accuracy
Ck using leave-one-out cross-validation, where classifica-
tion is performed via a majority vote among the k nearest
neighbors, with the class of the nearest neighbor used for
breaking ties.

4.2 Dimensionality reduction

Dimensionality reduction algorithms try to map high di-
mensional input data to lower dimensional output spaces
while preserving information of the topology of the input
space, i.e. preserving similarities or similarity orderings.
All three methods used in this study are based on optimiza-
tion algorithms that are initiated randomly and therefore
can give different solutions for different initializations. All
results reported in Section 5 are based on single runs since
repeated runs have shown that all three methods give com-
parable solutions even for different initializations. Please
note that the original and re-scaled distance matrices DI

and DG are normalized to have a smallest value of 0 and a
largest value of 1 and, if necessary, changed to similarities
before dimensionality reduction.
t-Stochastic Neighbor Embedding (TSNE): A particu-
larly successful algorithm for dimensionality reduction is
t-SNE [28]. It first converts similarities of high dimen-
sional points xi and xj into conditional probabilities pj|i
that xi and xj are neighbors given a Gaussian probability
density estimate centered at xi. It computes a similar prob-
ability qj|i for the low dimensional counterparts yi and yj
based on a Student-t density estimate. The mapping to the
lower dimension is then achieved by minimizing the sum
of the Kullback-Leibler divergences over all data points us-
ing gradient descent:

C =
∑

i

KL(Pi||Qi) =
∑

i

∑

j

pj|i log
pj|i
qj|i

(3)

We used the implementation by Laurens van der Maaten 2

that accepts similarity matrices as input (function “tsne p”)
using standard settings as provided by the software and
1000 iterations for all experiments.
Sammon mapping (SAMMON): Sammon mapping [17]
does dimensionality reduction by minimizing the follow-
ing via steepest descent:

1
∑N−1

i=0

∑
j<i d(xi, xj)

N−1∑

i=0

∑

j<i

(d(xi, xj)− d̂(x̂i, x̂j))2
d(xi, xj)

(4)
where d̂(x̂i, x̂j) is the distance in the output space that

corresponds to the distance d(xi, xj) in the input space and
N is the number of points to be mapped. We used the im-
plementation from the SOM Toolbox 3 for all experiments
with standard settings and 100 iterations.
Self Organizing Map (SOM): The SOM [10] is an unsu-
pervised neural network that visualizes high dimensional

2 http://lvdmaaten.github.io/tsne/
3 http://www.cis.hut.fi/projects/somtoolbox/
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data by mapping it to a two dimensional map grid. Data
points that are similar in the original high dimensional space
are mapped onto locations close to each other on the grid.
In essence the SOM consists of an ordered set of so called
map units ri, each of which is assigned a reference vector
(or model vector) mi in the high dimensional input space.
In an iterative learning procedure the model vectorsmi are
adapted to the input data, very much like cluster centers
in a k-means clustering procedure. The main difference is
that model vectors corresponding to neighboring map units
ri are adapted together, based on a neighborhood weight-
ing function. This yields a topological organization of the
model vectors mi in the two dimensional output space.

For all our experiments we use SOMs with 40 × 40
output maps, thereby ensuring that we always have more
model vectors than input vectors which is advantageous
for using SOM for visualization (see [2] for more on the
usage of SOMs for clustering and visualization). We use
the NETLAB [12] SOM implementation with standard set-
tings for the learning parameters (initial neighborhood size
of 8 shrunk to 1 during an ordering phase lasting 50 itera-
tions, followed by 400 iterations of a convergence phase).
Since SOMs need data vectors and not distance matrices
as input data, we use the full rows of the distance matri-
ces as inputs (see e.g. [9, 13] for more detail or [22] for a
criticism of this rather crude but standard approach).

4.3 Reducing hubness

We introduce the two methods we will apply to reduce hub-
ness by using each method on the whole distance matrix
and computing re-scaled distances. Both methods aim at
repairing asymmetric nearest neighbor relations which are
a consequence of the presence of hubs. A hub y is the near-
est neighbor of x, but the nearest neighbor of the hub y is
another point a (a 6= x). This is because hubs are by defi-
nition nearest neighbors to very many data points but only
one data point can be the nearest neighbor to a hub.
Mutual Proximity (MP): MP reinterprets the original dis-
tance space so that two objects sharing similar nearest neigh-
bors are more closely tied to each other, while two ob-
jects with dissimilar neighborhoods are repelled from each
other. This is done by transforming the distance of two ob-
jects into a mutual proximity in terms of their distribution
of distances. It was shown that by using this mutual reinter-
pretation of distances hubness is decisively reduced, while
the intrinsic dimensionality of the data stays the same [20].
To compute MP, we assume that the distances Dx,i=1..N

from an object x to all other objects in our data set follow
a certain probability distribution, thus any distance Dx,y

can be reinterpreted as the probability of y being the near-
est neighbor of x, given their distance Dx,y and the proba-
bility distribution P (X). In this work we assume that the
distances Dx,i=1..N follow a Gaussian distribution. MP
is defined as the probability that y is the nearest neighbor
of x given P (X) and x is the nearest neighbor of y given
P (Y ):

MP (Dx,y) = P (X > Dx,y ∩ Y > Dy,x). (5)

GAUSSIAN TSNE GAUSSIAN SNN TSNE

Figure 1. Maps obtained for Gaussian artificial data via
TSNE (left) and SNN TSNE (right). Hubs are shown as
green circles and anti-hubs as red diamonds.

Shared Nearest Neighbors (SNN): SNN [7] uses the neigh-
borhood information to help enforce pairwise stability. SNN
is computed as a set intersection of the k-nearest neighbor
lists NN of two objects x, y:

SNN(x, y) = |NN(x) ∩NN(y)|/k. (6)

This way SNN strictly strengthens symmetric nearest
neighbor relations which in turn should also manifest it-
self in a reduction of hubness. We use SNN with k = 50
because this already yields hubness values S5 (see Sec-
tion 4.1 ) below 1 for both ISMIR and GTZAN.

5. RESULTS

Before we present our results using the ISMIR and GTZAN
data sets we give a first illustration based on artificial data.
We sampled 1000 data points from a 50-dimensional Gaus-
sian distribution and used Euclidean distance to compute a
distance matrix. The hubness S5 of this data set is 2.95.
Similar to other work [20], we defined anti-hubs as points
with a O5 = 0, i.e. points never appearing in any nearest
neighbor list of size 5. Hubs are points with O5 > 25, i.e.
points that appear more than five times as expected. This
definition of hubs and anti-hubs is used for all results in
this paper and hubs and anti-hubs are always computed in
the high-dimensional spaces. Figure 1 plots two dimen-
sional results obtained using TSNE alone (left plot) and
SNN plus TSNE (right plot). As can be seen, TSNE maps
all hubs (green circles) to the center of the points and maps
all anti-hubs (red diamonds) to the edges. The right plot
shows that SNN TSNE is able to map hubs and anti-hubs
much more evenly across the whole set of mapped points.
The hubness S5 of the re-scaled distance space after appli-
cation of SNN is 0.81.

Next we present the visualization results obtained for
the ISMIR data set using different combinations of TSNE,
SOM, SAMMON and MP and SNN in Figure 2. The
hubness S5 of the ISMIR data set is 3.94. Re-scaling re-
duces this value to 1.25 for MP and 0.89 for SNN. Hubs
are again shown as green circles and anti-hubs as red dia-
monds. When using TSNE (top row), we again see that the
hub points are mapped to the center of the visualization and
anti-hubs appearing all over the plot but also at the edges
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TSNE MP TSNE SNN TSNE

SOM MP SOM SNN SOM

SAMMON MP SAMMON SNN SAMMON

Figure 2. Visualization of ISMIR data set using different combinations of TSNE, SOM, SAMMON and MP and SNN.
Hubs are shown as green circles and anti-hubs as red diamonds.

where no other data points are mapped to. When using
the combination MP TSNE, this situation shows only little
improvement with some anti-hubs still being mapped to ar-
eas where no other points can be found. Hub points are still
mapped to the center of the plot. When using the combi-
nation SNN TSNE the result seems to be much improved,
the plot showing much more structure and the hubs and
anti-hubs no longer confined to the center or edges. Look-
ing at the results obtained for SOM (middle row), we can
again see that the hub points are mapped to the center of
the plot whereas the anti-hubs are confined to the left and
bottom edge areas. When using MP SOM or even better
SNN SOM, hubs and anti-hubs are much more scattered
across the whole plots. When using SAMMON (bottom
row), we can see that the visualization is heavily distorted
with a few data points being mapped far away from the
rest of the data. When using MP SAMMON, this distor-
tion is no longer visible but both hubs and anti-hubs are
mapped to the more central parts of the plots. Only SNN
SAMMON seems to be able to map anti-hubs more or less
evenly across the plot, with hubs being mapped closer to
the edges. Overall the combination SNN TSNE seems to
yield the best visualization results. Results are similar for
GTZAN, but are not depicted for lack of space.

To quantify the success in visualization, we compute
the nearest neighbor overlap Lk between high- and low-
dimensional spaces for TSNE, SOM and SAMMON which
is shown in Figure 3 for both ISMIR (top row) and GTZAN

(bottom row) data sets. In all six plots solid lines show
results when using dimensionality reduction only (TSNE,
SOM or SAMMON), dash-dotted lines give results when
MP is used for preprocessing, dashed lines when SNN is
used for preprocessing. The overlap Lk is computed for
a range of k = 5 . . . 500 plotted on the x-axis to quantify
preservation of local and more global neighborhoods. We
can see that for all three dimensionality reduction meth-
ods and over the full range of k, preprocessing via MP
and SNN is able to increase the overlap Lk. The only
exception is SAMMON when applied to ISMIR, where
SNN gives worse results than using no preprocessing for
k > 200. Preprocessing with SNN is superior to using
MP in combination with TSNE and SOM. In combination
with SAMMON, MP works a little better than SNN. Over-
all TSNE performs better than SOM, which is again better
than SAMMON. Again the combination SNN TSNE gives
the best results of all.

Next we present a more detailed analysis of the near-
est neighbor overlap results by concentrating on Lk with
k = 50 since this is where the difference in performance
is largest. In Figure 4 we give separate results for “all”
data points, “hub”, “anti-hub” and “normal” (i.e. not hubs
or anti-hubs) data points as bar plots for TSNE, SOM and
SAMMON. Every bar plot shows a black bar for dimen-
sionality reduction only, a gray bar for results when MP is
used for preprocessing, a white bar when SNN is used. For
all three dimensionality reduction algorithms, L50 is high-
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Figure 3. Overlap of nearest neighbors in high and low
dimensions in percent (y-axis) vs. number of neighbors (x-
axis) for ISMIR (top) and GTZAN (bottom). Plots given
for TSNE, SOM and SAMMON with solid lines for using
dimensionality reduction only, dash-dotted lines for using
MP for preprocessing, dashed lines when SNN is used.

ISMIR GTZAN
- mp snn - mp snn

orig 71.4 78.1 76.5 61.7 67.8 61.6
tsne 62.6 63.9 70.4 39.1 41.0 52.8
som 65.2 65.0 69.2 40.4 37.7 49.7
sammon 47.0 51.3 46.3 16.1 27.3 25.3

Table 1. Genre classification accuracy in percent using
50-nearest neighbor classification for ISMIR and GTZAN
data sets different combinations of TSNE, SOM, SAM-
MON and MP and SNN as well as for the original (orig)
high dimensional data space.

est for hub points and worst for anti-hub points, with nor-
mal points somewhere in between. Applying either MP or
SNN as preprocessing generally increases L50 for all dif-
ferent kinds of points, but also makes L50 for hubs, anti-
hubs and normal points perform much more comparable.
Anti-hub points now perform almost as well as all other
points. The only exception is again SAMMON, which gen-
erally performs very poorly and where SNN is not able to
improve the overall situation.

As a further analysis of our visualization results, we
give kNN genre classification 4 accuracy results C50 when
using different combinations of TSNE, SOM, SAMMON
and MP and SNN as well as for the original high dimen-
sional data space in Table 1. As for the original input
space (row “orig”), MP and SNN increase C50 for IS-
MIR, but only MP for GTZAN. This is in line with previ-
ous comparison of MP and SNN [4]. Classification results
for low-dimensional spaces are of course lower than those
achieved on the original input spaces since any dimension-
ality reduction incurs some loss of information. But for

4 Please note that we are of course aware of the controversial role of
genre classification in MIR, especially in the context of GTZAN [25], but
that accuracy only serves as a further illustration of results in this context.
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Figure 4. Analysis of overlap of 50 nearest neighbors in
high and low dimensions in percent (y-axis) vs. type of
data points (x-axis: all, hub, anti-hub, normal) for ISMIR
(top) and GTZAN (bottom). Bar plots are given for TSNE,
SOM and SAMMON with black bars showing results for
dimensionality reduction only, gray bars for using MP for
preprocessing, white bars when SNN is used.

both TSNE and SOM on both data sets, SNN is able to in-
crease C50, which is additional indication that SNN is the
preprocessing method to prefer. Results for SAMMON are
generally very low and rather mixed.

Finally we show visualization results of the ISMIR data
set when using TSNE as well as SNN TSNE, which is the
best performing combination, in Figure 5 with different
genres given in different colors. The color coding is as fol-
lows: classical - black, jazz blues - blue, rock pop - red,
world - green, metal punk - yellow, electronic - cyan. Al-
though it is hard to verbalize the information contained in
a visualization, it seems apparent that the result for SNN
TSNE (right plot) shows much more structure than the re-
sult for TSNE only. This enables a more detailed pic-
ture of the overlap between “classical” (black) and “world”
(green) music. Also the position of genre “jazz blues”
(blue) is now clearer between “classical/world” and the
remaining three genres. Also “electronic” (cyan) music
seems to be a little more apart from “rock pop” (red) and
“metal punk” (yellow). Results for GTZAN, which con-
sists of music from ten genres, are similar in tendency but
not shown for space considerations.

6. DISCUSSION

Summing up the results presented in the previous section,
we like to state that all three visualization methods are
affected by the hubness problem. Looking at the visual-
izations, checking the amount of overlap between nearest
neighbors in high and low dimensions for hub, anti-hub
and normal points makes it clear that there is a problem for
dimensionality reduction of data with high values of hub-
ness. It is also evident that preprocessing with either MP or
SNN can help in this situation. Especially the combination
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Figure 5. Visualization of ISMIR data set using TSNE (left) and SNN TSNE (right) with color coded genres (see Section 5).

of SNN and TSNE yields very improved results. Although
this paper used only one particular approach to compute
music similarity, previous work [3] has made it clear that
many different approaches are affected by hubness. For
the dimensionality reduction algorithms, we basically used
standard settings since attempts to adjust parameters did
not really improve results. But of course a more rigorous
parameter tuning should be part of future research.

One particularity of the music similarity spaces used
in this work is the fact they are based on Gaussian mod-
els of timbre information and therefore only distances be-
tween models are available but not vector representations.
Therefore all dimensionality reduction methods need to be
able to deal with distance/similarity information as input.
Whereas this is natural for SAMMON, it already consti-
tutes a problem for SOM. We resorted to the standard but
somewhat crude approach to use the full rows of the dis-
tance matrices as input vectors (with length equal 1000 or
1485 for GTZAN and ISMIR). But there already exists a
superior approach [22] of directly using Gaussian models
as inputs to SOMs and it would be very interesting to re-
search the impact of hubness on this version of SOM. For
TSNE, we were able to use a variant (“tsne p”) that is able
to deal directly with similarity matrices. But as stated by
the authors [28], this should only be done if “these simi-
larities can be interpreted as conditional probabilities” as
explained in Section 4.2. A theoretic examination as to
what extent MP and SNN fulfill this requirement will be
part of future work. When TSNE is being used with in-
put vectors instead of a similarity matrix, the width of the
Gaussian probability densities are adapted locally accord-
ing to a so-called perplexity term. This is an important part
of the algorithm which is missing in case it is used with a
similarity matrix directly. It is an interesting research ques-
tion whether this local adaption in itself is able to counter
some of the problems due to hubness. But this can only be
studied if vectors are available as input to TSNE.

As has already been noted in Section 3, the music simi-

larity spaces are based on symmetric Kullback-Leibler di-
vergences which do not fulfill the triangle inequality and
therefore do not exhibit all aspects of a true metric. There
exists an extension of t-SNE [29] which uses multiple maps
to visualize non-metric similarities. Even more interesting,
this extension is motivated with the notion of data points
which show high centrality, i.e. points which are similar to
very many other data points. In contrast to the discussion
of hub points, such central points are in this case not seen
as problematic but as a special challenge for a visualiza-
tion algorithm. It would therefore be very interesting to
study and compare these central and hub points and to ap-
ply the t-SNE algorithm for non-metric similarities to data
sets with high hubness.

7. CONCLUSION

We presented the first substantial empirical evaluation of
the impact of hubness on visualization of high-dimensional
music similarity spaces. Analyzing three popular methods
for dimensionality reduction applied to two standard music
data sets, we were able to show that hubs and anti-hubs dis-
tort the lower dimensional representations. Generally hubs
are mapped to the central parts of plots and anti-hubs usu-
ally to the edges. We were able to show that preprocessing
with methods that have been designed to reduce hubness
can greatly improve this situation. This results in visual-
ization where hubs and anti-hubs are no longer mapped
to peculiar locations, which also gives improved preserva-
tion of neighborhood information when mapping to low
dimensions. Particularly a combination of preprocessing
via “shared nearest neighbors” followed by dimensionality
reduction via “t-SNE” proved to be most successful. This
approach could therefore be used as the core technology
for future visualization interfaces to music catalogs.
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ABSTRACT

In this paper, we present a novel approach to extract song-
level descriptors built from frame-level timbral features
such as Mel-frequency cepstral coefficient (MFCC). These
descriptors are called identity vectors or i-vectors and are
the results of a factor analysis procedure applied on frame-
level features. The i-vectors provide a low-dimensional
and fixed-length representation for each song and can be
used in a supervised and unsupervised manner.

First, we use the i-vectors for an unsupervised music
similarity estimation, where we calculate the distance be-
tween i-vectors in order to predict the genre of songs.

Second, for a supervised artist classification task we re-
port the performance measures using multiple classifiers
trained on the i-vectors.

Standard datasets for each task are used to evaluate
our method and the results are compared with the state
of the art. By only using timbral information, we already
achieved the state of the art performance in music similar-
ity (which uses extra information such as rhythm). In artist
classification using timbre descriptors, our method outper-
formed the state of the art.

1. INTRODUCTION AND RELATED WORK

In content-based music similarity and classification, acous-
tic features are extracted from audio and characteristics of
a song are projected into a new space called feature space.
In this space, different attributes can be captured based on
the features used. For example, features such as Fluctua-
tion Pattern (FP) [26], reflect the variability related to the
rhythm; and features such as MFCCs, demonstrate the tim-
bral perspective of a song. However, the diversity of music
genres, the presence of different musical instruments and
singing techniques make the capturing of these variabili-
ties difficult. Different modeling techniques and machine
learning approaches are used to find the factors in the fea-
ture space that best represent these variabilities.

Multiple approaches have been followed in the litera-
ture for extracting the features from songs in which 1) clas-

© Hamid Eghbal-zadeh, Bernhard Lehner, Markus Schedl,
Gerhard Widmer. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Hamid Eghbal-
zadeh, Bernhard Lehner, Markus Schedl, Gerhard Widmer. “I-Vectors
for Timbre-Based Music Similarity and Music Artist Classification”, 16th
International Society for Music Information Retrieval Conference, 2015.

sical frame-level features, 2) block-level features and 3)
song-level features are the most frequently used methods
in MIR.

1.1 Frame-level features

In the frame-level approach, features are often extracted
from short-time frames of a song. In this approach, frames
are first classified directly, and then the results are com-
bined to make a decision for a song.

1.2 Block-level features

Block-level features process the frames in terms of blocks,
where each block consists of a fixed number of frames.
They are built in two steps: first, the block processing step
and second, the generalization step. In the first step, by
selecting a collection of frames using a pattern, blocks are
built. Then in the second step, the feature values of all
blocks are combined into a single representation for the
whole song. In [29], six different block-level features are
introduced and a method is proposed to fuse all the blocks
together. Block-level features [5, 24, 26, 29] have shown
considerable performances in the MIREX 1 challenges.

1.3 Song-level features

Song-level features are found useful in artist recognition
as well as music similarity estimation. In [30], a compact
signature is generated for each song, and then is compared
to the other songs using a graph matching approach for
artist recognition. In [21] multivariate kernels have been
used to model an artist. Recently, [5,29] proposed methods
to extract a fixed-length vector from a song to be used in
music similarity estimation and genre classification.

The advantage of methods based on song-level features
is that different tools such as dimensionality reduction (e.g.
Principal Components Analysis (PCA) [15]) and projec-
tions can be applied to songs. For example, in [5], super-
vectors extracted via a Gaussian Mixture Model (GMM)
are found useful to represent songs and calculate the sim-
ilarity using Euclidean distance. In [24] a method using
song-level features is presented, which models frame-level
descriptors such as MFCCs and FP with a single Gaussian
and then the similarity between songs is calculated using
Kullback Leibler divergence. In [26], rhythm descriptors

1 Annual Music Information Retrieval eXchange (MIREX). More in-
formation is available at: http://www.music-ir.org
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are introduced to improve the performance of music simi-
larity measures in [24].

1.3.1 GMM and GMM-supervectors

GMMs have been frequently used for acoustic modeling in
music processing [4, 5, 12]. In [4, 5], a GMM is used as
a Universal Background Model (UBM) for content-based
music similarity estimation and genre classification.

Gaussian-based features used in [5, 24] are other exam-
ples of song-level features which use a Gaussian model to
create a statistical representation of a song from frame-
level features. Similar to [4, 5], a GMM supervector is
computed for each song. This representation is a fixed-
length vector, and is computed using a UBM (which is a
GMM, trained on a database of songs) via a procedure de-
scribed in [4, 5].

The first drawback of GMM-based methods is that
when the rank of the GMM space (number of Gaussian
components) increases, the dimensionality of GMM super-
vectors rises which causes problems such as the curse of di-
mensionality. One solution to this issue would be to use di-
mensionality reduction methods such as PCA. In our previ-
ous work [9], we showed that this is not effective. Another
solution would be to decompose these high-dimensional
supervectors into multiple terms with lower ranks which
we will discuss in the following section.

1.3.2 Session and Speaker variability

As described in [18], there exists a second drawback of
GMM-based methods. The performance of these frame-
works suffer from their inability to capture the variability
known as session variability in the field of speaker ver-
ification. In contrast to speaker variability which is the
variability that appears between different speakers, session
variability is defined as the variability that appears for a
speaker from one recording to another [18]. This variabil-
ity is called session because it appears inside a recording
session of a speaker.

1.3.3 Song, Genre and Artist variability

In MIR, similar to session variability, we define song vari-
ability as the variability that appears between songs. Also,
similar to speaker variability, we define genre variabil-
ity for genre classification as the variability that appears
between different genres, and artist variability for artist
recognition as the variability appears between different
artists.

The second drawback of GMM-based methods is that
they can not distinguish between song variability and genre
(or artist) variability. If we can provide a decomposition of
GMM supervectors in a way that separates the desired fac-
tors, such as genre variability from undesired ones, such
as song variability, and at the same time decreases the
dimensionality of GMM supervectors, then as a result a
better representation of GMM supervectors with lower di-
mensionality and better discrimination power will be ob-
tained. Factor Analysis (FA) provides the means to pro-
duce such representations where a GMM supervector de-

composes into multiple factors. An advantage of the fea-
tures obtained by FA compared to block-level features and
Gaussian-based features is that FA can be performed in a
way that after decomposition, each component can exhibit
a specific variability such as artist or genre. Thus, desired
factors can be kept and undesired factors can be removed
from the song’s GMM supervector. By applying such de-
composition on top of the GMM space, another space with
bases of desired factors (e.g. genre space, with genre fac-
tors) can be created.

Recently, in the field of speaker verification, Dehak et
al. [7] introduced i-vectors which outperformed the state
of the art and provided a solution for the problem of
session variability in the GMM-UBM frameworks. The
i-vector extraction is a feature-modeling technique that
builds utterance-level features, and it has been success-
fully used in other areas such as emotion recognition [34],
language recognition [8], accent recognition [1] and audio
scene detection [10].

The i-vector method applies a FA procedure to extract
low-dimensional features from GMM supervectors. This
FA procedure estimates hidden variables in GMM super-
vector space, which provides better discrimination ability
and lower dimensionality than GMM supervectors. These
hidden variables are the i-vectors and even though the
i-vector extraction procedure is totally unsupervised,
they can be used for both supervised and unsupervised
tasks. The aim of this paper is to introduce the i-vectors
to the MIR community and show their performance on two
of the major tasks in content-based MIR.

2. FACTOR ANALYSIS PROCEDURE

In this paper, examples are given from a genre classifi-
cation point of view. The definitions and the method are
extendable to other tasks in MIR such as artist classifica-
tion.

2.1 Overview of Factor Analysis Methods

A FA model can be viewed as a GMM supervector space,
where genre and song factors are its hidden variables.
Genre and song factors are defined in a way that for a given
genre, the values of the genre factors are assumed to be
identical for all songs within that genre. The song factors
may vary from one song to another.

Let’s assume we have a C mixture components GMM
and let F be the dimension of the acoustic feature vectors.
For each mixture component c = 1, . . . , C, let mc denote
the corresponding genre-independent mean vector (UBM
mean vector) and let m denote the C · F × 1 supervector
obtained by concatenating m1, . . . ,mC .

Maximum a posteriori (MAP) [14] is a method that is
used to extract genre-dependent GMM supervectors. In
MAP, it is assumed that each genre g can be modeled only
by a single genre-dependent GMM supervector M(g).
This supervector is calculated from a genre-independent
vector m which is then adapted to a couple of songs from
a specific genre known as the genre-adaptation data.
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Similar to speaker modeling in speaker verifica-
tion [19], the MAP approach to genre modeling assumes
that for each mixture component c and genre g, there is an
unobservable offset vector Og such that:

M(g) = m + Og (1)

Og is unknown and can not be learned during the MAP
training procedure.

Further, eigenvoice MAP [17] assumes the row vec-
tors of the matrix Og are independent and identically dis-
tributed. A rectangular matrix V of dimensions C ·F ×R is
assumed where R is a parameter such that R ≪ C ·F . The
V matrix has a lower rank than C · F and can be learned
from the training data. The supervector M(g) decomposes
into factors y(g) which have lower ranks using V . For
genre g, the FA used in eigenvoice MAP is as follows:

M(g) = m + V y(g) (2)

where y(g) is a hidden R×1 vector which has a standard
normal distribution. Eigenvoice MAP trains faster than
MAP, yet training V properly needs a very large amount
of data, also song factors are not considered in the decom-
position of M(g).

A solution for separation between song and genre fac-
tors was first suggested in [19], and later improved in [16]
as Joint Factor Analysis (JFA). JFA decomposition model
can be written as follows:

M = m + V y + Ux + Dz (3)

where M is a song GMM supervector, m is a genre- and
song-independent supervector which can be calculated us-
ing a UBM, V and D define a genre subspace (genre matrix
and diagonal residual, respectively), and U defines a song
subspace. The vectors y, z are the genre-dependent factors,
and x is the song-dependent factor in their respective sub-
spaces. They are assumed to be a random variable with a
standard normal distribution. Unlike eigenvoice MAP, JFA
gives us a modeling with separated genre and song factors
with low ranks, where they can be used to better separate
songs from different genres by removing song variability.

Even though JFA showed better performance than pre-
vious FA methods, in terms of separation between song
and genre factors, experimental results in [6] proved that if
we extract song and genre factors using JFA, song factors
also contain information about genres. Based on this find-
ing, another FA model is proposed in [7], which defines a
new low-dimensional space called Total Variability Space
(TVS). The vectors in this new space, are called i-vectors.
In the TVS, both song and genre factors are considered, but
modeled together as a new factor named total factor. To-
tal factors have lower dimensionality than GMM supervec-
tors and one can represent a song by extracting total factors
from its GMM supervector. Because i-vector FA showed
the best results in speaker verification [7], in this paper we
use it for multiple tasks in MIR. The FA procedure used to
obtain i-vectors is described in the next section.
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Figure 1: Graphical representation of different vectors
extracted during i-vector FA. F is the dimensionality of
acoustic features, C is the number of Gaussian compo-
nents, and R is the rank of the TVS matrix. a) frame-level
features of a song. b) and c) GMM supervector. d) TVS
matrix T . e) i-vector.

2.2 Overview of I-vectors

TVS refers to total factors that contain both genre and song
factors. In the TVS, a given song is represented by a low-
dimensional vector called i-vector, which provides a good
genre separability. This i-vector is known as point estimate
of the hidden variables in a FA model similar to JFA. This
describes these hidden variables and their characteristics.

In Figure 1, a graphical representation of vectors used in
different steps during i-vector FA is provided. From each
song, first frame-level features of dimensionality F are ex-
tracted as shown in Figure 1-a. Then, a C mixture compo-
nents GMM trained on a large number of songs is used to
extract GMM supervectors of dimension F ×C. This rect-
angular vector ( Figure 1-b) then reshapes to a (F · C)× 1
vector (Figure 1-c). A matrix of (C ·F )∗R known as TVS
matrix (T ) is learned from a set of songs. T matrix is used
to reduce the dimensionality of GMM supervectors to R
where R is the rank of T , as can be observed in Figure 1-d.
The resulting vectors are i-vectors having a low rank of R
(Figure 1-e).

(a)

blues
metal
pop

(b)

blues
metal
pop

Figure 2: 2D PCA projected vectors extracted from songs
of 3 different genres in GTZAN dataset. a) i-vectors. b)
GMM supervectors.

A comparison between GMM representation and i-
vector representation is provided in Figure 2. This visu-
alization is prepared by projecting GMM supervectors and
i-vectors using PCA into a 2 dimensional plane. Multiple
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songs of 3 different genres from the GTZAN dataset 2 are
selected, then both their GMM supervectors and i-vectors
are extracted. In Figure 2-a, a scatter plot of the song’s
projected i-vectors are shown. Also, in Figure 2-b, GMM
supervectors projected using PCA are displayed. It can be
observed that i-vector extraction was successful at increase
the discrimination between songs of different genres. In
the following paragraphs, the i-vector FA is described.

A C mixture components GMM (c = 1, . . . , C) called
UBM can be trained on a large amount of data from multi-
ple genres, where for component c, wc, mc and Σc denote
mixture weight, mean vector and covariance matrix respec-
tively. Given a song of genre g, a GMM supervector M(g)
can be calculated from a sequence of X1, . . . , Xτ frames.
The i-vector FA equation decomposes the vector M(g) as
follows:

Mc(g) = mc + Ty (4)

where Mc(g) corresponds to a subvector of M(g) for
component c, mc is the genre- and song-independent vec-
tor, and y ∼ N (0, 1) is the genre- and song-dependent
vector, known as the i-vector. A rectangular matrix T of
low rank known as TVS matrix is used to extract i-vectors
from the vector Mc(g).

The i-vector y is a hidden variable, but we can find
it using the mean of its posterior distribution. This pos-
terior distribution is Gaussian and is conditioned to the
BaumWelch (BW) statistics for a given song [17]. The
zero-order and the first-order BW statistics used to esti-
mate y, are called Nc and Pc respectively (see Equation 6).
Similar to [20], the BW statistics are extracted using the
UBM as follows.

A closed form of an i-vector y looks as follows:

y = (I + T tΣ−1N(s)T )−1 · T tΣ−1P (s) (5)

where we define N(s) as a diagonal matrix of dimen-
sion C · F × C · F with Nc × I (c = 1, . . . , C and I has
F × F dimensions) diagonal blocks. P (s) is a vector with
C · F × 1 dimensions and is made by concatenating all
first-order BW statistics Pc for a given song s; also Σ is
a diagonal covariance matrix of dimension C · F × C · F
estimated during the factor analysis procedure; it models
the residual variability not captured by the TVS matrix T .
The BW statistics Nc and Pc are defined as follows.

Suppose we have a sequence of frames X1, . . . , Xτ and
a UBM with C mixture components defined in a feature
space of dimension F . The BW statistics needed to esti-
mate the i-vector for a given song are obtained by:

Nc =
∑

t

γt(c)

Pc =
∑

t

γt(c)Xt

(6)

where, for time t, γt(c) is the posterior probability of
Xt generated by the mixture component c of the UBM.

2 http://marsyas.info/downloads/datasets.html

Since BW statistics are calculated using a GMM, they are
called GMM supervectors in i-vector modeling.

TVS matrix T is estimated via a expectation maxi-
mization procedure using BW statistics. More information
about the training procedure of T can be found in [7, 22].

3. I-VECTORS FOR UNSUPERVISED MUSIC
SIMILARITY ESTIMATION

In this section, i-vectors are used for music similarity es-
timation task. Genre and song variability are the factors
used in this task.

3.1 Dataset

The 1517Artists 3 dataset is used for training UBM and T
matrix. This dataset consists of freely available songs and
contains 3180 tracks by 1517 different artists distributed
over 19 genres. The GTZAN dataset is used for music
similarity estimation which contains 1000 song excerpts
of 30 seconds, evenly distributed over 10 genres.

3.2 Frame-level Features

We use MFCCs as one of our timbral features. MFCCs
are the most utilized timbre-related frame-level features in
MIR. They are a compact, and perceptually motivated rep-
resentation of the spectral envelope.

For the extraction of the MFCCs, we use an observation
window of 10 ms, with an overlap of 50%. We extract
25 MFCCs with the rastamat toolbox [11]. The first and
second order derivatives (deltas and double-deltas) of the
MFCCs are also added to the feature vector.

Additionally, we use the first order derivative of a cent-
scaled spectrum, calculated in the same way as explained
in [29]. These features are called Spectrum Derivatives
(SD).

3.3 Baselines

Four different baselines are used to be compared to our
method. The first baseline is fusing block-level similar-
ity measure (BLS) [29], which uses 6 different block-
level features containing spectral pattern, delta spectral
pattern, variance delta spectral pattern, logarithmic fluctu-
ation pattern, correlation pattern and spectral contrast pat-
tern. These features are used with a similarity function
and a distance normalization method to calculate a pair-
wise distance matrix between songs. The second baseline
is called Rhythm Timbre Bag of Features (RTBOF) [26].
RTBOF has two components of rhythm and timbre which
are modeled over local spectral features. The third base-
line is MARSYAS (Music Analysis, Retrieval and Synthe-
sis for Audio Signals) which has an open source toolbox to
calculate various audio features. 4 A similarity function is
used to calculate a distance matrix of features extracted as
described in [32]. The last baseline (CMB) is a combina-
tion of BLS and RTBOF, which reported in [29] as the best
similarity method in case of genre classification measures.

3 This dataset can be downloaded from www.seyerlehner.info.
4 http://marsyas.info
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3.4 Experimental Setup

A UBM with 1024 Gaussian components is trained on the
1517Artists dataset using 2000 consecutive frames from
the middle area of each song. No labels are used during
the training procedure of UBM and T matrix. The TVS
matrix T is trained using 400 total factors, and used during
the i-vector extraction procedure. The number of factors
and Gaussian components was chosen after a parameter
analysis step on a small development dataset which differs
from the datasets used in this paper.

Two sets of different i-vectors are used to calculate two
similarity matrices for the GTZAN dataset. First, MFCC
features are used to extract i-vectors, and cosine distance
is used to calculate a pair-wise distance matrix between all
songs, since in [7] cosine distance has been successfully
used with i-vectors. UBM and T matrix are also trained
using MFCC features of 1517Artists.

Second, SD features are used to extract another set of
i-vectors to calculate our second distance matrix using co-
sine distance. Similar to MFCC i-vectors, a new UBM
and T matrix is trained using SD features extracted from
1517Artist dataset.

Pair-wise distance matrices are normalized using a dis-
tance space normalization (DSN) proposed in [25]. The
distance matrices for baseline methods are downloaded
from the website 5 of the author of [29].

3.5 Evaluation

We evaluate the music similarity measures using genre
classification via k-nearest neighbor (KNN) classification.
This method is also used in [5, 24, 26, 29]. We use dif-
ferent values of k that vary from 1 to 20. Also, we use a
leave-one-out scenario for genre classification using pair-
wise distance matrices.

3.6 Results and Discussion

The KNN genre classification accuracy calculated using
our method is compared to the baseline methods, and the
results are shown in Figure 3. As can be seen, our method
using MFCC features achieved the performance of the BLS
baseline and outperformed MARSYAS. By combining the
distance matrices calculated using MFCC and SD i-vectors
with equal weights after applying DSN, we could achieve
the performance of RTBOF baseline.

Since the authors of the BLS method in [29] reported a
combination of BLS and RTBOF (named as CMB in [29])
to perform best, we also combined our MFCC+SD i-
vector distance matrix with RTBOF with equal weights
after applying DSN and achieved the performance of
CMB. Furthermore, by combining MFCC+SD i-vector and
CMB distance matrix (with equal weights after DSN), we
could achieve a better performance than the best combined
method reported in [29].

5 www.seyerlehner.info

Figure 3: Evaluation results of KNN genre classification
on GTZAN dataset.

3.7 Resources

The MSR Identity Toolbox [28] was used for i-vector ex-
traction. We also used drtoolbox [33] to apply PCA for
visualization in Figure 2.

4. I-VECTORS FOR SUPERVISED ARTIST
CLASSIFICATION

In this section, i-vectors are used for artist recognition task.
Artist and song variability are the factors used in this task.
More details about artist recognition using i-vectors can be
found in our previous work [9].

4.1 Dataset

The artist classification experiments were conducted using
the artist20 dataset [12]. It contains 1413 tracks, mostly
rock and pop songs, composed of six albums from each of
the 20 different artists.

4.2 Frame-level Features

Instead of extracting the MFCCs ourselves, we use the
ones provided as part of the dataset in [12]. Neither first
nor second order derivatives of the MFCCs are used. Sim-
ilar to the approach already discussed in Section 3.2, we
also include the first order derivative of a cent-scaled spec-
trum (SD features).

4.3 Baselines

Multiple baseline methods from the literature are selected
and their performance is compared to that achieved by our
method. Results are reported for a 20-class artist classifi-
cation task on the artist20 dataset [12]. The first baseline
(BLGMM) models artists with GMMs using MFCCs [12].
The second baseline (BLsparse) uses a sparse feature
learning method [31] of ‘bag of features’ (BOF). Both the
magnitude and phase parts of the spectrum are used in this
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method. The third baseline is (BLsign). It generates a com-
pact signature for each song using MFCCs, and then com-
pares these by a graph matching technique [30]. The fourth
baseline (BLmultiv) uses multivariate kernels [21] with the
direct uniform quantization of the MFCC features. The re-
sults for the latter three are taken from their publications,
while the results for the BLGMM baseline are reproduced
using the implementation provided with the dataset. The
performance of all baselines on the artist20 dataset are re-
ported using the same songs, and the same fold splits in the
6-fold cross-validation.

4.4 Experimental Setup

Similar to the setup followed in Section 3.4, a UBM with
1024 Gaussian components and a T matrix with 400 fac-
tors are used for i-vector extraction. Unlike the setup in
music similarity estimation, no other dataset is used to
train T and the UBM. Instead, in each fold the training
set is used to train UBM and T matrix. Unlike the setup
described in Section 3.4, we apply a Linear Discriminant
Analysis (LDA) [23] to the i-vectors to reduce the dimen-
sionality from 400 to 19. The reason we didn’t use LDA
for music similarity estimation is that the whole procedure
of i-vector extraction in Section 3 was unsupervised, and
no labels were used during the i-vector extraction process.

In each fold, the LDA is trained on the same data that
UBM and T matrix are trained. I-vectors are centered by
removing the mean calculated from training i-vectors, then
length-normalized [13] before applying LDA. After apply-
ing LDA, once again i-vectors are length-normalized since
iterative length-normalization was found useful in [2]. The
length normalization provides a standard form of i-vectors.

We fuse MFCC and SD i-vectors of a song simply
by concatenating the dimensionality-reduced i-vectors and
subsequently feed them into the classifiers investigated.

First, a Probabilistic Linear Discriminant Analysis
(PLDA) [27] is used to find the artist for each song (iv-
PLDA). PLDA is a generative model which models both
intra-class and inter-class variance as multidimensional
Gaussian and showed significant results with i-vectors [3].
Second, a KNN classifier with k = 3 (3NN) and a co-
sine distance is considered (iv3NN). Third, a Discriminant
Analysis (DA) classifier is investigated with a linear dis-
criminant function and a uniform prior (ivDA).

4.5 Evaluation

A 6-fold cross-validation proposed in [12] is used to eval-
uate the artist classification task. In each fold, five albums
from each artist are used for training and one for testing.
We report mean class-specific accuracy, F1, precision and
recall, all averaged over folds.

4.6 Results and Discussion

The results of artist classification are reported in Table 1.
Using MFCC i-vectors, our proposed method outper-
formed all the baselines with all three classifiers. Also by

using MFCC+SD i-vectors, the results of artist classifica-
tion from all 3 classifiers improved. The best artist classifi-
cation performance is achieved using MFCC+SD i-vectors
and a DA classifier yielding 11 percentage point improve-
ment in accuracy and 10 percentage point improvement in
F1 compared to the best known results among all the base-
lines.

Method Feat. Acc% F1% Pr% Rec%
BLGMM 20mfcc 55.90 55.18 58.74 58.20
BLsparse BOF 67.50 n/a n/a n/a
BLsign 15mfcc 71.50 n/a n/a n/a
BLmultiv 13mfcc 74.30 74.79 n/a n/a
ivPLDA 20mfcc 83.30 82.58 83.72 84.02
iv3NN 20mfcc 82.43 81.70 83.06 83.03
ivDA 20mfcc 83.36 82.67 84.07 83.78
ivPLDA 20mfcc+sd 85.27 84.58 85.87 85.68
iv3NN 20mfcc+sd 83.68 83.05 84.10 84.55
ivDA 20mfcc+sd 85.45 84.59 85.80 85.68

Table 1: Artist classification results for different methods
on the artist20 dataset.

4.7 Resources

We used the same resources as reported in Section 3.7. In
addition, we used the PLDA implementation from MSR
Identity Toolbox [28] and LDA from drtoolbox [33].

5. CONCLUSION

In this paper, we propose an i-vector based factor analy-
sis (FA) technique to extract song-level features for unsu-
pervised music similarity estimation and supervised artist
classification. In music similarity estimation, our method
achieved the performance of state-of-the-art methods by
using only timbral information. In artist classification, our
method was evaluated on a variety of classifiers and proved
to yield stable results. The proposed method outperformed
all the baselines on the artist20 dataset and improved the
best known artist classification measures among baselines.
To the best of our knowledge, our results are the highest
artist classification results published so far for the artist20
dataset.
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mouchel, and Pierre Ouellet. Front-end factor analysis for
speaker verification. Audio, Speech, and Language Process-
ing, IEEE Transactions on, 2011.

[8] Najim Dehak, Pedro A Torres-Carrasquillo, Douglas A
Reynolds, and Reda Dehak. Language recognition via i-
vectors and dimensionality reduction. In INTERSPEECH.
Citeseer, 2011.

[9] H Eghbal-zadeh, M Schedl, and G Widmer. Timbral model-
ing for music artist recognition using i-vectors. In EUSIPCO,
2015.

[10] Benjamin Elizalde, Howard Lei, and Gerald Friedland. An
i-vector representation of acoustic environments for audio-
based video event detection on user generated content. In
ISM. IEEE, 2013.

[11] Daniel PW Ellis. PLP and RASTA (and MFCC, and inver-
sion) in Matlab, 2005. online web resource.

[12] Daniel PW Ellis. Classifying music audio with timbral and
chroma features. In ISMIR, 2007.

[13] Daniel Garcia-Romero and Carol Y Espy-Wilson. Analysis of
i-vector length normalization in speaker recognition systems.
In INTERSPEECH, 2011.

[14] Jean-Luc Gauvain and Chin-Hui Lee. Maximum a posteriori
estimation for multivariate gaussian mixture observations of
markov chains. Speech and audio processing, IEEE Transac-
tions on, 1994.

[15] Ian Jolliffe. Principal component analysis. Wiley Online Li-
brary, 2002.

[16] Patrick Kenny. Joint factor analysis of speaker and session
variability: Theory and algorithms. CRIM, Montreal,(Report)
CRIM-06/08-13, 2005.

[17] Patrick Kenny, Gilles Boulianne, and Pierre Dumouchel.
Eigenvoice modeling with sparse training data. Speech and
Audio Processing, IEEE Transactions on, 2005.

[18] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre
Dumouchel. Speaker and session variability in gmm-based
speaker verification. Audio, Speech, and Language Process-
ing, IEEE Transactions on, 2007.

[19] Patrick Kenny, Mohamed Mihoubi, and Pierre Dumouchel.
New map estimators for speaker recognition. In INTER-
SPEECH, 2003.

[20] Patrick Kenny, Pierre Ouellet, Najim Dehak, Vishwa Gupta,
and Pierre Dumouchel. A study of interspeaker variability in
speaker verification. Audio, Speech, and Language Process-
ing, IEEE Transactions on, 2008.

[21] Pavel P. Kuksa. Efficient multivariate kernels for sequence
classification. CoRR, 2014.

[22] Driss Matrouf, Nicolas Scheffer, Benoit GB Fauve, and Jean-
François Bonastre. A straightforward and efficient implemen-
tation of the factor analysis model for speaker verification. In
INTERSPEECH, 2007.

[23] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard
Scholkopf, and Klaus-Robert Muller. Fisher discriminant
analysis with kernels. In Signal Processing Society Workshop
Neural Networks for Signal Processing, 1999.

[24] Elias Pampalk. Audio-based music similarity and retrieval:
Combining a spectral similarity model with information ex-
tracted from fluctuation patterns. In ISMIR, 2006.

[25] Tim Pohle and Dominik Schnitzer. Striving for an improved
audio similarity measure. Music information retrieval evalu-
ation exchange, 2007.

[26] Tim Pohle, Dominik Schnitzer, Markus Schedl, Peter Knees,
and Gerhard Widmer. On rhythm and general music similar-
ity. In ISMIR, 2009.

[27] Simon JD Prince and James H Elder. Probabilistic linear dis-
criminant analysis for inferences about identity. In Computer
Vision, ICCV. IEEE, 2007.

[28] Seyed Omid Sadjadi, Malcolm Slaney, and Larry Heck. Msr
identity toolbox-a matlab toolbox for speaker recognition re-
search. Microsoft CSRC, 2013.

[29] Klaus Seyerlehner, Gerhard Widmer, and Tim Pohle. Fusing
block-level features for music similarity estimation. In DAFx,
2010.

[30] Sajad Shirali-Shahreza, Hassan Abolhassani, and M Shirali-
Shahreza. Fast and scalable system for automatic artist identi-
fication. Consumer Electronics, IEEE Transactions on, 2009.

[31] Li Su and Yi-Hsuan Yang. Sparse modeling for artist identi-
fication: Exploiting phase information and vocal separation.
In ISMIR, 2013.

[32] George Tzanetakis and Perry Cook. Musical genre classifi-
cation of audio signals. Speech and Audio Processing, IEEE
transactions on, 2002.

[33] LJP Van der Maaten, EO Postma, and HJ van den Herik. Mat-
lab toolbox for dimensionality reduction. MICC, 2007.

[34] Rui Xia and Yang Liu. Using i-vector space model for emo-
tion recognition. In INTERSPEECH, 2012.

560 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



CORRELATING EXTRACTED AND GROUND-TRUTH HARMONIC DATA
IN MUSIC RETRIEVAL TASKS

Dylan Freedman
Harvard University

freedmand@post.harvard.edu

Eddie Kohler
Harvard University

kohler@seas.harvard.edu

Hans Tutschku
Harvard University

tutschku@fas.harvard.edu

ABSTRACT

We show that traditional music information retrieval
tasks with well-chosen parameters perform similarly using
computationally extracted chord annotations and ground-
truth annotations. Using a collection of Billboard songs
with provided ground-truth chord labels, we use estab-
lished chord identification algorithms to produce a cor-
responding extracted chord label dataset. We imple-
ment methods to compare chord progressions between two
songs on the basis of their optimal local alignment scores.
We create a set of chord progression comparison param-
eters defined by chord distance metrics, gap costs, and
normalization measures and run a black-box global opti-
mization algorithm to stochastically search for the best pa-
rameter set to maximize the rank correlation for two har-
monic retrieval tasks across the ground-truth and extracted
chord Billboard datasets. The first task evaluates chord
progression similarity between all pairwise combinations
of songs, separately ranks results for ground-truth and ex-
tracted chord labels, and returns a rank correlation coeffi-
cient. The second task queries the set of songs with fabri-
cated chord progressions, ranks each query’s results across
ground-truth and extracted chord labels, and returns rank
correlations. The end results suggest that practical retrieval
systems can be constructed to work effectively without the
guide of human ground-truthing.

1. INTRODUCTION

Computational algorithms to approximate harmonic con-
tent in a song typically output sequences of chord sym-
bols which can be evaluated in terms of accuracy using
their recall compared to human-annotated chord progres-
sions. Leading algorithms to extract chord progressions
from audio files have an accuracy of around 80% using
popular Western music [12, 15]. Though these algorithms
can effectively match human chord-labeling intuitions, it
is largely unexplored how these approximated chord anno-
tations perform in typical music retrieval tasks relative to
human annotations. In this paper, we propose a method

c© Dylan Freedman, Eddie Kohler, Hans Tutschku.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Dylan Freedman, Eddie Kohler, Hans
Tutschku. “Correlating Extracted and Ground-Truth Harmonic Data in
Music Retrieval Tasks”, 16th International Society for Music Information
Retrieval Conference, 2015.

for evaluating the correlation of music retrieval task results
across extracted and ground-truth datasets corresponding
to the same collection of songs. We limit the scope of our
exploration to chord labels and a few established similarity
methods, but the resulting procedure can be generalized to
other musical features such as melody, rhythm, and mid-
level representations.

1.1 Contribution

This paper explores an alternative way to evaluate the effi-
cacy of algorithms to extract musical features from songs.
Rather than simply calculate accuracy of computationally
extracted information relative to a reference, or ground-
truth, dataset, we propose the use of correlational metrics.
Given a set of common music informatics retrieval tasks on
a set of songs, correlational metrics quantify to what extent
the output results differ between two input sets: computa-
tionally extracted and ground-truth features for the same
set of songs. Testing this system on a chord labeling algo-
rithm, we design an alignment-based system to calculate
harmonic similarity, devise two simple tasks—evaluating
similarity between pairs of songs and querying by chord
progression—and use a global optimization algorithm over
the system’s parameters to maximize the resulting correla-
tional metric. The input datasets used and the design of the
system are described in the following sections.

2. CHORD PROGRESSION DATASETS

The selection of songs we consider in this paper is moti-
vated by availability. In order to compare ground-truth and
computationally extracted chord datasets, it is necessary to
have a set of song files, their corresponding ground-truth
chord progression data, and a computer algorithm to ex-
tract chords from the audio files and create an extracted
chord dataset. The number of reliable research-backed hu-
man ground-truth chord progression datasets is scarce, thus
to maintain a separation of algorithm from data, it is use-
ful to use a chord extraction algorithm that predates the
ground-truth dataset such that it could not have been trained
against any of its data.

2.1 Chord Extraction

Chordino 1 is an open-source chord extraction software
program written by Matthias Mauch based on his winning

1 http://isophonics.net/nnls-chroma
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2009 and 2010 MIREX chord estimation algorithm sub-
missions [4, 15]. Chordino achieves an 80% chord symbol
recall and is still considered state-of-the-art [16]. Though
an algorithm by Khadkevich [12] currently has the high-
est chord symbol recall in the 2014 MIREX audio chord
estimation task, there is no publicly released source code
for his work, whereas Chordino is available as a VAMP 2

plugin. The ground-truth dataset we use, as detailed in the
following subsection, was compiled in 2011. Unlike Khad-
kevich’s chord identification algorithm released in 2014,
there is no possibility that Chordino could have been influ-
enced by or tested against this dataset, maintaining a purity
of separation between data and system. Chordino is the
only chord extraction algorithm considered in this paper
and is used with default settings.

2.2 Ground-Truth Dataset

The McGill Billboard annotations collected in [3] and
freely available online 3 are a state-of-the-art human-
annotated chord dataset. The dataset is comprised of
over 1,000 songs sampled from different decades from the
1950s to the early 1990s across different Billboard charts
from the United States “Hot 100”. 4 The researchers hired
music experts and professional jazz musicians to annotate
the songs randomly sampled from the Billboard charts.
Each song was annotated twice to maintain a standard of
accuracy. The resulting dataset is the most comprehensive
current ground-truth set of chord annotations and is used
in recent MIREX chord annotation competitions. Impor-
tantly, the dataset postdates the Chordino chord extraction
algorithm, obviating the possibility of training bias.

We were able to locate source audio for 529 of the
McGill songs. The corresponding ground-truth annota-
tions for these 529 form the ground-truth McGill dataset,
or McGillg . We extracted chord annotations for each of
these 529 songs using Chordino with default settings, lead-
ing to the creation of the extracted McGill dataset, or
McGille. To maintain a consistent chord alphabet, we sim-
plify the harmonies used within the ground-truth dataset to
match the closest chord within the alphabet of chord quali-
ties used by Chordino. We preserve the root and bass notes
of each chord and evaluate the closest simplified chord us-
ing the Harte metric as described in Subsection 3.2.1.

3. A HARMONIC SIMILARITY SYSTEM

3.1 Smith-Waterman Local Alignment Algorithm

The Smith-Waterman algorithm [17] is a dynamic program-
ming algorithm that searches through two sequences ex-
haustively, looking for the pair of subsequences with opti-
mal similarity based on the cost of transforming one subse-
quence into the other using three operators. The sequences
are composed of symbols within an alphabet Σ. The first
operator, substitution, defines the cost of transforming any

2 http://www.vamp-plugins.org/
3 http://ddmal.music.mcgill.ca/billboard
4 http://www.billboard.com/charts/hot-100

one symbol into any other and can be represented as a two-
dimensional cost matrix S, where |S| = |Σ| × |Σ|. The
second and third operators, insertion and deletion, quan-
tify the cost of removing or adding a number of elements
at a certain position in one of the subsequences, resulting
in gaps in the final alignment. These two operators can be
represented concisely using a gap function W that assigns
costs to gaps of specified lengths. Given a substitution ma-
trix S with a negative expected value but positive values
for similar input symbols, the Smith-Waterman algorithm
effectively isolates the strongest local regions of similarity
corresponding to the highest score.

Smith-Waterman is useful in the context of comparing
chord progressions as it has mechanisms to deal well with
inexact data, using different gap costs and chord substitu-
tion functions that compensate for small errors. To account
for songs in different keys, the score that is returned can be
the maximum Smith-Waterman score of all twelve trans-
positions of one sequence relative to the other. Assuming
a fixed substitution and gap function, let sw(s1, s2) return
the Smith-Waterman score for two sequences s1 and s2.
If t(s, i) is a transpose function that returns a transposed
sequence given an input sequence s and a number of semi-
tones i, we can express our final score as a similarity func-
tion SW :

SW (s1, s2) =
11

max
t=0

sw(s1, t(s2, i)) (1)

Due to its advantages and research that supports its effi-
cacy [6, 10], the Smith-Waterman algorithm will be used
to compare chord progressions in this paper and quantify
harmonic similarity. There are downsides to the Smith-
Waterman algorithm. In its current form, the score returned
reflects only the optimal local alignment and does not con-
sider other strong subregions of similarity. Allali et al. [1]
describe a process for constructing a 3-dimensional Smith-
Waterman algorithm that can account for modulations to a
new key signature mid-song. These adaptations leave room
for future experimentation. This paper focuses on only re-
turning one optimal local alignment score in the highest
scoring transposition.

3.2 Parameters

We chose a number of parameters to alter the nature of
the Smith-Waterman algorithm used. These parameters are
used with global optimization techniques to find good set-
tings such that ground-truth and extracted chord annota-
tions perform similarly.

3.2.1 Chord Distance Functions

We consider two chord distance metrics. Like Haas et
al. [6], we use Lerdahl’s Tonal Pitch Space (TPS) [14] as
a chord distance function to populate the substitution ma-
trix S. TPS quantifies the distance between two chords
relative to the key signature of a song based on psycholog-
ical qualities of human chord perception. We utilize the
key finding approach in [6] to establish the tonic and mode
of each song we are considering and assume no transpo-
sitions occur midsong. We additionally consider a metric
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proposed in Harte’s PhD thesis (Harte) [11] which quanti-
fies the fraction of similar pitch classes between two chords
over their cumulative set of pitch classes. If Pc(c) returns
the set of pitch classes for a given chord c this can be ex-
pressed as:

Harte(c1, c2) =
|Pc(c1) ∩ Pc(c2)|
|Pc(c1) ∪ Pc(c2)| (2)

We denote a variable Cd to correspond to which distance
function is used, TPS or Harte.

We additionally devise two parameters to scale and sub-
tract the function Cd such that a cost matrix S populated
by Cd has a negative expected value. We first normal-
ize the chord distance function to a value in [0,1], where
0 indicates no similarity and 1 perfect similarity. In TPS
this requires a division by 13. mx represents the amount
by which this normalized value is multiplied and ms the
amount it is subtracted. We round this number to the near-
est integer out of consideration for the Smith-Waterman
implementation we used. We arbitrarily only considered
integers from 1 through 30 inclusive for both mx and ms

as values in this range seemed to achieve a good resolution
of scaled chord distance values. Finally, S can be pop-
ulated based on the final scaled and subtracted value and
choice of Cd by iterating over all possible pairs of chords
in Σ.

3.2.2 Gap Costs

We only consider one class of gap functions, affine gap
functions [9], which can be defined by the following equa-
tion for gaps of size i ≥ 1:

W (i) = −gapopen − gapextension · (i− 1) (3)

The two constants gapopen and gapextension are parameters
that can be changed to alter the penalty of the initial gap
and following gaps in the sequence alignment, a potentially
useful feature to model an initial alignment gap being more
or less costly than subsequent gaps. In our implementation,
we considered integer values ranging from 0 through 127
inclusive for gapopen and gapextension.

3.2.3 Normalization

A difficulty with comparing Smith-Waterman scores is that
they tend to have a positive correlation with increased se-
quence length. There are approaches to combat this effect
using statistical learning techniques [2]. We tested a sim-
pler normalization metric that returns values in [0,1]:

SWnorm(s1, s2) =
SW(s1, s2)

max{SW(s1, s1), SW(s2, s2)} (4)

We devise a parameter CPd to represent the chord pro-
gression similarity function used, SW or SWnorm.

4. EXPERIMENTAL DESIGN

This paper tests how similarly common harmonic music
retrieval tasks perform using extracted chord data versus

Collection of
Musical Songs

Ground-Truth
Chord Annotations

Extracted
Chord Annotations 

Evaluate Fully Connected
Chordal Comparisons

Query Harmonically
by Random N-Grams

Harmonic Music Information Retrieval Task
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Black-box
Optimization
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Decrease Temperature

Adjust Parameters
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YesReturn Optimal

Set of Parameters
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Run Retrieval Task

Figure 1. Flowchart of experimental design. This exper-
iment requires a collection of songs with corresponding
ground-truth and computationally extracted chord annota-
tions. These different chord datasets describing the same
collection of songs are fed into a harmonic retrieval task in
isolated experiments, each producing a different result list.
These result lists are ranked and correlated to return a cor-
relational metric. Global optimization techniques search
for maximum correlational metric scores by running many
iterations of the retrieval task with changing parameters
based on the performance of the correlational result rela-
tive to previous iterations. The returned set of parameters
represents an approximate optimal configuration for min-
imizing algorithmic differences between human and com-
putationally extracted chord inputs.

human-produced data. We primarily test two tasks across
McGillg and McGille datasets, rank both sets of results,
and calculate a correlational metricP . We then run a black-
box optimization strategy to approximate a maximum for
this correlational metric across the different parameters de-
tailed in Section 3.2. This process is outlined in a flowchart
in Figure 1.

4.1 Retrieval Tasks

This subsection describes the two high-level tasks that form
the substance of the experiments. Inputted with the param-
eters described in the previous section, these algorithms
perform chord progression comparisons over a collection
of songs using the harmonic similarity system previously
outlined to accomplish a common music retrieval objec-
tive. The result is a collection of harmonic similarity scores
that can be enumerated in an ordered fashion.

4.1.1 Fully Connected Pairwise Harmonic Comparison

This method (FCC), given parameters and a collection of
chord annotations, returns the harmonic similarity scores
for every pairwise combination of songs. The algorithm
proceeds in a well-ordered manner such that no pair of
songs is iterated twice and results are consistently posi-
tioned across two sets of chord annotations corresponding
to the same collection of songs (e.g. McGillg and McGille).
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4.1.2 Query by N-gram

This retrieval task (QBN), given parameters and a collec-
tion of chord annotations, involves comparing the collec-
tion of annotations with random chord sequence queries to
simulate a basic search algorithm. Each query sequence
is compared with every song in the database, and a two-
dimensional table of harmonic similarity scores is returned.

We initially fabricate 100 query sequences, generated
randomly within the alphabet of chord qualities Σ but used
consistently across experiments and song collections. Out
of the 100 query sequences, four groups of 25 query se-
quences are generated with lengths of 4, 8, 16, and 32,
respectively. Each query sequence is padded in length by
repeating itself such that the length is at least that of the
longest song in the collection so that the Smith-Waterman
scores are not restricted by length of query sequence. We
chose this repetition of query sequences to imitate the repet-
itive structure of musical songs and emphasize the cyclic
nature of chord progression perception. For each of the 100
query sequences, QBN collects harmonic similarity scores
by comparing the query sequence against each of the songs
in the given collection. The result is a two-dimensional ta-
ble of harmonic similarity scores of size 100 by the length
of the input collection of songs.

4.2 Correlational Metrics

4.2.1 Ranking and the Spearman Correlation Coefficient

The ranking of a sequence is a mapping of every element of
the sequence to its position in the sequence. This ranking is
done such that elements with the same value are assigned
the average index of their positions. Two equally sized
lists of rankings s1 and s2 can be assigned a correlation
coefficient based on the Spearman correlation coefficient
(ρ) [7]. If n is the length of one of the ranked lists, ρ can
be calculated:

ρ(s1, s2) = 1− 6
∑n

i (s1i − s2i)2
n(n2 − 1)

(5)

ρ returns a number in [-1,1], with 1 indicating a perfect
positive correlation, -1 a perfect negative correlation, and
0 no correlation.

4.2.2 Calculating the Correlational Metric

For each of the two experimental tasks, we compare the re-
sulting harmonic similarity scores across ground-truth and
extracted chord annotations corresponding to the same set
of songs, McGillg and McGille.

The resulting correlational metric P is calculated by
ranking the result lists for McGillg and McGille separately
and returning a rank correlation between both resulting
lists. For FCC, P is calculated by simply ranking each
result list and returning the Spearman correlation coeffi-
cient ρ between the two ranked lists. For QBN, each result
list from McGillg and McGille for each of the 100 queries
generated is ranked independently. The correlation coeffi-
cients ρ for each of the 100 pairs of ranked lists is averaged
and returned as P .

Variable Notation Values
Similarity Function CPd {SW, SWnorm}

Gap Open Cost gapopen [0, 128]

Gap Extension Cost gapextension [0, 128]
Chord Distance Cd {Harte, TPS}

Distance Multiplier mx [1, 30]
Distance Subtractor ms [1, 30]

Table 1. Summary of experimental parameters.

4.3 Global Optimization with Simulated Annealing

To derive optimal parameters to maximize the correlational
metricP across tasks, we use a basic implementation of the
simulated annealing algorithm [5,13]. Let f refer to one of
the retrieval tasks that takes as input a set of parameters st
and runs over McGillg and McGille to return a correlational
metric P .

We try to stochastically search for parameters in st to
maximize f(st). Simulated annealing takes a function,
move(st), which returns a new state s′t that is slightly
changed from st in a random manner. f is recalculated
with s′t to see if the move was beneficial. A temperature
variable T stores acceptable deltas between old and new
states. If |f(s′t) − f(st)| > T , the move is rejected and
st is left unchanged; otherwise, st takes on the new state
value, s′t.

Simulated annealing runs with a fixed number of iter-
ations it. In each iteration, we perform move(st), and
following each iteration, T exponentially decreases. This
gives the optimization process more exploratory freedom
in initial stages when T is higher. After it iterations, the
resulting st is an approximate maximum of f . This algo-
rithm is useful in search spaces that are sufficiently com-
plex or large, such that exact optimization algorithms are
infeasible.

4.3.1 Implementation

Let st contain our parameters (see Table 1): {CPd, gapopen,
gapextension, Cd,mx,ms}. The move function represents a
transition to a nearby state—as each variable in st is an
integer, the jump must be discrete. Our move implementa-
tion takes a random step following a normal distribution for
each variable in the state, rounding the result to the nearest
integer and ensuring the value falls within the bounds of
the variable. The standard deviation of this random step
for each variable is chosen to be 1

3 of that variable’s range.
CPd and Cd, taking two possible function values each, can
be treated as integer variables with values in {0, 1}. If a
move results in a combination of parameters such that the
expected value of S is not negative or there are no positive
values, the scaling and subtraction factors mx and ms are
randomized again from their last values following the same
normal distribution jump process. This process repeats un-
til S has a negative expected value and some positive val-
ues so the Smith-Waterman algorithm can effectively iso-
late localized chord comparison results.
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Figure 2. Simulated annealing performance in FCC. Each
dot represents an iteration of the algorithm and correla-
tional metric P . The jagged line, an exponential moving
average, demonstrates the relatively constant increase in
performance as iterations progress.

For each task, FCC and QBN, we run 1,000 iterations
of simulated annealing to optimize the correlational met-
ric P with a temperature T that starts at 1 and decreases
exponentially to 0.005 at the final iteration.

5. RESULTS

In this section, we detail the results of the optimization
procedures across the two retrieval tasks (FCC and QBN)
as detailed in Subsection 4.1.

5.1 Optimizing Fully Connected Comparison

Across 1,000 iterations of simulated annealing for the
FCC task, the correlational metric P at each iteration
generally increased (see Figure 2). The maximal P re-
turned by the simulated annealing was 0.7619, indicat-
ing a strong correlation. The parameters st resulting in
this correlation first occurred at iteration 472 with values
{CPd : SW, gapopen : 0, gapextension : 28,Cd : TPS,mx :
5,ms : 9}. The correlation between the ranked result lists
for ground-truth and extracted chord data with these pa-
rameters can be visualized with a 3-dimensional histogram
in Figure 3.

A common measure for accuracy in music retrieval is
the Average Dynamic Recall (ADR) [18], which has been
used to evaluate similarity assessments in MIREX com-
petitions since 2005. In the context of retrieval results,
ADR assesses at all given position how many songs have
occurred up to that position that should have occurred rela-
tive to ground-truth rankings, returning an average in [0,1],
with 1 indicating perfect similarity. We calculated the ADR
of the FCC results list of extracted chord data relative to
the generated ground-truth results list, deriving a result of
0.7664. As a warning, this measure is not particularly ap-
plicable to our work as the output ground-truth results list
does not demonstrate an actual ground-truth similarity as-
sessment, but its use here nonetheless illustrates the corre-
lation of this parameter set in the context of music retrieval.
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Figure 3. 3-dimensional histogram of the optimal fully
connected comparison (FCC) rankings. The correlation
(ρ=0.76) is visible through the elevated diagonal band. The
density of points along this band is greatest at the corners
as evidenced by bin heights—this means salient strongly
and weakly ranked chord progression results are most pre-
served by the parameters that led to this result.

5.2 Optimizing Query by N-grams

Like FCC, the correlational metric P also generally in-
creased across iterations in QBN (see Figure 4). The maxi-
mal P returned by simulated annealing was 0.7790, occur-
ring singularly with the parameters st = {CPd : SWnorm,
gapopen : 1, gapextension : 82,Cd : TPS,mx : 1,ms : 10}.
The average ADR across each of the 100 queries with these
parameters was 0.7900.

Task P ADR
FCC 0.7619 0.7664
QBN 0.7790 0.7900

Table 2. Summary of experimental results.

5.3 Parameter Optimization

The harmonic retrieval tasks presented in this paper, FCC
and QBN, rely on a common set of parameters st. Though
generalizations on effective values for the parameter set
cannot be fully founded, it can still be useful to future ex-
perimentation to detail average correlational metric values
associated with ranges of parameter values from the simu-
lated annealing experiments.

CPd and Cd are the variables that perhaps change the
nature of the Smith-Waterman function the most funda-
mentally. Average output correlational metric values for
inputted choices of CPd and Cd are as follows:

FCC QBN
Harte TPS Harte TPS

SW 0.59 0.68 0.40 0.49
SWnorm 0.56 0.62 0.35 0.53

where maximum values are underlined. According to these
observational results, TPS outperforms the Harte chord dis-
tance metric in both experiments in terms of maximizing
correlation.

gapopen and gapextension take a wider range of values,
thus it is more useful to look at variable ranges and their
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Figure 4. Simulated annealing performance in QBN.

average outputs. Following are correlational metrics cor-
responding to ranges of gap variable values:

FCC QBN
Range gapopen gapextension gapopen gapextension

0 0.71 0.64 0.69 0.49
1-8 0.67 0.62 0.46 0.49
> 8 0.61 0.64 0.34 0.47

These results suggest that gap opening penalties of 0
influence higher correlational harmonic metric score.

Finally, we chart which scaling and subtraction factors,
mx and ms, produced the highest average correlation met-
ric scores:

FCC QBN
mx mx

1-9 10-19 20+ 1-9 10-19 20+
1-9 0.67 0.64 0.69 0.62 0.51 0.65

ms 10-19 0.68 0.65 0.65 0.51 0.43 0.49
> 20 0.58 0.58 0.57 0.39 0.38 0.30

These results are both consistent in assigning higher
correlational metric scores to large multiplication factors
and small subtraction factors. A possible explanation for
this behavior and favoritism towards gap penalties of 0
is that these factor choices result in the highest Smith-
Waterman expected values and result scores. Though this
expected value is ensured to be negative, a value close to
0 will more frequently match chords positively by chance
and result in longer local alignment scores that resemble
global alignment scores. It is possible that global sequence
alignment techniques used in FCC and QBN have strong
correlational harmonic metric scores. Further research in
global sequence alignment could present promising corre-
lational metric results.

6. DISCUSSION

This paper suggests a new class of similarity assessments
in music information retrieval (MIR), correlational met-
rics, and outlines an experimental procedure for assessing
these metrics. Correlational metrics capture the degree to

which ground-truth and extracted features perform simi-
larly through retrieval tasks. It is possible that similar re-
sults in a retrieval task do not necessarily imply correct or
good results. The experimental choices made in this paper,
such as using local alignments and the chord distance met-
rics, are demonstrated in MIR research as strong choices
for matching human intuitions of similarity [8, 11]; how-
ever, these experimental choices in this paper reflect one
possible use case. In the context of chord progressions,
there does not exist any reliable ground-truth similarity as-
sessments, which motivated this work.

Further experimentation is necessary with different
chord extraction algorithms and settings. The chord extrac-
tion algorithm used in this paper is highly accurate, which
may imply stronger correlational metric scores. Testing
a variety of chord extraction algorithms would render a
comparison of correlational metric scores associated with
a gradient of extraction algorithm accuracies, giving sta-
tistical significance to the resulting scores and potentially
uncovering other salient observations. Once there exist
research-backed ground-truth similarity assessments for
chord progressions, this work can be enriched with direct
comparisons to human intuitions. In its current form, this
paper is limited to Western harmonies, and more specif-
ically, pop songs from the 1950s onwards. Many other
features could be investigated within our experimental de-
sign, from those directly supplemental to harmony, such
as chord duration and melody, to external factors, such as
song popularity or artist. Incorporating and testing more
chord distance metrics and different parameters and ranges
would additionally benefit this class of research. Modify-
ing the retrieval tasks and implementing additional tasks
could extend this work, as well. For instance, random-
ized query sequences in the QBN task could be generated
according to probabilistic n-gram models to match more
likely search inputs and limit bias in the resulting corre-
lational metric score as a result of purely random queries
being unnatural and distant to the input datasets.

Assuming the parameter choices that resulted in the op-
timal correlational metrics in this paper resulted in a har-
monic similarity metric that matches human intuitions of
similarity, this paper suggests that effective MIR systems
can be constructed without the need for ground-truth chord
annotations and provides a framework for conducting such
experiments. As there are few research-backed ground-
truth chord datasets, this could massively expand the pos-
sible realm of chord datasets to reliably harmonically com-
pare. Correlational metrics can also be used in future re-
search across other musical features. The potential impli-
cations of this paper suggest that with proper algorithms
and parameters that currently exist in the literature, practi-
cal MIR systems can be constructed and optimized to work
without the guide of human ground-truthing in similarity
assessments.
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ABSTRACT

We present a set of web-based user interfaces for explo-
rative analysis and visualization of classical orchestral mu-
sic and a web API that serves as a backend to those ap-
plications; we describe use cases that motivated our devel-
opments within the PHENICX project, which promotes a
vital interaction between Music Information Retrieval re-
search groups and a world-renowned symphony orchestra.

Furthermore, we describe two real-world applications
that involve the work presented here. Firstly, our web ap-
plications are used in the editorial stage of a periodically
released subscription-based mobile app by the Royal Con-
certgebouw Orchestra (RCO) 1 , which serves as a content-
distribution channel for multi-modally enhanced record-
ings of classical concerts. Secondly, our web API and user
interfaces have been successfully used to provide real-time
information (such as the score, and explanatory comments
from musicologists) to the audience during a live concert
of the RCO.

1. INTRODUCTION

The ways we enjoy music have changed significantly over
the past decades, not least as a result of the increased use of
internet and technology to deliver multimedia content. Ser-
vices such as iTunes, Spotify, and YouTube offer easy ac-
cess to vast collections of music, at any time and any place,
through tablets and mobile telephones. Such services typ-
ically rely on APIs (Application Programming Interface,
a set of HTTP-callable URL’s or API endpoints providing
certain data or functionality) to index and stream multime-
dia content.

These API’s are often exposed (e.g. last.fm, Sound-
cloud) to third parties for embedding functionalities into
new applications. Services and APIs such as the ones men-
tioned above are generally geared towards a broad audi-

1 http://www.concertgebouworkest.nl/en/rco-editions/

c© Martin Gasser, Andreas Arzt, Thassilo Gadermaier, Maarten Grachten, Ger-
hard Widmer.
Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Martin Gasser, Andreas Arzt, Thassilo Gadermaier, Maarten Grachten, Gerhard Widmer.
“CLASSICAL MUSIC ON THE WEB – USER INTERFACES AND DATA REPRESENTA-
TIONS”, 16th International Society for Music Information Retrieval Conference, 2015.

ence, and offer functionality peripheral to music listening,
like searching for music, and creating playlists.

As far as the music listening process itself is concerned,
average listeners of popular music access music in a lin-
ear fashion, i.e., a piece is consumed from the beginning to
the end. However, in the world of classical music, we ob-
served very different requirements - there are many cases
that benefit from a more content-oriented infrastructure for
delivering music.

We argue there are two important characteristics of clas-
sical music that call for a more elaborate treatment of the
musical content. First of all, classical pieces tend to be
longer and typically have a more elaborate and complex
structure than pop songs. Consequently, part of the ap-
praisal of classical music tends to lie in the awareness, and
interpretation of that structure, both by musicologists and
by listeners. Secondly, as opposed to pop music, in classi-
cal music the roles of composing and performing the mu-
sic are usually clearly separated. This distinction leads to a
stronger notion of piece on the one hand, and performance
on the other.

The desire to gain insight into structural aspects of the
piece and its performance can be formulated as a use case
for a general interested audience, which we will call over-
seeing the music. A second use case, comparing perfor-
mances, is centered around the question how different per-
formances may embody different interpretations of the
same piece. This use case may be more pertinent to mu-
sicologists, or musicians who wish to prepare their perfor-
mance of a piece. In the virtual concert guide use case,
audience members are provided with multi-modal infor-
mation about the music during a concert. As all efforts to-
wards providing a digital concert experience require con-
siderable editorial support by experts behind the scenes,
we explicitely consider this use case as well. See [8] for
a more detailed description and some initial user feedback
justifying those use cases.

It is clear that serving these use cases leads to require-
ments on the service infrastructure that go beyond mere
streaming of the data. Most importantly, dealing transpar-
ently with synchronized multi-modal information sources
including video, audio, musical scores, and structural an-
notations and visualizations, requires these sources to be
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aligned to a common timeline, the musical time. In this
paper, we present an API for dealing with multi-modal
(video, audio, score) data that is geared towards these re-
quirements. Rather than describing the API in detail, we
choose to give a brief overview of the entities involved and
present various prototype applications that illustrate how
this API allows for an in-depth content-oriented presenta-
tion of music. In addition to these prototypes, we discuss
two real-world applications that rely on this API.

2. RELATED WORK

The general idea of providing multi-modal and content-
based access to music has been expressed in a variety of
forms in prior work. In [10], Müller et al. present an au-
dio player for multi-modal access to music data. The goal
of the Freischütz Digital (cf. [11], [12]) project is the de-
velopment of a multi-modal repository that comprises dig-
itized versions of the libretto, various editions of the musi-
cal score, and a large number of audio/video recordings of
performances. Dixon et al. demonstrate seamless switch-
ing between different versions of the same piece during
playback in their MATCH application [3]. Raimond et
al. [13] present an extensive framework for publishing and
linking music-related data on the web.

As for the symbolic representation of musical scores,
MusicXML 2 is the de facto standard format for exchange
of digital sheet music, and as such it has largely replaced
MIDI 3 , which is frequently considered an inadequate rep-
resentation, especially in the field of classical music.
Another approach towards a comprehensive representation
of western music notation is the Music Encoding Initia-
tive [5]. While we are aware of the advantages of general
and flexible frameworks such as Music Ontology [13] and
MEI [5], we have settled on a more stripped-down, use
case-centric approach that allowed us to reach our goals
quickly. We understand that this might mean a redesign of
system components at a certain stage, but we believe that
an agile approach is beneficial in our case.

In order to be able to process graphic score sheets, we
use a custom bar line finding algorithm, since we currently
have no need for a complete transcription of the graphical
score. See Viglienson et al. [18] for a description of the
problem and the various problems that might occur. For
a general discussion of Optical Music Recognition errors
and their impact on aligning score to audio, the reader may
refer to [16].

3. WEB API

As already mentioned in the introduction, we did not have
one single use case in mind. In order to stay as flexible as
possible, we decided on implementing a Service Oriented
Architecture (SOA) 4 . By explicitly representing the data
in the form of HTTP-accessible JSON files, we are able to
serve many different applications, either web-based ones

2 http://www.musicxml.com/
3 http://www.midi.org/
4 http://www.opengroup.org/soa/source-book/soa/soa.htm

or implemented in the form of native desktop or mobile
applications (see section 3 for a brief outline of the func-
tionality currently offered by the web API).

Because we are working with copyrighted material, we
had to protect our API (and consequently, also the user in-
terfaces) with an authentication/authorization system that
provides different access levels to different users; further-
more, all communication between the front end HTML5
application and the web service API is encrypted.

3.1 Authentication and authorization

Access to all API endpoints is secured via an API key. A
special API endpoint is provided that returns an API key
as response to submission of username/password creden-
tials. An API key is associated internally with a certain
access level that gives the user access to a pre-defined set
of resources within the service.

3.2 API resources

The main resources represented in our web service are:

3.2.1 Person

A person can either be a natural person (such as a com-
poser or a conductor) or another acting entity (such as an
orchestra).

3.2.2 Piece

A piece is the most general form of a musical composition.
A piece references a composer (a person), a set of scores
and a set of performances.

3.2.3 Score

A score represents the notated form of a composition. We
made the distinction between pieces and scores in order to
be able to represent different versions/editions or different
orchestrations of the same piece. A score references the
corresponding piece and a set of score images.

The score resource also hosts several sub-resources
such as score images, a mapping from abstract score posi-
tion in musical beats to the corresponding graphical posi-
tion in the score image and information about the position
of bar lines and time signature changes in the score. We
have also defined a variant sub-resource, which represents
a derivative version of the score with a certain repetition
structure. This is motivated by the fact that the recording
of a piece may very well not include all repetitions written
in its underlying score, and this is reflected in the actual
score variant of the recorded performance.

3.2.4 Performance

A performance represents a musical piece performed by a
musician or an orchestra. Apart from the actual audio file,
the performance resource also contains the alignment in-
formation. A score-to-audio alignment provides links be-
tween time instants in a symbolic representation of music
(such as the beginnings of bars in a score) and correspond-
ing time instants (e.g., the actual note onsets) in a recording
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of the performance. Alignments have been created auto-
matically in the first place by the approach described in [4],
but they may have been reviewed and corrected by human
annotators, in order to increase the accuracy of musical
event positions in the audio file.

From the alignment information, it is quite straightfor-
ward to compute the musical tempo for each of these
events, thus yielding a tempo-curve of the performance. As
an alignment can be defined on different granularity levels,
such as for each bar or each beat of a bar, an API request
can include a parameter that specifies a certain granularity
at which the tempo information is to be calculated (e.g.,
one tempo value per bar or beat). This tempo information
is also exposed as a sub–resource of performance via the
API.

Finally, the API provides functionality to calculate per-
ceived loudness values from a given performance record-
ing. In order to calculate loudness information from digi-
tal audio signals, we decided on using the LUFS (Loudness
Units relative to Full Scale) measure that was introduced in
the EBU R128 recommendation [17]. Like the tempo in-
formation, loudness values are available at different gran-
ularity levels specified in musical time.

4. EXPLORATIVE USER INTERFACES

In this Section, we sketch five different interactive visual-
izations based on the API described above. We start by
discussing some general aspects and design choices of the
visualizations.

In our user interface, we strictly follow the concept of
deep linking [1]. The idea is that if a user wants to discuss
an interesting musical passage in a written conversation,
she wants to be able to simply send an URL to another user,
who can subsequently click on the link, whereupon the re-
ceiver sees the user interface in the same state as the sender.
Consider the URL /score/?score=315&variant=
40&performance=1328&position=1823.10,
which opens our score viewer interface with a configura-
tion of a score, a score variant, and a performance audio
file, and it also jumps directly to beat position 1823.10.

Because of the highly dynamic nature of the user inter-
faces, we have decided to develop a single page applica-
tion 5 that talks directly to our API. In order to simplify
development, improve testability of the code, and to en-
force modular and reusable development, we use the pop-
ular AngularJS 6 web development framework.

The user interface prototypes are largely inspired by
the use cases mentioned in section 1. While the oversee-
ing the music use case has been the main motivation be-
hind the hierarchical navigation element (see section 4.1)
and the score viewer (see section 4.2), the comparing per-
formances use case has led to the development of user
interfaces visualizing performance-related parameters of
two performances side by side. The virtual concert guide
use case motivates the integration of a score following and

5 http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php
6 http://angularjs.org

(a) Overview

(b) Zoom

(c) Playback

Figure 1: Hierarchical multi–scale navigation in
Beethoven’s Eroica

real-time score display component into a mobile appllica-
tion (see section 5.2), but many components that covered
the first two use cases were reused for this use case. Also,
in the editorial support use case (which is largely covered
by the application described in section 5.1), the user inter-
face prototypes hvae proven useful, as will be discussed
below.

4.1 Navigation element

Rather than providing a flat timeline, we propose a navi-
gation element based on a multi–level segmentation of a
piece. In his seminal paper [15], Shneiderman laid down
some basic principles of how user interfaces for interactive
visualization/navigation should be designed: First
overview, then zoom and filter, then details on demand (the
so-called Visual Information Seeing Mantra). Fig. 1 and 2
show how we reflected those principles in our user inter-
face. Fig. 1a shows a three-level visualization: On the top
level, we see the name of the musical piece (in this case,
the first movement of Beethovens Eroica). The medium
level shows the rough structure (Exposition, Development,
Recapitulation, Code), and at the lowest level, the posi-
tion of musical themes is shown. Fig. 1b corresponds to
the zoom level - the user can use the mouse wheel to lit-
erally zoom into the musical structure and study the form
of the piece. By dragging the playback cursor to a cer-
tain position or clicking on a structural element on any
level, the score viewer (see fig. 2) shows the detailed musi-
cal notation corresponding to this position. The individual
structural elements are also color-coded (this feature can
be used to encode repetitions of the same section/theme by
using the same color for the visual elements) and the tex-
tual annotations appear only on a certain level of detail, in
order to prevent text clutter.

See the subsequent sections for a brief description of the
detail views.
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Figure 2: The score viewer with the interactive structure
navigation element on top.

Figure 3: Dynagram visualization of two performances
(differences of dynamic levels are shown, where red means
increasing, blue means decreasing loudness).

Figure 4: Performance worm visualization of two perfor-
mances with structure navigation element below.

Figure 5: Direct visualization of an alignment

4.2 Score viewer

The score viewer element highlights the bar enclosing the
current position (given in musical beats) on the
corresponding score sheet. We are currently using scanned
and annotated score sheets, but in the future, other score
sheet representations (e.g., rendered on demand from Mu-
sicXML data) are imaginable and should be evaluated.

4.3 Dynagrams and tempograms

Dynagrams and tempograms show the evolution of a single
parameter of the performance (loudness in the case of dy-
nagrams, musical tempo in the case of tempograms) over
time, and the parameter is shown on multiple temporal lev-
els. This is achieved by smoothing the parameter-curve
over increasing amounts of time and horizontally stack-
ing the results, where the parameter strength is mapped to
color. Fig. 3 shows dynagram visualizations of two perfor-
mances of the same piece that are linked via the navigation
element described in 4.1. It integrates short term variations
of the respective feature with long term variations into one
picture. Therefore, it allows to grasp short term events as
well as long term evolution revealing more of the overall
structure of the performed piece. This type of visualization
builds on earlier work by Langner et al. [7], Sapp [14], and
Martorell et al. [9].

We provide two different flavors of these visualizations,
(1) where the parameter itself is used as input, showing
the absolute values evolving over time and (2) where the
derivative of the parameter is used, such that only
changes (e.g. crescendo, decrescendo in case of loudness)
become visible, as is shown in fig. 3.

4.4 Performance worm

The performance worm is a visualization metaphor inte-
grating the evolution of tempo and dynamics of a musi-
cal performance over time in a two-dimensional tempo-
loudness space [6]. Its purpose is to uncover hidden char-
acteristics of shaping a performance and the relations be-
tween tempo and loudness that are characteristic of a cer-
tain style of interpretation. For a given temporal level, the 2
dimensional tempo-loudness-trajectory is displayed where
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older values fade into the background as newer data-points
are added on top. Fig. 4 shows performance worm visual-
izations of two performances that are linked via the struc-
tural navigation element below.

4.5 Alignment viewer

The alignment visualization shows the waveform displays
of the audio signals of two performances of the same piece,
and it connects the respective bar line positions (the down-
beats) in the two performances. The resulting line pattern
reflects the tempo structures of both pieces, and also how
they interrelate.

Fig. 5 shows two performances of the fourth movement
of Beethoven’s Eroica (Wilhelm Furtwängler conducting
the Berlin Philharmonic Orchestra vs. John Eliot Gardiner
conducting the Orchestre Révolutionnaire et Romantique).
We can conclude from the visualization the intrinsic tempo
structure of the performances; while Furtwängler plays the
first part slower and becomes faster in the second part, Gar-
diner chooses to play faster in the first part and become
slower afterwards; in both performances, we can observe a
strong ritardando in the middle of the piece (i.e., the tempo
slows down dramatically), Furtwängler’s ritardando being
stronger than Gardiner’s.

5. APPLICATIONS

We employed our API and our visual interfaces in two con-
crete applications:

5.1 Application 1: Editorial review for a multi-modal
music-publishing app

Our PHENICX project partners develop a mobile app for
Apple’s iOS devices, and this app ist used as a distribution
channel for multi-modally enriched recordings of music
played by the RCO. One of their selling points is an an-
imated view of the musical score while the audio/video is
played back. Fig. 6 sketches the workflow during the pro-
duction of an edition of the app, and it demonstrates how
our API and the score viewer user interface are involved in
this process.

The task at hand is to align a recording of orchestral
music to a score representation. This problem is twofold:
As the graphical score representation is often not available
in machine-readable form 7 , the first problem is to find the
graphical positions corresponding to musical events (e.g.,
notes, barlines, or staves). Methods based on Optical Mu-
sic Recognition turned out to be usable if high–quality
graphical scores are available, but we often deal with
scanned images from aged printed or even hand-written
scores, where standard OMR results are unsatisfactory –
therefore, manual intervention is sometimes necessary in
this stage. Secondly, the alignment of a recorded perfor-
mance to a synthesized performance of a score (we used
the implementation from [4]) needs to be checked, and
manually corrected where necessary.

7 MusicXML does encode some score layout information, but not all

Alignment API

Store alignment

Send correction request

Realign

Check

Notification
Store alignment

Get alignment

Client
Align score/performance

Notification

Correction

Figure 6: Production/publishing workflow

Concert Hall
Audience

Score Follower Device Device Device

APIDistribution 
server

Figure 7: Live score following application

The initial score performance alignment is done by syn-
thesizing the piece from a symbolic representation such
as MIDI or MusicXML. After an internal reviewing and
correction phase, our client has the opportunity to review
the alignment in the score viewer interface and object in
case anything is wrong – if this is the case, the alignment
goes back into the internal correction phase again. The
deep linking functionality – as described in section 4 – has
proven to be useful in this iterative process, as it enables
the client to pinpoint problematic spots very easily in writ-
ten conversations. Once the client is satisfied with the qual-
ity of the alignment, it is fetched in the form of a JSON 8

file from our web service API, and further used in the app
development process.

5.2 Application 2: Interactive program notes with
integrated live score following

The idea is to provide the audience during a concert with
additional information about the piece currently played via
mobile devices. We have decided to give audience mem-
bers the possibility to choose between three options, based
on personal preference or expertise: (a) an interactive mu-
sical score display with the current musical position high-
lighted, (b) text comments by a musical expert and (c) an
artistic video visualization of the music.

8 http://www.json.org
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This application also implies an editorial stage: All
three options (a), (b), and (c) rely on sequenced series of
events (be it the display of bar positions on a score sheet,
timed text messages, or video clips that are played back at
certain time instants) that have to be prepared beforehand.
In this stage our API and user interfaces are already of use,
as editors usually rely on a score representation to pinpoint
certain annotations to the music in advance.

During the live event in the concert venue, the client
applications, usually running on tablets or smartphones in
the audience, access the data (score image sheets, mapping
of musical positions to graphical positions) stored in our
API. The score follower constantly analyzes the incoming
audio stream, and sends the estimated score position to a
distribution server. The distribution server subsequently
forwards this information to the mobile devices that fetch
score images through our API (timed text messages and
videos are provided by an additional data source) and use
this information to realize an enriched experience for the
audience member. Fig. 7 roughly sketches the data flow in
this application. We have documented the practicability of
our approach in [2].

6. CONCLUSIONS AND FUTURE WORK

We have presented (1) a web service API providing access
to structure- and performance-related music data including
multimedia elements like score images and audio files and
(2) a set of web-based explorative user interface prototypes
that act as a frontend to this API. We have also presented
two real–life examples of where our API and the user in-
terface prototypes proved to be useful.

We are currently investigating various extensions to our
current infrastructure; the workflow described in
section 5.1 provides much potential for improvement – we
are considering building user interfaces that allow appli-
cation clients to directly mark alignment errors or even
correct alignments directly in the user interface. By fully
migrating the alignment service to be based on a com-
plete score representation such as MusicXML instead of
scanned score sheets and a MIDI as the corresponding
machine-readable score representation, the alignment pro-
cess would be greatly simplified and the quality of auto-
matic alignments could be improved – in this case, we
could reliably identify graphical positions of musical
events, and it would be even possible to generate the graph-
ical score directly from the symbolic representation. In
addition, more detailed knowledge about instrumentation
and performance parameters could also improve the qual-
ity of synthesized performances and therefore the quality
of resulting automatic alignments (i.e., if a high–quality
sample library such as the Vienna Symphonic Library 9 ,
that allows for precise control of performance parameters,
is used).

9 https://vsl.co.at/
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ABSTRACT 

Rolled or arpeggiated chords are notated chords per-
formed by playing the notes sequentially, usually from 
lowest to highest in pitch. Arpeggiation is a characteristic 
of musical expression, or expressive timing, in piano per-
formance. However, very few studies have investigated 
rolled chord performance. In this paper, we investigate 
two expressive timing properties of piano rolled chords: 
equivalent onset and onset span. Equivalent onset refers 
to the hidden onset that can functionally replace the on-
sets of the notes in a chord; onset span refers to the time 
interval from the first note onset to the last note onset. 
We ask two research questions. First, what is the equiva-
lent onset of a rolled chord? Second, are the onset spans 
of different chords interpreted in the same way? The first 
question is answered by local tempo estimation while the 
second question is answered by Analysis of Variance. 
Also, we contribute a piano duet dataset for rolled chords 
analysis and other studies on expressive music perfor-
mance. The dataset contains three pieces of music, each 
performed multiple times by different pairs of musicians. 

1. INTRODUCTION 

Rolled (or arpeggiated) chords are notated chords per-
formed by playing the notes sequentially, usually from 
lowest to highest in pitch. It is a common technique and 
an integral part of musical expression. Especially, pianists 
use rolled chords to convey their interpretations of ex-
pressive timings. In a very broad sense, every piano chord 
is rolled since no two notes are played exactly at the same 
time. 

However, very few works have investigated piano 
rolled chords. As a consequence, when dealing with 
chords, most expressive performance studies stick to the 
melody or top note, in part due to a lack of theoretical 
foundations. For example, when analyzing the timing of a 
chord, researchers usually simply take the onset of a cer-
tain note in a chord (e.g., the first note or the highest 
note) as the onset of a rolled chord [4][13] even though 
authors realize this is not the best solution. When synthe-
sizing the timing of a chord, people either put the note 

onsets of a chord at exactly the same time or decode the 
onsets of each note individually [6][15]. This situation 
motivates us to investigate some fundamental properties 
of rolled chords in order to set a better basis for future 
expressive performance studies.  

We investigate two expressive timing properties of pi-
ano rolled chords: equivalent onset and onset span. 
Equivalent onset refers to the hidden onset that can func-
tionally replace the onsets of the notes in a chord; onset 
span refers to the time interval from the first note onset to 
the last note onset. We compute equivalent onset time 
and relative location within a rolled chord via local tempo 
estimation, assuming that local tempo is steady within a 
few beats. To be more specific, we first estimate a linear 
mapping (a tempo map) between real performance time 
and score time for each chord. Then, we compute the 
intersection between the tempo map and the chord’s onset 
span to compute a hidden equivalent onset. Finally, we 
compare the equivalent onset with the note onsets of the 
rolled chord to figure out its relative location. For onset 
span, we focus on a more fundamental statistical prob-
lem: if onset spans are considered random variables, are 
they drawn from the same distribution, or affected by 
different chords or performances? We solve this problem 
by using Analysis of Variance (ANOVA). In our case, 
ANOVA provides a statistical test of whether the means 
of onset spans of different chords are equal.  

The next section presents related work. Section 3 de-
scribes a new data set we created for this study. Section 4 
presents an important data preprocessing (polyphonic 
alignment) procedure. In Sections 5 and 6, we show the 
methodologies for equivalent onset and onset span, re-
spectively. In Section 7, we present experimental results. 

2. RELATED WORK 

We review two realms of related work: polyphonic 
alignment and piano rolled chords. The former is only 
related to our data preprocessing procedure while the 
latter is related to the main goal of our study. 

2.1. Polyphonic Alignment 

Researchers have developed both online and offline poly-
phonic alignment algorithms for both audio and symbolic 
data. Our study uses offline symbolic polyphonic align-
ment based on the MIDI representation. 

For audio-based polyphonic alignment, researchers 
usually first analyze an audio spectrogram to extract 
pitch and timing features and then perform an alignment 
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based on extracted features. Cont [2] uses non-negative 
matrix factorization for polyphonic pitch analysis and 
then uses a hierarchical hidden Markov model to achieve 
the alignment by sequential modeling. Raphael [11] in-
troduces a graphical method to detect latent tempo and 
current position in score. 

Compared to audio-based approaches, symbolic 
alignment is relatively easy since the target files usually 
contain accurate pitch and timing information. Bloch and 
Dannenberg [1] introduce two online algorithms as a part 
of the first polyphonic computer accompaniment system. 
Their work uses pitch information and a rating function 
to find the best fit between performance and score. 
Hoshishiba et al. [8] propose an offline approach by us-
ing dynamic programming and spline interpolation, in 
which dynamic programming is used to find the maxi-
mum match between performance data and score and 
spline interpolation is used to post-process and improve 
the result. A more recent research is done by Chen et al. 
[3], in which two methods are introduced. The first 
method sorts notes in a MIDI file by their onset and then 
uses longest common subsequence to map the perfor-
mance to the score. The second method sets some cor-
rectly matched notes as the pivots, separates note se-
quence by those pivots, and optimizes the result recur-
sively by forward and backward scanning. 

2.2. Piano Rolled Chords Study 

There are fewer studies related to piano rolled chords. 
From an analysis perspective, Repp [12] investigates 
some descriptive properties of arpeggiated chord onsets 
by using a single piece of music. To be more specific, 
this study considers the relative onset timing and inter-
onset-interval within arpeggiated chords. It compares the 
results between the performances by students and experts 
and draws the conclusion that arpeggiating patterns are 
subject to large individual differences. From the synthe-
sis perspective, Kim et al. [9] predict the onsets of a 
rolled chord by first estimating the onset of the highest 
note and then adding intervals for the onsets of succeed-
ing notes. 

3. DATASET  

Besides investigating the equivalent onset time and onset 
span of piano rolled chords, we contribute a piano duet 
dataset for rolled chord analysis and other studies on ex-
pressive music performance [15]. The advantage of duet 
performance is that we are able to access the expressive 
timing from both parts. The dataset currently contains 
three pieces of music: Danny Boy, Serenade (by Schu-
bert), and Ashokan Farewell [7]. Each piece contains a 
monophonic melody part and a polyphonic accompani-
ment part. For the polyphonic part, the three pieces con-
tain 32, 56, and 245 chords, respectively. Each piece is 
performed 35 to 42 times by 5 to 6 different pairs of mu-
sicians (each pair performed each piece of music 7 

times). This dataset is now accessible online via 
www.cs.cmu.edu/~gxia/data.  

4. DATA PREPROCESSING 

Before investigating the equivalent onset and onset span 
of any rolled chord, we have to align the polyphonic pi-
ano performance to the score. This task is done in two 
steps: forward alignment and backward correction.  

Forward alignment: We adopt the online approach used 
by Bloch and Dannenberg [1] for the forward alignment 
step. Generally speaking, the algorithm takes a perfor-
mance as sequential inputs and matches performance 
notes one-by-one to a reference of sorted chords. At each 
step of the alignment, it maximizes the number of 
matched score notes minus the number of skipped score 
notes.  

Backward correction: The forward alignment procedure 
works well for most music, but may cause a problem 
when adjacent chords share the same note. 

 

Figure 1. A piano roll illustration of forward 
alignment procedure. 

As shown in Figure 1, dotted arrows represent correct 
matches while the solid arrow represents the false match. 
In this case, the top note in the 1st chord is skipped in the 
performance and the next chord’s 1st performed note hap-
pens to share the same pitch with the skipped note. As a 
consequence, the 1st chord “borrows” the missing note 
from the 2nd chord. In the worst case, if all the chords 
share the same note, this mismatch behavior could hap-
pen recursively. To address this issue, the backward cor-
rection algorithm starts from the last chord and recursive-
ly recovers the borrowed notes, if any. 

5. EQUIVALENT ONSET 

If we replace all the note onsets of a rolled chord by a 
single onset, where should we place this single onset to 
let it sound most like the original chord? It is reasonable 
to assume that this equivalent onset is hidden within the 
range of the rolled chord’s onset span and has some par-
ticular relationship with the onsets. In this section, we 
first find out the location of the hidden equivalent onset 
by local tempo estimation. Then we propose two func-
tional approximations to reveal relative onset location 
within each rolled chord. In the following sections, we 
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use n to denote the total number of chords of a piece of 
music and m to denote the total number of performances 
of a piece of music. 

5.1. Absolute Location of Equivalent Onset 

If local tempo around rolled chords is stable, equivalent 
onsets can be linearly interpolated from neighboring on-
sets. We consider the melody notes within 2 beats of 
rolled chords and transfer the equivalent onset estimation 
problem into a beat estimation problem.  

Formally, if the current chord index is 𝑖, we denote its 
score onset and equivalent performance onset by 
𝑎𝑐𝑐𝑜𝑚!!  and 𝑎𝑐𝑐𝑜𝑚!! , respectively. We do equivalent 
onset estimation based on the melody notes whose onsets 
are within the range of 𝑎𝑐𝑐𝑜𝑚!! − 2, 𝑎𝑐𝑐𝑜𝑚!! + 2 . To 
be more specific, we first estimate a linear mapping be-
tween performance onsets and score onsets of the melody 
notes within this range. Then, if we denote the slope and 
the intercept of this linear mapping as 𝛼 and  𝛽, respec-
tively, we can find the equivalent onset by: 

 𝑎𝑐𝑐𝑜𝑚!! =   𝛼 ∙ 𝑎𝑐𝑐𝑜𝑚!! +   𝛽 (1) 

 

Figure 2. An illustration of equivalent onset esti-
mation by local linear mapping. 

This process is illustrated by Figure 2, in which the ‘+’ 
symbols represent the melody notes and the circle sym-
bols represent accompaniment rolled chord. The line rep-
resents the tempo map computed by linear mapping and 
the star point, on the line at score time 9, represents the 
equivalent onset computed by equation (1). 

5.2. Relative Location of Equivalent Onset  

Once the absolute location of equivalent onset is estimat-
ed, we present two methods to model its relative location 
within rolled chords: the ratio model and the constant 
offset model. For both models, we consider the 𝑎𝑐𝑐𝑜𝑚!! 
computed in the last section as the ground truth and find 
the models’ parameters by minimizing the difference be-
tween the models’ predictions and the ground truth. 

5.2.1 Ratio Model 

The ratio model assumes that equivalent onset is decided 
by the first and last onset of a rolled chord as in the fol-
lowing equation: 

𝑎𝑐𝑐𝑜𝑚!!
!(𝑟) = (1 − 𝑟) ∙ 𝑎𝑐𝑐𝑜𝑚!!

! + 𝑟 ∙ 𝑎𝑐𝑐𝑜𝑚!!
!         (2) 

In equation (2), 𝑎𝑐𝑐𝑜𝑚!!
!  and 𝑎𝑐𝑐𝑜𝑚!!

!  refer to the 
first and last note onsets in a rolled chord respectively. 𝑟 
is the parameter that characterizes the relative location of 
equivalent onset. According to the value of 𝑟, the equiva-
lent onset can be located as follows: 
𝑟 < 0:  equivalent onset is before the first onset of the 

rolled chord. 
0 ≤ 𝑟 ≤ 1: equivalent onset is between first onset and 

the last onset of the rolled chord. 
𝑟 > 1:  equivalent onset is after the last onset of the 

rolled chord. 
For each piece of music, total number of chords is 𝑛 

and total number of performances is 𝑚, we find the opti-
mal r value by equation (3): 

𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛
!

𝑎𝑐𝑐𝑜𝑚!! − 𝑎𝑐𝑐𝑜𝑚!!
!(𝑟)   

!

!!!

!

!!!

                    (3) 

5.2.2 Constant Offset Model 

The constant offset model assumes that the equivalent 
onset is decided by the first onset plus some constant off-
set 𝑠. Formally, 
 𝑎𝑐𝑐𝑜𝑚!!

! 𝑠 = 𝑎𝑐𝑐𝑜𝑚!!
! + 𝑠 (4) 

Similar to ratio model, we find the optimal 𝑠 value by 

𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛
!

𝑎𝑐𝑐𝑜𝑚!! − 𝑎𝑐𝑐𝑜𝑚!!
!(𝑠)

!

!!!

!

!!!

                  (5) 

6. ONSET SPAN 

For onset span, we focus on a more fundamental statisti-
cal problem: Do pianists make different interpretations 
for different chords or performances? As random varia-
bles, are all onset spans drawn from the same distribution, 
or are there different distributions for different chords or 
performances? In this section, we answer this question by 
using Analysis of Variance (ANOVA). We begin by in-
troducing the basic idea of ANOVA and then link it with 
our problem step by step. 

6.1. One-way ANOVA for Chord Effect 

One-way ANOVA can provide a statistical test of wheth-
er the means of several groups of data are identical [14]. 
Formally, if there are n groups indexed by 𝑖 and   𝜇! de-
notes the mean of group 𝑖, the null hypothesis and the 
alternative hypothesis are:   

 𝐻!: 𝜇! = 𝑢! =   ⋯ = 𝜇! (6) 

 𝐻!:  ∃𝑖, 𝑖′:   𝜇! ≠ 𝜇!! (7) 
Generally speaking, one-way ANOVA computes an F-

test statistic, which is the ratio of variance between 
groups to the variance within groups. If different group 
means are close to each other, this F-test statistics will 
have a relatively low value and hence retain the null hy-
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pothesis. On the other hand, if this F-test statistics is 
greater than a certain threshold, the null hypothesis will 
be rejected. 

Now let us link this setting to our problem. When 
checking whether the onset spans of different chords are 
drawn from the same distribution, each “group” corre-
sponds to a chord and the group members correspond to 
the onset spans of a particular chord in different perfor-
mances. In Figure 3, we can see the distributions of the 
onset span for each chord in Danny Boy. The goal is to 
test whether or not the means of the bars in the boxplot 
are equal to each other. 

 

Figure 3. A boxplot of the onset spans of the 
chords in Danny Boy. 

Remember each piece of music has n chords and m 
performances. Therefore, each piece has 𝑁 = 𝑚 ∙ 𝑛 total 
samples. Referring to the notations in Section 5, the onset 
span of a rolled chord can be expressed via: 

 𝑡! = 𝑎𝑐𝑐𝑜𝑚!!
! − 𝑎𝑐𝑐𝑜𝑚!!

!  (8) 

We use 𝑡!" to denote its value in the 𝑗!! performance. 
Therefore, the group mean in equation (8) can be com-
puted by  

   𝜇! = 𝑡! =
   𝑡!"!

!!!

𝑚
 (9) 

The implementation of one-way ANOVA can be de-
scribed in the following steps. 

First, compute the variation between the groups and 
record its degree of freedom. 
 

𝑆𝑆!"#$ =    𝑡! −   𝑡!"
!

!

!!!

 (10) 

where 𝑡! =
   !!"
!
!!!
!     , 𝑡!" =   

!!"
!
!!!

!
!!!

!
 . The degree of 

freedom of 𝑆𝑆!"#$, 𝑑𝑓!"#$= 𝑛 − 1. 
Second, compute the variation within individual sam-

ples and record its degree of freedom, 
 

𝑆𝑆!"#!!" =    𝑡!"! −   
𝑡!"!

!!!
!

𝑚

!

!!!

!

!!!

!

!!!

 (11) 

The degree of freedom of 𝑆𝑆!"#!!", 𝑑𝑓!"#!!" =   𝑁 − 𝑛. 
Third, compute the F-test statistics by：  

 𝑀𝑆!"#$ =
𝑆𝑆!"#$
𝑑𝑓!"#$

 (12) 

 𝑀𝑆!"#!!" =
𝑆𝑆!"#!!"
𝑑𝑓!"#!!"

 (13) 

 
 𝐹 =

𝑀𝑆!"#$
𝑀𝑆!"#!!"

 (14) 

Finally, compare this F-test statistic against a certain 
threshold to decide whether or not reject the null hypoth-
esis. 

6.2. Repeated-measurement One-way ANOVA for 
Chord Effect 

The previous section considered whether different chords 
have different onset spans. However, an important as-
sumption when using one-way ANOVA is that samples 
from different groups are independent. In our case, each 
piece of music is performed by 5 or 6 different pairs of 
students. Chords played by the same person are clearly 
correlated. To eliminate the dependent factors produced 
by same performers, we use repeated-measurement 
ANOVA to adjust our results.  

The general logic of repeated-measurements ANOVA 
is similar to independent one-way ANOVA. The differ-
ence between those two methods is that repeated-
measurements ANOVA removes variability due to the 
individual differences from the within group variance. 
This process can be understood as removing between-
sample variability, and only keeping the variability of 
how the sample reacts to different conditions (chords). 
We point readers to Ellen and Girden’s book [5] for more 
detailed descriptions. 

6.3. ANOVA for Performance Effect 

Section 6.1 and 6.2 presented the method to inspect 
whether pianists make different interpretations on onset 
span for different chords. Following a very similar proce-
dure, if we just exchange the index of 𝑖 and 𝑗 in 6.1 and 
keep everything else the same, we can inspect whether 
onset spans are interpreted differently for different per-
formances.  

7. EXPERIMENTAL RESULTS 

7.1. Equivalent Onset 

7.1.1 Ratio Model 

Figure 4 shows the results of the ratio model. In the fig-
ure, the x-axis represents the ratio parameter r and the y-
axis represents the relative difference (residual) between 
model estimated equivalent onset and the ground truth 
computed via local tempo estimation. Therefore, small 
numbers indicate better results. Each line corresponds to 
a piece of music. We see that the optimal r values are all 
within the range from 0 to 1, indicating that the equiva-
lent onset consistently lies within the range of note on-
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sets. The optimal values are 0.42 for Danny Boy, 0.13 for 
Ashokan Farewell, and 0.78 for Serenade. 

 
Figure 4. Result of the ratio model. 

7.1.2 Constant Offset Model 

Similar to Figure 4, Figure 5 shows the results of the con-
stant offset model. The only difference is that the x-axis 
now represents the constant offset parameter s. We see 
that the optimal s values are all within the range from 0 to 
20 milliseconds. The optimal values are 16 milliseconds 
for Danny Boy, 1 millisecond for Ashokan Farewell, and 
17 milliseconds for Serenade. Compared to the ratio 
model, the optimal value for constant offset model is 
more consistent.  

 

Figure 5. Result of the constant onset model. 

7.1.3 Comparison with Highest Note Model 

In most expressive performance studies, people use the 
highest note onset as the equivalent onset, which we refer 
to as the “highest note model.” In this section, we com-
pare the results of the ratio model and constant offset 
model with the highest note model.  

Figure 6 shows this comparison between different 
models, in which each sub-graph represents a piece of 
music. Again, smaller number means better prediction. 
Here, we also map the x-axis value of the ratio model to 
seconds by multiplying the ratios by the average onset 
spans. We see that for all the pieces, the ratio model gives 
better predictions than the highest note model. The con-
stant offset model also does a good job on Danny Boy and 
Ashokan Farewell but does not outperform the highest 
note model for Serenade.  

 

(a) Model comparison: Danny Boy. 

 

(b) Model comparison: Ashokan Farewell. 

 

(c) Model comparison: Serenade. 
Figure 6. Model comparison of three songs. 

7.2. Onset Span 

For onset span experiments, we just show the one-way 
ANOVA table since the repeated-measurement adjust-
ments call for extra notations but give us the same con-
clusions. Table 1 shows the result of the one-way ANO-
VA on different chords of Danny Boy. Similar to the re-
sult of Danny Boy, Ashokan Farewell and Serenade all 
have the F-test statistics much larger than the thresholds. 
This indicates that differences between group means are 
significant. Therefore, we see that not all chords are 
drawn from the same distribution. In other words, musi-
cians make different interpretations for onset spans of 
different chords.  
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Variable 𝑆𝑆 𝑑𝑓 𝐹 𝑝 
Between 1.6762 31 7.98 4.29×10!!" 
Within 8.8879 1312   

Table 1. ANOVA for chord effect. 

Table 2 shows the result of the one-way ANOVA on 
different performances of Danny Boy. Again, we get sim-
ilar results for Ashokan Farewell and Serenade, which all 
have a F-test statistic not big enough to reject the null 
hypothesis. This indicates that the differences between 
group means are not significant. Therefore, we see that 
the interpretations for the same chord’s onset span across 
different performances are relatively consistent.  

Variable 𝑆𝑆   𝑑𝑓   𝐹   𝑝  
Between 0.2752 41 0.85 0.7383 
Within 10.289 1302   

Table 2. ANOVA for performance effect. 

8. CONCLUSION AND FUTURE WORK 

In conclusion, we create a database to investigate two 
expressive timing properties of rolled chords in order to 
set a theoretical basis for future expressive performance 
studies. We examined three models to characterize the 
relative location of equivalent onset within rolled chords. 
The ratio model outperforms the other models for all 
pieces of music including the highest pitch model used in 
most research. We also studied onset span. We see that 
differences are not merely random; musicians use differ-
ent interpretations for different chords and the interpreta-
tion for the same chord across different performances are 
relatively consistent. 

This suggests that in future expressive performance 
studies, in order to synthesize a rolled chord properly, we 
can use the equivalent onset as the anchor point (instead 
of the onset of the highest pitch) and consider the onset 
span as an important parameter. Although our ratio model 
improves upon the highest pitch model, the best ratio is 
different for different pieces and the absolute location of 
equivalent onset is still based on estimation. This sug-
gests that in future work we should either look for a way 
to predict the ratio for a given piece of music, or more 
likely, that we should look for an even better model by 
combining objective and subjective evaluations. 
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ABSTRACT

In this paper, we present the results of a study on dynamic
models for predicting sequences of musical pitch in melod-
ies. Such models predict a probability distribution over the
possible values of the next pitch in a sequence, which is
obtained by combining the prediction of two components
(1) a long-term model (LTM) learned offline on a corpus of
melodies, as well as (2) a short-term model (STM) which
incorporates context-specific information available during
prediction. Both the LTM and the STM learn regularities
in pitch sequences solely from data. The models are com-
bined in an ensemble, wherein they are weighted by the
relative entropies of their respective predictions. Going by
previous work that demonstrates the success of Connec-
tionist LTMs, we employ the recently proposed Recurrent
Temporal Discriminative Restricted Boltzmann Machine
(RTDRBM) as the LTM here. While it is indeed possible
for the same model to also serve as an STM, our exper-
iments showed that n-gram models tended to learn faster
than the RTDRBM in an online setting and that the hy-
brid of an RTDRBM LTM and an n-gram STM gives us
the best predictive performance yet on a corpus of mono-
phonic chorale and folk melodies.

1. INTRODUCTION

In the present work, our interest is in learning a model to
predict a probability distribution over the possible values
of the pitch of a musical note in a melody given the se-
quence of notes leading up to it. The motivation for this
stems from theoretical work in musicology and music cog-
nition which attempts to explain various musical phenom-
ena (such as style, genre and mood) in terms of patterns
of fulfilment, prolongation and violation of musical expec-
tation [10, 15, 19], i.e., that our perception of music is in-
fluenced by how its evolution in time conforms to, or de-
viates from our expectations. There exists empirical evi-
dence suggesting that these expectations are shaped by an
underlying mechanism of statistical learning [9], the con-
sequences of which have also been observed in language

c© Srikanth Cherla, Son N. Tran, Tillman Weyde, Artur
d’Avila Garcez. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Srikanth Cherla, Son N.
Tran, Tillman Weyde, Artur d’Avila Garcez. “Hybrid Long- and Short-
Term Models of Folk Melodies”, 16th International Society for Music
Information Retrieval Conference, 2015.

[24]. This apparent commonality between the two domains
has inspired the adoption of statistical models for word se-
quences in language and character sequences in text, to
pitch sequences in melody [4, 6, 21, 31]. Previous work in-
terpreting information theoretic concepts such as entropy
and mutual information (which play a key role in language
and text modelling) in the context of music [5, 16] con-
tributed towards the adoption of these quantities in evaluat-
ing such melody models. Time-varying entropy profiles of
predictions made by such models on musical pieces have
been used for explaining stylistic implications of salient
musical structures [7]. They have also been used to gener-
ate melodic stimuli in music cognition research [20]. Pre-
dictive models of music have also been used as Music Lan-
guage Models in music transcription [26]. The reader is
referred to [23] for a recent review on predictive machine
learning models used in music research.

The melody models considered here contain two com-
ponents - a long-term model (LTM), and a short-term
model (STM) [6]. The parameters of each model are
learned through exposure to appropriate data. From a ma-
chine learning perspective, the LTM is a model whose pa-
rameters are learned offline from a dataset of melodies. It
represents more global stylistic characteristics acquired by
a listener over a longer time-span. The parameters of the
STM are learned online while making predictions on the
test data, without any sequence learning occurring in it be-
forehand. The STM highlights the importance of context-
specific information, available in a melody while it is be-
ing processed by the listener, in the generation of expec-
tations. Predictions (in the form of probability distribu-
tions) made by each model about a certain musical event
in a sequence are combined using ensemble methods, and
this has been shown to improve the quality of predictions
over individual models in the past [6,21]. The idea of com-
bining corpus-based long-term and context-sensitive short-
term predictions from different models was originally a
feature of cache-based language models [12]. It was in-
troduced in the context of music in [6], further extended
in [21], and adopted in [7, 31].

To address the prediction task, we employ a recently
proposed Connectionist model known as the Recurrent
Temporal Discriminative Restricted Boltzmann Machine
[3]. This model has been shown to have a predictive
performance better than n-gram models and other stan-
dard Connectionist models on a corpus of monophonic
melodies when used as an LTM. We begin by evaluating
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its utility as an STM by carrying out online learning in
it, which has not been done previously. Experiments re-
vealed that, while learning did indeed take place, it did
not progress quickly enough (as a function of the number
of data-points presented to the RTDRBM) to outperform
existing state-of-the-art dynamic models based purely on
n-grams [22]. On adopting the wisdom of previous work
which demonstrated that n-gram models are indeed an ef-
fective choice as STMs, we found here that a hybrid pre-
diction model which combines the predictions of an RT-
DRBM LTM and an n-gram STM achieves better predic-
tive performance, and this also outperforms the state-of-
the-art, purely n-gram based dynamic melody models on a
corpus of 8 melody datasets. In this paper, we present the
results of various LTM-STM combinations that we exper-
imented with to arrive at this result and discuss our obser-
vations.

In the next section we formally introduce the task
of melody modelling, and entropy-weighted combination
strategies for LTMs and STMs. This is followed by a brief
overview of the two types of prediction models involved
in the present work, in Section 3. Various experiments in
combining these models that led to the above mentioned
optimal predictive performance are described in Section 4,
followed by the conclusions in Section 5.

2. MELODY MODELLING

Our interest is in modelling musical pitch sequences
through prediction. The task of music prediction addressed
here has strong parallels with previous work in language
modelling [14]. Thus, the analogy to natural language is
used here to explain it. In statistical language modelling,
the goal is to build a model that can estimate the joint prob-
ability distribution of subsequences of words occurring in
a language L. A statistical language model (SLM) can be
represented by the conditional probability of the next word
w(T ) given all the previous ones [w(1), . . . , w(T−1)] (writ-
ten w(1:T−1)), as

P (w(1:T )) =

T∏

t=1

P (w(t)|w(1:t−1)) . (1)

The present work treats notes in a monophonic melody
analogous to words in the above language example. This
is inspired by [6] where a similar analogy was made be-
tween sequences of characters in the English language and
notes in music. We use an event-based representation of
music, where the occurrence of each note is treated as
a musical event. Much in the same way as an SLM, a
system for music prediction models the conditional dis-
tribution P (s(t)|s(1:t−1)) given a sequence s(1:T ) of mu-
sical events [4,6,22] from a musical language S, such that
s(t) ∈ [S], where [S] is the set of symbols (musical pitch
values) in S. For each prediction, context information is
obtained from the events s(1:t−1) preceding s(t). Although
a range of musical features (such as musical pitch, note
duration, inter-onset interval, etc.) may be extracted from
each musical event as explained in [6], we limit our atten-
tion to sequences of musical pitch. And the symbols that

make up these sequences are MIDI values of the pitches
which occur in a particular dataset.

2.1 Long- and Short-term Models

In the present work, we make a distinction between two
types of prediction models, as introduced previously in the
context of Multiple Viewpoints for Music Prediction [6].
The first is known as a Long-Term Model (LTM). This
model is learned offline on a corpus of melodies (train-
ing data), its parameters thus being finalized beforehand
and kept constant during the prediction stage. It repre-
sents more global stylistic characteristics acquired by a lis-
tener over a longer time-span. And the second is what is
known as the Short-Term Model (STM). It highlights the
importance of context-specific information, available in a
melody while it is being processed by the listener, in the
generation of expectations. The distinction between the
long- and short-term models is also akin to the that made
in [11] between “schematic” (LTM) and “veridical” (STM)
knowledge in a modular view on music processing. A vari-
ant of the LTM which is also considered here was intro-
duced in [22]. This is the LTM+, and in addition to being
learned offline on a corpus of melodies like the LTM, it is
also updated while making predictions just like the STM.
Another distinction between the LTM+ and the STM is that
the former is continuously updated across melodies, while
the latter is re-initialized after each melody in the test set.

2.2 Combining the LTM & STM

It was demonstrated in [6, 21] that an entropy-weighted
combination of the predictions of two or more n-gram
models typically results in ensembles with better predictive
performance than any of the individual models. As it is the
predicted distributions which are combined, this approach
is independent of the types of models involved. Here, we
briefly describe two rules for creating such ensembles. Let
M be a set of models and Pm(s) be the probability as-
signed to symbol s ∈ [S] by model m. The first involves
taking a weighted arithmetic mean of their respective pre-
dictions. This is the Mean combination rule, defined as

P (s) =

∑
m∈M wmPm(s)∑

m∈M wm
(2)

where each of the weights wm depends on the entropy of
the distribution generated by the corresponding model m
in the combination such that greater entropy (and hence
uncertainty) is associated with a lower weight [6]. The
weights are given by the expression wm = Hrel(Pm)−b,
where the relative entropy Hrel(Pm) is

Hrel(Pm) =

{
H(Pm)/Hmax(Pm), if Hmax([S]) > 0

1, otherwise
(3)

The best value of the combination bias b ≥ 0 is determined
through cross-validation. When b = 0, all the combined
models have the same weight. The quantitiesH andHmax
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are respectively the entropy of the prediction and the maxi-
mum entropy of predictions over the symbol space [S], and
are defined as

H(P ) = −
∑

s∈[S]

P (s) log2 P (s) . (4)

Hmax(P ) = log2 |S|.

where P (X = s) is the probability mass function of a
random variable X distributed over the discrete alphabet
[S] such that the individual probabilities are independent
and sum to 1.

The second — the Product combination rule, is com-
puted similarly as the weighted geometric mean of the
probability distributions. This is given by

P (s) =
1

R

( ∏

m∈M
Pm(s)wm

) 1∑
m∈M wm

(5)

whereR is a normalisation constant which ensures that the
resulting distribution over S sums to unity. The weights
wm in this case are obtained in the same manner as in the
case of the Mean combination rule. It was observed in a
previous application of these two combination methods to
melody modelling [21], that the Product rule resulted in a
greater improvement in predictive performance.

3. PREDICTION MODELS

Before moving on to the experiments carried out on differ-
ent LTM-STM combinations in the next section, here we
provide a quick overview of the two classes of prediction
models that have been employed for this purpose. The first
is the Recurrent Temporal Discriminative Restricted Boltz-
mann Machine, and the other is the n-gram Model.

3.1 Recurrent Temporal Discriminative RBM

The Recurrent Temporal Discriminative Restricted Boltz-
mann Machine (RTDRBM) [3] was proposed by the
authors as the discriminative equivalent of the Recur-
rent Temporal Restricted Boltzmann Machine (RTRBM)
[28]. Both models are identical in structure, and
are composed of a sequence of Restricted Boltzmann
Machines (RBM) [27], where the visible and hid-
den layers of the RBM at time-step t are condi-
tioned on the mean-field values of the hidden layer
of that at (t − 1) through a set of time-dependent
model parameters. The RTDRBM learns the distribu-
tion P (y(1:T )|x(1:T )) over a sequence of input-label pairs
{x(1:T ),y(1:T )}, in contrast to the RTRBM which
learns the joint probability of the entire sequence
P (y(1:T ),x(1:T )) [1].

The RTDRBM (Figure 1) is obtained by carrying out
discriminative learning and inference as put forward in the
Discriminative RBM (DRBM) [13], in a temporal setting
by incorporating the recurrent structure of the RTRBM wh-
ich was originally proposed as a generative model for high-

v(1) v(2)

h(0) h(1) h(2) . . .

x(1) y(1) x(2) y(2) . . .

Whh
c(1)

Whv

b(1)

Whh
c(2)

Whv

b(2)
W U W U

Figure 1: The architecture of the RTDRBM, in which the
biases of the visible and hidden layers b(t) and c(t) re-
spectively at time-step t are conditioned on the mean-field
values of the hidden layer of the RBM ĥ(t−1) at time-step
(t− 1). This is also a feature of the RTRBM.

dimensional sequences. This results in the following ex-
pression for the posterior probabilities at time-step t:

P (y(t)|x(1:t)) = P (y(t)|x(t), ĥ(t−1)) (6)

It takes into account temporal information carried forward
from the previous time-step through the mean-field values
of the hidden units ĥ(t−1) [3]. This can be extended to an
entire sequence of T events as follows:

P (y(1:T )|x(1:T )) =
T∏

t=1

p(y(t)|x(t), ĥ(t−1)) (7)

One can thus learn the model by maximizing the log-
likelihood function:

O = logP (y(1:T )|x(1:T ))

=

T∑

t=1

logP (y(t)|x(t), ĥ(t−1)) .
(8)

Learning here involves updating the model’s parameters
as dictated by the Backpropagation Through Time (BPTT)
algorithm [30]. It was demonstrated in [3] that the RT-
DRBM outperformed the RTRBM, n-grams and a set of
standard Connectionist models on a corpus of 8 different
datasets of chorale and folk melodies of varying sizes and
complexities when learned offline. In the pitch predic-
tion task of Section 2, the one-hot encoding of the musical
event s(t) (which is to be predicted) substitutes the label
y(t) in (6), whereas that of the most recent event from the
context s(t−1) substitutes the input x(t).

3.2 n-gram Model

The n-gram model is a statistical model of sequences that
relies on the simplifying assumption that the probability of
an event (or in the present case, a musical event) in a se-
quence depends only on the (n−1) immediately preceding
events [14]. This is known as the Markov assumption, and
is applied to model an event sequence s(1:T ) as

P (s(1:T )) =
T∏

t=1

P (s(t)|s(t−n+1:t−1)) . (9)
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where n is known as the order of the n-gram. The model
can be represented by a state transition graph, or by a tran-
sition matrix. Maximum-Likelihood Estimation can be
carried out to estimate the parameters of the n-gram model
(its transition probabilities) as

P (s(t)|s(t−n+1:t−1)) =
N(s(t−n+1:t))

N(s(t−n+1:t−1))
(10)

where N(s(t1:t2)) is the number of occurrences of a se-
quence s(t1:t2) in the data. As we shall see in Section
4, this simple learning rule is advantageous in an online-
learning scenario where the model needs to be constantly
updated as it encounters new data. As n-grams rely ex-
plicitly on the occurrence frequencies of sequences, it is
often the case that the model comes across a never-before-
encountered context on which to predict the future event,
and this is more common in higher order models. This
issue has been dealt with by using smoothed n-grams [2]
that use lower-order transition probabilities for generating
approximations (through interpolation with or scaling of)
higher-order probabilities. This also applicable to events
that lack a valid context, i.e. {s(t) | 1 ≤ t ≤ (n− 1)}.

The present work employs two of the best variants of
the n-gram model evaluated for melody modelling in [22]
exclusively as STMs, as an alternative to the RTDRBM
which performs poorly in this role (Table 3). Both variants
are of unbounded order, wherein they take into account the
longest available matching context (of immediately pre-
ceding musical events) in order to make a prediction. The
first of these (referred to as C∗I) uses the interpolated
smoothing method proposed in [18] to account for unfa-
miliar contexts. The second (referred to as X∗UI) uses a
Poisson process based interpolated smoothing method [18]
with update exclusion [17]. We refer the interested reader
to [22] for further details on these two models.

4. EXPERIMENTAL RESULTS

We evaluate six different LTM-STM combinations. These
are listed in Table 1. Also, C∗I and X∗UI are the names

(a) LTM: RTDRBM STM: n-gram (X*UI)
(b) LTM: RTDRBM STM: n-gram (C*I)
(c) LTM: RTDRBM STM: RTDRBM
(d) LTM+: RTDRBM STM: n-gram (X*UI)
(e) LTM+: RTDRBM STM: n-gram (C*I)
(f) LTM+: RTDRBM STM: RTDRBM

Table 1: Various LTM-STM combinations evaluated here.

of the two best STMs evaluated in a previous study of n-
gram based melody models [22].

Each of the combined models was evaluated on 8
melody datasets of different sizes and styles. Prediction
cross-entropy was used as the evaluation measure. It was
found that combination (b) had the best predictive perfor-
mance. Furthermore, each case involving an LTM was

Dataset No. events |X|

Yugoslavian folk songs 2691 25
Alsatian folk songs 4496 32
Swiss folk songs 4586 34

Austrian folk songs 5306 35
German folk songs 8393 27

Canadian folk songs 8553 25
Chorale melodies 9227 21

Chinese folk songs 11056 41

Table 2: Melody datasets used for evaluation with their
respective total number of musical events and number of
prediction categories.

better than its LTM+ counterpart. And finally, the n-
grams consistently proved to be a better choice than the
RTDRBM as STMs when combined with the same LTM.

4.1 Data

Evaluation was carried out on a corpus of 8 datasets of
monophonic MIDI melodies from the Essen Folk Song
Collection 1 [25]. The corpus covers a range of musical
styles and was previously used in [4, 22] to evaluate their
respective prediction models. It contains folk melodies of
7 different traditions, and chorale melodies (Table 2). All
melodies are encoded in the **kern format in each dataset,
and were parsed using the Music21 Python library [8]. Mu-
sical pitch, which occurs as sequences of integer values, is
treated as a discrete random variable X , which can assume
any of |X| distinct values (or prediction categories).

4.2 Evaluation Measure

Given that the models predict a probability distribution
over X at every time-step, their goal may be viewed as
one of minimizing the distance between this predicted dis-
tribution and that representing the correct class label (the
value of the next pitch). An obvious choice of evaluation
measure in this case would be the information theoretic
quantity which calculates this distance: relative entropy.
Here we use a measure derived from it known as cross-
entropy (Hc), in order to compare our results with previ-
ous work [22]. This gives us the mean divergence between
the entropy calculated from the predicted distribution and
that of the correct prediction label (and can be interpreted
as the distance between these two distributions) for every
sample in some given data. It can be computed over all
the events belonging to different sequences in the test data
Dtest, as

Hc(Pmod,Dtest) =

−∑s∈Dtest

∑Ts

t=1 log2 Pmod(s
(t)|s(1:t−1))∑

s∈Dtest
Ts

(11)
1 Website: http://kern.ccarh.org/browse?l=essen
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where Pmod is the probability assigned by the model to the
pitch of the event s(t) in the melody s ∈ Dtest given its
preceding context, and Ts is the length of s. Cross-entropy
approaches the true entropy as the number of test samples,
i.e., the denominator in (11) increases.

4.3 Methodology

The models are evaluated using 10-fold cross-validation.
We use randomised folds identical to those used in previ-
ous work [4, 22] to facilitate fair comparison 2 . A small
part of the training set (5%) in each fold is extracted as
the validation set for model selection over the various hy-
perparameters described below. This procedure is repeated
independently for each of the 8 datasets in the corpus.

The RTDRBM LTMs were learned (offline) up to a
maximum of 250 epochs using mini-batch gradient descent
on the training set, and that with the best validation set
score was chosen for evaluation on the test set. A grid
search was carried out to determine the best set of hyper-
parameters for each model. These constitute the learning
rate η, the L1 and L2 regularization (λ1 and λ2 respec-
tively) and the number of hidden units nhid. For each
of the models, η was varied as {0.01, 0.05}, and nhid as
{10, 25, 50, 100, 200}. Both L1 and L2 decay were set
to identical values λ1 = λ2 = λ which was either on
(λ = 0.0001) or off (λ = 0.0000). Learning rate was made
to decay according to the schedule ηt = ηinit/(1 + t/τ),
where τ = 50.

The RTDRBM LTM+s and STMs were learned (online)
using stochastic gradient descent, where model parameters
were updated after each time-step during prediction on the
test set, with the only distinction between the two being
that the parameters of the former are initialized to those
of the best LTM learned offline on the dataset. As ex-
plained in Section 2.1, the LTM+ is continuously updated
across melodies, while the STM is re-initialized after each
melody in the test set. Since each of the STMs is expected
to learn a smaller number of patterns than its corresponding
LTM, we decided to extend the model selection with much
smaller models as well (nhid ∈ {2, 5, 10, 20, 100, 200}),
with the remaining hyperparameters kept the same, and a
constant learning rate i.e., ηt = ηinit = 0.01.

The combination bias parameter b for computing the
entropy-based weights wm was varied as b = {0, 1, 2, 3, 4,
5, 6, 7, 8, 16, 32}, as in [21]. This range was used for both
combination rules, following the example of [21].

4.4 Results & Discussion

Table 3 shows the predictive performance of various
LTM-STM combination rules evaluated here together with
the corresponding combination bias value used, averaged
across all 8 datasets. The bottom row of this table cor-
responds to the performance of the purely n-gram based
melody model in [22], which we compare the models eval-
uated here with.

2 Information about the training/test split in the 10 folds was obtained
from the authors of [22]

Model LTM STM Mix. bm Prod. bp
(a) 2.712 3.053 2.480 3 2.496 1
(b) 2.712 3.046 2.421 4 2.487 1
(c) 2.712 3.363 2.674 5 2.703 1
(d) 2.756 3.053 2.574 2 2.563 1
(e) 2.756 3.046 2.540 2 2.581 1
(f) 2.756 3.363 2.749 5 2.773 1

n-gram 2.614 3.147 2.479 2 N/A N/A

Table 3: Predictive performance of various model com-
binations listed in Table 1, in comparison with a purely
n-gram based melody model (bottom row). Each row of
the table contains the prediction cross-entropies of the con-
stituent LTM (or LTM+), STM, and the combination of
these two using the Mean and Product rules together with
the respective biases. A lower value of cross-entropy re-
flects more accurate predictions.

In each case, the RTDRBM LTM has 100 hidden units
(found to be the best in the model selection procedure).
Despite the extended grid search for the STMs, it was
found that the optimal number of hidden units was 100 in
that case as well.

The first thing to note is that combining the models (us-
ing either of the two combination rules) results in an im-
provement in predictive performance over each of the con-
stituent models. Furthermore, the Mean combination rule
results in slightly better prediction cross-entropies than
Product rule. This can be explained by considering the ba-
sic properties of the two rules, as concluded by a previous
study comparing them [29]. The Mean combination rule is
useful in case of identical or very highly correlated feature
spaces (which holds true in the present case) in which clas-
sifiers make independent errors. Furthermore, this rule is
generally more fault tolerant in the case of poor posterior
probability estimates (which is indeed the case here with
the STM being learned afresh at the start of each melody),
whereas the Product rule emphasizes the points of agree-
ment between the two models and is apt where classifiers
make small estimation errors. The best combined model
(RTDRBM LTM; n-gram (C∗I) STM) performs slightly
better than the best purely n-gram based melody model
in [22]. In the case of both the Mean and Product rules, it
was found that smaller values of the combination bias pa-
rameter were preferred over larger ones, with a value of 1
being consistently optimal in the case of the latter.

Another observation is regarding the LTM and LTM+,
where the latter performs slightly worse when compared
to the former. This contrasts what has been previously
observed when using n-gram models, where there was
an improvement from the LTM to the LTM+ [22]. One
possible reason for this could be the absence of any new
sequential regularities in the test data to update the al-
ready optimized LTM with, since both the training and
test sequences have been sampled from the same data dis-
tribution. Alternatively, the gradient-based optimization
procedure employed here for online learning (stochastic
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gradient-descent) might not be the ideal choice for updat-
ing the model quickly enough to facilitate an improvement
in the predictions. The latter reason could also explain the
relatively poor performance of the RTDRBM STMs when
compared to the STMs based on n-grams. This requires
further investigation.

5. CONCLUSIONS & FUTURE WORK

This paper presented a study on models for melody predic-
tion with a long-term and a short-term component (LTM
and STM respectively). While all the LTMs explored here
are based on the Recurrent Temporal Discriminative RBM
(RTDRBM), the STMs are based both on the RTDRBM
and n-gram models. It was found that, while the RT-
DRBMs are indeed a suitable choice when learned offline
as LTMs [3], they fail to achieve a predictive performance
as good as that of the n-gram models considered here in an
online setting (as in the case of the LTM+ and the STM).
The best model in the present work is a combination of
an RTDRBM LTM and an n-gram STM which performs
better than the state-of-the-art model based purely on n-
grams. Among the two combination rules - Mean and
Product - it was found that the former rule works better
with the models and data used here.

One issue that remains unresolved in the present work,
and requires investigation in the future, is the lack of im-
provement in predictions during online learning in the RT-
DRBM LTM. Another extension to the models employed
here is to incorporate additional melodic features as inputs,
as detailed in Multiple Viewpoints for Music Prediction [6],
and to examine how this would improve or worsen the pre-
dictive performance over the existing models. And finally,
previous work with LTMs and STMs based purely on n-
gram models has found the predictions made by these mod-
els to reflect the musical expectations of human subjects.
This is also relevant to the models explored here, and is of
interest in the future.
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ABSTRACT

Time-series pattern matching methods that incorporate
time warping have recently been used with varying de-
grees of success on tasks of search and discovery of
melodic phrases from audio for Indian classical vocal mu-
sic. While these methods perform effectively due to the
minimal assumptions they place on the nature of the sam-
pled pitch temporal trajectories, their practical applicabil-
ity to retrieval tasks on real-world databases is seriously
limited by their prohibitively large computational com-
plexity. While dimensionality reduction of the time-series
to discrete symbol strings is a standard approach that can
exploit computational gains from the data compression as
well as the availability of efficient string matching algo-
rithms, the compressed representation of the pitch time
series itself is not well understood given the pervasive-
ness of pitch inflections in the melodic shape of the raga
phrases. We propose methods that are informed by do-
main knowledge to design the representation and to opti-
mize parameter settings for the subsequent string matching
algorithm. The methods are evaluated in the context of an
audio query based search for Hindustani vocal composi-
tions in audio recordings via the mukhda (refrain of the
song). We present results that demonstrate performance
close to that achieved by time-series matching but at or-
ders of magnitude reduction in complexity.

1. INTRODUCTION

A bandish, or composition in the North Indian classical
vocal genre of khayal, is characterised by its mukhda,
its almost cyclically repeated refrain. The singer elabo-
rates within the raga framework in each rhythmic cycle
before returning to the main phrase of the bandish (i.e.
its mukhda). The automatic detection of this repetitive
phrase, or motif, from the audio signal would contribute

c© Kaustuv Kanti Ganguli, Abhinav Rastogi, Vedhas Pan-
dit, Prithvi Kantan, Preeti Rao. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Kaustuv
Kanti Ganguli, Abhinav Rastogi, Vedhas Pandit, Prithvi Kantan, Preeti
Rao. “EFFICIENT MELODIC QUERY BASED AUDIO SEARCH FOR
HINDUSTANI VOCAL COMPOSITIONS”, 16th International Society
for Music Information Retrieval Conference, 2015.

to important metadata concerning the identity of the ban-
dish. The mukhda is recognised by the lyrics, location in
the cycle and its melodic shape. While these are in order
of decreasing ease in terms of manual segmentation of the
mukhda, the melodic shape characterized by a pitch con-
tour segment is most amenable to pattern matching meth-
ods. The challenge here arises from the improvisatory na-
ture of the genre where the raga grammar allows for con-
siderable variation in the melodic shape of any prescribed
phrase. Previous work has shown that the variability in
the mukhda across the concert, similar to that of other
raga-characteristic phrases in a performance, can be char-
acterized as globally constrained non-linear time-warping
where the constraint appears to depend on certain charac-
teristics of the underlying melodic shape [16, 17, 21]. A
dynamic time-warping (DTW) distance measure was used
on the time-series segments to model melodic similarity
under local and global constraints that were learned from a
raga-specific corpus [17]. More recent work has also vali-
dated the DTW based similarity measure in the context of
melodic motif discovery but the high computational costs
associated with time-series search limited its applicabil-
ity [3, 9, 14]. Given that DTW based local matching, with
relatively minimal assumptions, on the pitch time-series
derived from the audio is largely successful in modeling
the relevant melodic variations, we focus on targeting sim-
ilar performance with greatly reduced complexity. Com-
putationally efficient methods to search and localize occur-
rences of the mukhda in a concert, given an isolated audio
query phrase, have the following potential real-world ap-
plications: (i) automatic segmentation of all occurrences
of the mukhda provided one manually identified instance,
with a goal to reduce manual effort in the rich transcription
of concert audio recordings, and (ii) retrieving a specific
bandish from a database of concert recordings by querying
by its mukhda provided either by an audio fragment or by
user singing.

The acoustic correlate of the melodic shape of a phrase
is its pitch contour represented computationally by the de-
tected pitch of the singing voice at close uniformly spaced
intervals. Considering the concert recording context where
an instrumental ensemble accompanies the vocalist, the
pitch detection is achieved by a singing voice detection
algorithm coupled with predominant F0 extraction at uni-
form closely spaced intervals throughout the concert. The
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pitch contour can be treated as a one-dimensional time-
series which can be searched for the occurrence of a spe-
cific pattern as defined by the query (another time-series
segment). We note that the dimensionality of the time-
series is typically very high due to the required dense sam-
pling of the pitch contour across the concert duration. It
has been observed that a sampling interval on the order of
20 ms is necessary in order to preserve important pitch nu-
ances as determined by the curve of rapidly decreasing cor-
relation between melodically similar pitch contours with
increasing sampling interval [9].

As mentioned earlier, DTW can be used in an exhaus-
tive search across the concert of this sampled pitch time
series to find the optimal cost alignment between the query
and target pitch contours at every candidate location. We
see therefore that any significant computational complex-
ity reduction can only come from the reduction of dimen-
sionality of the search space. An obvious choice is a rep-
resentation of the melodic contour that uses compact mu-
sical abstractions such as a sequence of discrete pitch scale
intervals (essentially, the note sequence corresponding to
the melody if there was one). String-matching algorithms
can then be applied that find the approximate longest com-
mon subsequence between the query and target segments
of discrete symbols. Krannenburg [11] used this approach
on audio recordings of folk songs to establish similarity
in tunes across songs. Each detected pitch value was re-
placed by its MIDI symbol and the Smith-Waterman local
sequence alignment algorithm was used on the resulting
strings. Note however that there was no reduction in the
size of the pitch time-series. If the pitch time-series is
segmented into discrete notes, a far more compact string
representation can be obtained by using each symbol to
represent a tuple corresponding to a note value and dura-
tion. In this case, a number of melodic similarity methods
based on the alignment of symbolic scores become avail-
able [1, 6, 11, 12, 27]. The effectiveness of this approach,
of course, depends heavily on the correspondence between
the salient features of the pitch contour and the symbol
sequence. A specific challenge in the case of Hindustani
vocal music is that it is characterized just as much by the
precisely intoned raga notes as it is by the continuous pitch
transitions and ornaments that contribute significantly to
the raga identity, motivating a more careful consideration
of the high-level abstraction [15, 18].

The main contributions of this work are (i) a study of
the suitability of two distinct high-level abstractions for se-
quence representation in the context of our melodic phrase
retrieval task, and (ii) using domain knowledge for the set-
ting of various representation and search parameters of the
systems. In the next section, we describe our test dataset of
concerts with a review of musical and acoustic characteris-
tics that are relevant to our task. This is followed by a pre-
sentation of our melodic phrase retrieval methods includ-
ing approaches to the compact representation of the pitch
time-series and discussion of the achievable reduction in
computational complexity with respect to the baseline sys-
tem. A description of the experiments follows. Finally the

results are discussed with a view to providing insights on
the suitability of particular approaches to specific charac-
teristics of the test data.

2. TEST DATABASE DESCRIPTION

The dataset comprises 50 commercial CD-quality concert
audio recordings by 18 eminent Hindustani vocal artists.
The accompaniment consists of tanpura (drone) and tabla,
along with harmonium or sarangi. The concerts have been
chosen from a large corpus [23] in a deliberate manner
so as to achieve considerable diversity in artists, ragas
and tempo. We restrict our analysis to the vilambit (slow
tempo) and madhyalaya (medium tempo) sections of these
concerts for the current task. Drut (fast tempo) sections are
excluded because their mukhda phrases contain a consid-
erable amount of context-dependent variation and hence
melodic similarity is not as strongly preserved. Table 1
summarises our dataset where 39 concerts are of vilambit
laya and the remaining 11 are madhyalaya. The average
duration of a vilambit bandish is 17 minutes and contains
an average of 20-25 mukhda instances that occur once each
in a rhythmic cycle.

#
Song

Dur
(hrs)

#
GT

Dur
(hrs)

Ratio
# Unique

Raga Artist

50 13:13 1075 1:44 13% 34 18

Table 1. Description of the test dataset.

Manual annotation of the mukhda segments with start
and end boundaries was carried out by a musician and val-
idated by a second very experienced musician. Mukhdas
are most easily identified by listening for the lyrical phrase
that occurs about the first beat (sam) of the rhythmic cy-
cle as evidenced by the accompanying tabla strokes. The
mukhda is labeled together with its boundaries as detected
from the onsets of the lyric syllables. These annotations
serve as the ground truth (GT) for the evaluation of the dif-
ferent systems under test which exploit only the similarity
of melodic shape to that of the audio query. The query thus
could be an instance extracted from the audio track, or it
could be a sung or hummed likeness of the melodic phrase
generated by the user.

Figure 1. Pitch contour segments of distinct mukhdas.
Sam of the corresponding rhythmic cycle is marked in red.
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Both the cues easily available to listeners, the phones
of the lyrics (as uttered by the singer) and the sam tabla
strokes cannot be extracted reliably from the polyphonic
audio signal. The predominant F0 extractor on the other
hand is more robust and achieves the tracking of the vocal-
ist’s pitch based on dominance and continuity constraints
without any explicit source separation. Our approach to
mukhda detection is currently based on the computation of
melodic similarity which, ideally, should encapsulate the
notion of musically perceived similarity. The low-level
acoustic correlate of the melody is the pitch contour, the
implementation of which is presented in the next section.

Figure 2. Normalized DTW distance between the first
mukhda of the concert and subsequent mukhdas.

Figure 1 shows pitch contour segments of three
mukhdas manually extracted from the beginning, middle
and towards the end of the madhyalaya bandish of a con-
cert. Also marked is the location of the sam with respect
to the mukhda pitch trajectory. We note the variability in
the melodic shape. Typically the tempo of the concert in-
creases gradually over time (linked to the reduction in the
rhythmic cycle duration) leading to a decrease in mukhda
duration (from 13 sec to 7 sec in Figure 1). Rather than a
linear compression, the melodic shape is modified by non-
linear time warping [5]. Figure 2 shows a plot of DTW
distance between the first mukhda of the concert and each
later mukhda versus the temporal location (the correspond-
ing sam) of the later mukhda. The distances are normalized
with respect to that of the first false detection. We observe
a trend of decreasing similarity with increasing time, as
well as the fact that the intervals between mukhdas are not
identical due to rhythmic cycle duration variability. Also,
not every rhythmic cycle is marked by a mukhda. Finally,
we note that the DTW distance measure is largely insensi-
tive to the irrelevant differences, as seen from the distance
values normalised with respect to the distance between the
first mukhda and the nearest false detection.

3. MELODIC PHRASE RETRIEVAL SYSTEMS

In this section, we consider various approaches towards
our end goal which involves searching the entire vocal
pitch track extracted from the audio recording to identify
pitch contour sub-segments that match the melodic shape
of the query. We present the audio pre-processing required
to generate the pitch time-series followed by a discussion
of the different systems in terms of algorithm design and
complexity.

3.1 Time series extraction from audio

The desired time-series representation is expected to cap-
ture the melody line, and hence requires accurate pitch de-
tection of the main voice in polyphonic audio. The singing
voice usually dominates over other instruments in a vocal
concert performance in terms of its level and continuity
over relatively large temporal extents although the accom-
paniment of tabla and other pitched instruments such as the
drone and harmonium are present. Predominant-F0 detec-
tion is implemented by the salience based combination of
two algorithms [20] which exploit the spectral properties
of the voice with temporal smoothness constraints on the
pitch. The pitch is detected at 20 ms intervals throughout
the audio with zero pitch assigned to the detected purely
instrumental regions. Next, the pitch values in Hz are con-
verted to the cents scale by normalizing with respect the
concert tonic determined by automatic tonic detection [8].
This normalization helps match a query across concerts by
different artists. The final pre-processing step is to interpo-
late short silence regions below a threshold (80 ms which
is empirically tuned in previous studies [16,17]) indicating
musically irrelevant breath pauses or unvoiced consonants
by cubic spline interpolation so as to preserve the integrity
of the melodic shape.

3.2 Baseline system

Our baseline method is the “subsequence DTW”, an adap-
tation of standard DTW to allow searching for the occur-
rence and alignment of a given query segment within a
long sequence [13,26]. Given a query Q of length N sym-
bols and a much longer sequence S of length M (i.e. the
song or concert sequence in our context) to be searched, a
dynamic programming optimization minimizes the DTW
distance to Q over all possible subsequences of S. The
allowed step-size conditions are chosen to constrain the
warping path to within an overall compression / expansion
factor of 2. No further global constraint is applied. The
candidate subsequences of the song are listed in order of
increasing DTW distance to which a suitable threshold can
be applied to select and localize the corresponding regions
in the original audio. The time complexity of subsequence
DTW is O(MN) where N(M) is the number of pitch
samples corresponding to the query (song) duration (i.e. 50
pitch samples per second of the time series duration, given
that the pitch is extracted at 20 ms intervals) [2, 13, 28].
We see that the time-series dimensions contribute directly
to the complexity of the search. Our goal is to find com-
putationally simple alternatives to DTW by moving to low
dimensional string search paradigms. This requires prin-
cipled approaches to converting the pitch time-series to a
discrete symbol sequence, two of which are presented next.

3.3 Behavior based system

With a goal to preserve the characteristic shape of the
mukhda including the pitch transitions in the mapping to
the symbol sequence, we consider the approach of Tanaka
[25] who proposed “behavioral symbols” to capture dis-
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Figure 3. Construction from a pitch time series of the BS
sequence (BSS) and the modified BSS.

tinct types of local temporal variation in a human motion
capture system. A melodic phrase can be viewed as a se-
quence of musical gestures by the performer, with a behav-
ioral symbol then potentially corresponding to a single (ar-
bitrary movement) in pitch space. A sequence of symbols
would serve as a sketch of the melodic motif. In Tanaka’s
system, the symbols are purely data-dependent and evolve
from the analysis itself [24, 25]. We bring in musical con-
text constraints as presented in the algorithm description
next.

The pitch time-series is segmented into fixed duration
windows centered at uniformly spaced intervals so that the
windows are highly overlapping as illustrated in Figure 3.
The pitch contour within each window is replaced by a
piecewise flat contour where each piece represents a fixed
fraction of the window. While Tanaka recommends nor-
malization of the pitch values within the window to [0,1]
range in order to eliminate vertical shifts and scaling be-
tween otherwise similar shapes, we omit this step given
that we are not looking for transposition or scaling invari-
ance in the mukhda detection task. The piece-wise flat sub-
segments are obtained by the median of the pitch values in
the corresponding subsegment. We choose median as op-
posed to mean [24] as it is less sensitive to the occasional
outliers in the pitch contour. We bring in further domain
constraints by using the discrete scale intervals for the
quantization of the piecewise sub-segments that describe a
specific behavioral symbol (BS). We obtain a sequence of
BS, one for each window position. Due to the high over-
lap between windows, repetitions are likely in consecutive
symbols. These are replaced by a single BS which step
brings in the needed time elasticity. Figure 3 illustrates
the steps of construction of the BS sequence (BSS) and
its repetition removed version (the modified BSS) from a
simulated pitch time-series.

The database is pre-processed and the symbol se-
quence representation of each complete concert recording
is stored. When a query is presented, it is converted to
its symbol sequence (which currently depends on the song
to be searched) and an exact sub-sequence search is im-
plemented on the song string. The choice of the fixed pa-
rameters: window duration, hop duration and number of
subsegments within a window turn out to heavily influence
the representation. The window duration should depend
on the time scale of the salient features (movements in

Figure 4. The two proposed systems of quantization,
namely: behavior based and pseudo-note systems.

pitch space). The subsegments must be small enough to
retain the melodic shape within the window. The hop of
the sliding window compensates for alignment differences
of the different occurrences of the template in the pitch
time-series of the song. We present “parameter settings”
for two configurations.
Version A: Fixed parameter setting (window = 126 sam-
ples, hop = 5 samples, # subsegments per window = 3)
Version B: Query dependent setting (window = (0.5 * N )
samples, hop = 5 samples, # subsegments per window = 4)

We present next an alternate approach to symbolic rep-
resentation of the pitch contour.

3.4 Pseudo-note system

An approximation to staff notation can be achieved by con-
verting the continuous time-series to a sequence of piece-
wise flat segments if the section pitches are chosen from
the set of discrete scale intervals of the music. If the
achieved representation indeed corresponds to some un-
derlying skeleton of the melodic shape of the phrase, we
could anticipate obtaining better matches across variations
of the melodic phrase. We address the question of how we
can bring domain knowledge into this transformation. As
we see from Figure 4, the continuous pitch contours cor-
responding to the phrases are not directly suggestive of a
specific sequence of raga notes given that raga notes are
embellished considerably when realized by the vocalist.
In Indian music traditions, written notation has a purely
prescriptive role and achieving the transcription of a per-
formed phrase to written notation requires raga knowledge
and much experience [19]. All the same there is a similar-
ity across the mukhda repetitions that we wish to capture
in our representation.

We consider a simple representation of the melodic
shape that features only the relatively stable regions of the
continuous pitch contours that lie within a musically valid
interval of a scale (raga) notes. The scale notes are detected
from the prominent peaks of the long-term pitch histogram
across the concert and the musically valid interval is cho-
sen to be within 35 cents [17]. This step leaves fragments
of the time-series that coincide with the scale notes while
omitting the remaining pitch transition regions. Next, a
lower threshold duration of 80 ms is applied to the frag-
ments to discard fragments that are considered too short to
be perceptually meaningful as held notes [16]. This leaves
a string of fragments each labeled by a svara (raga note
as shown in Figure 4 (right)). Fragments with the same
note value that are separated by gaps less than 80 ms are
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merged. The resulting symbol sequence thus comprises
the scale notes occurring in the correct temporal order but
without explicit durational information. The database is
pre-processed and the symbol sequence representation of
each complete concert recording is stored. When a query
is presented, it is converted to its symbol sequence and an
approximate sub-sequence search is implemented on the
concert string based on an efficient string matching algo-
rithm with parameter settings that are informed by domain
knowledge as described next.

The similarity measurement of the query sequence with
candidate subsequences of the song is based on the Smith-
Waterman algorithm, widely used in bioinformatics but
also applied recently to melodic note sequences [11, 22].
It performs the local alignment of two sequences to find
optimal alignments using two devices. A symbol of one
sequence can be aligned to a symbol of the other sequence
or it can be aligned to a gap. Each of these operations has
a cost that is designed as follows.

Substitution score: In its standard form, the Smith-
Waterman algorithm uses a fixed positive cost for an ex-
act match and a fixed negative score for symbol mismatch.
In the context of musical pitch intervals, we would rather
penalize small differences less than large differences. We
present alternate substitution score functions that incorpo-
rate this.

Gap Function: This function deducts a penalty from
the similarity score in the event of insertion or deletion of
symbols during the alignment procedure. The default gap
penalty is linear, meaning that the penalty is linearly pro-
portional to the number of symbols that comprise the gap.
Another possibility, that is more meaningful for the melody
context, is the affine gap function where the gap opening
cost is high compared to the cost incurred by adding each
successive symbol to the gap [7]. This is achieved by a
form given by mx + c where x is the length of the gap
and m, c are constants. Intuitively, increasing c will penal-
ize gap openings to a greater extent, while increasing m
will have a similar effect with regard to gap extension. We
present different designs for the relative costs motivated by
the musical context.

With variations in each of the above two controls of the
Smith-Waterman algorithm, we obtain the following three
distinct versions of the pseudo-note system.
Version A: This setting is similar to the default Smith-
Waterman setting, with a distance-independent similarity
function that assesses a score of +3 for symbol match and
-1 for a substitution. Gap function is linear, with penalty
equal to symbol length of gap.
Version B: Substitution score that takes pitch difference
into account, i.e. Score of +3 for a match, 0 for symbols
differing by upto 2 semitones, -1 for substitution, and an
affine gap penalty with parameters m = 0.8, c = 1.
Version C: Query dependent settings where we use the set-
tings of B as default with the following changes for particu-
larly fast varying and slowly varying query melodic shapes
as determined by a heuristic measure of ratio of squared
number of symbols to query duration. We have the fol-

lowing parameter settings. (i) fast varying: Substitution
score of +1 to symbols differing by upto 2 semitones. Gap
penalty is affine with parameters m = 1, c = 0.5, and (ii)
slowly varying: Similarity score of -0.5 to symbols differ-
ing by upto 3 semitones. Gap penalty is affine with param-
eters m = 0.5, c = 1.5.

Finally, the Smith-Waterman algorithm has a time com-
plexity given by O(MN2) where N is the query length
in symbols and M is the song length [22]. By constrain-
ing the allowed gap length to be no longer than that of
the query itself (N), justified by the musical context, we
achieve a complexity reduction to O(MN).

4. EXPERIMENTS AND EVALUATION

We present experiments that allow us to compare the per-
formance of the different systems on the task at hand,
namely correctly detecting occurrences of the mukhda in
the audio concert given an audio query corresponding to
the melodic shape of the mukhda phrase. The queries are
drawn from a set of 5 mukhdas extracted from the early
part (first few cycles) of the bandish. The early mukhda
repetitions tend to be of the canonical form and hence cor-
respond well with an isolated query that a musician might
generate to describe the bandish. For the investigation of
a given method, we process the database to convert each
concert audio to the pitch time series and then to the cor-
responding string representation. Next, the query is con-
verted to the string representation and the search is exe-
cuted. The detections with time-stamps are listed in order
of decreasing similarity with the query as determined by
the corresponding search distance measure. A detection is
considered a true positive if the time series of the detec-
tion spans at least 50% of that of one of the ground-truth
labeled mukhdas in the song. An ROC (precision vs recall)
is obtained for each query by sweeping a threshold across
the obtained distances. The ROC for a song is derived by
the vertical averaging (i.e. recall fixed and precision aver-
aged) of the ROCs of the 5 distinct queries [4]. The perfor-
mance for each song is summarized by the following two
measures: precision at 50% recall and the equal error rate
(EER) (point on the ROC at which false acceptance rate
matches false rejection rate). We further present perfor-
mance of the best performing pseudo-note system on song
retrieval in terms of the mean reciprocal rank (MRR) [10]
on the dataset of 50 concerts as follows. We use the set of
the first occurring labeled mukhda of each song to form a
test set of 50 queries. Next for each test query, every song
is searched to obtain a rank-ordered list of songs whose
first 5 detections yield the lowest averaged distance mea-
sure to the query.

5. RESULTS AND DISCUSSION

Table 2 compares the performances of the various systems
on the task of mukhda detection in terms of the average
EER and average precision at a selected recall across the 50
songs where each song is queried using each of the first five
mukhdas. We also report the computational complexity
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Figure 5. Histogram of the measure ‘Precision at 50%
Recall’ across the baseline and proposed methods.

reduction factor over that of the baseline method (given by
the square of the dimension reduction factor). To obtain
more insight into song dependence, if any, we show the
distribution of the precision values for the 50 songs set in
the bar graphs of Figure 5, one system for each category,
represented by the best performing one.

Method (version)
Mean Prc at 50% Rec

Reduc.
EER Mean Std.

Subseq DTW — 0.33 0.73 0.18 1

Behavior based
system

(A) 0.47 0.56 0.26
100

(B) 0.41 0.61 0.25

Pseudo-note
system

(A) 0.47 0.61 0.19
2500(B) 0.42 0.64 0.19

(C) 0.41 0.65 0.18

Table 2. Comparison of the two performance measures
and computational complexity reduction factor across the
baseline and proposed methods.

From Table 2, we observe that the baseline system rep-
resented by subsequence DTW on the pitch time-series
performs the best while the pseudo-note methods achieve
the best computation time via a reduction proportional to
the square of the reported dimension reduction factor (i.e.
50). We will first comment on the relative strengths of
these two systems, and later discuss the behavior based
system. We observe an improvement in performance of
the pseudo-note system with the introduction of domain
knowledge and query dependent parameter settings for the
subsequence search algorithm. From Figure 5, we see that
the subsequence DTW has a right-skewed distribution in-
dicating a high retrieval accuracy for a large number of
songs. However we note the presence of low perform-
ing songs too which actually do better with the pseudo-
note system. Closer examination of these songs revealed
that these belonged to ragas characterized by heavily or-
namented phrases. In the course of improvisation, the
mukhda was prefaced by rapidly oscillating pitch due to
the preceding context. This led to increased DTW distance
between the query and mukhda instances. The oscillating
prelude was absent in the pseudo-note representation alto-
gether leading to a better match.

The behavior based system was targeted towards captur-
ing salient features of the melodic shape of the phrase in a

symbolic representation. The salient features should ide-
ally include steady regions as well as specific movements
in pitch space that contribute to the overall melodic shape.
As such, it was expected to perform better than the pseudo-
note method which retains relatively sparse information as
seen from a comparison of the two representations for an
example phrase in Figure 4. However, the selection of the
duration parameters required for the time-series conver-
sion turned out to be crucial to the accuracy of the system.
Shortening the window hop interval contributed to reduced
sensitivity to time alignment differences but at the cost of
reduced compression and therefore much higher time com-
plexity. Further, the data dependence of symbol assign-
ment requires the query to be re-encoded for every song to
be searched, and further if query dependent window length
is chosen, the song must be re-encoded according to the
query. Future work should target obtaining a fixed dictio-
nary of symbols to pitch movement mappings by learning
on a large representative database of concerts.

Top ‘M’ hits Correct songs Accuracy

1 41 / 50 0.82
2 45 / 50 0.90
3 48 / 50 0.96

Table 3. Results of the song retrieval experiment.

Finally, we note the song retrieval performance of the
pseudo-note version C in Table 3. The mean reciprocal
rank (MRR) is 0.89. The top-3 ranks return 48 of the 50
songs correctly. The badly ranked songs were found to be
narrowly superseded by other songs from the same raga
that happened to have phrases similar to the mukhda of
the true song. This suggests the potential of the method in
the retrieval of “similar” songs where the commonality of
raga is known to be an important factor.

In summary, the melodic phrase is a central component
for audio based search for Hindustani music. Given the
improvisational nature of the genre as well as the lack of
standard symbolic “notation”, time-series based matching
of pitch contours provides a reasonable performance at the
cost of complexity. The conversion to a relatively sparse
representation by retaining only flat regions of the pitch
contour and introducing domain driven cost functions in
the string search is shown to lead to a slight reduction in
retrieval accuracy while reducing complexity significantly.
The inclusion of further cues such as the lyrics and rhyth-
mic cycle markers to mukhda detection is expected to im-
prove precision and is the subject of future research.
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ABSTRACT

Most of the features of Cover Song Identification (CSI),
for example, Pitch Class Profile (PCP) related features, are
based on the musical facets shared among cover versions:
melody evolution and harmonic progression. In this work,
the perceptual feature was studied for CSI. Our idea was
to modify the Perceptual Linear Prediction (PLP) model in
the field of Automatic Speech Recognition (ASR) by (a)
introducing new research achievements in psychophysics,
and (b) considering the difference between speech and
music signals to make it consistent with human hearing
and more suitable for music signal analysis. Furthermore,
the obtained Linear Prediction Coefficients (LPCs) were
mapped to LPC cepstrum coefficients, on which liftering
was applied, to boost the timbre invariance of the resultant
feature: Modified Perceptual Linear Prediction Liftered
Cepstrum (MPLPLC). Experimental results showed that
both LPC cepstrum coefficients mapping and cepstrum lif-
tering were crucial in ensuring the identification power of
the MPLPLC feature. The MPLPLC feature outperformed
state-of-the-art features in the context of CSI and in re-
sisting instrumental accompaniment variation. This study
verifies that the mature techniques in the ASR or Compu-
tational Auditory Scene Analysis (CASA) fields may be
modified and included to enhance the performance of the
Music Information Retrieval (MIR) scheme.

1. INTRODUCTION

Cover Song Identification (CSI) refers to the process of
identifying an alternative version, performance, rendition,
or recording of a previously recorded musical piece [26]. It
has a wide range of applications, such as music collection
search and organization, music rights management and li-

c© Ning Chen, J. Stephen Downie, Haidong Xiao, Yu Zhu,
Jie Zhu. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Ning Chen, J. Stephen
Downie, Haidong Xiao, Yu Zhu, Jie Zhu. “Modified Perceptual Lin-
ear Prediction Liftered Cepstrum (MPLPLC) Model for Pop Cover Song
Recognition”, 16th International Society for Music Information Retrieval
Conference, 2015.

censes, and music creation aids. Inspired by the actual
application requirements and researchers’ growing interest
in identifying near-duplicated versions, CSI has become a
dynamic area of study in the Music Information Retrieval
(MIR) community over the past decades. As a result, for
the first time in 2006, the CSI task was included by the Mu-
sic Information Retrieval Evaluation eXchange (MIREX),
an international community-based framework for the for-
mal evaluation of MIR systems and algorithms [6].

Since there are many different formats of cover ver-
sion, such as remastering, instrumental, mashup, live per-
formance, acoustic, demo, remix, quotation, medley, and
standard, the cover version may differ from the original
in timbre, tempo, timing, structure, key, harmonization,
lyrics and language, and noise [24]. What remain almost
invariable among cover versions are melody evolution and
harmonic progression, which form the basis of most exist-
ing CSI feature extraction algorithms. Among these fea-
tures, the Pitch Class Profile (PCP) (or chroma) [9] and
related descriptors [3, 7, 19, 25, 26, 31, 33]–which can rep-
resent harmonic progression directly–are robust to noise
(e.g. ambient noise or percussive sounds) and indepen-
dent of timbre, played instruments, loudness, and dynam-
ics, have become the most widely-used features for CSI.
In [7], the beat-synchronous chroma for two tracks were
cross-correlated, from the results of which the sharp peaks
indicating good local alignment were looked for to deter-
mine the distance between them. This CSI scheme per-
formed the best in the audio CSI task contest of the 2006
MIREX. The Harmonic Pitch Class Profile (HPCP) feature
proposed in [12] shared the common properties of PCP, but
since it was only based on the peaks of the spectrum within
a certain frequency band, it reduced the influence of noisy
spectral components. It also took the presence of harmonic
frequencies into account and was tuning independent. The
CSI scheme based on the HPCP and Qmax similarity mea-
sure [26,27] achieved the highest identification accuracy in
the audio CSI task contest of the 2009 MIREX. In [19], the
lower pitch-frequency cepstral coefficients were discarded
and the remaining coefficients were projected onto chroma
bins to obtain the Chroma DCT-Reduced log Pitch (CRP)
feature. The CRP feature achieved high degree of timbre

598



invariance and, thus, outperformed conventional PCP in
the context of music matching and retrieval applications.

We observed that despite the promising achievements of
the CSI technique over the last decade, the available CSI
schemes cannot perform as well as the human ear does.
One possible reason is that the available CSI schemes pay
attention solely to the musical facets (e.g. melody evo-
lution and harmonic progression) that are shared among
cover versions and do not resemble the way humans pro-
cess music information at all [24]. In this paper, we pro-
pose a perceptually inspired model called the MPLPLC
model to process music signals based on the Perceptual
Linear Prediction (PLP) model [13] in the ASR field. In
the proposed scheme, we will consider equally the various
attributes of human auditory processing, the difference be-
tween speech and music signals, and the requirements of
representing the musical facets shared among cover ver-
sions. First, the MPLPLC model uses the Blackman win-
dow but not the Hamming window to weight each frame
to maintain the harmonic information of the music. Sec-
ond, it replaces frequency warping on the bark scale with
a real filter bank equally spaced on the Equivalent Rectan-
gular Bandwidth (ERB) scale to model the time and fre-
quency resolution of human ears. Third, it substitutes a
fixed equal loudness curve for a loudness model suitable
for time-varying sounds (speech or music) [11]. Fourth,
the hair cell transduction model [17] takes the place of
cubic-root intensity-loudness compression to replicate the
characteristics of auditory nerve responses, including rec-
tification, compression, spontaneous firing, saturation ef-
fects, and adaptation [32]. Last and most important, to
make the resulted feature (MPLPLC) suited for the CSI
task, the LPCs are transformed into LPC cepstrum coef-
ficients to reduce the correlation between them and their
unnecessary sensitivity, the result of which is liftered to
achieve some degree of timbre invariance [1, 14].

The identification power and robustness to the varia-
tion in instrumental accompaniments of MPLPLC were
tested on two different collections. The first was com-
posed of 502 songs and 212 cover sets and the second
consisted of 85 cover sets whose cover versions have been
performed by the same artist with different instrumental
accompaniments. We observed that MPLPLC achieved
higher identification accuracy, in terms of the Mean of Av-
erage Precision (MAP), the total number of identified cov-
ers in the top five (TOP-5), the mean rank of the first iden-
tified cover (RANK), and the Mean averaged Reciprocal
Rank (MaRR) [23]. It also achieved a higher degree of in-
variance to instrumental accompaniments than the conven-
tional PLP feature [13] and different PCP-related features:
the beat-synchronous chroma [7], the HPCP [12, 26], and
the CRP [19]. Experimental results also verified that both
the LPC cepstrum coefficients mapping and the cepstrum
liftering are crucial in ensuring the identification power of
MPLPLC.

The rest of this paper is organized as follows. The signal
processing steps involved in the proposed MPLPLC model
have been described in detail in Section 2. The perfor-

mances of the MPLPLC feature in the CSI task in com-
parison with PLP and other state-of-the-art features have
been evaluated and discussed in Section 3. Conclusions
and prospects on future work have been given in Section 4.

2. MPLPLC MODEL

A block diagram of the MPLPLC model is shown in Figure
1. The signal processing steps involved in this model are
discussed in detail as follows.

2.1 Pre-processing

The input music signal is first converted to mono, 8 kHz
and 16 bits per sample version to reduce both the compu-
tation time and memory requirements. Then, it is filtered
by a preemphasis filter of the form

H(z) = 1− µz−1 (1)

where the coefficient µ is chosen between 0.95 and 0.99.
The preemphasis is needed because first, it weakens the
influence of low-frequency noise and strengthens the high-
frequency signal; second, it reduces the dynamic range of
the spectrum to make autoregressive modelling easier [4];
and third, it has been proven helpful in maintaining har-
monic information in audio signals [22].

2.2 Enframing

The pre-processed signal is segmented into overlapping
frames, denoted as {si|i = 1, · · · , N}, and each frame is
windowed by the Blackman window [20] to get {sw i|i =
1, · · · , N}.

We chose the Blackman window but not the Hamming
window because the Blackman window has a wider main-
lobe and lower highest side-lobe than the Hamming win-
dow [28]. As described in the open course Audio Signal
Processing for Music Applications 1 , this characteristic of
the Blackman window helps to maintain and smooth the
peaks in the spectrum corresponding to the harmonics in
the music signal.

2.3 Equal Loudness Predicting

To compensate for the frequency-dependent transmission
characteristics of the outer ear (pinna and ear canal), the
tympanic membrane, and the middle ear (ossicular bones),
each windowed frame sw i is filtered by an equal loudness
model to simulate the transfer function from the sound field
to the oval window of the cochlea [2] to get swl i. In PLP,
a fixed equal-loudness curve is combined [13]. However,
since a music signal is time-varying and has both short-
term loudness (the loudness of a specific note) and long-
term loudness (the loudness of a musical phase) [18], the
fixed loudness curve is not suited to it. So, Glasberg and
Moore’s [11] loudness model, which can be applied di-
rectly to the sound and works for time-varying sounds, is
applied to the MPLPLC model.

1 https://class.coursera.org/audio-001/lecture/53
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Figure 1. The comparison between the PLP model (left) and MPLPLC model (right).

2.4 Auditory Filter Bank Modeling

To obtain the auditory spectrum, PLP does a critical-band
integration after a Fourier Transform (FT) [13]. The prob-
lem is that frequency bin in FT is linear, so it has a constant
spectral resolution, while the human ear has high spectral
resolution at low frequency and low spectral resolution at
high frequency. Therefore, in the proposed scheme, a real
filter-bank composed of Nf channels equidistantly spaced
on the ERB [10] scale was applied to imitate the frequency
resolution of human hearing. The bandwidths of the chan-
nels in the filter bank are proportional to the center fre-
quencies (see Figure 2). The real filter bank can obtain
a good spectral resolution at low frequencies and a good
temporal resolution at high frequencies (like the human
ear) [15]. Another advantage of the filter bank approach
is that each bandpass channel is treated essentially inde-
pendently, i.e., there are no global spectral constraints on
the filter bank outputs [14]. In this specific case, a Han-
ning window on the frequency side was chosen 2 and the
experimental results showed that the type of filter has lit-
tle influence on the obtained cepstral feature. The output
of the j-th channel in the filter bank for the input swl i is
denoted as s(j)wla i.

2.5 Hair Cell Transduction

In PLP [13], the cubic-root amplitude compression is com-
bined to approximate the power law of hearing and sim-
ulate the nonlinear relation between the intensity of the

2 http://ltfat.sourceforge.net/doc/filterbank/erbfilters.php

Figure 2. Frequency responses of the filters in the auditory
filter bank, with center frequencies equally spaced between
131 Hz and 3400 Hz on the ERB-rate scale.

sound and its perceived loudness [29]. Meddis’s hair cell
transduction model [17] is incorporated in the MPLPLC
model to simulate the rectification, compression, sponta-
neous firing, saturation effects, and adaptation characteris-
tics of auditory nerve responses [32]. This operation also
helps to reduce the spectral amplitude variation of the au-
ditory spectrum, which makes it possible to do the all-pole
modeling by a relative low model order [13]. The hair cell
transduced version of s(j)wla i is denoted as ŝ(j)wla i.

2.6 Filter Bank Based Energy Calculation

To represent the energy distribution of the music signal on
each channel, the energy of the j-th channel for the i-th
frame, denoted as gi(j), is calculated as follows:
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gi(j) = log

Lw∑

n=1

(
ŝ
(j)
wla i(n)

)2
(2)

Here, ŝ(j)wla i(n), n = 1, · · · , Lw is the element of the vec-
tor ŝ(j)wla i. Then, the filter bank based energy of the i-th
frame is gi = [gi(1), · · · , gi(Nf )].

2.7 Autoregressive Modeling

To represent the spectral envelope of the filter bank based
energy in a compressed form, the filter bank based en-
ergy gi, i = 1, · · · , N are modelled by a pth-order all
pole spectrum σ/Ai(z), where σ is constant and Ai(z) =
1+ai1z

−1+· · ·+aipz−p, using the autocorrelation method
[16]. Then, the LPCs of the ith frame are denoted as
ai = [ai(1), · · · , ai(p)].

2.8 LPC Cepstrum Coefficients Mapping

To reduce the correlation between them [5], the LPCs ai
are further transformed into (real) LPC cepstrum coeffi-
cients, denoted as ci = [ci(1), · · · , ci(p)], with the follow-
ing recursion formula [14]:

ci(n) = −ai(n)−
1

n

n−1∑

k=1

(n− k)ai(k)ci(n− k) (3)

Figure 3(a) and 3(b) show the comparison between the
spectrum of filter bank based energy and its LPC smooth-
ing result, and that between the spectrum of filter bank
based energy and its cepstrum smoothing result, respec-
tively. It can be seen that first, both the LPC and the cor-
responding LPC cepstrum can represent the rough change
trend of the spectral envelop of the filter bank based energy,
and second, the LPC smoothing does not follow the slow
variations of the filter bank based energy as well as LPC
cepstrum smoothing does. This means that the LPC cep-
strum mapping helps to reduce the unnecessary sensitivity
that exists in LPC smoothing results.

2.9 Cepstrum Liftering

It has been proven that the variability of low quefrency
terms is primarily due to variation in transmission, speaker
characteristics, and vocal efforts of the human voice [14].
As for the music, the lower quefrency is closely related
to the aspect of timbre [19, 21, 30]. So, to boost the de-
gree of timbre invariance of the proposed feature, the lif-
tering window proposed in [14] [see Eq.(4)] is applied to
the LPCs first; then, the lower q elements of the result
are truncated to get the liftered LPCs denoted as ĉi =
{ĉi(1), · · · , ĉi(p− q)}.

WL(n) =

{
1 + p

2sin(
πn
p ), n = 1, 2, · · · , p

0, otherwise
(4)

(a)

(b)

Figure 3. Comparison of spectral smoothing methods.

3. EVALUATION

3.1 Evaluation Preparation

To test the effectiveness of the MPLPLC feature in the
pop CSI task, the enhanced Qmax method [27] (denoted
as Q̂max in this paper) was used to measure the distance
between the MPLPLC time series of two pieces of mu-
sic. The parameters chosen to calculate cross recurrence
plots [34] were embedding dimension m = 15, time delay
(in units) τ = 2 and the maximum percentage of neigh-
bours κ = 0.1. Furthermore, the parameters used to com-
pute a cumulative matrix Q [26] are the penalty for a dis-
ruption onset γo = 5 and the penalty for a disruption ex-
tension γe = 0.5.

Two music collections were used. The first one (de-
noted as Collection 1) comprised 502 pop songs of various
styles and genres and 212 cover sets. The average number
of covers in each cover set is 2.4, and the distribution of
the cover set cardinality has been presented in Figure 4.
Western songs and Chinese songs occupy one half of this
collection. The second one (denoted as Collection 2) is in-
dependent of Collection 1 and comprised 175 songs and
85 cover sets. The cover versions of each cover set in Col-
lection 2 were pop songs performed by the same artist but
with different instrumental accompaniments. The materi-
als were obtained from a personal music collection. The
identification accuracy and robustness against variation in
instrumental accompaniments of the MPLPLC was tested
on Collection 1 and Collection 2, in comparison with the

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 601



Figure 4. Distribution of the cover set cardinality.

PLP feature [13], CRP feature [19] 3 , Ellis’s cover song
scheme [7] 4 , and Serrà’s cover song scheme [27] 5 . The
parameters of the MPLPLC model have been listed in Ta-
ble 1, and those of PLP, CRP, Ellis’s scheme, and Serrà’s
scheme are the same as those in [13], [19], [7], and [27],
respectively.

Table 1. Parameter setting of MPLPLC feature
Description Value
Preemphasis parameter µ 0.97
Frame length 464ms
Frame overlap 116ms
Minimum central frequency of auditory filter 133Hz
Maximum central frequency of auditory filter 6856Hz
Number of channels in auditory filter bank Nf 41
LPC order p 16
Number of cepstrum 16
Cepstrum truncate number q 3

3.2 Identification Accuracy

We used each of the 502 songs in Collection 1 as a query
and calculated the distance [27] between each query and
the remaining 501 songs based on different features. The
identification accuracy, in terms of TOP-5, MAP, RANK,
and MaRR, obtained from the distance matrices (see Ta-
ble 2) demonstrated that MPLPLC performed better than
the conventional features in the CSI task over Collection 1.
One possible explanation for this result is that Collection 1
was composed of pop songs that included a singing voice,
and due to the MPLPLC’s background in speech recog-
nition, it outperformed the musical facet based features
in representing the singing voice. As an example, we
studied two versions of the song Wishing We Last For-
ever as performed by Teresa Teng and Faye Wong, re-
spectively. In these two versions, the singing voice is
dominant, the instrumental accompaniments are different,
and the rhythm is smoothing. The version performed
by Teresa Teng includes a national instrument accompa-
niment, which doesn’t conform to the twelve-tone equal
temperament. The cross recurrence plots for these two
versions based on MPLPLC, CRP [19], beat-synchronous
chroma [7] and HPCP [27] have been presented in Fig-
ure 5(a)-(d), respectively. We observe that the extended
pattern in Figure 5(a), which corresponds to similar sec-
tions in two versions, is much more distinct and longer

3 http://resources.mpi-inf.mpg.de/MIR/chromatoolbox/
4 http://labrosa.ee.columbia.edu/projects/coversongs/
5 http://joanserra.weebly.com/publications.html

than those in Figure 5(b)-(d). This indicates that first,
MPLPLC may outperform the other features in represent-
ing the singing voice characteristics, and second, the differ-
ence in harmonic information resulting from the difference
in instrumental accompaniment affects the performance of
PCP-based features.

Table 2. The identification accuracy comparison among
MPLPLC and conventional features over Collection 1.

System Identification accuracy
TOP-5 MAP RANK MaRR

MPLPLC +Q̂max 738 0.9446 3.79 0.4387
PLP [13] +Q̂max 386 0.4783 58.52 0.2392
CRP [19]+Q̂max 525 0.6719 56.48 0.3237
Ellis’s [7] 600 0.7489 28.32 0.3507
Serrà’s [27] 558 0.7266 28.28 0.3507

(a) (b)

(c) (d)

Figure 5. Cross recurrence plot for two versions of Wish-
ing We Last Forever as performed by Teresa Teng and Faye
Wong based on different features: (a) MPLPLC (Q̂max =
464.5), (b) CRP (Q̂max = 21), (c) Beat-synchronous
chroma (Q̂max = 61.5), and (d) HPCP (Q̂max = 47.5)

3.3 Robustness against Variation in Instrumental
Accompaniments

When compared with classical music, popular music can
present a richer range of variation in style and instrumen-
tation [8]. To test the robustness of MPLPLC against vari-
ation in style and instrumentation, the identification accu-
racy in terms of MAP achieved by MPLPLC and by the
conventional features were tested and compared with Col-
lection 2. The experimental results shown in Figure 6 in-
dicate that the MPLPLC feature achieves a higher degree
of invariance against instrumental accompaniment than the
PLP feature [13], CRP feature [19], Ellis’s scheme [7],
and Serrà’s scheme [27]. This phenomenon may also re-
sult from the MPLPLC’s ability of representing the singing
voice.
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Figure 6. Comparison of robustness against variation in
instrumental accompaniments over Collection 2.

3.4 Effect of Cepstrum Mapping and Liftering

To demonstrate the influence of the step LPC cepstrum co-
efficients mapping and cepstrum liftering on the identifi-
cation power of of the MPLPLC feature, the identification
accuracy based on the MPLP feature, which is obtained
by the MPLPLC model without LPC cepstrum coefficients
mapping and cepstrum liftering steps; the MPLPC feature,
which is generated by the MPLPLC model without cep-
strum liftering step; and the MPLPLC feature, have been
compared in terms of TOP-5, MAP, RANK, and MaRR
over Collection 1 in Figure 7. It can be seen that both LPC
cepstrum coefficients mapping and cepstrum liftering help
to enhance the identification power of the MPLPC feature.

(a) (b)

(c) (d)

Figure 7. Identification accuracy comparison among
MPLP feature, MPLPC feature, and MPLPLC feature, in
terms of (a) TOP-5, (b) MAP, (c) RANK, and (d) MaRR
over Collection 1.

4. CONCLUSION

We present a new approach, the MPLPLC model, to ex-
tract perceptually relevant features from the music signals
for pop cover song identification. Here, our main idea is
to modify the PLP model, which is a mature technique in
the ASR field, by introducing the newest research achieve-
ments in psychophysics, such as the time-varying loudness
model, auditory filter bank model, and hair cell transduc-

tion model, and by taking the difference between speech
and music signals into consideration. Furthermore, LPC
cepstrum mapping and cepstrum liftering are combined in
the proposed model to boost the resulting feature towards
timbre invariance. Experimental results over two music
collections show that MPLPLC achieves higher identifica-
tion accuracy and degree of invariance against instrumen-
tal accompaniment than the conventional PLP feature and
state-of-the-art music theory based features [7, 19, 27] in
the CSI task. This means that the mature techniques in
ASR may be modified and used in CSI or other MIR fields.

Despite these achievements, there still exists a lot of
room for improvement. Since the MPLPLC feature is
based on the modification of PLP, which has been suc-
cessful in the ASR field, it is good at representing singing
voice characteristics. As a result, the MPLPLC-based
CSI scheme can identify cover versions with a prominent
sing voice very well but not those with only instrumen-
tal sounds. To solve this problem, in the near future, we
will study the SCI scheme, which is based on the fusion of
the MPLPLC feature and the musical facet based features
(e.g. PCP-based features), which are good at analyzing
harmony-based western music. Furthermore, we plan to
look into the application of the MPLPLC feature for other
MIR tasks, such as structure analysis, cross-domain music
matching, and music segmentation.
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[22] A. Přibilová. Preemphasis influence on harmonic
speech model with autoregressive parameterization.
Radioengineering, 12(3):33–36, 2003.

[23] J. Salamon. Melody Extraction from Polyphonic Music
Signals. PhD thesis, Universitat Pompeu Fabra, 2013.
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[25] J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma
binary similarity and local alignment applied to cover
song identification. IEEE Transactions on Audio,
Speech, and Language Processing, 16(6):1138–1151,
2008.
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ABSTRACT

There are at least 100 rāgas that are regularly performed
in Carnatic music concerts. The audience determines the
identity of rāgas within a few seconds of listening to an
item. Most of the audience consists of people who are only
avid listeners and not performers.

In this paper, an attempt is made to mimic the listener.
A rāga verification framework is therefore suggested. The
rāga verification system assumes that a specific rāga is
claimed based on similarity of movements and motivic pat-
terns. The system then checks whether this claimed rāga is
correct. For every rāga, a set of cohorts are chosen. A rāga
and its cohorts are represented using pallavi lines of com-
positions. A novel approach for matching, called Longest
Common Segment Set (LCSS), is introduced. The LCSS
scores for a rāga are then normalized with respect to its
cohorts in two different ways. The resulting systems and
a baseline system are compared for two partitionings of a
dataset. A dataset of 30 rāgas from Charsur Foundation 1

is used for analysis. An equal error rate (EER) of 12% is
obtained.

1 Introduction
Rāga identification by machine is a difficult task in Car-

natic music. This is primarily because a rāga is not defined
just by the solfege but by svaras (ornamented notes) [13].
The melodic histograms obtained for the Carnatic music
are more or less continuous owing to the gamakā 2 laden
svaras of the rāga [23]. Although the svaras in Carnatic
music are not quantifiable, for notational purposes an oc-
tave is divided into 12 semitones: S, R1, R2(G1), R3(G2),
G3, M1, M2, P, D1, D2(N1), D3(N2) and N3. Each rāga is
characterised by atleast 5 svaras. Ārohana and avarohana
correspond to an ordering of svaras in the ascent and de-

1 http://www.charsurartsfoundation.org
2 Gamakā is a meandering of a svara encompassing other permissible

frequencies around it.
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Common Segment Set”, 16th International Society for Music Informa-
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scent of the rāga, respectively. Ragas with linear ordering
of svaras are referred to as linear ragas such as Mohonam
rāga (S R2 G3 P D2 S). Similarly, non linear ragas have
non linear ordering such as Ananda Bhairavi raga (S G2
R2 G2 M1 P D2 P S). A further complication arises owing
to the fact that although the svaras in different rāgas may
be identical, the ordering can be different. Even if the or-
dering is the same, in one rāga the approach to the svara
can be different, for example, todi and dhanyasi.

There is no parallel in Western classical music to rāga
verification. The closest that one can associate with, is
cover song detection [6, 16, 22], where the objective is to
determine the same song rendered by different musicians.
Whereas, two different renditions of the same rāga may
not contain identical renditions of the motifs.

Several attempts have been made to identify rāgas [2–4,
7,8,12,14,26]. Most of these efforts have used small reper-
toires or have focused on rāgas for which ordering is not
important. In [26], the audio is transcribed to a sequence of
notes and string matching techniques are used to perform
rāga identification. In [2], pitch-class and pitch-dyads dis-
tributions are used for identifying rāgas. Bigrams on pitch
are obtained using a twelve semitone scale. In [18], the au-
thors assume that an automatic note transcription system
for the audio is available. The transcribed notes are then
subjected to HMM based rāga analysis. In [12,25], a tem-
plate based on the ārohana and avarohana is used to deter-
mine the identity of the rāga. The frequency of the svaras
in Carnatic music is seldom fixed. Further, as indicated
in [27] and [28], the improvisations in extempore enuncia-
tion of rāgas can vary across musicians and schools. This
behaviour is accounted for in [10, 11, 14] by decreasing
the binwidth for computing melodic histograms. In [14],
steady note transcription along with n-gram models is used
to perform rāga identification. In [3] chroma features are
used in an HMM framework to perform scale indepen-
dent rāga identification, while in [4] hierarchical random
forest classifier is used to match svara histograms. The
svaras are obtained using the Western transcription sys-
tem. These experiments are performed on 4/8 different
rāgas of Hindustani music. In [7], an attempt is made to
perform rāga identification using semi-continuous Gaus-
sian mixtures models. This will work only for linear rāgas.
Recent research indicates that a rāga is characterised best
by a time-frequency trajectory rather than a sequence of
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Vocal Instruments
Total

Male Female Violin Veena Saxophone Flute
Number of Ragas 25 27 8 3 2 2 30 (distinct)
Number of Artists 53 37 8 3 1 3 105
Number of Recordings 134 97 14 4 2 3 254
Total Duration of Recordings 30 h 22 h 3 h 31 m 10 m 58 m 57 h
Number of Pallavi Lines 655 475 69 20 10 15 1244
Average Duration of Pallavi Lines 11 s 8 s 10 s 6 s 6 s 8 s 8 s (avg.)
Total Duration of Pallavi Lines 2 h 1 h 11 m 2 m 55 s 2 m 3 h

Table 1. Details of the database used. Durations are given in approximate hours (h), minutes (m) or seconds (s).

quantised pitches [5, 8, 9, 19, 20, 24]. In [19, 20], the sama
of the tala (emphasised by the bol of tabla) is used to seg-
ment a piece. The repeating pattern in a bandish in Hin-
dustani Khyal music is located using the sama informa-
tion. In [8, 19], motif identification is performed for Car-
natic music. Motifs for a set of five rāgas are defined and
marked carefully by a musician. Motif identification is per-
formed using hidden Markov models (HMMs) trained for
each motif. Similar to [20], motif spotting in an ālāpana
in Carnatic music is performed in [9]. In [24], a number of
different similarity measures for matching melodic motifs
of Indian music was attempted. It was shown that the in-
tra pattern melodic motif has higher variation for Carnatic
music in comparison with that of Hindustani music. It was
also shown that the similarity obtained is very sensitive to
the measure used. All these efforts are ultimately aimed
at obtaining typical signatures of rāgas. It is shown in [9]
that there can be many signatures for a given rāga. To alle-
viate this problem in [5], an attempt was made to obtain as
many signatures for a rāga by comparing lines of compo-
sitions. Here again, it was observed that the typical motif
detection was very sensitive to the distance measure cho-
sen. Using typical motifs/signatures for rāga identification
is not scalable, when the number of rāgas under consider-
ation increases.

In this paper, this problem is addressed in a different
way. The objective is to mimic a listener in a Carnatic mu-
sic concert. There are at least 100 rāgas that are actively
performed today. Most listeners identify rāgas by refer-
ring to the compositions with similar motivic patterns that
they might have heard before. In rāga verification, a rāga’s
name (claim) and an audio clip is supplied. The machine
has to primarily verify whether the clip belongs to a given
rāga or not.

This task therefore requires the definition of cohorts for
a rāga. Cohorts of a given rāga are the ragas which have
similar movements while at the same time have subtle dif-
ferences, for example, darbar and nāyaki. In darbar raga,
G2 is repeated twice in avarohana. The first is more or less
flat and short, while the second repetition is inflected. The
G2 in nāyaki is characterised by a very typical gamakā.
In order to verify whether a given audio clip belongs to a
claimed rāga, the similarity is measured with respect to the
claimed rāga and compared with its cohorts using a novel
algorithm called longest common segment set (LCSS). LCSS

scores are then normalized using Z and T norms [1, 17].
The rest of the paper is organised as follows. Section 2

describes the dataset used in the study. Section 3 describes
the LCSS algorithm and its relevance for rāga verifica-
tion. As the task is rāga verification, score normalisation is
crucial. Different score normalisation techniques are dis-
cussed in Section 4. The experimental results are presented
in Section 5 and discussed in Section 6. The main conclu-
sions drawn from the key results in this paper are discussed
in Section 7

2 Dataset used
Table 1 gives the details of the dataset used in this work.

This dataset is obtained from the Charsur arts foundation 3 .
The dataset consists of 254 vocal and instrument live record-
ings spread across 30 rāgas, including both target ragas
and their cohorts. For every new rāga that needs to be ver-
ified, templates for the rāga and its cohorts are required.

2.1 Extraction of pallavi lines

A composition in Carnatic music is composed of three
parts, namely, pallavi, anupallavi and caranam. It is be-
lieved that the first phrase of the first pallavi line of a com-
position contains the important movements in a rāga. A
basic sketch is initiated in the pallavi line, developed fur-
ther in the anupallavi and caranam [21] and therefore con-
tains the gist of the rāga. The algorithm described in [21]
is used for extracting pallavi lines from compositions. De-
tails of the extracted pallavi lines are given in Table 1. Ex-
periments are performed on template and test recordings,
selected from these pallavi lines, as discussed in greater
detail in Section 5.

2.2 Selection of cohorts

Wherever possible 4-5 rāgas are chosen as cohorts of
every rāga. The cohorts of every rāga were defined by a
professional musician. Professionals are very careful about
this as they need to ensure that during improvisation, they
do not accidentally sketch the cohort. Interestingly, as in-
dicated by the musicians, cohorts need not be symmetric.
A rāga A can be similar in movement to a rāga B, but
rāga B need not share the same commonality with rāga
A. The identity of rāga B may depend on phrases similar
to rāga A with some additional movement. For example,

3 http://www.charsurartsfoundation.org
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to identify the rāga Indolam, the phrase G2 M1 D1 N2 S is
adequate, while Jayantashree rāga requires the phrase G2
M1 D1 N2 S N2 D1 P M1 G2 S.

3 Longest common segment set

In rāga verification, matching needs to be performed
between two audio clips. The number of similar portions
could be more than one and spread across the entire clip.
Therefore, there is a need for a matching approach that can
find these similar portions without issuing large penalties
for gaps in between them. In this section, a novel algorithm
called Longest Common Segment Set is described which
attempts to do the same.

Let X = 〈x1, · · · , xm; xi ∈ R; i = 1 · · ·m〉 be a se-
quence of m symbols and Y = 〈y1, · · · , xn; yj ∈ R; j =
1 · · ·n〉 be a sequence of n symbols where xi and yj are the
tonic normalized pitch values in cents [9]. The similarity
between two pitch values, xi and yj , is defined as

sim(xi, yj) =

{
1− |xi−yj |3

(3st)3
if | xi − yj |< 3st

0 otherwise
(1)

where st represents a semitone in cents. Due to different
styles of various musicians, an exact match between two
pitch values contributing to the same svara cannot be ex-
pected. Hence, in this paper a leeway of 3 semitones is
allowed between pitch values. Musically two pitch values,
3 semitones apart, cannot be called similar but this issue
is addressed by the cubic nature of the similarity function.
The function reaches its half value when the difference in
two symbols is approximately half a semitone. Therefore,
higher similarity scores are obtained when the correspond-
ing pitch values are at most half a semitone apart.

A common subsequence ZXY in sequences X and Y is
defined as

ZXY =





〈
(xi1 , yj1), · · · , (xip , yjp)

〉

1 ≤ i1 < · · · < ip ≤ m
1 ≤ j1 < · · · < jp ≤ n
sim

k=1,··· ,p
(xik , yjk) ≥ τsim

(2)

where τsim is a threshold which decides the membership
of the symbol pair (xik , yjk) in a subsequence ZXY . The
value of τsim is decided empirically based on the domain
of the problem as discussed in Section 5. An example com-
mon subsequence is shown with red color in Figure 1.

3.1 Common segments

Continuous symbol pairs in a common subsequence are
referred to as a segment. Two different types of segments
are defined, namely hard and soft segments.

Hard segment is a group of common subsequence sym-
bols such that there are no gaps in between as shown in
green color in Figure 1. Then a hard segment, starting with
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Figure 1. An example of a common segment set between
two sequences representing the real data

a symbol pair (xi, yj), must be of the form

H l
XiYj

=





〈(xi, yj), (xi+1, yj+1), · · · , (xi+l, yj+l)〉
1 ≤ i < i+ 1 < · · · < i+ l ≤ m
1 ≤ j < j + 1 < · · · < j + l ≤ n

(3)
where l+1 represents the length of the hard segment. The
score of the kth hard segment H l

Xik
Yjk

is defined as

hc
(
H l
Xik

Yjk

)
=

l∑

d=0

sim (xik+d, yjk+d) (4)

Soft segment is a group of common subsequence sym-
bols where gaps are permitted with a penalty. Therefore, a
soft segment consists of one or more hard segments (shown
with blue color in Figure 1). The gaps between the hard
segments decides the penalty assigned. Thus, the score of
the kth soft segment SXik

Yjk
, consisting of r hard seg-

ments, is defined as

sc
(
SXik

Yjk

)
=

r∑

s=1

hc
(
H l
Xik

Yjk

)
− γρ (5)

where γ is the total number of gaps between r hard seg-
ments and ρ is the penalty for each gap. The number of
hard segments to be included in a soft segment is decided
by the running score of the soft segment. The running
score of the soft segment increases during the hard segment
and decreases during the gap due to penalties as shown in
gray-scale in Figure 1. During a gap, if the running score
decreases below a threshold τrc (or becomes almost white
in Figure 1) then that gap is ignored and all the hard seg-
ments, encountered before it, are included into a soft seg-
ment.
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3.2 Common segment set

All segments together correspond to a segment set. The
score of a segment set (ss) is defined as

score (ssXY ) =

∑p
k=1 c

(
ZXik

Yjk

)2

min(m,n)2
(6)

where p is the number of segments, c refers to the score
computed in either (4) or (5) and Z refers to a segment
(hard or soft). This equation gives preference to longer
segments. For example, in case 1, there are 10 segments
each of length 2 and in case 2, there are 4 segments each of
length 5. In both the cases the total length of the segments
is 20 but in (6), case 1 is scored as 0.1 and case 2 is scored
as 0.25 when the denominator is taken to be 202. Longer
matched segments could be considered as a phrase or an
essential part of it. Whereas, shorter matched segments
could generally mean noise. Therefore, there is a heavier
penalty for shorter segments.

3.3 Longest common segment set

Longest common segment set (lcss) is a segment set
with maximum score value as defined in (7).

lcssXY = argmax
ssXY

(score (ssXY )) (7)

Therefore, lcss can be obtained by maximizing score in (6)
using dynamic programming.

3.4 Dynamic Programming algorithm to find longest
common segment set

The algorithm for finding the optimum soft segment set
is given in Algorithm 1. Optimum hard segment sets are
found similarly. In the algorithm, tables c and s are used
for storing the running score and the score of the common
segment sets, respectively. Table a is used for storing the
partial scores from s. Table d is maintained for backtrack-
ing the path of the LCSS. The arrows represent the subpath
to take while backtracking (up, left or cross). Input se-
quences to function LCSS are appended with symbols φx
and φy such that their similarity with any symbol is 0. This
is mainly required to compute the last row and column of
score table. On similarity, line 8 updates the running score
with a value based on the similarity, whereas line 9 updates
the score using the previous diagonal entry. When symbols
are dissimilar a gap is found. Lines 12 and 19 are used to
penalize the running score. If it is an end of the segment
then line 14 and 21 updates score as per (6). Line 26 up-
dates table a with the score value of the current segment
set when the beginning of a new segment is encountered.
When a gap is encountered line 28 updates it to −1. To
find the longest common segment set, backtracking is per-
formed to obtain the path in table d that has the maximum
score as given by table s. The boundaries of soft segments
can be found using the cost values while tracing the path.

4 Raga Verification
Let Trāga =

{
t1, t2, · · · , tNrāga

}
represent a set of tem-

plate recordings, where ‘rāga’ refers to the name of the

Algorithm 1 Algorithm for Soft-Longest Common Seg-
ment Set
Data:
c - table of size (m+2)× (n+2) for storing running score
s - table of size (m+ 2) × (n+ 2) for storing score
d - table of size (m+ 2) × (n+ 2) for path tracking
a - table of size (m+2)× (n+2) for storing partial scores.

1: function LCSS (〈x1, · · · , xm, φx〉, 〈y1, · · · , yn, φy〉)
2: Initialize 1st row and column of c, s, d and a to 0
3: p← min(m,n)
4: for i← 1 to m+ 1 do
5: for j ← 1 to n+ 1 do
6: if sim(xi, yj) > τsim then
7: di, j ← “↖ ”

8: ci, j ← ci−1, j−1 +
(

sim(xi, yj)−τsim
1−τsim

)

9: si, j ← si−1, j−1
10: else if ci−1, j < ci, j−1 then
11: di, j ← “ ↑ ”
12: ci, j ← max(ci−1, j − ρ, 0)
13: if di−1, j = “↖ ” then
14: si, j ← ai−1, j∗p2+c2i−1, j

p2

15: else
16: si, j ← si−1, j
17: else
18: di, j ← “← ”
19: ci, j ← max(ci, j−1 − ρ, 0)
20: if di, j−1 = “↖ ” then
21: si, j ← ai, j−1∗p2+c2i, j−1

p2

22: else
23: si, j ← si, j−1
24: q ← max(ai−1, j−1, ai−1, j , ai, j−1)
25: if q = −1 and di, j = “↖′′ then
26: ai, j ← si−1,j−1
27: else if ci, j < τrc then
28: ai, j ← −1
29: else
30: ai, j ← q

rāga and Nrāga is the total number of templates for that
rāga. During testing, an input test recording, X, with a
claim is tested against all the template recordings of the
claimed rāga. The final score is computed as given in (8).

score (X, claim) = max
Y ∈Tclaim

(score (lcssXY )) (8)

The final decision, of accepting or rejecting the claim, di-
rectly based on this score could be erroneous. Score nor-
malisation with cohorts is essential to make a decision, es-
pecially when the difference between two rāgas is subtle.

4.1 Score Normalization

LCSS scores corresponding to correct and incorrect claims
are referred as true and imposter scores, respectively. If
the imposter is a cohort rāga, then the imposter score is
also referred as cohort score. Various score normalization
techniques are discussed in the literature for speech recog-

608 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



nition, speaker/language verification and spoken term de-
tection [1, 17].

Zero normalization (Z-norm) uses the mean and vari-
ance estimate of cohort scores for scaling. The advantage
of Z-norm is that the normalization parameters can be es-
timated off-line. Template recordings of a rāga are tested
against template recordings of its cohorts and the resulting
scores are used to estimate a rāga specific mean and vari-
ance for the imposter distribution. The normalized scores
using Z-norm can be calculated as

score
norm

(X, claim) =
score (X, claim)− µclaim

I

σclaim
I

(9)

where µclaim
I and σclaim

I are the estimated imposter parame-
ters for the claimed rāga.

Test normalization (T -norm) is also based on a mean
and variance estimation of cohort scores for scaling. The
normalization parameters in T -norm are estimated online
as compared to their offline estimation in Z-norm. During
testing, a test recording is tested against template record-
ings of cohort rāgas and the resulting scores are used to
estimate mean and variance parameters. These parameters
are then used to perform the normalization given by (9).

The test recordings of a rāga may be scored differently
against templates corresponding to the same rāga or im-
poster rāga. This can cause overlap between the true and
imposter score distributions. T -norm attempts to reduce
this overlap. The templates that are stored and the audio
clip that is used during test can be from different environ-
ments.

5 Performance evaluation
In this section, we describe the results of rāga verifi-

cation using LCSS algorithm in comparison with Rough
Longest Common Subsequence (RLCS) algorithm [15] and
Dynamic Time Warping (DTW) algorithm using different
normalizations.

5.1 Experimental configuration

Only 17 rāgas out of 30 were used for rāga verification
as only for 17 rāgas sufficient number of relevant cohorts
could be obtained from the 30 rāgas. This is due to non-
symmetric nature of the cohorts as discussed in Section 2.
For rāga verification, 40% of the pallavi lines are used as
templates and remaining 60% are used for testing. This
partitioning of dataset is done into two ways, referred as
D1 and D2. In D1, the variations of a pallavi line might
fall into both templates and test though it is not necessary.
Variations of a pallavi line are different from the pallavi
line due to improvisations. In D2, these variations can ei-
ther belong to template or they all belong to test but strictly
not present in both. The values of thresholds τsim and
τrc are empirically chosen as 0.45 and 0.5, respectively.
Penalty, ρ, issued for gaps in segments is empirically cho-
sen as 0.5.

5.2 Results

Table 2 and Figure 2 show the comparison of LCSS with
DTW and RLCS using different normalizations. Equal Er-

Algorithm Dataset No Norm Z-norm T -Norm
DTW D1 27.78 29.88 17.45

D2 40.81 40.03 35.96
RLCS D1 24.43 27.22 14.87

D2 41.72 42.58 41.20
LCSS (hard) D1 29.00 31.75 15.65

D2 40.28 40.99 34.11
LCSS (soft) D1 21.89 24.11 12.01

D2 37.24 38.96 34.57

Table 2. EER(%) for different algorithms using different
normalizations on different datasets.

ror rate (EER) refers to a point where false alarm rate and
miss rate is equal. For T -norm, the best 20 cohort scores
were used for normalization. LCSS (soft) with T -norm
performs best for D1 around the EER point, and for high
miss rates and low false alarms, whereas it performs poorer
than LCSS (hard) for low miss rates and high false alarms.
This behavior appears to be reversed for D2. The mag-
nitude around EER is much greater for D2. This is be-
cause, none of the variations of the pallavi lines in test are
present in the templates. It is also shown that RLCS per-
forms poorer than any other algorithms for D2. The curves
also show no improvements for Z-norm compared to base-
line with no normalization. This can happen due to the way
normalization parameters are estimated for Z-norm. For
example, some of the templates, which may not be similar
to the test, can be similar to some of the cohorts’ templates,
resulting in higher mean. This would not have happened in
T -norm where the test itself is tested against the cohorts’
templates.

6 Discussion
In this section, we discuss how LCSS (hard) and LCSS

(soft) can be combined to achieve better performance. We
also verify that T -norm reduces the overlap between true
and imposter scores.

6.1 Combining hard-LCSS and soft-LCSS

Instead of selecting a threshold, we will assume that a
true claim is correctly verified when its score is greater than
all the cohort scores. Similarly, a false claim is correctly
verified when its score is lesser than atleast one of the co-
hort scores. Table 3 shows the number of claims correctly
verified only by hard-LCSS, only by soft-LCSS, by both
and by neither of them. It is clear that there is an overlap
between the correctly verified claims of hard-LCSS and
soft-LCSS. Nonetheless, the number of claims distinctly
verified by both is also significant. Therefore, the com-
bination of these two algorithms could result in a better
performance.

6.2 Reduction of overlap in score distribution by
T -norm

Figure 3 shows the effect of T -norm on the distribution
of hard-LCSS scores. It is clearly seen that the overlap, be-
tween the true and imposter score distributions, is reduced
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Figure 2. DET curves comparing LCSS algorithm with different algorithms using different score normalizations

Dataset Claim- Hard- Soft- Both Neither
type only only

D1 True 23 55 289 77
False 46 78 1745 54

D2 True 47 23 155 220
False 99 75 1585 168

Table 3. Number of claims correctly verified by hard-
LCSS only, by soft-LCSS only, by both and by neither of
them for D1 and D2 using T -norm
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Figure 3. Showing the effect of T -norm on the score dis-
tribution

significantly. For visualization purposes, the true score dis-
tributions are scaled to zero mean and unit variance and
corresponding imposter score distributions are scaled ap-
propriately.

6.3 Scalability of rāga verification

The verification of a rāga depends on the number of its
cohort rāgas which are usually 4 or 5. Since it does not
depend on all the rāgas in the dataset, as in rāga identifi-
cation, any number of rāgas can be added to the dataset.

7 Conclusion and future work
In this paper, we have proposed a different approach to

rāga analysis in Carnatic music. Instead of rāga identi-

fication, rāga verification is performed. A set of cohorts
for every rāga is defined. The identity of an audio clip is
presented with a claim. The claimed rāga is verified by
comparing with the templates of the claimed rāga and its
cohorts by using a novel approach. A set of 17 rāgas and
its cohorts constituting 30 rāgas is tested using appropri-
ate score normalization techniques. An equal error rate of
about 12% is achieved. This approach is scalable to any
number of rāgas as the given rāga and its cohorts need to
be added to the system.
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ABSTRACT

We present a method for recognizing and interpreting the
text labels for the instruments in an orchestra score, thereby
associating staves with instruments. This task is one of
many necessary in optical music recognition. Our approach
treats the score system as the basic unit of processing. A
graph structure describes the possible orderings of instru-
ments in the system. Each instrument may apply to sev-
eral staves, may be represented with several possible text
strings, and may appear at several possible positions rela-
tive to the staves. We find the optimal labeling of staves
using a globally optimal dynamic programming approach
that embeds simple template-based optical character recog-
nition within the overall recognition scheme. When given
an entire score, we simultaneously optimize on the text la-
beling for each system, as well as the character template
models, thus adapting to the font at hand. Our implemen-
tation alternately optimizes over the text label identifica-
tion and re-estimates the character templates. Experiments
are presented on 10 different scores showing a significant
improvement due to adaptation.

1. INTRODUCTION

In some scores, particularly those for small ensemble, in-
struments appear in the same position in all systems mak-
ing it easy to associate instruments with staves. This scheme
would be typical for a string quartet or sonata for solo in-
strument and piano. Occasionally large-ensemble scores
follow this convention as well, though it requires consider-
ably more space as empty staves must be written out every
time any instrument is not used in a particular system, thus
creating longer scores and lowering the density of informa-
tion. For these reasons many publishers avoid this layout
style, instead notating only the instruments that play in a
particular system. In this case text labels, usually appear-
ing in the left margin of the system, identify the instru-
ment(s) associated with the individual staves, as in Figure
1. These are the scores we treat here, while our goal is the
labeling of each staff with its associated instrument. Such
labeling is necessary for nearly any aspect of optical music

c© Yucong Jiang, Christopher Raphael.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Yucong Jiang, Christopher Raphael.
“Instrument Identification in Optical Music Recognition”, 16th Interna-
tional Society for Music Information Retrieval Conference, 2015.

recognition (OMR) using “instrument-labeled scores”, as
it allows one to link systems together in a meaningful way.

The first steps of our OMR system [9] are to identify
the staves in a page, and then to group these into systems.
While these tasks present challenges due to the wide vari-
ation in printed scores, they are among the easier OMR
tasks, and are handled reasonably well by our system. The
resulting score systems, including the precise locations of
all the staves they contain, constitute the input to our staff
labeling process.

In spite of the mature nature of optical character recog-
nition (OCR), our staff labeling problem is highly chal-
lenging when viewed purely in these terms. The text strings
we seek to recognize are usually a single word or abbrevi-
ation, thus providing only a small portion of data for each
recognition problem. Furthermore, even though the vocab-
ulary is constrained to the instrument names used in the
score, OCR will encounter difficulties distinguishing sim-
ilar strings, such as “Violin I” and “Violin II,” or “Vln.”,
“Vla.”, and “Vcl.”. Finally, there often is other irrelevant
text in the area of the names we seek to recognize, further
hindering the recognition. But even if OCR were enough
to recognize the instrument names, our goal includes more
than this. As it is common for text strings to apply to mul-
tiple staves in a score, we need the name-to-staff mapping
as well.

Thus, unlike the bottom-up approach used in [12], our
top-down approach uses a graphical model that generates
all legitimate possible partitions of the system into staves
and all legitimate possible labelings of these partitions with
instruments. The graphical representation enables a dy-
namic programming approach that embeds rather generic
OCR into the “innermost loop” for the recognition of indi-
vidual text labels. The model may include strong assump-
tions about the possible orderings of instruments, with the
most obvious choice being that the instruments appear in
the order initially given on the first score page, (though any
subset of instruments can be omitted).

Perhaps the biggest challenge of our task is the font
variation between scores. Even controlling for the height
of the staff, one still sees considerable variation in the size
and shape of the characters between fonts. It might be pos-
sible to develop an omnifont approach [2,3], meaning a text
model that is trained from a variety of fonts, and thus capa-
ble of recognizing this same variety. However, as character
models are required to accept a wider range of presenta-
tions for each given letter, they become less capable of dis-
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Figure 1. One page with an 8 staves system and an 11
staves system.

tinguishing between different letters. For this reason om-
nifont models generally perform worse than models tuned
for the specific task at hand.

Borrowing a well-known idea from pattern recognition,
[11, 13], we address this challenge by simultaneously rec-
ognizing the instrument labels on the entire collection of
systems in a score and learning the font model for the doc-
ument at hand. Our algorithm iteratively recognizes the
systems, then retrains the font models using the optimal
labeling and text alignments produced in the recognition
phase. One might expect that this approach is simply too
greedy to succeed, failing to explore the high-dimensional
world of possible character models and system interpreta-
tions, while almost guaranteed to get stuck in a mediocre
local optimum. However, we present experiments that show
a large monotonic improvement in recognition accuracy as
we iterate this process, culminating with excellent recog-
nition results. The approach is feasible due to the highly
restrictive assumption made by our graphical model, thus
constraining the admissible interpretations to a tiny frac-
tion of those arising without this restriction. Our experi-
ments demonstrate that this graph model is the difference
between basically successful and unsuccessful results.

2. LABELING STAVES WITH INSTRUMENTS

The usual notational convention for large-ensemble scores
lists all instruments on the first page of a piece or move-
ment, whether or not the instruments play in this page [10].

Figure 2. A directed graph representing the possible or-
derings for the instruments.

In subsequent pages, instruments, perhaps in abbreviated
form, are written in the left score margin. Usually the in-
strument labels are displayed immediately to the left of the
associated staff line, though the labels sometimes describe
collections of staves, such as “Strings”, “Horns”, etc. In
such a case the text label usually appears centered with re-
spect to the group of staves, often emphasized by a brack-
eting of the associated staves in the left margin of the score.
Figure 1 shows a typical example.

2.1 THE MODEL

Our staff labeling procedure requires input from the user
explaining the labeling scheme(s) used in the score at hand.
Typically, the instruments appearing in a system are a sub-
sequence of the order given on the first page of the score.
However, variations are possible such as substituting a col-
lective name for the individual labels, e.g. using the sin-
gle text label “Strings” instead of the the individual la-
bels “Violin 1”, “Violin 2”, “Viola”, “Violoncello” and
“Bass” [10]. We assume that the possible labelings can be
described by a directed graph, G, as in Figure 2, where the
possible paths through the graph give the legitimate label
sequences. We assume the graph is supplied by the user
either implicitly or explicitly. Each vertex g ∈ G is asso-
ciated with an instrument, I(g), so recovering the correct
path will give the sequence of instruments employed in the
system.

As mentioned above there may be several staves as-
sociated with a particular instrument or group of instru-
ments, though we do not require such a convention to be
followed consistently. We rely on the user to list, for each
instrument, the possible labeling variations encountered in
the score. We describe this information as a collection
of patterns for each graph node, P (g) = {p1, . . . , pc},
where we suppress the dependence of the list length, c,
on g in our notation. Each pattern, p has three attributes:
p = (pk, pl, pa) giving the number of staves used for the
instrument(s), pk, the location of the text label with respect
to the group of staves, pl, and the specific character se-
quence used for the text label, pa. For instance pl = 0
would mean that the label appears in the middle of the
group of staves (next to the middle staff if pk is odd and
between the middle two staves if pk is even). When pl 6= 0,
pl gives the integral number of inter-staff half spaces above
or below the middle location where the text will be found.
In Figure 1 pl = 0 for all instruments.

Every pair of adjacent vertices, g′, g are connected by
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|P (g)| directed arcs labeled with the various patterns, P (g),
though these are not explicitly drawn in Figure 2. Thus
there may be several arcs that connect g′ to g, each ac-
counting for a possible number of staves for the instrument,
I(g), location of the text label, and the actual text itself.
There is a one-to-one correspondence between the allow-
able labelings of each system and the legal paths through
the graph. That is, if s, g1, . . . , gM is a path beginning from
the start vertex, s, with arc labels p1, . . . , pM that correctly
accounts for the number of staves in the system, N ,

M∑

m=1

pkm = N (1)

then the labeling associates the first pk1 staves with instru-
ment I(g1), the next pk2 staves with instrument I(g2) and
so on. The path may terminate anywhere in the graph other
than at the start vertex, s, as long as Eqn. 1 is satisfied.

2.2 RECOGNIZING THE TEXT LABELING

We score every legal path throughG as a sum of arc scores
and compute the best scoring path through dynamic pro-
gramming (DP). For this purpose we define E(n, g), for
n = 0, . . . , N , g ∈ G, as the best scoring interpretation
of the first n staves ending in state g. We compute E by
initializing E(0, s) = 0, then visiting the staves in order:
n = 1, . . . , N computing for each g ∈ G,

E(n, g) = max
g′

p→g
E(n− pk, g′) + L(n, p) (2)

where the maximum is over all legal arcs going from g′ to
g with pk ≤ n. In Eqn. 2L(n, p) is the arc score measuring
the plausibility that the text label pa positioned at relative
position pl is used for staves n− pk + 1, . . . , n. While we
present L in more detail in Section 2.3, for now it suffices
to say that L measures the quality of the best match of the
text, pa, to the score image data in the area determined
by n, pk, pl. It is worth noting that L = 0 is a neutral
result, meaning that the optimal placement of the letters of
pa explains the data as well as a background model. In
contrast, positive (negative) scores of L indicate evidence
for (against) the labeling implied by the transition of g′

p→
g. Thus our algorithm has no inherent bias for assigning
more or less text labels in the optimal interpretation.

Having computedE(n, g) for n = 1, . . . , N and g ∈ G,
the score of the optimal path is given by maxg∈GE(N, g),
while it is a simple matter to recover the optimal sequence
of vertices and transitions that produce the optimal score.
We denote these by g∗1 , . . . , g

∗
M and p∗1, . . . , p

∗
M .

2.3 CHARACTER RECOGNITION

Our approach to character recognition is standard template-
based [7, 8], and will only be discussed briefly and infor-
mally here. L(n, p) evaluates the quality of the hypothesis
n, p. The information contained in n and p collectively de-
scribes a reasonably precise vertical location in the image.
The task in computing L is to search the area around this

position for the optimal locations of the characters of pa,
subject to reasonable constraints regarding their spacing.

Suppose the characters of pa: c1, . . . cL have rectangu-
lar templates m1, . . . ,mL which are hypothesized to be
placed at image locations (x1, y1), . . . , (xL, yL). Each tem-
plate is a matrix of values ml(i, j) ∈ M where M =
{b, w, t, n} indexes black, white, transitional, and null grey
level probability models denoted by Pb, Pw, Pt, Pn. Pb
mostly “expects” to see low grey levels, Pw “expects” to
see high grey levels, Pt is a mixture of these two models,
and Pn is a null or background model taken as the normal-
ized grey level histogram of the entire image. Lx,y(n, p) is
then defined to be the normalized data log likelihood given
by

Lx,y(n, p) =
L∑

l=1

∑

i,j

log
Pml(i,j)(J(xl + i, yl + j))

Pn(J(xl + i, yl + j))

(3)
where (x,y) denotes the entire collection of template lo-
cations, J(x, y) is the image grey level at pixel (x, y) and
the inner sum uses the range for i, j appropriate for the lth
rectangular character template.

In computing Eqn. 3 we consider a variety of possible
vertical positions for the text baseline, and all reasonable
positions for the characters along that baseline so that

L(n, p) = max
x,y

Lx,y(n, p).

Thus the computation consists of a loop over baseline po-
sitions with each iteration accomplished by a DP compu-
tation that optimally locates the character templates.

2.4 SIMULTANEOUS OPTIMIZATION

Section 2.2 gives our procedure for finding the optimal text
labeling for the staves of a system. Computing this label-
ing requires at least reasonable character templates, though
it would be preferable to have templates that represent the
font at hand. Unfortunately, fonts differ greatly from one
music document to another, both in size and shape, so we
have no way of knowing a priori the font used for instru-
ment names in any given score. Our approach here is to
simultaneously estimate both the optimal text labeling and
the optimal character templates, thus adapting to the font at
hand while we recognize. While simultaneous estimation
of both interpretation and model parameters is infeasible
for many recognition problems, we rely here on the strong
graph-based assumptions we have made on the family of
possible labelings. In essence, our assumptions about in-
strument order are powerful enough to get reasonable esti-
mates of the instrument labels even with poorly specified
character templates. Thus we can use this labeling, and the
precise character template positions that come with it, to
re-estimate our character templates. Our overall approach
then becomes an iteration between the (re)estimation of
instrument labels and the (re)estimation of character tem-
plates, similar with [5, 6]. In practice this approach con-
verges after only a few iterations, and usually does so with
significantly better recognition accuracy than with the orig-
inal character templates, as discussed in Section 3.
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More precisely, we let z denote a possible text labeling
for the entire collection of system staves. Thus z includes
a path of vertices and arcs through G for each system in
the score, as discussed in Section 2.2, as well as the char-
acter template positions that result from the L(n, p) com-
putations of Section 2.3. Let θ denote the complete col-
lection of character templates employed in Section 2.3, for
all letters and punctuation used in the text labels. Finally
we let Ē(z, θ) be the summed data log likelihood score of
Eqn. 3 produced by evaluating the complete set of recog-
nized characters in z at their precise positions using the
character templates of θ.

Starting from our initial character templates θ0, the ba-
sic two-stage iteration of our algorithm is then

zl+1 = arg max
z
E(z, θl) (4)

θl+1 = arg max
θ
E(zl+1, θ) (5)

for l = 0, 1, . . .. The update for z in Eqn. 4 is simply the
dynamic programming procedure from Section 2.2 applied
to each system in the score, which is guaranteed to produce
a global optimum for z. The θ update is accomplished by
maximum likelihood estimation, as follows. Suppose our
alphabet of characters and punctuation is c1, . . . , cQ. Also
suppose that cq appears at locations (xq1, y

q
1), . . . , (xqR, y

q
R)

as defined through the text labeling and implicit template
alignment of Section 2.2. We then let

cq(i, j) = arg max
µ∈M

R∑

r=1

log
Pµ(J(xqr + i, yqr + j))

Pn(J(xqr + i, yqr + j))

for q = 1, . . . , Q, which is, by definition, Eqn. 5.
The proposed algorithm is simply coordinate-wise opti-

mization over z and θ, which guarantees that the sequence
E(z1, θ1), E(z2, θ2) . . . is non-decreasing. Furthermore,
the sequence is guaranteed to converge due to our finite
(but large) domain. In practice, this happens in only a few
iterations.

It is worth noting that our strategy is different from the
usual EM scheme [4] for performing maximum likelihood
estimation of model parameters. To implement EM we
would need a probabilistic model for the graph transitions,
which would be easy to supply, but absent from our cur-
rent formulation. However, EM attempts to increase the
marginal data likelihood rather than the likelihood of the
optimal path. Thus, if we were to replace our parameter
estimation step by an iteration of EM, we still may end
up decreasing our objective function. That said, EM is
less greedy in its approach than our proposed algorithm,
which, in principle, seems like a good attribute. In prac-
tice, we doubt there would be any significant difference in
the performance of these two approaches.

3. EXPERIMENTS AND RESULTS

Table 1 describes the collection of scores used in our evalu-
ation, all obtained from the IMSLP website [1], consisting
of 10 scores from 6 different publishers. In our evaluation
we used about 20 pages from each score.

score IMSLP pages Publisherindex ID
1 24831 50-69 New York: Charles Foley
2 03631 2-21

Moscow: Muzgiz/Muzyka
3 65460

2-18,
21,22,23

4 00569 2-19
Leipzig: Breitkopf & Härtel5 31875 2-21

6 01086 2-20
7 06307 2-21

Leipzig: Ernst Eulenburg
8 00191 2-21
9 08535 2-21 Vienna: Universal Edition
10 07354 2-25 Berlin: Schlesinger

Table 1. Information about the scores.

Figure 3. Two kinds of regions for possible text positions.

Our OMR system begins by computing the locations of
the staves and the partition of staves into systems for each
page of the score. These systems constitute the input to our
system.

In all cases we use a graphical model based on the first
page of the score, allowing for any subsequence of the
named instruments, as in Figure 2. Several scores allow for
the collective labeling of the strings with a single text tag,
rather than an enumeration of instruments. For each g ∈ G
(i.e. each instrument) we supply the appropriate patterns,
P (g) = {p1, . . . , pc}, by hand. Some instruments have
two patterns, though most have only one. For all of the
instruments and scores in our test set we only consider pat-
terns where pl = 0 meaning that the text must lie in the
middle of the collection of staves associated with an instru-
ment. Referring to Figure 3, this means we search in the
text in region 1 when pk = 1, and region 2 when pk = 2,
with obvious extensions to larger staff groupings. All of
our test scores place instrument names in the left margin,
though our approach easily accommodates other possible
positions. We also supply the text strings, pa, and the num-
ber of staves for each pattern, pk. Even with instruments
having two patterns, both used the same text (pa) in our
models.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 615



score number number of errors
index of staves θ0 θ1 θ2 θ3

1 399 19 4 2 1
2 395 13 0
3 317 21 10 4 0
4 331 44 0
5 391 11 8 1
6 443 33 2 0
7 273 3 2 1 0
8 364 34 0
9 381 4 0

72 52 45 38
10 436 θ4 θ5 θ6 θ7

25 23 22 21

Table 2. Total number of staves and number of errors in
each iteration for each score.

3.1 ORIGINAL TEMPLATES

The character template set includes all the (case sensitive)
letters used in the instrument names of the 10 scores, in
addition to a comma, hyphen, period, and space, giving 34
characters in all. Each score uses a subset of this collection
in labeling instrument names. We create our original set
of templates, θ0, by, for each character, randomly choos-
ing an example from one of the 10 scores and thresholding
the grey levels to choose probability models for each pixel.
This collection will be the initial configuration for all 10
scores before we begin the adaptation process. We sam-
pled from the test scores as a way of ensuring we could
find examples of all the required templates, and note that,
on average, only a tenth of these initial templates come
from any individual score. A better scheme might use an
omnifont model as our starting place.

We simultaneously estimate the staff labelings and the
trained collection of character templates, iterating the ap-
proach of Section 2.4 until the results converge. Table 2
lists the total number of staves assigned incorrect instru-
ment labels after each iteration of the algorithm, for each
of the 10 scores. As shown in the table, 7 scores correctly
labeled all the staves, 2 scores have only one labeling error,
while the 10th score has 21 out of 436 staff labeling errors
(4.82%), which is still low. The algorithm converged on
all scores within 4 iterations, except for the the score con-
taining the most errors, which used 8 iterations, as shown
in the table.

As the original set of templates, θ0, comes from a vari-
ety of different scores with different fonts and sizes, they
don’t match any particular score font well. Our hope is
that, through our iterative training process, the templates
will adapt to the current score. Figure 4 gives an exam-
ple from Score 6 with the original and learned characters
drawn on top of the score image at their estimated loca-
tions. Clearly the original templates matched the actual
font poorly, especially in size, as can be seen in the mid-
dle panel of the figure. The right panel of the figure shows
the analogous result after two iterations of recognition and

Figure 4. Comparing templates before (middle) and after
(right) training. The instrument names in the actual score
(left) are “Fl.”, “Ob.” and “Klar.” in order.

retraining. After this process most of the character tem-
plates match the font better, though not all of them. Due
to the greedy nature of our algorithm it is necessary that
our original templates, hence the original recognition and
match, are close enough to pull the result into the correct
local optimum. In this case the ‘O’ and ‘b’ in “Ob.” were
misspecified and consistently matched poorly in the first
iteration. As these characters don’t appear in other instru-
ment names, there was no counteracting force helping to
guide the models toward reasonable results, thus the out-
come of the figure.

Although some of the trained results don’t look partic-
ularly good, Table 2 shows striking improvement in staff
labeling due to training, showing monotonic decrease in
the number of errors. Here is where the strength of the
graphical model comes into play. Even with the poorly
specified character models for “Ob.”, this is the only in-
strument name that can come between “Fl.” and “Klar.”
for which we have good models. This leads to the correct
labeling in spite of the uneven training.

There are three scores having errors in our experiments.
The one error in Score 1 is caused by unrelated text appear-
ing in the left margin which was recognized as an incorrect
instrument name. The one error in Score 5 mistakes “Vc.”
as “Vla.” with “l” and “a” squeezed together. This hap-
pens in a three-staff system, thus the constraints imposed
by graph ordering are less potent.

For Score 10, the errors are caused by badly trained
templates. 8 out of 19 templates used in this score con-
verged into unrecognizable glyphs. We suppose this hap-
pens because the font size of this score is obviously smaller
than other scores and thus harder to adapt to. But surpris-
ingly, this score still has reasonably accurate instrument
labeling, which is our objective.

3.2 DROPPING THE GRAPHICAL CONSTRAINT

For comparison we ran a similar experiment without the or-
dering constraint imposed by the graph, thus allowing any
group of staves to be labeled with any instrument. In this
case all instrument orders are possible, even allowing for
repetition of instruments. The results are shown in Table 3.
After four iterations, the number of errors doesn’t seem to
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score number number of errors
index of staves θ0 θ1 θ2 θ3

5 391 78 71 69 73
6 443 59 49 48 57
8 364 102 91 103 103

Table 3. Total number of staves and number of errors in
each iteration for 3 scores without the graphical ordering
constraint.

decrease. This is because many of the trained templates be-
come unrecognizable — some of them become pure white
space! Without the strong ordering constraint there is less
gravitational pull toward the desired optimum, while we
imagine the joint space of interpretations and models to be
filled with local optima.

3.3 WORD MODELS VS. CHARACTER MODELS

Out of curiosity, we modified our model to view the in-
strument names as single rigid glyphs rather than character
based models that allow for some flexibility in the place-
ment of individual characters. Our experiments (not pre-
sented here) show that this approach works well when the
actual document is consistent with the assumption we are
making, but fails badly otherwise. Given the wide variety
of typographical conventions encountered in music scores,
we don’t recommend this approach.

4. CONCLUSIONS

We have presented a method of interpreting the instrument
name labels, which are a common way of labeling staves in
large ensemble scores, showing nearly perfect recognition
in all but one of the test scores we examined. The unusual
aspect of our approach is that we simultaneoulsy estimate
both the labels we seek, as well as the text font used for
the score. The experiments show convincing evidence that
the strong assumption we make regarding possible label-
ings is powerful in practice and largely responsible for the
reliability of the approach. In future work we will consider
initial text models trained from a large variety of scores,
as well as feature based, rather than template based, data
models.
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ABSTRACT

In the field of Music Information Retrieval (MIR), the au-
tomated detection of the singing voice within a given mu-
sic recording constitutes a challenging and important re-
search problem. In this study, our goal is to find those seg-
ments within a classical opera recording, where one or sev-
eral singers are active. As our main contributions, we first
propose a novel audio feature that extends a state-of-the-
art feature set that has previously been applied to singing
voice detection in popular music recordings. Second, we
describe a simple bootstrapping procedure that helps to im-
prove the results in the case that the test data is not reflected
well by the training data. Third, we show that a cross-
version approach can help to stabilize the results even fur-
ther.

1 Introduction

In classical opera, singing voice is considered to be one of
the most important musical aspects. Locating vocal seg-
ments in an opera recording is an important prerequisite
for applications such as singing voice separation or music
structure analysis. The task of singing voice detection
(also known as vocal detection) comprises automatic
segmentation of a music recording into vocal (one or
more singers) and non-vocal (accompaniment or silence)
parts. A typical example of such a temporal segmentation
is shown in Figure 1, where the black rectangles below
each plot are ground truth segments and the red rectan-
gles show automatically detected segments. The main
challenge in automatic vocal detection comes both from
the huge variety of singing voice characteristics as well
as the simultaneous presence of other pitched musical
instruments in the accompaniment. Especially in opera,
the singers are often accompanied by instruments playing
the same sequence of notes. Since the singers voice should
dominate over the accompaniment, expressive techniques

© Christian Dittmar, Bernhard Lehner, Thomas Prätzlich,
Meinard Müller, Gerhard Widmer. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Chris-
tian Dittmar, Bernhard Lehner, Thomas Prätzlich, Meinard Müller, Ger-
hard Widmer. “Cross-Version Singing Voice Detection in Classical Opera
Recordings”, 16th International Society for Music Information Retrieval
Conference, 2015.

such as pronounced vibrato and the so called singer’s
formant [18] are often used. Moreover, the pitch and
dynamic range of professional opera singers goes well
beyond singing voices in popular music.
There has been quite some research on the problem of
singing voice detection. The majority of previous contri-
butions employ some sort of machine learning approach
in combination with the extraction of audio features (see
Section 2). When using machine learning, two major
aspects need to be considered. First, appropriate audio
features have to be designed that are suitable for the
singing voice detection task. A delicate trade-off between
elaborate, but error-prone extraction steps on the one hand,
and undirected low-level features on the other hand has to
be made. In this context, we introduce a novel extension
to a previously proposed feature set and show that it is
appropriate for singing voice detection.
Second, a supervised machine-learning algorithm usually
learns from training data. It is well known that the per-
formance of an optimized classifier can drop significantly
if the “closed world” of the training data does not match
the “open world” of the target data. A typical example
is found in speech processing where systems trained
with clean speech usually fail under noisy or reverberant
conditions. One possibility to approach this challenge
is so-called bootstrapping [14, 19]. As a second main
contribution, we show how bootstrapping can help to
improve singing voice detection by adapting classifiers
to the specific recording under analysis. Furthermore,
we describe a cross-version fusion approach [8] that can
improve the results in case several versions of a music
piece are available, which is a realistic assumption for
opera and classical music in general.

2 Related Work

Although singing voice detection seems to be a task that
is not so hard for human listeners, automatic singing voice
detection remains difficult due to expressive characteris-
tics of the singing voice and the diversity of accompani-
ment music playing simultaneously. These specific chal-
lenges have already been brought up in early works on the
topic [2]. Given an unknown music recording, automatic
singing voice detection is usually performed as a frame-
wise estimation of singing voice activity. Even though this
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poses a binary classification problem with just two classes,
the acoustical variance within each class is so large that
it is necessary to train the classifier with a wide range of
training data.
Bootstrapping, i.e., the idea of using training data taken
from the target recording itself, was proposed before as un-
supervised [14] and user assisted [19] strategy for improv-
ing classification performance. One of the first attempts to
separate the singing voice from the accompaniment prior
to the feature extraction stage was described in [20]. Post-
processing of the so-called posterior probabilities obtained
during classification was described in [12].
A large set of low-level features was used in conjunction
with a Support Vector Machine (SVM) classifier in [15].
Furthermore, the authors published singing voice annota-
tions for training, validation and test subsets of the JA-
MENDO corpus, enabling reproducible comparisons be-
tween different methods (see Section 5.2). The same test
corpus was used for evaluation in [16], where the feature
extraction focused on vibrato and tremolo properties. A
study on the effect of accompaniment music in singing vs.
rap discrimination was presented in [6]. Very promising
results in singing voice detection and related tasks were
reported in [13]. However, the proposed signal process-
ing chain was quite elaborate and involved an estimation
of the predominant pitch, which can lead to substantial er-
ror propagation to all the feature extractors depending on
it.
Lehner et al. [10] focused on achieving comparable results
using a light-weight approach. In a follow-up work, they
improved the achievable precision by introducing novel au-
dio features tailored to the singing voice detection scenario
[11]. A recent paper [4] showed that two cross-version
post-processing strategies can improve the singing voice
detection performance achievable with the light-weight
feature set of [10, 11].
So far, the best classification performance on the JA-
MENDO data set was reported in [9], using a Bidirectional
Long Short-Term Memory Recurrent Neural Network as
machine learning scheme that inherently takes the tempo-
ral context of low-level feature sequences into account.
However, it reads as if the authors selected the optimal
network architecture according to the best results obtained
w.r.t. the test set instead of the validation set. Thus, we
think that their results might be overly optimistic.

3 Baseline Singing Voice Detection

Our baseline system for singing voice detection closely fol-
lows the approach proposed in [10, 11]. The extraction of
descriptive audio features is performed by splitting the au-
dio signals into frames and transforming each frame to the
spectral domain. Low-level and mid-level audio features
are computed from each resulting spectral frame, form-
ing a feature vector by concatenation. Supervised machine
learning is employed to train a classifier for discriminat-
ing the feature vector assigned to each frame into the two
classes vocal and non-vocal. Note that the vocal class usu-

Feature name and reference Abbrev. Dim.

Mel-frequency Cepstral Coefficients [10] MFCC 30
Vocal Variance [11] VOCVAR 5
Fluctogram Variance [11] FLUCT 17
Spectral Contraction Variance [11] NSD 17
Spectral Flatness Mean [11] FLAT 17
Polynomial Shape Spectral Contrast [1, 7] PSSC 24

Table 1. Feature names, abbreviations, and dimensionality
of the low-level and mid-level audio features used.

ally comprises singing voice plus accompaniment, which
makes the task more intricate.

3.1 Feature Extraction and Processing

Table 1 lists the complete set of features that is used in our
approach. Since most of our descriptors are wellknown in
the MIR literature, we only highlight a few aspects here.
Mel-Frequency Cepstral Coefficients (MFCC) are one
of the most common audio features widely used in diverse
audio classification tasks. They are designed to capture the
spectral envelope of an audio signal using only a few co-
efficients in the so-called Cepstral domain. As described
in [10], we use an optimized parametrization with a dif-
ferent time-frequency resolution and a higher number of
coefficients than usual. A strongly related feature is the
Vocal Variance, which basically captures the variance in
the first 5 MFCCs across a number of consecutive frames.
The mid-level features Fluctogram, Spectral Contrac-
tion, and Spectral Flatness are the most important contri-
butions from [11]. All three are extracted in 17 overlapping
frequency bands, where each band covers two octaves and
neighboring bands are spaced three semitones apart. The
Fluctogram encodes the relative frequency fluctuation of
salient tonal components in each band, without the need
for an actual estimation of a predominant pitch. Spectral
Contraction and Flatness are designed to complement the
Fluctogram, encoding whether there are reliable harmonic
components with clear sinusoidal peaks or rather a noise-
like distribution of the spectrum within the current band
boundaries.
Spectral Contrast encodes the relation of peaks to val-
leys of the spectral magnitude in several sub bands. The
band boundaries have been specified for the Octave-Based
Spectral Contrast (OBSC) [7] and the Shape-Based Spec-
tral Contrast (SBSC) [1]. In general, both variants can be
interpreted as harmonicity or tonality descriptor. We sug-
gest a modification of the already existing methods, both
of which were successfully used for music genre classifi-
cation tasks. In the previous approaches, the spectral mag-
nitude values in each sub band are sorted and the relation
between the lowest and highest fraction is encoded via sta-
tistical measures. In our modification, we propose to fit
a third-order polynomial to the ordered magnitude values
and store the three polynomial coefficients together with
the offset as descriptors. Therefore, we refer to this fea-
ture as Polynomial Shape Spectral Contrast (PSSC). It is
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Figure 1. Illustration of the cross-version post-processing strategies as described in Section 4.1 and Section 4.2. The
curves and annotations are based on an excerpt corresponding to the first 80 measures of the duet No. 6 (Agathe and
Ännchen): “Schelm! halt fest” from the opera “Der Freischütz” by Carl Maria von Weber. For each case, the decision
functions of the baseline (blue thin curve) and bootstrap (red bold curve) classifier are shown. The colored time-lines
below the decision curves show the automatically detected singing voice activity (red segments, derived from bootstrap
decision) vs. the ground truth (black segments). (a): Recording of the performance conducted by Karl-Heinz Bloemecke
(2013). (b): Recording of the performance conducted by Carlos Kleiber (1973). (c): Cross-version results based on three
performances (including Bloemecke and Kleiber) after temporal alignment to a common, measure-based time axis and
subsequent averaging across the individual decision functions.

computed for each of the 6 sub bands (0-200 Hz, 200-400
Hz, 400-800 Hz, 800-1600 Hz, 1600-3200 Hz, and 3200-
8000 Hz), yielding a feature vector with 24 attributes. In
contrast to the procedure in [1, 7], we do not apply any
decorrelation procedure to the raw features, hence reduc-
ing the computational complexity. Compared to the before
mentioned versions of spectral contrast, our modification
resulted in better accuracy on our internal data set (PSSC:
80.2%, OBSC: 73.4%, and SBSC: 72.3%).
In total, the concatenation of all features listed in Table 1
results into a 110-dimensional feature vector per spectral
frame. The set of all feature vectors makes up our feature
matrix which is split into appropriate training and test sets
and used for machine learning in the following.

3.2 Classification and Decision Function

Again following [10,11], we employ Random Forests (RF)
[3] as classification scheme. RF are an instance of the so-
called Bootstrap Aggregation (Bagging) concept applied
to Classification and Decision Trees (CART) [21] classi-
fiers. This machine learning ensemble meta algorithm was
designed to improve the stability and accuracy by averag-
ing over a set of weak classifiers trained from random sub-
spaces of the complete feature matrix. In RF, random sets
of CARTs are trained by introducing randomness at 2 lev-
els: in the subset of features as well as in the subset of

training data [3]. The generalization error of RF depends
on the classification strength of the individual CARTs as
well as their mutual correlation. As changes in the feature
selection cause drastic changes in the tree structure, the in-
dividual trees are expected to be uncorrelated. Averaging
their individual decisions in the RF leads to decreased vari-
ance of the classifier model, which is in general a desirable
property.
RFs deliver a frame-wise score value per class that can be
interpreted as confidence measure for the classifier deci-
sion. In our binary classification scenario, the two score
functions are inversely proportional. We pick the one cor-
responding to our target vocal class and refer to it as deci-
sion function in the following. A decision function value
close to 1 indicates a very reliable assignment to the vocal
class, whereas a value close to 0 points to the non-vocal
class. In order to binarize the decision function, we com-
pare it to a threshold. Only frames where the decision func-
tion value exceeds the threshold will be classified as vocal.
Prior to that, the decision function is smoothed using a me-
dian filter. The filter width given in seconds is an important
parameter. Median filtering of the decision function is jus-
tified by the observation that singing voice activity usually
exhibits a certain continuity. So this step helps to stabilize
the detection result and to prevent unreasonably short gaps
in the decision function, where the classification rapidly
flips from vocal to non-vocal or vice versa.
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4 Post-processing of Singing Voice Detection

In this section, we describe two approaches suitable for
post-processing of intermediate singing voice detection re-
sults. First, we describe our approach to unsupervised
bootstrap training of a classifier adapted to the recording
under analysis. Second, we describe how to perform a late
fusion of decision functions by means of time alignment
between different versions.

4.1 Bootstrap Training

Inspired by the ideas in [14, 19], we propose to perform a
second, specialized RF classification subsequent to the ini-
tial singing voice detection stage. The rationale is to rem-
edy the “closed world” vs. “open world” training problem
discussed before (see Section 1). We do so by creating an
adapted classifier model that is trained with feature vectors
exclusively taken from the current recording under anal-
ysis. However, this recording does usually not come to-
gether with an annotation of its frames to the two classes.
So how to assign the feature vectors automatically to the
training sets of the vocal respective non-vocal class?
Our idea is to base this assignment on the shape of the deci-
sion function generated by the initial RF classifier. Look-
ing at the course of this decision function, we see some
extreme values for frames, where the observed feature vec-
tors match very well to either the vocal or non-vocal class
of the initial classifier model. However, many values re-
side in the middle of the range of decision function values,
where an assignment to either side is questionable. If we
now select two subsets of the feature vectors, each corre-
sponding to an upper and lower fraction (e.g., 20%) of the
range of decision function values, we can use these to train
a small RF classifier that is adapted to the feature space
spanned by the recording under analysis. Before we do so,
we stratify the training set, meaning that we randomly se-
lect the same number of feature vectors for each class from
the subset corresponding to the upper and lower decision
values.
In Figure 1, we observe that the new decision functions
(red curve) generated by classifying the current song with
the adapted RF classifier exhibits a more desirable shape
than the decision function generated by the initial RF clas-
sifier (blue curve). In Figure 1(a), it can be seen, that the
bootstrap decision function can close small gaps, where the
initial decision function dipped below the decision thresh-
old (e.g., at around 80 s).

4.2 Cross-Version Fusion

In [8], Konz et al. introduced the intuitive yet effective
idea to exploit the availability of different recordings of
the same piece of music for stabilizing automatic chord
recognition results. We pursue the same idea here in or-
der to perform a late fusion of decision functions obtained
from the initial singing voice detection. This is achieved by

Authors and Reference Accuracy F-measure

Biased Guess (all frames vocal) 46.3 0.64

Vembu and Baumann 2005 [20] 77.4 0.77
Ramona et al. 2008 [15] 82.2 0.84
Regnier and Peeters 2009 [16] — 0.77
Lehner et al. 2013 [10] 84.8 0.85
Lehner et al. 2014 [11] 88.2 0.87
Leglaive et al. 2015 [9] 91.5 0.91

Proposed feature set 88.2 0.87

Table 2. Singing voice detection results achievable with
our novel feature set in comparison to other authors. The
basis of all measurements is a publicly available subset of
the JAMENDO corpus [15].

warping the individual decision functions obtained for dif-
ferent versions of the same piece to a version-independent
representation with a musical time axis given in measures
(respective sub-divisions thereof) instead of seconds. For
the moment, we assume that the required temporal position
of measure boundaries is given. In Section 5.3, we sketch
how to retrieve the measure boundaries automatically.
In general, the procedure described above yields a set of
time-aligned decision functions that we use to derive a
fused, overall decision function. To this end, we use the
most straightforward approach and just take the arithmetic
mean of the decision values of all aligned decision func-
tions. The averaging is intended to compensate for noise
and artifacts that might occur in the individual decision
functions. Figure 1(c) presents the resulting decision func-
tion on the measure-related time axis. We show the fused
decision function derived from baseline singing voice de-
tection (thin blue curve) overlayed with the fused deci-
sion function derived from bootstrap training (bold red
curve). It can be seen that the averaging leads to a slightly
more stable decision function. Comparison of the fused
bootstrap decision function against the decision threshold
(dashed black line) yields our estimated singing voice seg-
ments (black rectangles). In general, the estimated seg-
ments exhibit improved agreement to the ground truth seg-
mentation in comparison to Figure 1(a) and 1(b).

5 Evaluation

In this section, we assess the performance of our proposed
methods. First, we validate our novel feature set on a pub-
lic benchmark data set. Second, we show that bootstrap-
ping and cross-version fusion can help to improve the re-
sults for classical opera recordings.

5.1 Experimental Settings

For our experiments, we are going to fix the following pa-
rameters: For the majority of features in Table 1, the hop-
size between consecutive analysis frames is 200 ms (fea-
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ture rate of 5 Hz), the analysis windows have a length of
800 ms. The raw fluctogram, flatness and contraction fea-
tures are extracted on a finer temporal level, with a hop-
size of 20 ms and a window size of 100 ms. We aggregate
40 consecutive frames of these raw features and use their
variance as descriptor for fluctogram and contraction, and
their means as descriptor for flatness. In the RF classifier,
we use 128 individual CART classifiers, each trained with
a randomly selected subset of 5 feature dimensions, from
the originally 110-dimensional feature space. For post-
processing of the decision functions, we employ a median
filter with a width of 1.4 s. The decision function thresh-
old is set to 0.5. In the next sections, we keep these settings
fixed for the evaluation of our baseline system as well as
our proposed post-processing strategies.

5.2 Performance on a Common Benchmark

In order to benchmark our novel feature set against the
state-of-the-art, we used a subset of the publicly available
JAMENDO music corpus [15]. Each recording in that
data set was manually annotated into vocal and non-vocal
sections by the original author. Since human annotators
can have difficulties in determining singing segment
boundaries, the segmentation allowed some uncertainty,
i.e., very short instrumental breaks were not labeled as
such. The exact split into training, validation and test set
is specified in [15]. Table 2 lists our results in comparison
to previously published works. The used metrics are
the frame-wise F-measure and the accuracy which are
computed by evaluating all frames across the 16 test
songs. According to the ground truth annotation, the
majority of frames belongs to the non-vocal class. We also
report the Biased Guess, where all frames of a test item
are assigned to the vocal class, because in classical opera,
the vocal class usually occurs more often. As can be seen,
the performance of our proposed feature set is on par with
the state-of-the-art. Only the accuracy and F-measure
reported in [9] surpass our results, but the comparison
might not be entirely fair as discussed in Section 2.

5.3 Opera Case-Study

The opera “Der Freischütz” by Carl Maria von Weber, a
work of high relevance for opera studies, was chosen for
the further evaluation. For this opera, there exists a large
number of historical sources, including a multitude of au-
dio recordings. In the project “Der Freischütz Digital” 1 ,
musicologists and computer scientists cooperate to explore
opportunities for new and digital ways of research, analy-
sis and presentation of music related data in critical edi-
tions [17].
From the corpus used in the project, we had three different
versions of this opera available for the purpose of cross-
version singing voice detection. The respective conductors

1 www.freischuetz-digital.de

Opera Conductor Year

“Carmen” Lorin Maazel 1984
“Die Zauberflöte” Nikolaus Harnoncourt 1988
“Pelleas et Melisande” Claudio Abbado 1992
“La Cenerentola” Riccardo Chailly 1993
“La Traviata” Carlo Rizzi 2005
“Tristan und Isolde” Daniel Barenboim 1995

“Der Freischütz” Karl Elmendorff 1944
“Der Freischütz” Carlos Kleiber 1973
“Der Freischütz” Karl-Heinz Bloemecke 2013

Table 3. Overview over the used opera recordings. The
upper half specifies the operas available as training set, the
lower half gives the operas used as test set.

and recording years are shown in Table 3. All numbers
in the three versions have orchestral accompaniment and
varying number of soloist singers. We picked the numbers
6, 8, and 9 as test cases of different musical complexity, a
duet, a solo aria and a trio, respectively.
For evaluation purposes, we first had to generate reference
annotations of the singing voice activity in these pieces.
This was achieved semi-automatically by means of align-
ing a MIDI version of each piece to the recording and tak-
ing the note onsets and offsets of the singing voice as ref-
erence. Details about this procedure can be found in [5].
Furthermore, each recording had its measures (i.e., the be-
ginning of each bar) manually annotated to facilitate the
alignment between corresponding versions of the same
number. The manually annotated bar positions are used
to warp the individual decision functions to a common
time axis regardless of their original tempo and variations
thereof.

5.4 Results and Discussion

The diagrams in Figure 2 illustrate the benefit of applying
bootstrap training (see Section 4.1), cross-version fusion
(see Section 4.2), as well as a combination of both in two
different training scenarios. The bar plots in both (a) and
(b) show the F-measures obtained per test item as well as
the average F-measure value. The following singing voice
detection and post-processing strategies were tested. Ran-
dom Guess refers to randomly assigning the frames of our
test data to either the vocal or non-vocal class with equal
probability. Since the vocal class occurs more frequently
in our test data, the resulting F-Measure is slightly above
chance. Biased Guess refers to assigning the singing voice
class to each frame of a test recording. It can be seen that
the resulting F-measure is already quite high, again a con-
sequence of the dominance of the vocal class in our test
set. Baseline Detection refers to the results obtained by
the baseline singing voice detection system as described in
Section 3. Bootstrap Detection refers to the results ob-
tained by a second classification run with an adapted RF
classifier using the bootstrapping strategy as described in
Section 4.1. Cross-version Fusion refers to the results of
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Figure 2. The average F-measures obtained in two different training scenarios and four post-processing strategies. The test
set consisted of three versions of the numbers 6, 8, and 9 from the opera “Der Freischütz.” (a): Results obtained by training
the initial RF classifier with popular music recordings from the RWC and JAMENDO data sets. (b): Results obtained by
training the initial RF classifier with classical opera recordings not including “Der Freischütz.”

fusing the initial RF decision functions of all available ver-
sions of each test recording as described in Section 4.2.
Finally, Bootstrap Fusion refers to the results obtained
by combining both the bootstrap training and the cross-
version fusion.
The results in Figure 2(a) were obtained by training the
initial RF classifier with a combined data set comprising
both the JAMENDO [15] and RWC [13] subsets that are
annotated for singing voice. Both corpora are dominated
by recordings of popular music. Obviously, this kind of
training material differs from the music content in the test
set. The average singing voice detection performance stays
even below the biased guess. However, this rather poor ini-
tial estimate for the vocal frames can be used for bootstrap
training. Consequently, the bootstrap training leads to a
substantial performance gain, surpassing the bias results.
Cross-version fusion of the imperfect initial decision func-
tions leads to similar improvements as the bootstrap train-
ing. The combination of both bootstrap training and cross-
version fusion of decision functions delivers the best re-
sults in this training scenario.
The results in Figure 2(b) were obtained when training
the initial RF classifier with recordings of classical opera.
Specifically, we used the operas listed in the upper half
of Table 3. In total, the playtime of our training material
amounts to approximately 4 h. As can be seen from the F-
measure of the baseline RF classifier, this kind of training
data gives a considerable performance boost. This is not
surprising, since the orchestral timbre as well as the pro-
nounced use of vibrato singing in these opera recordings is
very similar to our test items. The remaining F-measures
show that the proposed post-processing strategies at best
lead to marginal improvements since the performance is
already saturated.
From our comparison, we infer that bootstrap training
could be recommended as standard post-processing strat-
egy for singing voice detection in classical opera record-
ings. This is especially true if the initial classification de-
livers reasonable results that can be surpassed if more ap-
propriate training data would be available. However, boot-
strap training does not seem to help much if there exists no

combination of feature set, training set, and classifier that
can obtain good singing voice detection for the recording
under analysis. Moreover, bootstrap training has the draw-
back that it will likely produce erroneous decision func-
tions when there is no singing voice activity at all through-
out a recording. If these cases can not be ruled out from
bootstrap training, singing voice detection results could
even deteriorate in comparison to the baseline system.

6 Conclusions and Future Work

In this paper, we made two contributions to advancing the
state-of-the-art in automatic singing voice detection. First,
we proposed a novel extension to a state-of-the-art au-
dio feature set for singing voice detection and validated
it on a public benchmark set. Second, we proposed boot-
strap training and cross-version fusion as post-processing
strategies applicable to intermediate results from a ma-
chine learning system. In our case study, involving mul-
tiple recordings of Carl Maria von Webers opera “Der
Freischütz,” we have shown that a combination of boot-
strap training and cross-version fusion can help to improve
the classification performance if the training data is very
different from the test data. While bootstrap fusion might
be applicable to improve singing voice detection in various
music genres, cross-version fusion can only help if we have
multiple, sufficiently similar versions of the same piece of
music available. Future work will be directed towards fur-
ther refinements and applications of these techniques for
various kinds of music genres.
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ABSTRACT

In this paper we present a new tempo estimation algorithm
which uses a bank of resonating comb filters to determine
the dominant periodicity of a musical excerpt. Unlike ex-
isting (comb filter based) approaches, we do not use hand-
crafted features derived from the audio signal, but rather let
a recurrent neural network learn an intermediate beat-level
representation of the signal and use this information as in-
put to the comb filter bank. While most approaches apply
complex post-processing to the output of the comb filter
bank like tracking multiple time scales, processing differ-
ent accent bands, modelling metrical relations, categoris-
ing the excerpts into slow / fast or any other advanced pro-
cessing, we achieve state-of-the-art performance on nine
of ten datasets by simply reporting the highest resonator’s
histogram peak.

1. INTRODUCTION

Tempo estimation is one of the most fundamental music
information retrieval (MIR) tasks. The tempo of music
corresponds to the frequency of the beats, i.e. the speed at
which humans usually tap to the music.

In this paper, we only deal with global tempo estima-
tion, i.e. report a single tempo estimate for a given musi-
cal piece, and do not consider the temporal evolution of
tempo. Possible applications for such algorithms include
automatic DJ mixing, similarity estimation, music recom-
mendation, playlist generation, and tempo aware audio ef-
fects. Finding the correct tempo is also vital for many beat
tracking algorithms which use a two-folded approach of
first estimating the tempo of the music and then aligning
the beats accordingly.

Many different methods for tempo estimation have been
proposed in the past. While early approaches estimated the
tempo based on discrete time events (e.g. MIDI notes or a
sequence of onsets) [6], almost all of the recently proposed
algorithms [4, 7, 8, 17, 23, 28] use some kind of continuous
input. Generally, they follow this procedure: they trans-

c© Sebastian Böck, Florian Krebs and Gerhard Widmer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Sebastian Böck, Florian Krebs and Ger-
hard Widmer. “Accurate Tempo Estimation based on Recurrent Neural
Networks and Resonating Comb Filters”, 16th International Society for
Music Information Retrieval Conference, 2015.

form the audio signal into a down-sampled feature, esti-
mate the periodicities and finally select one of the period-
icities as tempo.

As a reduction function, the signal’s envelope [26], band
pass filters [8, 17, 28], onset detection functions [4, 8, 23,
28] or combinations thereof are commonly used. Popu-
lar choices for periodicity detection include Fast Fourier
Transform (FFT) based methods like tempograms [3, 28],
autocorrelation [6, 8, 23, 25] or comb filters [4, 17, 26]. Fi-
nally, post-processing is applied to chose the most promis-
ing periodicity as perceptual tempo estimate. These post-
processing methods range from simply selecting the high-
est periodicity peak to more sophisticated (machine learn-
ing) techniques, e.g. hidden Markov models (HMM) [17],
Gaussian mixture model (GMM) regression [24] or sup-
port vector machines (SVM) [9, 25].

In this paper, we propose to use a neural network to
derive a reduction function which makes complex post-
processing redundant. By simply selecting the comb filter
with the highest summed output, we achieve state-of-the-
art performance on nine of ten datasets in the Accuracy 2
evaluation metric.

2. RELATED WORK

In the following, we briefly describe some important works
in the field of tempo estimation. Gouyon et al. [12] give
an overview of the first comparative algorithm evaluation
which took place for ISMIR 2004, followed by another
study by Zapata and Gómez [29].

The work of Scheirer [26] was the first one to process
the audio signal continuously rather than working on a
series of discrete time events. He proposed the use of
resonating comb filters, which are one of the main tech-
niques used for periodicity estimation since then. Periodic-
ity analysis is performed on a number of band pass filtered
signals and then the outputs of this analysis are combined
and a global tempo is reported.

Dixon [6] uses discrete onsets gathered with the spectral
flux method to build clusters of inter onset intervals which
are in turn processed by a multiple agent system to find the
most likely tempo. Oliveira et al. [23] extend this approach
to use a continuous input signal instead of discrete time
events and modified it to allow causal processing.

Klapuri et al. [17] jointly analyse the musical piece at
three time scales: the tatum, tactus (which corresponds to
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the beat or tempo) and measure level. The signal is split
into multiple bands and then combined into four accent
bands before being fed into a bank of resonating comb
filters similar to [26]. Their temporal evolution and the
relation of the different time scales are modelled with a
probabilistic framework to report the final position of the
beats. The tempo is then calculated as the median of the
beat intervals during the second half of the signal.

Instead of a multi-band approach as used in [17, 26],
Davies and Plumbley [4] process an autocorrelated version
of a complex domain onset detection function with a shift
invariant comb filter bank to get the beat period. Although
this method uses only a single dimensional input feature,
it performs almost as good as the competing algorithms
in [12] but has much lower computational complexity.

Gainza and Coyle [8] use a multi-band decomposition
to split the audio signal into three frequency bands and then
perform a transient / onsets detection (with different onset
detection methods). These are transformed via autocor-
relation into periodicity density functions, combined, and
weighted to extract the final tempo.

Gkiokas et al. [9] utilise harmonic / percussive source
separation on top of a constant-Q transformed signal in
order to extract chroma features and filter bank energies
from the separated signal respectively. Periodicity is esti-
mated for both representations with a bank of resonating
comb filters for overlapping windows of 8 seconds length
and the resulting features are combined before a metrical
level analysis is performed to report the final tempo. In a
consecutive work [10] they use a support vector machine
(SVM) to classify the music into tempo classes to better
predict the tempo to be reported.

Elowsson et al. [7] also use harmonic / percussive source
separation to model the speed of music. They derive var-
ious features like onset densities (for multiple frequency
ranges) and strong onset clusters and use a regression model
to predict the tempo of the signal.

Percival and Tzanetakis [25] use a “traditional” approach
by first generating a spectral flux onset strength signal, fol-
lowed by a stage which detects the beat period in overlap-
ping windows of approximately 6 seconds length (via gen-
eralised autocorrelation with harmonic enhancement) and
a final accumulating stage which gathers all these tempo
estimates and uses a support vector machine (SVM) to de-
cide which octave the tempo should be in.

Wu and Jang [28] first derive an unaltered and a low
pass filtered version of the input signal. Then they obtain a
tempogram representation of a complex domain onset de-
tection function for both signals to obtain tempo pairs. A
classifier is then used to report the final most salient tempo.

3. ALGORITHM DESCRIPTION

Scheirer [26] found it beneficial to compute periodicities
individually on multiple frequency bands and then subse-
quently combine them to estimate a single tempo. Klapuri
et al. [17] followed this route but Davies and Plumpley ar-
gued that is is enough to have a single – musically mean-
ingful – feature to estimate the periodicity of a signal [4].

Given the fact that beats are the musically most relevant
descriptors for the tempo of a musical piece, we take this
approach one step further and do not use the pre-processed
signal directly – or any representation that is strongly cor-
related with it, e.g. an onset detection function – as an input
for a comb filter, but rather process the signal with a neural
network which is trained to predict the positions of beats
inside the signal. The resulting beat activation function is
then fed into a bank of resonating comb filters to determine
the tempo.

Neural 
Network

Comb
Filter BankSignal TempoSignal

Preprocessing

Figure 1: Overview of the new tempo estimation system.

Figure 1 gives general overview over the different steps
of the tempo estimation system, which are described into
more detail in the following sections.

3.1 Signal Pre-Processing

The proposed system processes the signal in a frame-wise
manner. Therefore the audio signal is split into overlapping
frames and weighted with a Hann window of same length
before being transferred to a time-frequency representa-
tion by means of the Short-time Fourier Transform (STFT).
Two adjacent frames are located 10 ms apart, which corre-
sponds to a rate of 100 fps (frames per second). We omit
the phase portion of the complex spectrogram and use only
the magnitudes for further processing. To reduce the di-
mensionality of the signal, we process it with a logarith-
mically spaced filter which has three bands per octave and
is limited to the frequency range [30, 17000] Hz. To bet-
ter match the human’s perception of loudness, we scale the
resulting frequency bands logarithmically. As the final in-
put features for the neural network, we stack three spec-
trograms and their first order difference calculated with
different STFT sizes of 1024, 2048 and 4096 samples, a
visualisation is given Figure 2b.

3.2 Neural Network Processing

As a network we chose the system presented in [1], which
is also the basis for the current state-of-the-art in beat track-
ing [2, 18]. The output of the neural network is a beat
activation function, which represents the probability of a
frame being a beat position. Instead of processing the beat
activation function to extract the positions of the beats, we
use it directly as a one-dimensional input to the bank of
resonating comb filters.

Using this continuous function instead of discrete beats
is advantageous since the detection is never 100% effec-
tive und thus introduces errors when inferring the tempo
directly from the beats. This is in line with the observation
that recent tempo induction algorithms use onset detection
functions or other continuously valued inputs rather than
discrete time events.
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(b) Input to the neural network
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(c) Neural network output (beat activation function)

0 1 2 3 4 5 6
time [seconds]

40

60

80

100

120

140

co
m

b
 f

ilt
e
r 

la
g
 [

fr
a
m

e
s]

(d) Resonating comb filter bank output

0 1 2 3 4 5 6
time [seconds]

40

60

80

100

120

140

co
m

b
 f

ilt
e
r 

la
g
 [

fr
a
m

e
s]

(e) Maxima of the resonating comb filter bank
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(f) Weighted histogram with summed maxima

Figure 2: Signal flow of a 6 second pop song excerpt: (a)
input audio signal, (b) pre-processed input to the neural
network, (c) its raw (dotted) and smoothed (solid) output,
(d) corresponding comb filter bank response, (e) the max-
ima thereof, (f) resulting raw (dotted) and smoothed (solid)
weighted histogram of the summed maxima. The beat po-
sitions and the tempo are marked with vertical red lines.

We believe that the learned feature representation (at
least to some extent) incorporates information that other-
wise would have to be modelled explicitly, either by track-
ing multiple time scales [17], processing multiple accent
bands [26], modelling metrical relations [9], dividing the
excerpts into slow / fast categories [7] or any other advanced
processing. Figure 2c shows an exemplary output of the
neural network. It can be seen that the network activation
function has strong regular peaks that do not always coin-
cide with high energies in the network’s inputs.

3.2.1 Network Training

We train the network on the datasets described in Section
4.2 which are marked with an asterisk (*) in an 8-fold
cross validation setting based on a random splitting of the
datasets. We initialise the network weights and biases with
a uniform random distribution with range [−0.1, 0.1] and
train it with stochastic gradient decent with a learning rate
of 10−4 and a momentum of 0.9. We stop training if no im-
provement of the cross entropy error of the validation set
can be observed for 20 epochs. All adjustable parameters
of the system are tuned to maximise the tempo estimation
performance on the validation set.

3.2.2 Activation Function Smoothing

The beat activation function of the neural network reflects
the probability that a given frame is a beat position. How-
ever, it can happen that the network is not sure about the
exact position of the beat if it falls close to the border be-
tween two frames and hence splits the reported probability
between these two frames. Another aspect to be considered
is the fact that the ground truth annotations used as targets
for the training are sometimes generated via manual tap-
ping and thus deviate from the real beat position by up to
50 ms. This can result also in blurred peaks in the beat acti-
vation function. To reduce the impact of these artefacts, we
smooth the activation function before being processed with
the filter bank by convolving it with a Hamming window
of length 140 ms. 1

3.3 Comb Filter Periodicity Estimation

We use the output of the neural network stage as input to
a bank of resonating comb filters. As outlined previously,
comb filters are a common choice to detect periodicities
in a signal, e.g. [4, 17, 26]. The advantage of comb filters
over autocorrelation lays in the fact that comb filters also
resonate at multiples, fractions and simple rationales of the
filter lag. This behaviour is in line with the perception of
humans, which do not necessarily consider double or half
tempi wrong. We use a bank of resonating feed backward
comb filters with different time lags (τ ), defined as:

y(t, τ) = x(t) + α ∗ y(t− τ, τ). (1)

Each comb filter adds a scaled (by factor α) and delayed
(with lag τ ) version of its own output y(t) to the input sig-
nal x(t) with t denoting the time frame index.

1 Because of this smoothing the beat activations do not reflect proba-
bilities any more (and they may exceed the value of 1), but this does not
harm the overall interpretation and usefulness.
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3.3.1 Lag Range Definition

For the individual bands of the comb filter bank we use a
linear spacing of the lags with the minimum and maximum
delays calculated as:

τmin = b60 ∗ fps/bpmmaxc
τmax = d60 ∗ fps/bpmmine

(2)

with fps representing the frame rate of the system given in
frames per second and the minimum and maximum tempi
bpmmin and bpmmax given in beats per minute. We found
the tempo range of [40, 250] bpm to perform best on the
validation set.

3.3.2 Scaling Factor Definition

Scheirer [26] found it beneficial to use different scaling
factors α(τ) for the individual comb filter bands. He de-
fines them such that the individual filters have the same
half-energy time. Klapuri [17] also uses filters with ex-
ponentially decaying pulse response, but sets the scaling
factor such that the response decays to half after a defined
time of 3 seconds.

Contrary to these findings, we use a single value for all
filter lags, which is set to α = 0.79. The reason that a sin-
gle value works better for this system may lay in the fact
that we sum all peaks of the filters. With a fixed scaling
factor, the resonance of filters with smaller lags tend to de-
cay faster, but they also produce more peaks, hence leading
to a more “balanced” histogram.

3.3.3 Histogram Building

After smoothing the neural network output and process-
ing it with the comb filter, we build a weighted histogram
H(τ) from the output y(t, τ) by simply summing the ac-
tivations of the individual comb filters (over all frames)
if this filter produced the highest peak at the given time
frame:

H(τ) =
T∑

t=0

y(t, τ) ∗ I(τ, argmax
τ

y(t, τ))

I(a, b) =

{
1 if a ≡ b
0 otherwise

(3)

with t denoting the time frame index, T the total number
of frames, and τ the filter delays.

The bins of the weighted histogram correspond to the
time lags τ and the bin heights represent the number of
frames where the corresponding filter has a maximum at
this delay, weighted by the activations of the comb fil-
ter. This weighting has the advantage that it favours fil-
ters which resonate at lags which correspond to intervals
with highly probable beat positions (i.e. high values of the
beat activation function) over those which are less proba-
ble. Figure 2d illustrates the output of the comb filter bank,
Figure 2e the weighted maxima which are used to build the
weighted histogram shown as the dotted line in Figure 2f.

3.3.4 Histogram Smoothing

Music almost always contains tempo fluctuations – at least
with regard to the frame rate of the system. Even stable
tempi result in weights being split between two or more
histogram bins. Therefore we combine bins before report-
ing the final tempo.

Our approach simply smooths the histogram by con-
volving it with a Hamming window with a width of seven
bins, similar to [25]. Depending on the bin index (corre-
sponding to the filter lag τ ), a fixed width results in differ-
ent tempo deviations, ranging from −7% to +8% for a lag
of τ = 24 (corresponding to 250 bpm) to −2% to +2.9%
for a lag of τ = 40 (i.e. 40 bpm). Although this allows a
greater deviation for higher tempi, we found no improve-
ment over choosing the size of the smoothing window as
a function of the tempo. Figure 2f shows the smoothed
histogram as the solid line.

3.3.5 Peak Selection

The histogram shows peaks at the different tempi of the
musical piece. Again, previous works put much effort into
this stage to select the peak with the strongest perceptual
strength, ranging from simple rules driven by heuristics
[25] over GMM regression based solutions [24] to utilis-
ing a support vector machine (SVM) [10, 25] or decision
trees [25]. In order to keep our approach as simple as pos-
sible, we simply select the highest peak of the smoothed
histogram as our final tempo.

4. EVALUATION

To assess the performance of the proposed system we com-
pare it to an autocorrelation based tempo estimation method
as described in [1], which operates on the same beat activa-
tion function obtained with the neural network described in
Section 3.2. The algorithms of Gkiokas [9], Percival [25],
Klapuri [17], Oliveira [23], and Davies [4] were chosen as
additional reference systems based on their availability and
overall performance.

For a short description of these algorithms, please refer
to Section 2.

All of the algorithms were used in their default con-
figuration, except the system of Oliveira [23], which we
operated in offline mode with an induction length of 100
seconds, because it yielded significantly better results. 2

It should be noted however, that this mode results in a re-
duced tempo search range of 81-160 bpm, which can lead
to biased results in favour of datasets in this tempo range.

Following [29] and [25] we perform statistical tests of
our results compared to the others with McNemar’s test
using a significance value of p < 0.01.

4.1 Evaluation Metrics

Since humans perceive tempo and rhythm subjectively,
there is no single best tempo estimate. For example, the
perceived tempo can be a multiple or fraction of the tempo
given by the score of the piece. This is also known as

2 This corresponds to: ibt -off -i auto-regen -t 100
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the tempo octave problem. Therefore, two evaluation mea-
sures are used in the literature: Accuracy 1 considers only
the single annotated tempo for the evaluation, whereas Ac-
curacy 2 also includes integer multiples or fractions of the
annotated tempo. Since the data that we use also contains
music in ternary meter, we do not only add double and
half tempo annotations, but also triple and third tempo. In
line with most other publications we report accuracy values
which denote the algorithms’ ability to correctly estimate
the tempo of the musical piece with less than 4% deviation
form the annotated ground truth.

4.2 Datasets

We use a total of ten datasets to evaluate the performance
of our algorithm. Table 1 lists some statistics of the datasets.
Datasets marked with an asterisk (*) were used to train the
neural networks with 8-fold cross validation as described
in Section 3.2.1.

For all sets with beat annotations available (Ballroom,
Hainsworth, SMC, Beatles, RWC, HJDB), we generated
the tempo annotations as the median of the inter beat in-
tervals. For the HJDB set (which is in 4/4 meter), we first
derived the beat positions from the downbeat annotations
before inferring the tempo ground truth. For all other sets
we use the provided tempo annotations and – where appli-
cable – the corrected annotations from [25].

# files length annotations
Dataset

Ballroom [12, 19] * 685 3 5h 57m beats
Hainsworth [13] * 222 3h 19m beats
SMC [16] * 217 2h 25m beats
Klapuri [17] 474 7h 22m beats
GTZAN [25, 27] 999 8h 20m tempo
Songs [12] 465 2h 35m tempo
Beatles [5] 180 8h 9m beats
ACM Mirum [21, 24] 1410 15h 5m tempo
RWC Popular [11] 100 6h 47m beats
HJDB [15] 235 3h 19m downbeats
total 4987 63h 17m

Table 1: Overview of the datasets used for evaluation.

4.3 Results & Discussion

Table 2 lists the results of the proposed algorithm com-
pared to the reference systems. The results (of our algo-
rithm) reported on the Ballroom, Hainsworth and SMC
set are obtained with 8-fold cross-validation, since these
datasets were used to train the neural network. Although
this is a technically correct evaluation, it can lead to biased
results, since the system knows, e.g. about ballroom music
and its features in general and thus has an advantage over
the other systems. It is thus no surprise that the proposed
system outperforms the others on these sets.

3 We removed the 13 duplicates identified by Bob Sturm:
http://media.aau.dk/null space pursuits/2014/01/ballroom-dataset.html

Nonetheless, the new system outperforms the autocor-
relation based tempo estimation method operating on the
very same neural network output in almost all cases. This
clearly shows the advantage of the resonating comb filters,
which are less prone to single missing or misaligned peaks
in the beat activation function, due to their recurrent na-
ture and the fact that they also resonate on fractions and
multiples of the dominant tempo.

The results for the other datasets reflect the algorithm’s
ability to estimate the tempo of a completely unknown sig-
nal without tuning any of the parameters. It can be seen
that no single system performs best on all datasets. Our
proposed system performs state-of-the-art (i.e. no other al-
gorithm is statistically significantly better) in all but the
HJDB set w.r.t. Accuracy 2. We even outperform most of
the other methods in Accuracy 1, which highlights the al-
gorithm’s ability to not only capture a meaningful tempo,
but also choose the correct tempo octave.

An inspection of incorrectly detected tempi in the HJDB
set showed that the algorithm’s histogram usually has a
peak at the correct tempo but that this peak is not the high-
est. The reason lays in the fact that this set contains mu-
sic with breakbeats and strong syncopation. Unfortunately,
the neural network often identifies these syncopated notes
as beats. Contrary to single or infrequently misaligned
beats, the comb filter is not able to correct regularly recur-
ring misalignments. E.g. in drum & bass music, where the
bass drum usually falls on the offbeat between the third and
fourth beat, this leads to additional peaks in the histogram
corresponding to 0.5 and 1.5 times the beat interval, and a
much lower peak at the correct position. Since we do not
perform intelligent clustering of the histogram peaks, of-
ten the rate of the downbeats is reported, which results in
a tempo which is not covered by the Accuracy 2 measure
any more.

4.4 MIREX Evaluation

We submitted the algorithm to last year’s MIREX evalua-
tion. 4 Performance is tested on a hidden set of 140 files
with a total length of 1 hour and 10 minutes. The tempo
evaluation used for MIREX is different, because for each
song the two most dominant tempi are annotated. MIREX
uses the following three evaluation metrics: P-Score [22]
and the percentage of files for which at least one or both of
the annotated tempi was identified correctly within a max-
imum allowed deviation of±8% from the ground truth an-
notations. Since MIREX requires the algorithms to report
two tempi with a relative strength, we adopted the peak-
picking strategy outlined in Section 3.3.5 to simply report
the two highest peaks.

Table 3 gives an overview of the five best performing
algorithms (of different authors) over all years the MIREX
tempo estimation task is run, together with results for al-
gorithms also used for evaluation in the previous section.

Our algorithm ranked first in last year’s MIREX eval-
uation and achieved the highest P-Score and at least one
tempo reported correctly performance ever. The best per-

4 http://nema.lis.illinois.edu/nema out/mirex2014/results/ate/
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NEW Böck [1] Gkiokas [9] Percival [25] Klapuri [17] IBT [23] Davies [4]
Accuracy 1
Ballroom [12, 19] 0.950† 0.639†− 0.625− 0.653− 0.642− 0.651− 0.709−
Hainsworth [13] 0.847† 0.541†− 0.667− 0.721− 0.752− 0.698− 0.739−
SMC [16] 0.512† 0.442† 0.346− 0.267− 0.189− 0.166− 0.152−
Klapuri [17] 0.789 0.502− 0.741 0.732 0.768 0.724− 0.692−
GTZAN [25] 0.668 0.601− 0.716− 0.754+ 0.704+ 0.599− 0.582−
Songs [12] 0.477 0.570+ 0.570+ 0.611+ 0.585+ 0.486 0.424
Beatles [5] 0.850 0.700− 0.778 0.811 0.789 0.767 0.761−
ACM Mirum [21, 24] 0.741 0.540− 0.725 0.733 0.679− 0.621− 0.646−
RWC Popular [11] 0.600 0.450 0.900+ 0.810+ 0.770 0.750 0.770+
HJDB [14] 0.796 0.434− 0.783 0.285− 0.494− 0.911+ 0.706
Dataset average 0.721 0.543 0.563 0.638 0.636 0.637 0.617
Total average 0.734 0.560− 0.685− 0.677− 0.658− 0.623− 0.618−
Accuracy 2
Ballroom [12, 19] 1.000† 0.997† 0.981 0.953− 0.921− 0.921− 0.974
Hainsworth [13] 0.941† 0.910† 0.887 0.901 0.869 0.802− 0.878
SMC [16] 0.673† 0.599† 0.512− 0.438− 0.438− 0.359− 0.415−
Klapuri [17] 0.937 0.907− 0.954 0.937 0.918 0.880− 0.924
GTZAN [25] 0.950 0.942 0.938 0.925− 0.923− 0.841− 0.922−
Songs [12] 0.933 0.918 0.910 0.865− 0.910 0.791− 0.875−
Beatles [5] 0.983 0.967 0.978 0.989 0.928 0.883 0.978
ACM Mirum [21, 24] 0.976 0.958− 0.979 0.972 0.967 0.915− 0.975
RWC Popular [11] 0.950 0.940 1.000 1.000 0.990 0.980 1.000
HJDB [14] 0.868 0.851 0.911 1.000+ 0.864 0.991+ 1.000+
Dataset average 0.919 0.899 0.916 0.896 0.871 0.837 0.893
Total average 0.946 0.929− 0.935− 0.923− 0.909− 0.861− 0.923−

Table 2: Accuracy 1 and Accuracy 2 results for different datasets and algorithms, with best results marked in bold and +
and − denoting statistical significance compared to our results. † denote values obtained with 8-fold cross validation.

P-Score ≥1 tempo both tempi
Algorithm
NEW 0.876 0.993 0.629
Elowsson [7] 0.857 0.943 0.693
Gkiokas [9] 0.829 0.943 0.621
Wu [28] 0.826 0.957 0.550
Lartillot [20] 0.816 0.921 0.571
Klapuri [17] 0.806 0.943 0.614
Böck [1] 0.798 0.957 0.564
Davies [4] 0.776 0.929 0.457

Table 3: Results on the McKinney test collection used for
the MIREX evaluation.

forming algorithm for the both tempi correct evaluation
was the one submitted by Elowsson [7] in 2013, which ex-
plicitly models the speed of the music and thus has a much
higher chance to report the two annotated tempi which are
inferred from human beat tapping.

5. CONCLUSION

The presented tempo estimation algorithm based on recur-
rent neural networks and resonating comb filters is able to
perform state-of-the-art or outperforms existing algorithms
on all but one datasets investigated. Based on the high Ac-

curacy 2 score, which also considers integer multiples and
fractions of the annotated ground truth tempo, it can be
concluded that the system is able to capture a meaningful
tempo in almost all cases.

Additionally, we outperform many existing algorithms
w.r.t. Accuracy 1 which suggests that it is advantageous to
use a musically more meaningful representation than just
the onset strength of the signal – even if split into multiple
accent bands – as an input for a bank of resonating comb
filters.

In future, we want to investigate methods of perceptu-
ally clustering the peaks of the histogram to report the most
relevant tempo, as this has been identified to be the main
problem of the new algorithm when dealing with very syn-
copated music. We believe that this should increase the
Accuracy 1 performance considerably.

The source code and additional resources can be found
at: http://www.cp.jku.at/people/boeck/ISMIR2015.html.
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ABSTRACT 

The Europeana repository hosts large collections of digit-
ized music manuscripts and prints. This paper investi-
gates how tools and services for this repository can ena-
ble Early Music musicologists to carry out their research 
in a more effective or efficient way, or to carry out re-
search that is impossible to do without such tools or ser-
vices. We report on the methodology, user-centered de-
velopment of a suite of tools that we have integrated 
loosely, in order to experiment with this specific target 
audience and an evaluation of the impact that such tools 
may have on how these musicologists carry out their re-
search. Positive feedback relates to the automation of data 
sharing between the loosely coupled tools and support for 
an integrated workflow. Participants in this study wanted 
to have the ability to work not only with individual items, 
but also with collections of such items. The use of search 
facets to filter, and visualization around time and place 
were positively evaluated, as was the use of Optical Mu-
sic Recognition and computer-supported analysis of mu-
sic scores. The musicologists were not convinced of the 
value of activity streams. They also wanted a less strictly 
linear organization of their workflow and the ability to 
not only consume items from the repository, but to also 
push their research results back into the Europeana repos-
itory. 

1.! INTRODUCTION AND BACKGROUND 

The basic aim of the work presented in this paper is to 
develop services and tools that leverage content in the 
Europeana Cloud for researchers in digital humanities 
[4]. In a first year of experimentation, we focused on con-
tent in the Wittgenstein archives at the University of Ber-
gen and the Axiom philosophy group at the VU Universi-
ty Amsterdam [5]. In this paper, we report on experimen-
tation in a second year of the project, where we targeted a 
research community of musicologists that focus on Early 
Music.  

It is important to note that the Europeana Cloud pro-
ject has a much wider scope: it is concerned with migrat-
ing the backend technology of Europeana to a cloud-

based infrastructure. The focus of our work is to demon-
strate that this technical development enables new tools 
and services that make it possible for researchers in digi-
tal humanities (in the specific case of the work presented 
in this paper: researchers in Early Music) to either carry 
out their existing research in a more effective or efficient 
way, or to carry out research work that is impossible 
without such tools and services, at least in practical terms, 
for instance because it would involve too much manual 
tedious human labor. 

In the early phase of the project, as the cloud-based 
services are still under development, we investigate this 
issue of added value by loosely integrating existing tools 
and services accessing the original Europeana services 
and other suitable services, and by imitating the workflow 
of the Europeana research platform, which is still under 
development. 

2.!RESEARCH GOAL AND METHODOLOGY 

2.1! Research questions 
In this paper, we address the following research ques-
tions: 

1.! What are the main problems for digital musicol-
ogists whose research focuses on Early Music? 

2.! How can we address these problems and demon-
strate the potential added value of cloud-based 
tools and services on top of large repositories of 
content like Europeana for Early Music musi-
cologists? 

2.2! Methodology 

Our basic methodology is User Centered Design [1]. The 
users of this iteration were musicologists working on Ear-
ly Music (up to and including Monteverdi). A small 
group (5 persons) was selected from within the network 
of the authors. Besides their focus on Early Music, the 
musicologists in the group share an affinity with technol-
ogy, and to a different degree are all involved in applying 
technology to their research practice.  

 As designers and developers, we had regular formative 
evaluation sessions over Skype or Google Hangout with 
the musicologists. (In fact, this worked surprisingly well 
and allowed for many more regular meetings than we 
could have organized in more traditional settings with 
such a diverse, busy and geographically distributed group 
of participants.) We also had a face-to-face meeting at the 
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end of the yearly development cycle, for a more in-depth 
evaluation (see section 6). 

In initial meetings the musicologists discussed with us 
the workflow, computational tools, and content that they 
currently use. 

It is important to note that the evaluation sessions fo-
cused on usefulness and usability-in-the-large, i.e. on 
whether or not the foreseen tools and associated research 
methodology would actually be of any substantial added 
value to the researchers involved. We wanted, more spe-
cifically, to find out whether our approach could help 
them to actually change the way they work, whether such 
an approach would address problems that they may or 
may not be aware of in their current way of working, etc. 
Only to a much lesser extent were we interested in find-
ing out whether the Early Music researchers can carry out 
their current way of working in a more efficient way with 
our tools and methodology. 

3.!RELATED WORK 

In the past decades, the musicology community in general 
has been actively involved in the use and development of 
digital tools for enhancing musicological research. The 
scholarly study of Early Music is no exception, focusing 
on very specific problems from this period of music his-
tory, while still making use of generic solutions. The de-
velopment of encoded music formats has been very im-
portant, opening up opportunities for musicologists to 
make use of and analyze machine-readable scores [18]. 
Seminal work on music encoding is carried out from the 
eighties onwards, culminating for now in more recent 
work on how full digital, critical editions of Early Music 
could be conceived. Further proof of the affinity of the 
Early Music community can be found in a special issue of 
the journal Early Music (i.e. Volume xlii (2014), No. 4). 
Whereas some research has focused on Optical Music 
Recognition (OMR) for automated metadata generation 
[11], we rely on metadata from repositories of musical 
sources (manuscripts, prints) in Europeana and apply 
OMR techniques in a later step in order to generate a ma-
chine readable music encoding for analysis (see section 
5.5). In that sense, the scope and goal of the work pre-
sented here is more similar to [6], though we focus spe-
cifically on Early Music and a User-Centered Design ap-
proach for end user tool design and development (section 
2.2). An outcome of this approach is that we provide geo-
spatial and time based visualization of search results, ra-
ther than a more conventional list of search results, as 
used in for instance [11]. In fact, we believe that visual 
approaches to music access remain underexplored, de-
spite some work like [16] and [19]. Our work is a bit dif-
ferent from this earlier work on visualization in that it fo-
cuses more on visualizations based on geospatial and 
time based characteristics of music rather than on visual-
izing clusters of related music. 
The User-Centered Design approach, which is also cen-
tral to the work presented in this paper, found its way al-
ready in the emerging field of ‘digital musicology’ [2][3] 

but our focus is on leveraging the content from large-
scale repositories for musicology. 

4.!MAIN PROBLEMS FOR MUSICOLOGISTS 

At the initial stage of our work, we identified the follow-
ing four core problems for the musicologists in our dis-
cussions with them: 

1.! Difficulty of creating the data and metadata 
needed: the creation of encoded music scores of 
Early Music (i.e. ‘musical data’) is a laborious 
task, which is often carried out with proprietary 
software packages not suited for the particular 
types of music notation from this period. Like-
wise, the metadata on these scores, their original 
sources, the composers etc. are locked into paper 
publications and not easily transformed into dig-
ital format. 

2.! Lack of digital corpora with music scores: there 
are some repositories with music scores for Ear-
ly Music, like for example CMME 
(http://www.cmme.org), ECOLM 
(http://www.ecolm.org), the Josquin Research 
Project (http://josquin.stanford.edu) and 
SIMSSA (http://www.simssa.ca) [6], but they 
are fragmented and it is tedious and time-
consuming to go through the different reposito-
ries (each with their own query facilities) and do 
a systematic search for a particular composer or 
theme. 

3.! Information exchange and linking of data when 
working with different tools: although there are 
specific tools to process music scores, they do 
not inter-operate and it is again quite tedious and 
time-consuming to apply different tools on the 
same content and then to integrate the results of 
the different tools. 

4.! Retrieval and analysis of contextual information 
about the music scores, from bibliographical and 
historical databases, like the Oxford Music 
Online (http://www.oxfordmusiconline.com/) or 
RILM (http://www.rilm.org).  

As will become clear in the remainder of this paper, 
we eventually succeeded in addressing the 1st, 2nd and 3rd 
problem listed above. 

5.!TOOL SETUP 

5.1! Introduction 
In order to investigate how technology can help the musi-
cologists with these problems, we designed, created, inte-
grated and evaluated a set of prototype tools that extends 
the toolset we prepared for the philosophers the year be-
fore. The complete toolset consists of (see Figure 1): 
 

•! Ariadne Finder (section 5.2): this tool, personal-
ized for musicologists, helps researchers search 
and find content coming from Europeana and 
other sources in a simple and integrated way - 
the intent is that this tool addresses problem 2 
mentioned above; 
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•! TimeMapper (section 5.3): this integrated tool 
visualizes the search results from the Ariadne 
finder on a timeline and an interactive map, in 
order to enable the musicologists to further fil-
ter the content and get a better overview of the 
different resources found on Europeana 
(http://timemapper.okfnlabs.org);  

•! Activity Stream (section 5.4): this service, inte-
grated in all the tools, captures and presents the 
different actions carried out by the users in their 
interactions with the tools; 

•! Aruspix (section 5.5): this is an optical music 
recognition (OMR) tool which transforms prints 
of Early Music scores into MEI [13]; 

•! Music21 (section 5.6): this is a Python-based 
set of tools for analysing music encoded as 
XML (http://web.mit.edu/music21/) [6].  

 

 
Figure 1: Schema of interconnected tools; 

5.2! Ariadne Finder 
A series of meetings with the musicology researchers en-
abled us to identify the content collections of interest. To 
the Europeana base collection, we added the resources 
from RISM (http://www.rism.info/) , and integrated them 
in the Finder. RISM is a well-known and extensively 
used inventory of musical sources. The abbreviations of 
library sigla used in RISM, have an authoritative charac-
ter within musicology, and can be used as a controlled 
vocabulary in a digital environment.  

After the first year experimentation, we simplified the 
user interface of the Finder by removing some predefined 
categories from the home screen. Instead, we made a list 
of four search facets (i.e. provider, media type, language, 
and year) available on the first screen with the search re-
sults.  

The integration of the RISM collection was a great 
challenge: the data covered by RISM (metadata on prima-
ry musical sources) are heterogeneous and quite different 
from the ones provided by Europeana. To allow the inte-
gration with the Finder backend and to enable the visuali-
sation of search results in a uniform way, transformation 
of the metadata to an internal format was required. More-
over, linking to the actual resource was not possible, 
since RISM provides metadata on the current (physical) 
holding of the sources, and does not provide links to the 
digitized versions of the sources.   

The Finder is used as the ‘baseline’ tool for the inte-
gration of the other tools, listed below. Both the Activity 
Stream and the TimeMapper are integrated in the Finder 
to see the past user activities (i.e. searches) and to visual-
ise search results respectively. When viewing an individ-

ual search result, the connection to Music21, through 
Aruspix, is also available. 

 
In Figure 2, the listing of the search results is shown, 

with the facets on the left that can be used to further re-
fine the search. Finally, Figure 3 shows how an individu-
al search result is displayed to the user, with the links to 
the functionality of Aruspix and Music21. 

 

 
Figure 2 : Search results in the Finder 

 
 

 
Figure 3 : Individual search result in the Finder 

 
The Ariadne Finder for the Musicologists group can be 

accessed at http://greenlearningnetwork.com/cmme-
finder/.  

5.3! TimeMapper 
Europeana provides a variety of metadata for its re-
sources, including thumbnail images, geo-coordinates and 
time information. TimeMapper visualizes the temporal 
and geographical characteristics of resources. 

TimeMapper is a data visualization tool that allows for 
the creation of timelines and timemaps using Google 
spreadsheets (http://timemapper.okfnlabs.org). While the 
Finder provides the user with a faceted search for Euro-
peana resources, it might still be difficult to navigate 
through large amounts of search results. We integrated 
TimeMapper in our tool chain to provide an interactive 
geo-spatial visualization of the search results. This ena-
bles users to quickly navigate the metadata and to order 
resources on the basis of time and place of publication. In 
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this way, they can more easily identify resources worth 
studying in more detail. 

Figure 4 shows the TimeMapper when drilling down 
into resources that match the keyword “Gardano”. 
TimeMapper is available under the MIT licence. The tool 
can be accessed via the Ariadne Finder button labelled 
“View in TimeMapper”. 

 

 
Figure 4: TimeMapper showing resources published by 
Gardano 

5.4! Activity Stream 
Based on our earlier work on community reading aware-
ness Error! Reference source not found. and supporting 
the Science 2.0 idea of enhancing collaboration among 
researchers [17], we have designed, developed and de-
ployed a web application called the “Activity Stream 
(AS)”, enabling researchers to share their work related 
activities within a community. More specifically in the 
context of the Early Music musicologists, the application 
aggregates “search” and “visualize” activities, and makes 
researchers aware of what their peers are currently work-
ing on.  

In the first prototype, the AS presented information 
about “searches” that were carried out with the Ariadne 
Finder and terms that were “visualized” using the Time-
Mapper, as illustrated by Figure 5. The activities in the 
stream are structured as: Actor | verb | (Object). For ex-
ample, "User from GR" | "has searched" | "Bolzano". For 
the musicologists, two new activities were added to the 
activity stream: interpretation and processing. These rep-
resent the usage of the Aruspix and Music21 components 
(see below). 

 

 
Figure 5: Main screen of the activity stream 

 
The Activity Stream is implemented as a web applica-

tion (using HTML and JavaScript) and deployed using 
the Google App Engine (GAE). Together with the terms 
used to perform a search or visualization, a link to the 
tool showing the outcome of that action is provided. Al-
so, in order to provide users the flexibility to filter activi-
ties, tool grouping was added to the application. For in-
stance, by clicking on the tool’s name (e.g.: Finder or 
TimeMapper) the user can consult the stream of activities 
from that tool only.  

The Activity Stream allows us to digest different 
events sent from different tools (via REST services) used 
by researchers, but also provides the possibility to embed 
these in other software components. For example, the ap-
plication supports RSS syndication as a passive notifica-
tion system. Figure 6 illustrates the current activity 
sources and outlets. 

 
Figure 6: Information sources and destinations of the 
Activity Stream 

 

5.5! Aruspix 
Aruspix is an optical music recognition (OMR) tool that 
scans early music prints, transcribes them and encodes 
them into the MEI standard [9][10][15]. 

While there are other OMR tools available, mainly for 
music in common music notation, Aruspix is the only 
tool to our knowledge that can handle scores printed in 
the 16th and 17th centuries with movable typefaces. Such 
scores are often difficult to examine with existing super-
imposition and optical recognition software, as they pre-
sent a number of specific layout and format problems and 
are quite often in a deteriorated state because of their age 
[12][13][14]. 

The printing techniques of that time mean that differ-
ences can exist between copies produced in the same 
print run, and comparison of these copies by superimpo-
sition can enable more accurate critical editions to be 
prepared. Digitizing the scores through optical recogni-
tion can enable us to collate different editions regardless 
of layout, and is also useful in for instance the preparation 
of digital music libraries. 

For Europeana Cloud, we use the command line ver-
sion of Aruspix that automatically converts digital scans 
of scores to MEI files in a page-wise fashion. We then 
need to combine the pages into a single score again. 
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Moreover, the MEI version being used by Aruspix is a 
new and not yet standardized one[13]. 

Since Music21 (see next section) needs MEI files that 
use the 2012 or 2013 specification, we developed an 
XSLT program to transform the MEI files that Aruspix 
delivers into this newer format. 

The command line version sends requested score tran-
scriptions to the Music21 service for further analysis 
(Section 5.6). Furthermore, it sends activity on tran-
scribed scores to the Activity Stream (Section 5.4). 

5.6! Music21 
Music21 is a Python-based object-oriented toolkit for 
computer-aided musicology that allows music infor-
mation, extraction and generation, together with music 
notation editing and scripting in symbolic (score-based) 
forms (http://web.mit.edu/music21/)[6]. The toolkit is 
able to import different formats, such as MusicXML and 
MEI.  

We extended the Music21 web application module in 
order to provide parsing and processing requests to a 
|Music21 installation running on a server. In the work-
flow, Music21 is used after the Aruspix service has creat-
ed an MEI version of a score. With an MEI file, a specific 
set of actions becomes available to the musicologists in 
order to support them with the analysis of the music in-
volved: calculation of ‘Parts and Measures’, calculation 
of the ‘Pitch ranges’ and requesting the ‘legal melodic 
intervals’ of a score. 

6.!EVALUATION 

6.1! General evaluation 
To start the discussion, the complete workflow of tools 
was presented to the musicologists. Afterwards, questions 
were asked regarding the usefulness of their current tool 
setup. In general, the participants agreed that the way in 
which the tools support the research process is helpful. 
The connection of existing tools (optical music recogni-
tion and processing of encoded scores) and automating 
the process of data sharing between these tools is of great 
value for them, as it saves them time with their research 
tasks, compared with using the tools individually. Actual-
ly, some of the musicologists had not been able to manu-
ally feed the output of one tool as input to the next tool in 
the workflow. 

While the participants found the overall workflow use-
ful, they were also interested in details about specific 
parts of it. Some of them suggested that, in some cases, 
just one or two tools are more relevant for their research 
(e.g. converting a score into a computer readable format 
or importing their own encoded scores for processing 
with Music21). This is mainly related to their very varied 
technical background and research goals. Some of the 
participants are computational musicologists that regular-
ly use tools like Music21, while others are more tradi-
tional musicologists that work with the original sources 
and have very limited digital research experience. 

The participants agreed with the added value of the 
loosely integrated workflow while doing research on a 
single item (score), but also observed that the workflow 
could be automated for use at a larger scale (e.g. a large 
dataset of scores of a specific period or region). Such au-
tomation could be of great value in order to answer re-
search questions about a complete collection or in order 
to generate new questions for such a collection. 

6.2! Ariadne Finder, TimeMapper and Activity 
Stream 
After the musicologists discussed the overall workflow, 
the loose coupling and setup of tools, they were prompted 
to assess the tools on an individual level. 

From the set of tools adapted from the experimentation 
the year before with the philosophers [6], the Time-
Mapper was considered the most interesting and relevant 
for musicology research. In its current form, the tool pro-
vides a visualization of scores based on location and year 
of print. The participants suggested extending the func-
tionality of the tool, for example with the use of more in-
formation than just the data of publication of the prints 
(e.g. include the information gathered in the Music21 
tools, like parallel fifths, valid melodies, or other species 
counterpoints of a score or measure) or the possibility to 
compare different timelines that represent results for dif-
ferent search terms. This feedback basically confirms the 
relevance and usefulness of information visualization 
techniques in general for musicology research [16][19]. 

The Finder was mostly seen as a tool that provides ex-
isting functionality, similar to what other search engines 
provide, though the musicologists acknowledged the val-
ue of having facets to filter the result set. They suggested 
to personalize facets to terms that are closer to musicolo-
gist research practice, for example, to use ‘printed books’, 
‘manuscripts’, ‘single pieces’ instead of ‘image’ or ‘text’ 
classification. 

The musicologists were more critical about the useful-
ness of the Activity Stream (AS) in their research activi-
ties. They were not sure that the current actions are rele-
vant for them or even which alternative kinds of activities 
might be useful to be displayed in the tool. They mostly 
perceived the AS as an interesting communication device 
or as a source of information that is comparable to what is 
common in a Social Network (like Facebook, or more 
specific for research, like https://www.academia.edu or 
https://www.researchgate.net/). The participants suggest-
ed functionality to enhance the perceived usefulness of 
the stream, such as a search for specific activities, the 
possibility to aggregate activities in order to obtain statis-
tics from them, and the possibility to store results for later 
use. 

Participants also suggested other interesting ways to 
connect the tools, instead of only having a linear ap-
proach, as in the current setup. For example, they men-
tioned that it would be interesting to be able to take the 
output of Music21 (e.g. parallel fifths of a score) and map 
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the results, based on their location, with the TimeMapper. 
This can provide an overview of specific score character-
istics and relate them to a particular location. 

6.3! Aruspix and Music21 
While the Aruspix version included in our workflow does 
not have a visual frontend for the users, the musicologists 
acknowledge its importance in the workflow. As men-
tioned, optical music recognition (OMR) is a crucial step 
for them [11][12][13][14]. Regarding the current output 
of this tool, the musicologists would appreciate to see the 
encoding result and the percentage of errors after the 
OMR process. While in other sciences, researchers are 
used to work with and accept a certain percentage of er-
rors, these may not be well accepted in the musicology 
domain where there is much less of a tradition to work 
with data that include errors. Nevertheless, the musicolo-
gists appreciate what is happening behind the scenes and 
how good the obtained encoding is, and believe that the 
results could build trust from the user in the system. 
Moreover, information about errors can be used as a 
feedback mechanism for Aruspix: study participants men-
tioned that they wanted such a facility to be as simple as 
possible but at the same time complete enough to get the 
desired information. 

The Music21 web interface was one of the most inter-
esting tools for the musicologists. Besides the textual 
rendition of the analytical results, the participants would 
also like access to plots or statistics (e.g. note distribu-
tion), as these could be more helpful in order to identify 
characteristics of a score. Currently, the Music21 inter-
face only supports a specific set of generic calculations 
and processes [6]. The participants would like to have the 
freedom to build their own analysis, via text or through a 
graphical user interface. 

6.4! Other comments 
During the face-to-face evaluation session, the partici-
pants provided suggestions about the tools and the work-
flow, but also about the underlying concepts. For exam-
ple, some users suggested being able to push the generat-
ed encoded scores by Aruspix (MEI or MusicXML) back 
into the Europeana repository, so that we would use 
OMR technology to generate metadata, as in [12][14]. 
Likewise, results created with the Music21 toolkit could 
be considered as metadata of a particular composition, 
and as such could also be fed back into the Europeana 
Cloud repository. Such an approach would enable sharing 
intermediate research results with peers and a more  
Science2.0 approach to research [17]. 
While it was not the direct scope of our work, the partici-
pants made a number of suggestions for enhancing the 
specific usability of the tools and providing a nicer user 
interface overall. 
Finally, the participants suggested additional tools or 
functionality to be considered. These included: 

•! Possibility to run batch processes, in order to 
get a broader overview of music characteris-
tics of a set of scores. 

•! Support for playback mechanisms in Music21 
(or Aruspix), in order to be able to validate 
and confirm the automatic encoding by listen-
ing to the result. 

•! Possibility to annotate directly into the digital 
version of a score. 

•! Possibility to create their own visualizations 
based on the data obtained from different 
tools, especially from the Music21 output. 

•! Inclusion of additional musicology resources, 
for example from http://www.diamm.ac.uk/.  

7.!CONCLUSION AND FUTURE WORK 

Basically, the User-Centered Development process seems 
to work as intended: the target users positively evaluated 
the end result. An important issue for the next cycle is to 
connect the frontend tools for researchers with the actual 
backend infrastructure of Europeana Cloud, which has 
progressed into deployment while our work was taking 
place. This integration in the production system will ena-
ble us to work with more comprehensive content collec-
tions. 

It is clear from the results that we obtained that there is 
substantial potential to support novel research methods 
on large-scale collections of music sources, using tech-
nologies like Optical Music Recognition, information 
visualization, loose coupling of tools, and flexible search. 
Our work illustrates how this can help researchers in Ear-
ly Music to carry out existing research in more efficient 
and effective ways, and even address research questions 
that are hard or impossible to work on with more tradi-
tional means. As such, the potential for a Science2.0 ap-
proach to musicology is quite considerable.  
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ABSTRACT 

Separating the leading singing voice from the musical 

background from a monaural recording is a challenging 

task that appears naturally in several music processing 

applications. Recently, kernel additive modeling with 

generalized spatial Wiener filtering (GW) was presented 

for music/voice separation. In this paper, an adaptive au-

ditory filtering based on β-order minimum mean-square 

error spectral amplitude estimation (bSA) is applied to 

the kernel additive modeling for improving the singing 

voice separation performance from monaural music sig-

nal. The proposed algorithm is composed of five modules: 

short time Fourier transform, music/voice separation 

based on bSA, determination of back-fitting, back-fitting, 

and inverse short time Fourier transform. In the proposed 

method, the Singular Value Decomposition (SVD)-based 

factorized spectral amplitude exponent β for each kernel 

component is adaptively calculated for effective bSA-

based auditory filtering performance during kernel back-

fitting. Using a back-fitting threshold, the kernel back-

fitting process can automatically be iteratively performed 

until convergence. Experimental results show that the 

proposed method achieves better separation performance 

than GW based on kernel additive modeling. 

1. INTRODUCTION 

A singing voice in a music signal contains useful infor-

mation for a song, as it embeds the singer, the lyrics, and 

the emotion of the song. Therefore, vocal or singing voice 

separation from monaural music signal is an important 

task in many applications, such as automatic karaoke [1], 

instrument/vocalist identification [2], music/voice tran-

scription, music remixing [3] and audio restoration. 

So far, numerous vocal separation algorithms have 

been proposed with various approaches, such as non-

negative matrix factorization [4], adaptive Bayesian mod-

eling [5], and pitch-based interference [6-7]. These meth-

ods usually first map signals onto a feature space, then 

detect singing voice segments, and finally apply source 

separation. 

Recently, a relatively promising approach using kernel 

additive modeling (KAM) was proposed [8], wherein the 

spectrogram of each source is modeled only locally. This 

approach encompasses a large number of recently pro-

posed methods for source separation [9-14]. KAM per-

mits the use of different proximity kernels for different 

sources, with separation using an iterative kernel back-

fitting (KBF) algorithm. In the kernel back-fitting, gener-

alized Wiener filtering (GW) is used for the step of mixed 

music signal separation, and two-dimensional median fil-

tering is applied to the power spectrogram of each source 

estimate for kernel spectrogram model fitting at each iter-

ation. The GW requires good models of the spectrograms 

of each proximity source along with its spatial character-

istics and permits very good separation provided these 

parameters are well estimated. 

In spoken speech enhancement, one source may be the 

target voice, while others correspond to background noise 

which must be filtered out. Among the vast amount of 

single channel speech enhancement algorithms based on 

minimum mean-square error (MMSE) estimation of 

short-time spectral amplitude (STSA) published in the 

literature, it is well-known that the Bayesian STSA esti-

mation methods [15] outperform the Wiener filtering, 

spectral-subtraction, and subspace approaches. In addi-

tion, among the Bayesian STSA estimation methods, β-

order MMSE spectral amplitude estimation [15-17] 

achieved better enhancement performance than the exist-

ing Bayesian estimators, such as those based on the 

MMSE of the short-time spectral amplitude [15-17], and 

the MMSE of the logarithm of the STSA (LSA) [15-17]. 

In this paper, an advanced music/voice separation 

method is proposed, in which β-order MMSE spectral 

amplitude estimation and kernel spectrogram back-fitting 

are combined for improvement of the separation perfor-

mance. In addition, the parameter β concerned in β-order 

MMSE spectral amplitude estimation is adaptively esti-

mated according to the masking mechanism of human 

auditory system, the compressive nonlinearities of the 

cochlea and the critical sub-band SNR. 

The proposed method has the following four ad-

vantages: (1) In the separation step, β-order MMSE 

estimation (bSA) of the factorized spectral amplitude 
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was used instead of GW for the kernel back-fitting 

procedure to achieve better separation performances. 

(2) The Singular Value Decomposition (SVD)-based 

factorized spectral amplitude βj were adaptively calcu-

lated for effective bSA estimation performance. (3) In 

the back-fitting step, an SVD-based factorization pro-

cedure was applied to the power spectrogram filtered 

by median filter to achieve efficient compression be-

fore processing of the next proximity source. (4) Using 

a back-fitting threshold, the kernel back-fitting process 

can automatically be iteratively performed until con-

vergence. 

This paper is organized as follows. Section 2 describes 

the proposed method, while Section 3 discusses the ex-

perimental results. Finally, the conclusion is presented in 

Section 4. 

2. PROPOSED MUSIC/VOICE SEPARATION 

ALGORITHM 

The proposed algorithm is composed of five modules: 

short time Fourier transform (STFT), music/voice separa-

tion based on β-order MMSE spectral amplitude estima-

tion (bSA), determination of back-fitting, back-fitting, 

and inverse short time Fourier transform (ISTFT). 

Figure 1 denotes the overall procedure of the proposed 

music/voice separation algorithm. 

Short-time 

Fourier transform (STFT)

Music/Voice separation 

based on bSA

Inverse Short-time Fourier 

transform (ISTFT)

Back-fitting

Monaural music signal

Separated music and 

voice signal

x(n)

Oj(ω,t)

X(ω,t)

Sj(ω,t)

Yes

No

Is 

the music/voice 

separation sufficient?

)(no j



 

Figure 1. Overall flow chart of proposed music/voice 

separation algorithm. 

We assume that the mixture music signal, x(n), is tak-

en as the sum of j underlying sources that are composed 

of some of percussive elements, one of the stable har-

monic elements, and one of the singing voice. Let a real-

valued monaural music signal in discrete-time domain x(n) 

be assumed as: 

  



J

j

j nonx
1

)(                              (1) 

where j (= 1, 2, … J) is index of each objective sources, n 

is sample index, and oj(n) denotes an objective source in 

mixture music signal. 

First, an input monaural music signal x(n) is trans-

formed into the complex spectrogram X(ω,t) using the 

short-time discrete Fourier transform (STFT), as shown: 
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where R denotes the frame shift, t is the frame index, w(n) 

indicates a window function, N is size of window, and ω 

is the frequency bin index, which is related to the normal-

ized center frequency. 

From the input complex spectrogram X(ω,t), complex 

spectrogram Oj(ω,t) for each objective sources is estimat-

ed by β-order MMSE spectral amplitude estimation. 

Each current estimated spectrogram is compared with 

each previous estimated complex spectrogram. If the dif-

ference between the current and previous estimated spec-

trograms is not larger than the back-fitting threshold val-

ue, each complex spectrogram is converted back to the 

time domain using an inverse STFT. Conversely, if the 

difference between the two is larger than back-fitting 

threshold value, the kernel back-fitting process is iterated 

until convergence. 

During the back-fitting processes, the power spectro-

gram of the estimated spectrogram is filtered by a simple 

two dimensional median filter with source-specific binary 

kernels. The source-specific binary kernels are explained 

in detail in next sub-section. 

This kernel back-fitting proceeds in an iterative fash-

ion, with alternate performance of separation and re-

estimation (back-fitting) of the parameters to obtain new 

spectrogram estimates for each source. 

2.1 Re-estimation using back-fitting 

The re-estimation using back-fitting permits one to use 

different proximity kernels for each source and to sepa-

rate them in order to perform the estimation. It assumes 

that vertical lines in a spectrogram correspond to percus-

sive events; horizontal lines are typically associated with 

harmonics of pitched instruments, while cross-like forms 

correspond to singing voice events. In this case, peaks 

due to pitched harmonics can be regarded as outliers on 

the vertical lines associated with percussive events. Simi-

larly, peaks due to the percussion events can be regarded 

as outliers on the horizontal lines associated with pitched 

harmonic instruments. Median filters used extensively in 

image processing are good at eliminating outliers. That is, 
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median filtering each time frame will suppress harmonics 

in this frame resulting in a percussion enhanced frame, 

while median filtering each frequency slice will suppress 

percussion events. This brings to the concept of using 

median filters individually in the horizontal, vertical, and 

cross-like directions to separate harmonic, percussive and 

vocal events. 

The process is as follows: 

(Step 1) Using the estimated complex spectrogram 

Oj(ω,t), the power spectrogram of the complex spectro-

gram is calculated as: 

 ),(),( 
2

tOtV jj                           (3) 

(Step 2) A simple two dimensional median filter is ap-

plied to the power spectrogram Vj(ω,t) of the complex 

spectrogram with source-specific binary kernels, vocal, 

harmonic, and percussive. The different three proximity 

kernels [8] used for the median filter are as follows: (1) 

For a percussive and a repeating source, the vertical ker-

nel is chosen; (2) For a harmonic source, the horizontal 

kernel is chosen; (3) Finally, for a source with only a 

spectral smoothness assumption, the cross-like kernel is 

chosen as vocals. The detailed three kernels are explained 

in the source separation using kernel additive models [8]. 

The median filtered kernel spectrogram is given by: 

)],(K |),([),( ttVmediantM jjj             (4) 

where Kj(ω,t) is a kernel which includes percussive ele-

ments of periodic components (j = 1, 2, ... J-2), the stable 

harmonic elements (j = J-1), and the singing voice (j = J),  

respectively. In effect, the original sample of the power 

spectrogram Vj(ω,t) of the complex spectrogram is re-

placed with the middle value obtained from a sorted list 

of the samples in neighborhoods of the original sample 

according to each kernel. 

(Step 3) Kernel back-fitting using Wiener filtering or 

the β-order spectral amplitude estimator comes with an 

important drawback: it requires the full-resolution spec-

trogram, and storage of a huge amount of parameters in 

each iteration, and for each source. To reduce the 

memory usage and improve the separation performance 

while maintaining computational efficiency, Singular 

Value Decomposition (SVD) is applied to the full-

resolution spectrogram Mj(ω,t): 

 ),(SVD),( tMCDtS jjjjj                 (5) 

where Mj(ω,t) is factored into the matrix product of three 

matrices: the M × M row basis Dj matrix, the M × L diag-

onal singular value matrix Σj and the L × L transposed 

column basis functions Cj. 

2.2 Separation using β-order MMSE spectral ampli-

tude estimation 

In the separation step, β-order MMSE spectral amplitude 

estimation of the factorized spectral amplitude is used 

instead of GW for the kernel back-fitting procedure to 

achieve better music/voice separation performances. In 

the β-order MMSE spectral amplitude estimation, the 

spectral amplitude order β is quite important for singing 

voice enhancement or separation from monaural music 

signal. For the different β values, the gain values are dif-

ferent, and noise or other source reduction obtained is al-

so different. In this way, the appropriated gain can be ob-

tained by adaptively choosing right β. 

However, the traditional calculation method about β is 

based on overall Signal-to-Noise Ratio (SNR) of each 

frame. That is, their values are fixed and not vary with 

frequency in each frame. Furthermore, the human audito-

ry system has different sensitivity for different frequency 

components. Therefore, the b-th critical sub-band SNR is 

employed to calculate β values. For more effective bSA 

estimation performance, the Singular Value Decomposi-

tion (SVD)-based factorized spectral amplitude order 

βj(b,t) is adaptively calculated. Using adaptive β values 

and Singular Value Decomposition (SVD)-based factor-

ized spectral amplitude, we can yield effective mu-

sic/voice separation and obtain a good enhancement per-

formance. 

2.2.1 β-order MMSE spectral amplitude estimation 

The β-order MMSE spectral amplitude estimation is 

composed of following four modules: sum of all Sj(ω,t), 

calculation of a priori SNR and a posteriori SNR, calcula-

tion of adaptive βj(b,t), and bSA-based gain function. 

Figure 2 shows the β-order MMSE spectral ampli-

tude estimation. 

SVD-based factorized 

spectrogram

Input complex 

spectrogram

β-order MMSE 

spectal amplitude estimation

 βj(b,t)

Calculation of 

a priori SNR and

a posteriori SNR

Sum of all 

Sj(ω,t)

Calculation of 

adaptive βj(b,t)
Gain functoin

X

Sj(ω,t)X(ω,t)

ξj(ω,t) 

γj(ω,t)

Gj(ω,t)

W(ω,t)

Oj(ω,t)

W(ω,t)

 

Figure 2. Overall flow chart of the β-order MMSE spec-

tral amplitude estimation. 

Before to obtain the estimated complex spectrum 

Oj(ω,t) from SVD-based factorized Sj(ω,t), the sum W(ω,t) 

of all Sj(ω,t) is defined by: 

       tStStStW J ,...,,, 21                (6) 

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 641



  

 

Then, the a priori SNR ξj(ω,t) and the a posteriori SNR 

γj(ω,t) of each objective proximity sources are calculated 

as follows: 
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where χj(ω,t) is the function of ξj(ω,t) and γj(ω,t). 

The gain function Gj(ω,t) for the bSA is given by: 
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where Γ(•) is the gamma function, Φ(•) is the confluent 

hypergeometric function. And βj(b,t) denotes the parame-

ter based on the human auditory system. 

To calculate βj(b,t), we employ the critical sub-band 

SNR. The b critical bands are divided for each speech 

frame, where a non-linear mel-frequency scale is used, 

which approximates the behavior of the auditory sys-

tem. The mel-scale is a scale of pitches judged by lis-

teners to be equal in distance one from another. The 

reference point between this scale and normal frequen-

cy measurement is defined by equating a 1000 Hz tone, 

40 dB above the listener’s threshold, with a pitch of 

1000 mels. To convert a frequency ω in hertz into its 

equivalent in mel, the following formula is used: 

 
 











700
1log0148.1127

Hz
melpitch

        (11) 

The spectrum is then processed by a mel-filter bank. 

The signal energy of the spectrum within b-th critical 

frequency sub-bands by means of a series of triangular 

filters whose center frequency are spaced according to 

the mel-scale. Thereafter, the critical sub-band SNR 

Zj(b,t) is calculated in the b-th band. 

Finally, the estimated complex spectrogram from the 

gain function is defined as: 

     ttGtO jj ,,,                         (12) 

2.2.2 Calculation of adaptive βj(b,t) 

Since the spectral amplitude order βj(b,t) is based on 

characteristics of the human auditory system, including 

the compressive nonlinearities of the cochlea, and the 

perceived loudness, the choosing of adequate value for 

βj(b,t) can result in better enhancement or separation per-

formance. 

First, using W(ω,t) and Sj(ω,t), the sub-band SNR 

Zj(b,t) is calculated as: 
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where b ∊ [0, 23] denotes the index of critical band. Bup(b) 

and Blow(b) denote the upper and lower frequency bound 

of the b-th critical band, respectively. 

To obtain βj(b,t), the compression rate ),( tbβ j


 at inter-

mediate frequencies can be calculated through linear in-

terpolation between βlow and βhigh. That is, 

   Jjtbdtb lowhighhighj 


1for    ,),(        (14) 

using 
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where d(b,t) is the frequency-position function to the crit-

ical band, βhigh = 0.2 and βlow = 1 denote the low-

frequency and high-frequency of the compression rate, η 

= 0.06 mm, l = 1, and A = 165.4 Hz are the parameters set 

in paper [18], and fω is the frequency in Hz corresponding 

to spectral component ω, i.e., fω = ωFs/N, where Fs is the 

sampling frequency. 

By limiting the range of ),( tbj



  as [βmin, βmax] in order 

to obtain a better trade-off between target source en-

hancement and other source reduction, ),( tbj



  can be cal-

culated through the following relationship: 

   ,,),(maxmin),( maxmin  


tbZtbβ jj
    (16) 

where μ = 0.45, λ = 1.3, βmin = 0.4, and βmax = 4.0. 

According to sub-band SNR, the compressive nonline-

arities of the cochlea, and perceived loudness, a parame-

ter βj(b,t) is given as follows: 

  ),(1),(),( tbβ-qtbβqtbβ jjj



            (17) 

where q (0 < q < 1) is a smoothing parameter. 

3. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed bSA-

KBF algorithm is evaluated for the separation of back-

ground music and singing voice. 

For experiments, 100 full-length song tracks were used 

(50 songs from the ccMixter database containing many 

different musical genres, 50 songs from a self-recording 

studio music database), where all singing voices and mu-

sic accompaniments were recorded separately. All of the 

song data were stored in PCM format with mono, 16-bit 

depth, and 44.1 kHz sampling rate. 

For each track, the accompaniment of 6 repeating pat-

terns along with a 2 second steady harmonic source was 

determined. Vocals were modeled using a cross-like ker-
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nel with a height of 15 Hz and width of 20 ms. The frame 

length was set to 90 ms, with 80% overlap. Six to eight 

iterations were performed for the back-fitting algorithm 

(approximately until convergence). 

For the performance measures, performance was eval-

uated in terms of Normalized Source-to-Interference Ra-

tio (NSIR) and Normalized Source-to-Distortion Ratio 

(NSDR) by Blind Source Separation Evaluation (BSS 

Eval) metrics [19]. NSDR and NSIR for singing voice are 

defined as: 

     
     vxvvxvv

vxvvxvv

rr

rr

,SIR,SIR,,NSIR

,SDR,SDR,,NSDR




           (18) 

where vr is the synthesized singing voice, v is the original 

clean singing voice, and x is the mixture. NSDR is for 

estimating the improvement of the SDR between the pro-

cessed mixture x and the separated singing voice vr. 

Higher values indicate better separation. 

The performance of the proposed bSA algorithm was 

compared with those of GW, LSA based on KAM. 

Table 1 presents the experimental results of compara-

tive performance for music/voice separation of the four 

methods: 

• STFT-GW-KAM: As a basic KAM algorithm, the 

generalized Wiener filter was applied to the power 

spectrogram based on STFT. 

• SVD-GW-KAM: SVD was performed on the power 

spectrogram based on STFT. To the SVD-based de-

composed power spectrogram, the generalized Wie-

ner filter was applied. 

• SVD-LSA-KAM: The MMSE of the logarithm of the 

STSA was applied to the SVD-based decomposed 

power spectrogram. 

• SVD-bSA-KAM: β-order MMSE STSA was applied 

to the SVD-based decomposed power spectrogram. 

 

Methods 

Separation Per-

formance for 

Music 

Separation Per-

formance for 

Voice 

NSDR NSIR NSDR NSIR 

STFT-GW-KAM 6.37 9.18 1.89 5.76 

SVD-GW-KAM 6.83 9.65 2.35 6.23 

SVD-LSA-KAM 7.36 10.48 2.87 6.74 

SVD-bSA-KAM 8.25 12.13 3.12 6.88 

Table 1. Comparative performance for music/voice sepa-

ration. 

As shown in Table 1, the best separation performance 

of the music from the mixed music signal is obtained 

with the proposed method, SVD-bSA-KAM, in terms of 

NSDR and NSIR. Compared to the other three methods, 

the basic method, STFT-GW-KAM, attains the worst re-

sults. And the proposed bSA delivers high performance 

result in the separation of vocal components. 

4. CONCLUSIONS 

In this paper, we proposed a β-order MMSE spectral am-

plitude estimation method based on kernel back-fitting 

for music/voice separation. The proposed algorithm en-

hances the basic kernel back-fitting algorithm through 

application of β-order MMSE spectral amplitude estima-

tion considering the perceptual properties of human audi-

tory system. The experimental results show that the pro-

posed method obtained better results compared to other 

existing methods. 

In future work, we will apply the method to spatial au-

dio reproduction applications running on smart phones. 
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ABSTRACT

We describe a computational project concerning labeling
of dissonance treatments – schematic descriptions of the
uses of dissonances. We use automatic score annotation
and database methods to develop schemata for a large cor-
pus of 16th-century polyphonic music. We then apply struc-
tural techniques to investigate coincidence of schemata,
and to extrapolate from found structures to unused possi-
bilities.

1. INTRODUCTION

We develop a set of schematic dissonance treatments (i.e.
schemata under which the uses of dissonance are classi-
fiable) using a large corpus of mass movements (almost
1000) of Palestrina and Victoria, dating from the 16th cen-
tury. Palestrina in particular has a resonance through the
history of music as one whose style was raised to the sta-
tus of a didactic norm. 1 As a result, Palestrina’s practice
(or a simplification of it) has been well known and imitated
for centuries among academics and music students. 2 As a
foil for Palestrina, we compare masses by Victoria, roughly
contemporaneous and with a similar dissonance treatment.
The wealth of available literature on the dissonance prac-
tice of this style gives us a departure point for developing
a computational platform for its investigation, with a view
to generalization.

1 As pointed out in Alfred Mann’s 1991 forward to Jeppesen’s Coun-
terpoint [2], one of several classic texts on the Palestrina style – as the
title shows, the name Palestrina is all but synonymous with certain as-
pects of basic musical organization – in particular the way a “point” (i.e.
a note – or perhaps a musical “idea”) sounds and moves “counter” to (i.e.
in relation to) another point or set of points.

2 Including e.g. Haydn, Mozart, Beethoven, Schubert, Rossini,
Chopin, Berlioz, Liszt, Brahms, Bruckner, R. Strauss, and Hindemith,
who all are known to have used Fux’s Gradus ad Parnassum, based on
the Palestrina style ([1], Mann’s introduction).

c© Andie Sigler, Jon Wild, Eliot Handelman.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Andie Sigler, Jon Wild, Eliot Han-
delman. “Schematizing the Treatment of Dissonance in 16th-Century
Counterpoint”, 16th International Society for Music Information Re-
trieval Conference, 2015.

2. METHODOLOGY

2.1 Automatic Score Annotation

Part of our methodology for investigating dissonances is to
look at automatically annotated scores. Seeing annotated
scores helps us evaluate the correspondence of our speci-
fication to our intention, and develop to new schemata. It
allows us to identify musical factors that would likely not
have been apparent otherwise (i.e. in a situation where data
was displayed in a musically non-intuitive way, or where
scores had to be painstakingly scrutinized to locate scarce
occurrences).

Using a web-based music analysis system produced
by Computing Music, we generate annotated scores on-
demand (at load time). It’s possible to load and analyse
any score (including ones outside the corpus under inves-
tigation), to load a random score from the corpus, or to
“spin” through a corpus with a search for instances of a
particular configuration, such that one keystroke displays
a new annotated score focussed on the relevant measure,
bringing together similar occurrences from disparate loca-
tions.

2.2 Saving Features

On a first pass through the score, we save a set of fea-
tures for each dissonance, including duration, surround-
ing melodic intervals, metric weight, and type of attack,
as needed to define our schemata ( – as we developed
and added new schemata, an initial set of features was ex-
panded). Any features not used in a given schema are open
to any value.

Saving a set of features for each dissonance rather than
just applying a set of schematic filters on the first pass
through the score has certain advantages. Suppose we run
all dissonances through a set of filters, and several of them
are labelled P for passing. Now if we want to ask questions
about the set of passing notes (in fact matched by several
different but related schemas) – e.g. how many are going
up or down, or how many are half-notes – we have to re-
ask some of the same questions we already asked in order
to label them in the first place. As well, if we have a set
of remaining unlabelled dissonances, we will have no idea
how they failed the tests for the different labels, or what
subsets of unlabelled dissonances might have in common.

We save feature-sets (and schema labels) in a database,
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so that we can query them in different ways; database
searching also helps us develop schemata based on feat-
ural similarities of unschematized dissonances.

3. DEFINITIONS AND SCHEMATA

3.1 Dissonance and Meter

As in standard practice, we define the dissonant intervals
as the minor and major second, perfect fourth, tritone, and
minor and major seventh, and their compounds (i.e. with
additional octaves). A dissonance occurs when two notes
coincide or overlap in time and form a dissonant interval.

From the initial set of dissonances in a score, we re-
move certain fourths and tritones that participate in sonori-
ties considered consonant. 3 If a perfect fourth is accom-
panied by an additional voice sounding a third or fifth (or
their octave compound) below its lower note, it is consid-
ered consonant. Likewise a diminished fifth accompanied
by the pitch a major sixth below its lower note, or an aug-
mented fourth accompanied by the pitch a minor third be-
low its lower note.

Meter can be thought of as a temporal grid. We general-
ize to metric weight, where different places in the measure
are said to be equally “strong” or “weak.” The downbeat
is the strongest, followed by the divisions into halves, then
divisions into quarters, then eighths.

The meters under consideration are duple, using whole-
note divisions (e.g. 4/2; 2/2), or triple, using dotted-whole
divisions (e.g. 3/2, 6/2, 9/2). We don’t differentiate be-
tween whole notes in a duple meter or or dotted wholes in
a triple meter; each one represents an equal beat.

3.2 One- and Two-voice Schemata

Although a dissonance is defined as a relationship between
two notes in two different voices, commonly only one note
needs to be “explained.” 4 Typically, when one note is
struck and then sustained (or reattacked) while the second
note is struck (an oblique motion), and the second note is
on a “weak” metric position, only the second note needs
explanation, since the dissonance only occurs once the sec-
ond note enters – we call the second note the dissonance
(with respect to the first note). In these kinds of cases, we
can schematize a dissonance treatment with respect to fea-
tures of the voice containing the dissonance, and not the
voice against which it dissonates. For example, a pass-
ing note is schematized by either of two different melodic
shapes: (step up, step up) or (step down, step down). 5 It is
simultaneously schematized by one of four different metric
shapes: a half note on a weak half preceded by a duration
of at least a half, a quarter note on a weak quarter, an eighth
on a weak quarter, or an eighth on a weak eighth. We

3 These correspond to major and minor triads in root position or first
inversion, and diminished triads in first inversion, though these designa-
tions are anachronistic for the 16th century.

4 Informally, explaining means locating a theorized schematic disso-
nance treatment to which a dissonance corresponds.

5 I.e. (step up, step up) gives a figure of three notes, including a step
up to the dissonating note called the “passing note”, and another step up
from the passing note.

have defined several other “single-voice” schemata; these
are summarized in Table 1.

A suspension is a two-voice schema, involving the sus-
pended note as well as its counterpart, the “agent.” The
agent, or active voice, is an obliquely struck dissonance
on a strong beat, after which the other voice (the suspen-
sion) is constrained to resolve downward by step. Since
we’ve already set up machinery to find attacked disso-
nances, rather than to find notes that are dissonated against
at a particular place in their duration, it’s convenient to start
the schematization of suspensions with the agent, rather
than with the suspension note itself. When we find an
oblique dissonance on a strong beat, we can pull in a fea-
ture set for the note against which it dissonates, and check
whether the combination constitutes a suspension. Further
description of suspensions can be found in Table 2.

3.3 Extending the pairwise model

We originally defined dissonances as occurring between
two voices. One exception to this model that we have
already addressed is the consideration as consonant of
fourths and tritones that are covered by certain notes in
a lower-sounding voice – these are “vertical” or harmonic
schemata. Apart from these, we have so far used a pair-
wise model to schematize dissonances between any two
voices. But we found we had to extend the pairwise model
to account for some dissonances. These are summarized in
Table 3.

1. We find that if a note is consonant with an agent of a
suspension, it can be dissonant with the suspension without
further constraint; as well, we find situations where a note
is dissonant with an agent, but explicable as consonant with
the suspension.

2. On a weak quarter, two quarter notes or eighths (or
one of each) may be dissonant with respect to each other, if
there is a third voice such that each is explained as conso-
nant, passing, neighboring, a cambiata, or an anticipation
with respect to the (same) third voice. (See Figure 1.)

3. A note m that is dissonant within a given pair of
voices is in condition M if it has the same pitch class as
a note in a third voice that was already sounding when m
entered, and is sustained at least until the end of m. Notes
in condition M are often approached and left by leap. A
note in condition M may be attacked simultaneously with
a dissonance; in this case the note not labelled M will be
explained (e.g. as a passing or neighbor note) with respect
to the third voice. 6

4. DISCUSSION: EXCEPTIONS AND INDUCTION

At the time of this writing, there are still∼360 dissonances
in the Palestrina-Victoria corpus that are not explained by

6 In fact, if we look at half notes that are dissonant counterparts to con-
dition M, we find that they are all passing notes, with six exceptions that
are upper neighbors – and these six are all in the same mass of Victoria.
This is an example of a unique dissonance treatment, used motivically,
that is clearly related to the more common passing version.
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Symbol Name Melodic schema Metric schema Attack

P Passing (step up, step up)
(step dn, step dn)

weak quarter
eighth on weak quarter
weak eighth
weak half after ≥ half

oblique

N Neighbor (step up, step dn)
(step dn, step up) (same as for P) oblique

C5,C4,C3 (5/4/3-note)
Cambiata

(step dn, third dn,
step up, step up)
– or first n notes of this

weak quarter oblique

A Anticipation (step, repeat) weak quarter
weak eighth oblique

E Echappée (step up, leap dn)
(step dn, leap up) weak quarter oblique

F “Fake”
suspension

(step or repeat,
step dn)

syncopated whole
syncopated half
syncopated dotted-half

oblique

Q,Qx Third quarter (step dn, step dn)
quarter on weak half;
Q if after ≥ half, otherwise
Qx

oblique
simultaneous

L Leap of third (third dn, step up) weak quarter oblique

Table 1: “Single-voice” Schemata

Symbol Name Description

S,G Suspension,
Agent Suspension S is sustained or reattacked on the same note; agent G strikes

oblique dissonance; S moves down (to its resolution) by step on a weaker beat
than G.

T,T2,G Suspension with
third-skip, Agent As S, but with resolution (third dn, step up) in quarter notes; the note skipped

down to can be dissonant (called T2).

Table 2: Suspensions

Symbol Name Description

Gc Consonant
with Agent Dissonant with a suspension S or T but consonant with its agent. Or dissonant

with a “Fake” suspension F and consonant with its “agent.”

Sc Cons. with
Suspension Dissonant with an agent but consonant with its suspension.

M/M2,
Mx

Match Has the same pitch / pitch class as a note in a third voice already sounding when
M entered, and is sustained at least until the end of M. M’s dissonant counterpart
Mx is attacked simultaneously with M; explained as P or N with the third voice.

W Weak-quarter
clash On a weak quarter, a dissonance between two quarter notes or eighths (or one

of each), such that each is consonant, passing, neighboring, a cambiata, or an
anticipation with respect to some (same) third voice.

Table 3: Schemata: Extending the Pairwise Model

any of our schemata (versus∼194100 that are – we’ve suc-
cessfully schematized > 99.8% of dissonances in the cor-
pus). Unschematized dissonances are marked with an X in
annotated scores. There are quite a few errors (e.g. wrong
notes or durations) in our corpus, and it looks like a con-
siderable proportion of Xs are due to these. The ability to
quickly navigate to problematic dissonances allows us to
make corrections where they are necessary (i.e. by com-
parison with another edition) – correction of the corpus is
currently underway. This method doesn’t locate all errors
in the corpus, but it does point out especially “bad” ones
from the point of view of dissonance.

Examining Xs is also part of our development method-
ology for formulating new dissonance categories. For in-
stance, by doing some filtering on a database of unmatched
feature-sets, we noticed that there were 54 unschematized

dissonances that are on weak quarters and are approached
by a third down and left by a step up. We wrote this schema
into our specification (“L” in Table 1), and then were able
to “spin” through the instances in the corpus to see whether
the schema met our expectations on the annotated scores. 7

In another database exploration case, we began by ob-
serving that there were quite a few unschematized disso-
nant half- and quarter-notes on beat one, which were ap-
proached and left by a step. This preliminary schemati-

7 After finding this dissonance in the database, we observed that it is
mentioned (as possibly an “archaism”) in [3], p. 220. Jeppesen’s study
proves to be a tour de force of detail – for example, on p. 268 he shows a
suspension that jumps down a fifth before leaping back up a fourth to its
resolution, saying that as far as he’s observed, “this occurs but once in the
whole collection of Palestrina’s compositions,” despite being a standard
practice in [1]. We don’t find a second occurrence in Palestrina, and it
occurs once in our Victoria corpus.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 647



Figure 1: W (weak-quarter clash) are “explained” disso-
nances (or consonances) with respect to other voices (in
this case P and C5), but simultaneous, unclassified disso-
nances with respect to each other.

Figure 2: The tied note in the third voice marked “F S” is
a fake suspension (F) with respect to the bottom voice, and
a “real” suspension (S) with respect to the agent (marked
G) in the voice above.

zation was obviously too general to keep as a final label-
ing, since we don’t wish to allow passing and neighbor-
ing notes on strong beats indiscriminately. But looking
through these instances showed us that (along with a small
number of less explicable occurrences), there were a cou-
ple of schematic situations. One such situation occurred
when the dissonance in question had an agent as its dis-
sonant counterpart, while being consonant with the corre-
sponding suspension (shown as label Sc in Table 3). We
also were able to refine our definition of suspensions by
looking at these unschematized strong-beat dissonances.
Our original definition stipulated that the agent must be
consonant with suspension’s note of resolution (whether
or not the agent is still sounding at the time of the reso-
lution). In fact, we find there is one situation where this
rule doesn’t hold: when the suspended interval is a dimin-
ished fifth, resolution forms a fourth (– dissonant) with the

Figure 3: A unique structure of simultaneous dissonances:
two passing notes, a neighbor, and a cambiata. (Palestrina:
Laudata Dominum, Gloria)

agent. When this happens, the agent always moves up a
step to meet the resolution in a (consonant) third.

When exploring for new schemata, we sometimes come
against occurrences that are interestingly rare. For in-
stance, we find that there are six third-quarter passing notes
going upward in the combined Palestrina-Victoria corpus.
Of these, four are in one mass of Victoria, and are essen-
tially repetitions of the same single situation. The remain-
ing two are separate instances in Palestrina. These kind of
instances open musicological questions as to the interpre-
tation of these scare occurrences: why was this possibility
used just here, and practically nowhere else.

Database exploration works not only for induction
of new schemas, but for deeper exploration of defined
schemas. For instance, if we look at the feature set for
the relatively rare half-note lower-neighbors, we find that
most of them (in Palestrina 119/150, or 79%) are a perfect
fourth above the note they dissonate with. A few (13, or
9%) are a tritone below, and on closer inspection, these all
seem to take part in very similar cadential figures. Victoria
uses the tritone/cadential lower neighbor somewhat more
often – 20/83 or 24%, and the perfect fourth above 43/83
or 52%: a similar but less dramatic tendency.

Likewise, we find that our category for “fake” suspen-
sion (F) (which Jeppesen calls a “consonant fourth”) never
occurs with a tritone, and in fact always occurs with either
a fourth, or (less frequently) a fourth and seventh or second
(i.e. with respect to two different voices) . Furthermore,
the F which is only a fourth at its onset is almost always
accompanied by a suspension (S) of a seventh or second
on the next strong beat (Figure 2) – the fake suspension of
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a fourth with no seventh or second at all is found only 16
times in the Palestrina corpus and never in Victoria. We
could continue this line of musicological investigation by
surveying for further details, finding e.g. those fake sus-
pensions which are a half note in duration, or those intro-
duced by leap, or those which include a dissonance of a mi-
nor second or major seventh (a rare occurrence), or those
which have a resolution of a major second (relatively rare).

We wonder: would it be feasible to automatically in-
duce dissonance treatments over a corpus (i.e. start from
scratch and have a search deliver a set of schemata that are
used a minimum number of times in a corpus). Although
this would be computationally expensive, it seems possi-
ble.

The strategy for doing so, however, is not com-
pletely transparent. If we address the subset of one-voice
schemata, we can imagine trying to cover the set of dis-
sonances with minimal explanatory schemata (with the
heuristic that more proximate intervals have to be part of
a schema before more distant intervals can be included).
For conjunctions, this is straightforward enough (e.g. must
be on a weak quarter and resolve down). For disjunctions,
we would have to infer whether a reduced set of features
should be specified, or whether to use a wild card. We
would have to be careful not to overfit schemata, which
would result in a large number of highly specific schemata
instead of a smaller number of more general ones (e.g. a
passing note figure, once completed can be followed by a
step up, or a leap up, or a third down, etc.). There’s also
no obvious way of joining multiple discovered schemata
under one descriptive tag. For example, eight different
schemata emerge for what we call “passing notes” (de-
pending on their position, duration, and orientation) – and
this is not including third-quarter passing notes, which we
have chosen to name differently.

The schemata found would be constrained to be de-
scribed by the feature set we’re examining. We’ve used
shorthand features such as “weak quarter,” generalizing
second and fourth quarters, and “leap up,” generalizing
several intervals. If we started off an automatic schema
induction with these generalized features, it would be pow-
erless to differentiate them ( – generalizing reduces our
power as human experts to differentiate them, but we still
stand a chance of doing so by looking at scores). On the
other hand, if we start with a larger feature set, we increase
the search space exponentially, but add an interesting layer
of feature induction. Even if we start with a larger feature
set, we’re still constrained by pre-process feature selection,
whereas humans are free to add features midstream.

We won’t discuss here the added problem of trying
to induce two-voice schemata such as suspensions from
scratch, nor the various three-voice schemata. We would
also need to consider harmonic treatment: dissonances
may be treated differently when they’re a part of a chord
(aside from the chords we have already discussed, for some
corpora seventh chords, root-position diminished triads, or
second-inversion triads have special status). Having errors
in the corpus also complicates the picture.

While automatic schema induction is an interesting con-
cept, for the time being it seems that using database queries
and automatic score annotation to facilitate deep interac-
tion of human intelligence with a musical corpus is still
the most effective procedure.

5. STRUCTURING DISSONANCES

So far, what we’ve described are specific filters defined on
feature vectors. These filters assign tags to notes, label-
ing the dissonance treatment of the note. Now we have the
opportunity to see how these dissonance treatments inter-
act. For instance, it’s quite common to have two or more
passing notes in different voices at the same time. What
other combinations of dissonance might occur? For this
analysis, we don’t have to develop new schemata and fil-
ter for them, we merely have to build structures out of the
dissonances we already have.

The procedure is this: we take a set of labeled disso-
nances, and build graphs of temporal relations between
them. For the purpose of this example, we keep the space
small by only examining a subspace of temporal relations
between dissonances. We use three types of temporal re-
lation: monophony (i.e. one or more notes beginning and
ending at the same time), inclusion (i.e. a note’s duration
being within the duration of another note), and overlap.

We also use a subset of dissonances: passing and neigh-
boring tones, third-quarters, anticipations, échappées,
cambiatas, dissonant leaps of a third, “real” and “fake”
suspensions, and weak-quarter clashes. The experiment
reduces each score to just the notes marked with these la-
bels, and then constructs polyphonic structures out of the
remaining subscore. That is, we will connect tagged disso-
nances that are in temporal contact with one another, then
examine sets of connected dissonances in the corpus. In
what follows, we are counting not notes, but structures,
which can contain one or more notes.

We obtain 297 different structures by this method – 243
in Palestrina and 175 in Victoria, with 121 in their intersec-
tion, and therefore 122 in Palestrina but not Victoria and
54 in Victoria but not Palestrina. 8 Of the 297, 113 occur
only once in the combined corpus, while another 80 occur
fewer than five times. In general, we see a relatively small
number of structures occurring very frequently, and a large
number of structures occurring rarely.

The most common structures in Palestrina and Victoria
differ only slightly. The most frequent for both composers
is the lone passing note, followed by the suspension, the
double-passing note (i.e. two simultaneous passing notes),
and then the (lone) neighbor. The next most common for
Palestrina is the third-quarter passing note, then simultane-
ous passing and neighbor notes, and simultaneous neigh-
bor notes. Victoria would be the same, except the third

8 The absolute numbers themselves are not of great interest, and we
don’t offer a proper statistical analysis, we only mean to give a general
orientation as to the structural variety available from the point of view of
this experiment. The numbers are, furthermore, provisional since we’re
still correcting the corpus, but the great majority of rare structures are not
due to corpus errors.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 649



quarter dissonance is slightly more rare in Victoria, appear-
ing after the latter two.

Other structures show a greater difference in practice
between the composers. For instance, just looking at struc-
tures with double suspensions, we find that Palestrina re-
solves these at different times (i.e. one resolution coming a
quarter note before the other) over half of the time, whereas
Victoria only resolves them at different times about 10 per-
cent of the time. 9 We find also that simultaneous “fake”
suspensions don’t occur in Palestrina, while there are 26
instances in the Victoria corpus. A figure in which a note
is a dissonant third-quarter with respect to one voice at the
same time as being interpreted as the agent of a diminished
suspension 10 in another voice is found 23 times in Palest-
rina and once in Victoria. The cambiata occurring within
the duration of a suspension, and the double third-quarter
dissonance are also much more frequent in Palestrina than
in Victoria. Everything found in Victoria more than three
times is also found in Palestrina at least once – it’s not ob-
vious if this is an artifact of the difference in the sizes of
the corpora, 11 or whether it reflects on the practice of the
composers.

6. EXTRAPOLATION AND NEW STRUCTURES

The distribution of structures of labelled dissonances, with
many structures used only once or a handful of times,
shows us that we are not dealing with a closed set of
reusable possibilities, but a composable space. This sug-
gests that it’s possible to build structures that are not in
the corpus, but that are within the matrix of possibilities
outlined by the corpus. In efforts to build style-copying
automata, a trend has been to re-use and re-combine ele-
ments found in a corpus. But since it is the responsibility
of the artist to offer something new in each work, reasoning
about unused structures is essential for deeper exploration
of corpus extension.

What we present in this section was not constructed au-
tomatically; we simply show that the structures we ob-
tained from labelled dissonances seem to constitute a set
with missing elements which might have been used in the
corpus. It is our opinion that it would be possible to con-
struct these automatically, and that in any case, the set of
unused possibilities (and the set of once-used possibilities)
are an avenue of insight into the nature of composition.
Our ability to schematize the treatment of a great major-
ity of dissonances in the corpus points to a constrained and
rule-bound composition practice. How does this relate to
the obligation to create new and different works? And is it
possible to reason about newness and difference? In this
section we suggest an approach.

We can proceed rather conservatively: instead of try-
ing to invent complex and exotic new combinations that
might be realizable, we can start by looking for unfilled

9 We can see this because these two instances have different poly-
phonic profiles: if they both resolve at the same time they’re in rhythmic
monophony with one another, whereas if one resolves first, one suspen-
sion is durationally contained within the other.

10 I.e. a suspension with duration of a quarter.
11 261 movements of Victoria vs. 705 of Palestrina

niches that are relatively simple. For instance, if we take
the subset of structures that consist of more than two simul-
taneous dissonances including at least one cambiata and
one neighbor, we find a single structure that occurs once:
a cambiata, neighbor, and two passing tones at the same
time. This means that the simpler cambiata, neighbor, and
one passing tone never occurs! We also see other obvious
combinations including a cambiata and two neighbors, two
cambiatas and a neighbor, and a cambiata, two neighbors
and one passing note. It is simple to enumerate all of the
possibilities in this small combinatorial space. 12

For a given constructed dissonance structure, it’s not
guaranteed that it is realizable. We can try to realize it
systematically by generating and testing candidates. The
space of candidates is small enough to be tractably enu-
merable, especially if we proceed in stages, leaving the
issue of voicing (order of voices from low to high) until
later. Candidates can be rejected if they cause unschema-
tized dissonances (Xs), or break some other constraint –
e.g. we might reject parallel fifths, octaves, and unisons, to
conform with the style. It turns out that we can construct
viable fragments in which a cambiata, a neighbor, and a
passing tone occur simultaneously, or in which a cambi-
ata and two neighbors occur simultaneously (left as an ex-
ercise for the reader!). As far as we can tell, there’s no
“reason” that these don’t occur in the corpus.

We can extend this game of finding unused potentials by
taking the interval combinations of a structure as another
parameter. For instance, four simultaneous passing notes
occur about 40 times in the combined corpus, but most of
the time the passing note “chord” is just a minor or ma-
jor third, with pairs of passing notes up and down through
each note of the third. There is one instance where a mi-
nor triad is constituted (one passing note is preceded by
a dissonant third quarter). The major triad occurs several
times in the triple-passing-tone structure; it appears to be
an unused possibility in the quadruple.

The possibility for combinatorial explorations are vast.
For instance, there are more than 70 different sonorities
(pitch-class sets sounding at some moment) in Palestrina,
while only 7 of them need not involve dissonance. The rest
are constructed precisely in the manner we have just been
describing, with combinations of dissonance treatments.

Equally great are the opportunities for musicologists to
study specific usages in their musical, textual, and histori-
cal contexts; the computational means to find and annotate
sets of occurrences will surely facilitate this process.

The general methodology used here can be extended to
other corpora, and to other aspects of musical practice. The
computational study of musical corpora through schemati-
zation, structure-building, automatic annotation, and gen-
erative extrapolation will bring a new scope and precision
to our understanding of musical practice and potential.

12 In fact the whole space of dissonance structures under this model
may be small enough to be feasibly enumerable. If so, how does this fact
relate to our surmise that for Palestrina and Victoria, the space seems to
be “composed” rather than enumerated? This is a question for the practice
and philosophy of the nascent discipline of constructive musicology, or
the study of corpora through computational extension.

650 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



7. REFERENCES

[1] Fux, J.J.; Mann A. (trans. & ed.): The Study of Coun-
terpoint from J.J. Fux’s Gradus Ad Parnassum. Norton
& Co. (1971/1965/1725)

[2] Jeppesen, K.: Counterpoint: The Polyphonic Vo-
cal Style of the Sixteenth Century. Dover Publications
(1992/1939/1931)

[3] Jeppesen, K.: The Style of Palestrina and the Disso-
nance Dover Publications (1970/1946)

[Sch.1999] Schubert, P.: Modal Counterpoint, Renais-
sance Style Oxford University Press (1999)

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 651



PREDICTIVE POWER OF PERSONALITY ON MUSIC-GENRE
EXCLUSIVITY

Jotthi Bansal
McMaster University

bansalj@mcmaster.ca

Matthew Woolhouse
McMaster University

woolhouse@mcmaster.ca

ABSTRACT

Studies reveal a strong relationship between personality
and preferred musical genre. Our study explored this rela-
tionship using a new methodology: genre dispersion among
people’s mobile-phone music collections. By analyzing
the download behaviours of genre-defined user subgroups,
we investigated the following questions: (1) do genre-pre-
ferring subgroups show distinct patterns of genre consump-
tion and genre exclusivity; (2) does genre exclusivity re-
late to Big Five personality factors? We hypothesized that
genre-preferring subgroups would vary in genre exclusiv-
ity, and that their degree of exclusivity would be linearly
associated with the openness personality factor (if people
have open personalities, they should be “open” to differ-
ent musical styles). Consistent with our hypothesis, results
showed that greater genre inclusivity, i.e. many genres
in people’s music collections, positively associated with
openness and (unexpectedly) agreeableness, suggesting that
individuals with high openness and agreeableness have wid-
er musical tastes than those with low openness and agree-
ableness. Our study corroborated previous research link-
ing genre preference and personality, and revealed, in a
novel way, the predictive power of personality on music-
consumption.

1. INTRODUCTION

Existing music-personality studies have specifically exam-
ines the relationship between music preference and Big
Five personality factors [4, 13, 16]. The music people
listen to–their musical preferences–reveal aspects of their
identity [12], to the point where music can be worn as a
“badge” of honour [16].

Big Five personality factors are designed to delineate
basic, measureable features of personality. Each factor
consists of various traits that describe behaviour, thoughts
and emotions; traits that co-vary with one-another are cat-
egorized under one factor [3]. Factors in the current Big
Five model are openness, conscientiousness, extraversion,
agreeableness, and neuroticism. Each factor is defined based
on terms from everyday language [7].

c© Jotthi Bansal, Matthew Woolhouse.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jotthi Bansal, Matthew Woolhouse.
“Predictive power of personality on music-genre exclusivity”, 16th Inter-
national Society for Music Information Retrieval Conference, 2015.

In detail, the Big Five personality factors are as fol-
lows. Openness measures open-mindedness to new expe-
riences, including traits such as creativity, insightfulness,
and originality. Conscientiousness measures efficiency and
organization, including resourcefulness and intelligence.
Extraversion measures sociability, including outgoingness,
self-confidence, and aggression. Agreeableness measures
friendliness and compassion, including trustworthiness, com-
pliance, and modesty. Lastly, neuroticism measures emo-
tional vulnerability, including moodiness, hostility, self-
consciousness, and impulsivity [11].

In respect of individuals’ personalities, the Big Five are
quantified using the NEO-PI psychometric inventory [3].
A common methodology of music-personality studies as-
sociates NEO-PI results with music-preference tests (e.g.
for genres). Results from existing studies have revealed
many relationships between the Big Five and musical pref-
erences, which will now be overviewed.

Individuals with high openness typically prefer genres
such as blues and jazz, while avoiding pop and country
[19]. They also enjoy a wider variety of musical genres
overall [15]. High conscientiousness has been linked to
soul and funk [19]. Extraverts prefer pop and rap [19],
which commonly occur in social situations, and thus may
appeal to those high in extraversion [14, 15]. High agree-
ableness is associated with soundtracks (e.g. of films).
The fifth factor, neuroticism, predicts preference for genres
with exaggerated bass, such as dance [10].

The current study examined music and personality in
terms of music-consumption patterns. The primary pattern
we studied was genre exclusivity–a measure of the variety
of genres in users’ music collections. Genre exclusivity
can be thought of as a scale with two extremes. The lower
end contains homogenous music collections with very few
genres (referred to as “genre exclusive”); the upper end
contains heterogeneous music collections with many well-
represented, distinct genres (referred to as “genre inclu-
sive”). We investigated the link between genre homogene-
ity/heterogeneity, musical preference and factors within the
Big Five, and in so doing evaluated the predictive power of
personality on genre exclusivity.

1.1 MixRadio Database

This study utilized a music-download database, the major-
ity of which were made onto Nokia mobile phones. The
data became accessible through a data sharing agreement
between McMaster University and the Nokia Corporation
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which begun in 2012. In January 2015 the Nokia division
responsible for music became a separate entity under the
name MixRadio. Henceforth, we referred to the data as
coming from the MixRadio database.

The MixRadio database contains downloads from 33
countries across the globe 1 and spans from 2007 to Septem-
ber of 2014. Currently, the database contains the metadata
of 1.36 billion individual downloads from over 17 million
MixRadio users. 2 MixRadio users had free access to un-
limited amounts of music on online music stores, meaning
they could explore musical genres without cost constraints.
Each download’s metadata includes information such as
track name, artist, album, genre, user ID (anonymous),
date, (local) time and country. Open source databases in-
cluding MusicBrainz (the open music encyclopedia) [9]
and The Echo Nest [6] are used to supplement download
metadata and enrich the database. Examples of supple-
mented information from additional databases include track-
release date, tempo, key, mode, time signature and instru-
mentation. The data are arranged into a relational database
management system and queried using the open-source My-
SQL implementation of SQL [18], and the Python Database
API [9], enabling more extensive, iterative analyses to be
undertaken.

Our first study used the MixRadio database to explore
music consumption behaviours of genre-defined subgroups
of users. We referred to these subgroups as “x-heads”,
where “x” was a user’s most downloaded genre. As genre
is the most commonly used musical classifier [16], we as-
sumed genre to be a reliable marker of musical interest.

The second study examined the relationship between
genre exclusivity of x-head subgroups and Big Five per-
sonality factors. We correlated measures of genre exclu-
sivity with measures from an existing study associating the
Big Five with preference for particular genres. We hy-
pothesized that openness values would positively correlate
with genre inclusivity (having a heterogeneous music col-
lection). In other words, those high in openness should
also be open to numerous genres. Previous literature has
found that those high in openness tend to prefer diverse
musical genres [15]. We conjectured that the remaining
Big Five factors–extraversion, neuroticism, agreeableness
and conscientiousness–would not correlate with genre ex-
clusivity, due to lack of evidence of this in previous studies.

1.2 Study Parameters

As existing music-personality study focused on Western
populations, we elected only to include user data from Eu-
ropean countries (14 countries in total): Austria, Finland,
France, Germany, Great Britain, Ireland, Italy, Netherlands,
Norway, Poland, Portugal, Spain, Sweden and Switzer-
land. Downloads were also limited to the ten most com-

1 Argentina, Australia, Austria, Brazil, Britain, Canada, Chile, China,
Finland, France, Germany, India, Indonesia, Ireland, Italy, Malaysia,
Mexico, Netherlands, Norway, Poland, Portugal, Russia, Saudi Arabia,
Singapore, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey,
United Arab Emirates, United States of America, Venezuela

2 This represents only a portion of MixRadio’s total database, and is
not indicative of market share.

monly used genres in existing music and personality stud-
ies: classical, country, dance, folk, indie, jazz, metal, pop,
rap and rock. Finally, to ensure robust measures of genre
exclusivity, only users with between 10 and 5,000 down-
loads were included; heuristically, we decided that fewer
than ten would be an insufficient sample size; greater than
five-thousand might indicate that a user was simply a mu-
sical “stamp collector”.

2. STUDY 1.1

We used the MixRadio database to explore genre exclu-
sivity in genre-defined subgroups of users. Each user in
the study was categorized as an “x-head”, where x was the
most popular genre within a user’s download collection.
For example, if a user’s total collection contained 40 metal
downloads, and 10 dance, they were defined as a “metal-
head”, and placed within the metal-head subgroup. If no
genre was more popular than any other in a user’s collec-
tion (e.g. 10 pop and 10 rock), the user was classified based
on whichever genre they downloaded first. The raw counts
per genre were obtained for each user, and a (normalized)
level of genre exclusivity per user calculated by dividing
the SD of the genre counts by their total number of down-
loads.

So as to weigh each country’s contribution to genre ex-
clusivity equally, users in x-head subgroups were then sub-
divided based on user-country, and a median SD per x-head
subgroup per country was calculated; this value was called
“x-med”. For each x-head subgroup the x-med was de-
rived from fourteen SD values (one per country). X-head
subgroups were ranked based on their degree of genre ex-
clusivity, i.e. x-med value. The lower the x-med, the more
genre inclusive the x-head subgroup; the higher the x-med
value, the more genre exclusive the x-head subgroup.

2.1 Results

Table 1 displays x-med values for x-head subgroups from
most inclusive on left, to most exclusive on right. Indie-
heads, who had the lowest x-med (0.137), were the most
genre inclusive subgroup, while pop-heads who had the
highest x-med (0.200) were the most genre exclusive. A
more detailed look at x-head subgroups’ collections based
on genre is discussed in Study 1.2 below.

3. STUDY 1.2

This study examined how x-head subgroups consumed mu-
sic from individual genres. Specifically, we looked at pairs
of x-head subgroups and examined the degree to which
both x-head subgroups consumed each other’s main, group-
defining genre. Equation (1) calculates the degree to which
x-head subgroups consumed each genre.
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Table 1. Percentage of genres in each x-head subgroup’s collection compared to their main genre.

Figure 1. Percentage of genres in each x-head subgroup’s
collection compared to their main genre.

Ci,j = count of genre i in x-head j’s collection
N = number of x-heads
Sj,i = the value of nth row and ith column (in particular,
Sj,i is a measure of the average relative proportion of
genre i in x-head j’s collection)
Each value of Sj,i refers to a cell shown in Figure 1.

3.1 Results

Figure 1 shows the degrees to which x-head subgroups
consumed other genres. The left-axis lists x-head sub-
groups; the top-axis lists the genres they consumed. The
darker the cell, the greater the degree of genre consump-
tion. The x-head medians listed in the far right column are
the median percentages of the genres consumed by x-head
subgroups. The genre medians listed along the bottom are
the median percentages that each genre is consumed by the
x-head subgroups. Figure 1 is symmetrical along its diago-
nal axis (diagonal line of white cells). By comparing each
side of the diagonal axis, relationships between genre pairs
can be explored. For example, rock-heads and pop-heads
consumed the greatest percentage of each another’s genres:
rock-heads consumed 29.1% of pop, pop-heads consumed
20.9% of rock.

Various “classes” of relationships appeared based on the
degree of genre consumption by pairs of x-head subgroups.
Some x-head subgroup pairs consumed equal amounts of
each other’s main genre, and therefore had symmetrical
relationships (same-shaded cells across the diagonal axis,
e.g. rap and metal). Some x-head subgroup pairs con-
sumed unequal amounts of each other’s main genre, and

Figure 2. H-H consumption relationship between pop-
heads and rock-heads.

therefore had asymmetrical relationships (differently shaded
cells across the diagonal axis, e.g. indie and pop).

Symmetrical relationships were also classified as “hot”
or “cold” based on the volume of consumption between
two x-head subgroups. Symmetrically hot relationships
occurred when both x-head subgroups downloaded signif-
icant amounts of each other’s main genre. Symmetrically
cold relationships occurred when neither x-head subgroup
downloaded significant amounts of each other’s main genre.
Overall, three categories of x-head relationships were iden-
tified and are defined below using example pairs of x-head
subgroups.

3.1.1 Symmetrical hot relationships (H-H)

Pairs of x-head subgroups downloading significant and ap-
proximately equally amounts of one another’s main genre,
e.g. rock-heads and pop-heads (Figure 2).

Figure 2 shows the composition of rock-heads’ (grey)
and pop-heads’ (black) collections when comparing only
the proportion of rock and pop downloads they each con-
sumed. The x-axis displays a series of bins which describe
the proportion of rock and pop downloads in x-heads’ col-
lections (totalling 100%). The y-axis is the percentage of
x-heads that fit into the specifications of each bin on the
x-axis. There are two sets of horizontal-axis labels: the
upper labels (% Rock) show the proportion of rock down-
loads represented in rock-heads’ collections. The remain-
ing proportion consists of pop downloads. For example,
the grey column in the % Rock bin marked “50-60” shows
the percentage of rock-heads whose collection contained
approximately 50-60% rock downloads and 40-50% pop
downloads. The lower labels (% Pop) show the proportion
of pop downloads represented in pop-heads’ collections.
The remaining percentage consists of rock downloads.

H-H relationships are represented in Figure 1 by diago-
nally related dark-shaded squares. X-head subgroup pairs
with H-H relationships can thought of as being mutually
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Figure 3. C-C consumption relationship between jazz-
heads and metal-heads.

Figure 4. H-C consumption relationship between pop-
heads and country heads.

inclusive, and vice versa for light-shaded squares.

3.1.2 Symmetrical cold relationships (C-C)

Pairs of x-head subgroups who downloaded roughly equal,
but insignificant amounts of the each others’ main genre,
e.g. jazz-heads and metal-heads (Figure 3).

The axes in Figure 3 are the same as those in Figure
2, but represent jazz-heads and metal-heads instead. Bar
heights in Figure 3 reveal that a majority jazz-heads and
metal-heads had a ratio of 90-100% of their main genre
and 0-10% of the other. Very few jazz-heads or metal-
heads downloaded equal amounts of both genres. C-C rela-
tionships are represented in Figure 1 by diagonally related
light-shaded squares. X-head subgroup pairs with C-C re-
lationships can be thought of as being mutually exclusive.

3.1.3 Asymmetrical hot-cold relationships (H-C)

Pairs of x-head subgroups who consumed each other’s main
genre unequally, e.g. pop-heads and country-heads (Figure
4).

The axes in Figure 4 are the same as those in Figures
2 and 3, but represent pop-heads and country-heads. Bar
heights in Figure 4 revealed that many country-heads con-
sumed large amounts of both pop and country music. How-
ever, a majority of pop-heads did not consume significant
amounts of country music. H-C relationships are repre-
sented in Figure 1 by diagonally related cells, between

which there is a mismatch in shading, i.e. light grey to
dark grey.

3.2 Study 1 Conclusions

In Study 1.1, x-head subgroups ranked from genre exclu-
sive to inclusive in the following order: pop, dance, rap,
metal, rock, classical, country, folk, jazz, and indie. In-
triguingly, this ranking is consistent with previous litera-
ture indicating that individuals who prefer jazz and folk
music rank highly in the Big Five factor of openness, which
has been linked to genre inclusivity. Those who are high
in openness also tend to avoid genres like pop; pop-heads
were found to be the most genre exclusive. Therefore,
study 1.1 results preliminarily hinted at links between genre
exclusivity and aspects of personality.

In Study 1.2, pairs of x-head subgroups were compared
based on their consumption of one another’s main genre.
Some x-head subgroup pairs were mutually inclusive of
one another (H-H), while others were mutually exclusive
(C-C). Remaining x-head pairs consumed each other’s main
genres unequally (H-C).

4. STUDY 2

Study 2 examined links between genre exclusivity and the
Big Five personality factors. Our measures of genre ex-
clusivity (median SD per x-head subgroup per country)
were correlated with measures of Big Five personality fac-
tors that had previously been associated with certain genres
from Zweigenhaft (2008) [19].

Zweigenhaft had subjects complete the NEO-PI and a
version of the STOMP (Short Test of Music Preferences),
[16]. Measures of Big Five personality and music pref-
erence were then correlated. We used the correlation val-
ues between Big Five factors and genres from Zweigenhaft
(2008), and correlated them with levels genre exclusivity
from Study 1.1 (14 country values per x-head subgroup).

4.1 Results

A significant, negative correlation existed between genre
exclusivity and genres associated with openness (Figure 5:
n = 140; r = -0.37; two-tailed, p<0.001) and agreeableness
(Figure 6: n = 140; r = -0.32; two-tailed, p <0.001). That
is, genre-openness associations and genre-agreeableness as-
sociations in Zweigenhaft (2008) predicted genre inclusiv-
ity in x-head subgroups. There were no significant correla-
tions between extraversion, conscientiousness and neuroti-
cism with genre exclusivity.

Figures 5 and 6 show relationships between openness
and agreeableness with genre exclusivity. The horizontal-
axes display degree of genre exclusivity for x-head sub-
groups (median SD of x-heads’ music collections based
on genre). Each x-head subgroup (listed down the right
legend) is represented with a different shade of grey. Hor-
izontally positioned markers with the same shade are the
median SDs per x-head subgroup for each of the 14 coun-
tries included in the study. The height of the markers cor-
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Figure 5. X-head genre exclusivity against genre-
openness associations in Zweigenhaft (2008).

Figure 6. X-head genre exclusivity against genre-
agreeableness associations in Zweigenhaft (2008).

responds to the degree of openness and agreeableness for
each genre in Zweigenhaft (2008), shown on the y-axes.

4.2 Study 2 Conclusions

Genre-openness and -agreeableness associations from Zwei-
genhaft (2008) predicted genre inclusivity in x-head sub-
groups; if you score high in openness and/or agreeableness
you are likely to have more genres within your music col-
lection. Conscientiousness, extraversion and neuroticism
are not predictors of genre exclusivity.

5. DISCUSSION

Study 1 explored overall genre exclusivity of x-head sub-
groups. Study 1.2 revealed the pairwise relationships be-
tween x-head subgroups. Some of these relationships were
one-sided; only one of the two x-head subgroups consumed
music from the-other’s main genre. While others were
more equitable; both x-head subgroups consumed each-
other’s main genre equally.

Study 2 revealed links between genre exclusivity and
personality; openness and agreeableness predicted prefer-
ence for a wide range of genres. Breaking down open-
ness and agreeableness based on their traits reveals pos-
sible reasons for their relationship with genre exclusivity.
Openness is a general willingness to encounter new experi-

ences, and different musical styles certainly constitute new
experiences. If someone is open to new experiences, they
also seem to be open to new musical genres. Those high in
openness tend to break from the rules of social boundaries
[5] and may not fear venturing outside of Western-cultured
musical norms. Those high in openness often dislike ubiq-
uitous genres like pop [19], tending, instead, to explore
less commercial musical styles. Moreover, they use mu-
sic for cognitive and rational purposes, such as intellectual
stimulation, and focus more on the quality, complexity and
performance [1]. Exploration of numerous genres may sat-
isfy their desire for these musical properties.

The ability of agreeableness to predict genre exclusiv-
ity was unanticipated–few studies have found this factor
to be a reliable predictor of musical preference. However,
agreeableness encompasses traits such as compliance [19],
so perhaps those who are agreeable may also be “compli-
ant” to various musical genres. To test this theory, associa-
tions between traits of agreeableness and genre exclusivity
would have to be examined.

5.1 Limitations

Given that our data were derived predominantly from mobile-
phone users, it may be problematic to generalize our find-
ings to those who acquire music from other sources. More-
over, Studies 1 and 2 were restricted to European countries,
again, limiting result generalizability. Since personality
[17] and musical preferences [16] vary between countries,
our results may not be globally consistent.

A second population-based limitation relates to socioe-
conomic variance between individuals and countries. The
users in the MixRadio database are biased to those who
can afford a Nokia mobile phone. Despite this, Nokia has
historically made a range of models to appeal to different
market sectors. Therefore, although the self-selected users
in our study may not be fully representative, it is assumed
that they are relatively widely distributed throughout the
populations of the countries within our study.

A third limitation arises when associating genre-person-
ality correlations from Zweigenhaft (2008) with measures
of genre exclusivity: the subject group tested in Zweigen-
haft (2008) are not the same as the MixRadio user pop-
ulation. However, without gathering personality informa-
tion directly from MixRadio users, genre-personality cor-
relations were the most suitable measure to associate with
genre exclusivity.

Additionally, given that pop is the commonest genre, it
is perhaps not surprising that most pairwise relationships
with pop are asymmetrical and that pop is the most pop-
ular genre for non-pop-heads. However, despite this limi-
tation the method adopted (as shown in Figure 1) does at
least indicate instances where x-head subgroups consume
different amounts of another genre relative to one another.
For example, relatively speaking, pop-heads consume less
country than jazz-heads.

A possible methodological complication relates to the
way in which x-heads are defined based upon most down-
loaded genre. That is, we assume that users’ genre distri-
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butions represent genuine musical preferences, which, al-
though likely to be the case, is not known for certain. In
other words, our notion of genre popularity could be a mis-
representation of musical tastes.

5.2 Implications

Information about x-head genre exclusivity is a valuable
resource in music marketing and recommender systems.
For example, a MixRadio user purchased a large quan-
tity of country songs. For example, based on results from
Study 1.2, country-heads would appear to be susceptible
to pop, although, given the asymmetrical relationship be-
tween these genres, the reverse seems not to be the case
(country-heads consume pop, but pop-heads do not con-
sume country). Understanding each side of x-head rela-
tionships could be useful in avoiding misguided recom-
mendations.

Moreover, understanding the link between personality
and genre consumption may prove useful in music mar-
keting. If a user were to complete a Big Five personality
questionnaire upon signing up with a music service, infor-
mation concerning openness and agreeableness could be
factored into recommendations; e.g. wide range of obscure
genres for those open and/or agreeable, and vice versa.

5.3 Future Studies

The reasons underpinning genre inclusivity or exclusivity
can be examined further. For example, perhaps certain
genres are downloaded in tandem due to similar acoustic
properties such as tempo, key, instrumentation, or metrical
structure. Feature analysis and genre preference will be a
target of future studies.

Our new-found links between the Big Five and genre
exclusivity mark the beginning of explorations on person-
ality and music consumption. Other types of exclusivity
relationships may also be linked to personality traits, in-
cluding artist exclusivity (the number of artists in a user’s
collection), tempo exclusivity (variety of tempos in a user’s
collection), or release-date exclusivity (the era from which
a musical collection stems). We hope to examine these fac-
tors, other factors, and their possible links to personality.

6. CONCLUSION

By analyzing a subset of mobile phone music-download
data, the current study revealed information concerning
musical-genre consumption. Genre-defined subgroups of
users acquired music in unique and distinctive ways, with
varying degrees of acceptance for other musical styles. Over-
all, genre exclusivity was most consistently associated with
the Big Five personality factor of openness, which sup-
ports similar research in existing music-personality stud-
ies. Genre exclusivity was also linked to agreeableness,
adding a new finding to the music-personality literature.
Overall, the more open or agreeable you are, the more
genre inclusive, or heterogeneous, your musical tastes.

The current study introduced a novel big-data method-
ology to music-personality studies, which we will continue

to utilize. With access to ever-growing music-download
databases, the predictive power of personality on genre
exclusivity is an exciting and expanding field of music-
consumption research.
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ABSTRACT

To find occurrences of melodic segments, such as themes,
phrases and motifs, in musical works, a well-performing
similarity measure is needed to support human analysis of
large music corpora. We evaluate the performance of a
range of melodic similarity measures to find occurrences
of phrases in folk song melodies. We compare the similar-
ity measures correlation distance, city-block distance, Eu-
clidean distance and alignment, proposed for melody com-
parison in computational ethnomusicology; furthermore
Implication-Realization structure alignment and B-spline
alignment, forming successful approaches in symbolic mel-
odic similarity; moreover, wavelet transform and the ge-
ometric approach Structure Induction, having performed
well in musical pattern discovery. We evaluate the suc-
cess of the different similarity measures through observing
retrieval success in relation to human annotations. Our re-
sults show that local alignment and SIAM perform on an
almost equal level to human annotators.

1. INTRODUCTION

In many music analysis tasks, it is important to query a
large database of music pieces for the occurrence of a spe-
cific melodic segment: which pieces by Rachmaninov quote
Dies Irae? Which bebop jazz improvisers used a specific
Charlie Parker lick in their solos? How many folk song
singers perform a melodic phrase in a specific way?

In the present article, we compare a range of existing
similarity measures with the goal of finding occurrences
of melodic segments in a corpus of folk song melodies.
This is a novel research question, evaluated on annotations
which have been made specifically for this purpose. The
insights gained from our research on the folk song genre
can inform future research on occurrences in other genres.

We evaluate similarity measures on a set of folk songs,
in which human experts annotated phrase similarity. We

c© Berit Janssen, Peter van Kranenburg, Anja Volk.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Berit Janssen, Peter van Kranenburg,
Anja Volk. “A comparison of symbolic similarity measures for finding
occurrences of melodic segments”, 16th International Society for Music
Information Retrieval Conference, 2015.

use these annotations as evidence for occurrences of melo-
dic segments in related songs. If we know that a similarity
measure is successful in finding the annotated occurrences
in this set, we infer that the measures will be successful for
finding correct occurrences of melodic segments of phrase
length in a larger dataset of folk songs as well. We describe
the dataset in more detail in Section 2.

In computational ethnomusicology various methods for
comparing folk song melodies have been suggested: as
such, correlation distance [12], city-block distance and
Euclidean distance [14] have been considered promising.
Research on melodic similarity in folk songs also showed
that alignment measures reproduce human judgements on
agreement between melodies well [16].

As this paper focusses on similarity of melodic seg-
ments rather than whole melodies, recent research in mu-
sical pattern discovery is also of particular interest. Two
well-performing measures in the associated MIREX chal-
lenge of 2014 [7, 17] have shown success when evaluated
on the Johannes Keppler University segments Test Database
(JKUPDT). 1 We test whether the underlying similarity
measures of the pattern discovery methods also perform
well in finding occurrences of melodic segments.

Additionally, we apply the most successful similarity
measures from the MIREX symbolic melodic similarity
track in our research. The best measure of MIREX 2005
(Grachten et al. [4]), was evaluated on RISM incipits, which
are short melodies or melodic segments, therefore relevant
for our task. In recent MIREX editions the algorithm by
Urbano et al. [15] has been shown to perform well on the
EsAC folk song collection. 2

We present an overview of the compared similarity mea-
sures in Table 1, listing the music representations to which
these measures have been originally applied, and which we
therefore also use in our comparisons. Moreover, we in-
clude information on the research fields from which the
measures are taken, the database on which they were eval-
uated, if applicable, and a bibliographical reference to a
relevant paper. We describe the measures in Section 3.

We evaluate the different measures by comparison with
human annotations of phrase occurrence, through quanti-

1 http://www.music-ir.org/mirex/wiki/2014:
Discovery_of_Repeated_Themes_%26_Sections_
Results

2 http://www.esac-data.org
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Similarity measure Music representations Research field Dataset Authors
Correlation distance (CD) duration weighted pitch sequence Ethnomusicology - [12]
City block distance (CBD) pitch sequence Ethnomusicology - [14]
Euclidean distance (ED) pitch sequence Ethnomusicology - [14]
Local alignment (LA) pitch sequence Ethnomusicology MTC [16]
Structure induction (SIAM) pitch / onset MIR JKUPTD [7]
Wavelet transform (WT) duration weighted pitch sequence MIR JKUPTD [17]
B-spline alignment (BSA) pitch sequence MlR EsAC [15]
I-R structure alignment (IRSA) pitch, duration, metric weight MIR RISM [4]

Table 1. An overview of the measures for music similarity compared in this research, with information on the authors and
year of the related publication, and which musical data the measures were tested on, if applicable.

fying the retrieval measures precision, recall and F1-score,
and the area under the receiver-operating characteristic
curve. The evaluation procedure is described in detail in
Section 4.

The remainder of this paper is organised as follows:
first, we describe our corpus of folk songs and the anno-
tation procedure. Next, we give details on the compared
similarity measures, and the methods used to implement
the similarity measures. We describe our evaluation pro-
cedure before presenting the results, finally discussing the
implications of our findings and concluding steps for future
work.

2. MATERIAL

We evaluate the similarity measures on a corpus of Dutch
folk songs, MTC-ANN 2.0, which is part of the Meertens
Tune Collections [5]. MTC-ANN 2.0 contains 360 orally
transmitted melodies, which have been transcribed from
recordings and digitized in various formats. Various meta-
data have been added by domain experts, such as the tune
family membership of a given melody: the melodies were
categorized into groups of variants, or tune families. The
variants belonging to a tune family are considered as being
descended from the same ancestor melody [1]. We parse
the **kern files as provided by MTC-ANN 2.0 and trans-
form the melodies and segments into the required music
representations using music21 [2].

Even though MTC-ANN 2.0 comprises very well docu-
mented data, there are some difficulties to overcome when
comparing the digitized melodies computationally. Most
importantly, the transcription choices between variants can
be different: where one melody is notated in 3/4, and with
a melodic range from D4 to G4, another transcriber may
have chosen a 6/8 meter, and a melodic range from D3
to G3. This means that notes which are perceptually very
similar might be hard to match based on the digitized in-
formation. Musical similarity measures might be sensitive
to these differences, or they might be transposition or time
dilation invariant, i.e. work equally well under different
pitch transpositions or meters.

Of these 360 melodies categorized into 26 tune families,
we asked three Dutch folk song experts to annotate similar-
ity relationships between phrases within tune families. The

annotators judged the similarity of phrases of 213 melodies
belonging to 16 tune families, amounting to 1084 phrase
annotations in total. The phrases contain, on average, nine
notes, with a standard deviation of two notes. The dataset
with its numerous annotations is publicly available. 3

For each tune family, the annotators compared all the
phrases within the tune family with each other, and gave
each phrase a label consisting of a letter and a number.
If two phrases were considered “almost identical”, they
received exactly the same label; if they were considered
“related but varied”, they received the same letter, but dif-
ferent numbers; and if two phrases were considered “dif-
ferent”, they received different letters. See an annotation
example in Figure 1.

The three domain experts worked independently on the
same data. To investigate the subjectivity of similarity
judgements, we measured the agreement between the three
annotators’ similarity judgements using Fleiss’ Kappa,
which yielded κ = 0.73, constituting substantial agree-
ment.

The annotation was organized in this way to guaran-
tee that the task was feasible: judging the occurrences of
hundreds of phrases in dozens of melodies (14714 compar-
isons) would have been much more time consuming than
assigning labels to the 1084 phrases, based on their sim-
ilarity. Moreover, the three levels of annotation facilitate
evaluation for two goals: finding only almost identical oc-
currences, and finding also varied occurrences. These two
goals might require quite different approaches.

We focus on finding almost identical occurrences: if for
a given query phrase q in one melody, at least one phrase r
with exactly the same label (letter and number) appears in
another melody s of the same tune family, we consider it an
occurrence of melodic segment q in s. Conversely, if there
is no phrase with exactly the same label as q in melody s,
this constitutes a non-occurrence.

For all phrases and all melodies, within their respective
tune families, we observe whether the annotators agree on
occurrence or non-occurrence of query phrases q in melo-
dies s. The agreement for these judgements, 14714 in total,
was analyzed with Fleiss’ Kappa, with the result κ = 0.51
denoting moderate agreement. This highlights the ambigu-

3 http://www.liederenbank.nl/mtc/
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Figure 1. An example for two melodies from the same tune family with annotations.

Annotators Precision Recall F1-score
1 and 2 0.745 0.763 0.754
1 and 3 0.803 0.75 0.776
2 and 3 0.788 0.719 0.752

Table 2. The retrieval scores between annotators. For in-
stance, annotator 2 agrees to 75% with the occurrences de-
tected by annotator 1. The scores are symmetric.

ity involved in finding occurrences of melodic segments.
To compare the annotators’ agreement with the perfor-

mance of the similarity measures in the most meaningful
way, we also compute the precision, recall and F1-score
of each annotator in reproducing the occurrences detected
by another annotator. Table 2 gives an overview of these
retrieval scores. A higher retrieval score for a given simi-
larity measure would indicate overfitting to the judgements
of one individual annotator.

3. COMPARED SIMILARITY MEASURES

In this section, we present the eight compared similarity
measures. We describe the measures in three subgroups:
first, measures comparing fixed-length note sequences; sec-
ond, measures comparing variable-length note sequences;
third, measures comparing more abstract representations
of the melody.

For our corpus, as melodies are of similar length, we
can transpose all melodies to the same key using pitch his-
togram intersection. For each melody, a pitch histogram is
computed with MIDI note numbers as bins, with the count
of each note number weighed by its total duration in a mel-
ody. The pitch histogram intersection of two histograms hq
and hr, with shift σ is defined as

PHI(hq, hr, σ) =
l∑

k=1

min(hq,k+σ, hr,k), (1)

where k denotes the index of the bin, and l the total number
of bins. We define a non-existing bin to have value zero.
For each tune family, we randomly pick one melody and
for each other melody in the tune family we compute the
σ that yields a maximum value for the histogram intersec-
tion, and transpose that melody by σ semitones.

Some similarity measures use note duration to increase
precision of the comparisons, others discard the note du-

ration, which is an easy way of dealing with time dilation
differences. Therefore, we distinguish between music rep-
resentation as pitch sequences, which discard the durations
of notes, and duration weighted pitch sequences, which re-
peat a given pitch depending on the length of the notes.
We represent a quarter note by 16 pitch values, an eighth
note by 8 pitch values, and so on. Onsets of small duration
units, especially triplets, may fall between these sampling
points, which shifts their onset slightly in the representa-
tion. Besides, a few similarity measures require music rep-
resentation as onset, pitch pairs, or additional information
on metric weight.

3.1 Similarity Measures Comparing Fixed-Length
Note Sequences

To formalize the following three measures, we refer to two
melodic segments q and r of length n, which have ele-
ments qi and ri. The measures described in this section
are distance measures, such that lower values of dist(q, r)
indicate higher similarity. Finding an occurrence of a mel-
odic segment within a melody with a fixed-length simi-
larity measure is achieved through the comparison of the
query segment against all possible segments of the same
length in the melody. The candidate segment which is most
similar to the query segment is retained as a match. The
implementation of the fixed-length similarity measures in
Python is available online. 4 It uses the spatial.distance
library of scipy [10].

Scherrer and Scherrer [12] suggest correlation distance
to compare folk song melodies, represented as duration
weighed pitch sequences. Correlation distance is indepen-
dent of the transposition and melodic range of a melody,
but in the current music representation, it is affected by
time dilation differences.

dist(q, r) = 1−
∑n
i=1(qi − q̄) ·

∑n
i=1(ri − r̄)√∑n

i=1(qi − q̄) ·
∑n
i=1(ri − r̄)

(2)

Steinbeck [14] proposes two similarity metrics for the
classification of folk song melodies: city-block distance
and Euclidean distance (p.251f.). He suggests to compare
pitch sequences, next to various other features of melodies
such as their range, or the number of notes in a melody.
As we are interested in finding occurrences of segments

4 https://github.com/BeritJanssen/
MelodicOccurrences

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 661



rather than comparing whole melodies, we analyze pitch
sequences.

City-block distance and Euclidean distance are not trans-
position invariant, but as they are applied to pitch sequences,
they are time dilation invariant. All the fixed-length mea-
sures in this section will be influenced by small variations
affecting the number of notes in a melodic segment, such
as ornamentation. Variable-length similarity measures, dis-
cussed in the following section, can deal with such varia-
tions more effectively.

3.2 Similarity Measures Comparing Variable-Length
Note Sequences

To formalize the following three measures, we refer to a
melodic segment q of length n and a melody s of length
m, with elements qi and sj . The measures described in this
section are similarity measures, such that lower values of
sim(q, s) indicate higher similarity. The implementation
of these methods in Python is available online. 4

Mongeau and Sankoff [8] suggest the use of alignment
methods for measuring music similarity, and they have been
proven to work well for folk songs [16]. We apply local
alignment [13], which returns the similarity of a segment
within a melody which matches the query best.

To compute the optimal local alignment, a matrixA(i, j)
is recursively filled according to equation 3. The matrix is
initialized as A(i, 0) = 0, i ∈ {0, . . . , n}, and A(0, j) =
0, j ∈ {0, . . . ,m}. Winsertion and Wdeletion define the
weights for inserting an element from melody s into seg-
ment q, and for deleting an element from segment q, re-
spectively. subs(qi, sj) is the substitution function, which
gives a weight depending on the similarity of the notes qi
and sj .

A(i, j) = max





A(i− 1, j − 1) + subs(qi, sj)

A(i, j − 1) +Winsertion

A(i− 1, j) +Wdeletion

0

(3)

We apply local alignment to pitch sequences. In this
representation, local alignment is not transposition invari-
ant, but it should be robust with respect to time dilation.
For the insertion and deletion weights, we useWinsertion =
Wdeletion = −0.5, and we define the substitution score as

subs(qi, sj) =

{
1 if qi = sj

−1 otherwise
. (4)

The local alignment score is the maximum value in the
alignment matrix, normalized by the number of notes n in
the query segment.

sim(q, s) =
1

n
max
i,j

(A(i, j)) (5)

Structure Induction Algorithms [7] formalize a melody
as a set of points in a space defined by note onset and
pitch, and perform well for musical pattern discovery [6].
They measure the difference between melodic segments

through so-called translation vectors. The translation vec-
tor T between points in two melodic segments can be seen
as the difference between the points qi and sj in onset,
pitch space. As such, it is transposition invariant, but will
be influenced by time dilation differences.

T =

(
qi,onset
qi,pitch

)
−
(
sj,onset
sj,pitch

)
(6)

The maximally translatable pattern (MTP) of a transla-
tion vector T for two melodies q and s is then defined as
the set of melody points qi which can be transformed to
melody points sj with the translation vector T.

MTP (q, s,T) = {qi|qi ∈ q ∧ qi + T ∈ s} (7)

We analyze the pattern matching method SIAM, defin-
ing the similarity of two melodies as the length of the longest
maximally translatable pattern, normalized by the length n
of the query melody:

sim(q, s) =
1

n
max
T
|MTP (q, s,T)| (8)

3.3 Similarity Measures Comparing Abstract
Representations

The following three methods transform the melodic con-
tour into a more abstract representation prior to compari-
son.

Velarde et al. [18] use wavelet coefficients to compare
melodies: melodic segments are transformed with the Haar
wavelet. The wavelet coefficients indicate whether there
is a contour change at a given moment in the melody, and
similarity between two melodies is computed through city-
block distance of their wavelet coefficients. The method
achieved considerable success for pattern discovery [17].
We use the authors’ Matlab implementation to compute
wavelet coefficients of duration weighed pitch sequences,
and compute city-block distance between the coefficients
of query segment and match candidates.

Through the choice of music representation and com-
parison of the wavelet coefficients, this is a fixed-length
similarity measure sensitive to time dilation; however, it is
transposition invariant.

Urbano et al. [15] transform note trigrams to a series
of B-spline interpolations, which are curves fitted to the
contours of the note trigrams. The resulting series of B-
splines of two melodies are then compared through align-
ment. Different B-spline alignment approaches have per-
formed well in various editions of MIREX for symbolic
melodic similarity. 5

We apply the ULMS2-ShapeL algorithm, 6 using the
most recent version, different from its original publica-
tion [15]. This algorithm discards the durations of the
notes and returns the local alignment score of query seg-
ments and melodies. The score is normalized by the length

5 http://www.music-ir.org/mirex/wiki/2012:
Symbolic_Melodic_Similarity_Results

6 https://github.com/julian-urbano/MelodyShape

662 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



n of the query segment. This similarity measure is of vari-
able length, sensitive to time dilation, but transposition in-
variant.

Grachten’s method [4] relies on Implication-Realization
(IR) structures, as introduced by Narmour [9] as basic units
of melodic expectation. Grachten et al. transform melo-
dies into IR structures using a specially developed parser.
The similarity of melodies is then determined based on the
alignment of the IR structures. This method was successful
in the MIREX challenge for symbolic melodic similarity of
2005. 7

In preparation of IR-structure alignment, we use
Grachten’s [4] IR-parser, which takes the onset, pitch, du-
ration and metric weight of a melody and infers the corre-
sponding IR structures. To this end, we exclude all melo-
dies which do not have annotated meter (n = 65), needed
for the computation of metric weight, from the corpus. We
align the IR-structures with the same insertion and deletion
weights and the same substitution function as Grachten’s
publication, but as we are interested in finding occurrences,
we use local alignment rather than the original global align-
ment approach. Through the transformation of the note se-
quences to IR-structure sequences, this similarity measure
is transposition invariant, but it is sensitive to time dila-
tion and ornamentation, which might affect the detected
IR-structures.

4. EVALUATION

We evaluate the potential success of a similarity measure
through comparing the retrieved occurrences to the anno-
tators’ judgements, separately for each annotator. Differ-
ent thresholds on the similarity measures determine which
matches are accepted as occurrences, or rejected as non-
occurrences. For the distance measures (CD, CBD, ED,
WT), matches with similarity values below the threshold,
for the other measures, matches with similarity values above
the threshold are considered occurrences.

The relationship between true positives and false pos-
itives for each measure is summarized in a receiver-oper-
ating characteristic (ROC) curve with the threshold as pa-
rameter. The area under the ROC curve (AUC) determines
whether a similarity measure overall performs better than
another, for which we calculate confidence intervals and
statistical significance using DeLong’s method for paired
ROC curves, based on U statistics [3,11]. Furthermore, we
report the maximally achievable retrieval measures preci-
sion, recall and F1-score with relation to the ground truth.

5. RESULTS

We have analyzed the results with respect to all annotators,
resulting in the same ranking of the similarity measures.
Due to space constraints, we report and discuss our results
in relation to annotator 1. We show the ROC curves of
the eight different measures in Figure 2, which display the
true positive rate against the false positive rate at different

7 http://www.music-ir.org/mirex/wiki/2005:
Symbolic_Melodic_Similarity_Results

Measure F1-score Precision Recall AUC
Baseline 0.68 0.52 1 n/a
CD 0.68 0.51 1 0.549
CBD 0.68 0.51 1 0.574
ED 0.68 0.51 1 0.568
LA 0.73 0.7 0.78 0.790
SIAM 0.73 0.75 0.71 0.787
WT 0.69 0.57 0.87 0.732
BSA 0.72 0.65 0.81 0.776
IRSA 0.69 0.54 0.95 0.683

Table 3. Results of the compared similarity measures for
different music representations: the maximal F1-score, the
associated precision and recall, and the area under the ROC
curve (AUC).
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Figure 2. The ROC curves for the various similarity mea-
sures, showing the increase of false positive rate against
the increase of the true positive rate, as a parameter of the
threshold.

thresholds. The more of the higher left area a ROC curve
covers in a graph, the better; this indicates that the two
classes are better separable.

From Figure 2 it can be seen that the similarity mea-
sures suggested in computational ethnomusicology (CD,
CBD, ED) perform only marginally above chance. IR-
structure alignment and wavelet transform obtain better re-
sults, and B-spline alignment, local alignment and SIAM
perform best.

We summarize the area under the ROC curve (AUC),
the maximally achieved F1-score, as well as the associated
precision and recall in Table 3. We include a baseline in
this table which assumes that every compared melody con-
tains an occurrence of the query segment, which leads to
perfect recall, but poor precision, as the chance for a seg-
ment to occur in a given melody are only about 50%.

We compare the AUC values of the different measures
in Figure 3, showing confidence intervals and significance
of the pairwise differences between adjoining measures,
indicated by stars (*p < .5, **p < .01, ***p < .001).
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Figure 3. The area under the ROC curve of all similar-
ity measures, ordered by the most successful to the least
successful methods. The error bars indicate the confi-
dence intervals, and significant difference between adjoin-
ing measures is indicated by stars (*p< .5, **p< .01,
***p < .001).

6. DISCUSSION

Our results indicate that the distance measures (CD, CBD,
ED) do not work very well, which contradicts the intu-
itions of the computational ethnomusicologists who pro-
pose them. This suggests that variations on pitch height
and contour, which mostly affect these measures, are not
the most informative aspect for human judgements on mu-
sical similarity. Embellishments of a note sequence through
extra notes, for instance to accommodate slightly varied
lyrics, on the other hand, would cause considerable de-
crease of measured similarity, while they will be perceived
as minor variation, if at all by human listeners.

Measures from symbolic melodic similarity (BSA,
IRSA) and pattern discovery (WT) perform better over-
all. Among these, I-R structure alignment performs least
well. This performance might be improved by optimising
the alignment scores for our dataset; the alignment weights
were trained on RISM incipits and might therefore not fit
the folk songs optimally.

Wavelet transform seems to capture some essential no-
tions of music similarity for finding correct occurrences,
showing that essentially the same technique - fixed-length
comparison with city-block distance - can be much more
successful if it is applied to a different abstraction level
than pitch sequences. Possibly a variable-length compari-
son step would yield even better results.

As expected from its success in symbolic melodic sim-
ilarity MIREX tracks, B-spline alignment successfully re-
trieves a large portion of relevant occurrences annotated
by human experts. However, it does not perform as well as
some of the other measures in our comparison.

Confirming earlier research on melodic similarity in folk
songs, alignment performs well in our task. We show that
local alignment is very successful in correctly identifying

occurrences, even with a very simple substitution score,
which only rewards equal pitches. Even better results might
be achieved with different weights and substitution scores.

SIAM, to our knowledge, has not been evaluated for de-
tecting phrase occurrences in folk song melodies yet, but
performs on the same level as local alignment. This im-
plies that SIAM is a good candidate for finding occurrences
of melodic segments successfully, especially in corpora
where transposition differences cannot be resolved through
pitch histogram intersection, for instance in classical mu-
sic and jazz, where key changes might make the estimation
of transposition more difficult.

With maximal F1-scores of 0.73, the results of local
alignment and SIAM come close to the between-annotator
F1-scores between 0.75 and 0.78. This shows that we can-
not do much better for our problem on this dataset without
overfitting.

7. CONCLUSION

We conclude that both local alignment and SIAM seem
adequate methods for finding occurrences of melodic seg-
ments in folk songs. Based on the retrieval scores, they find
almost the same amount of relevant occurrences as human
annotators among each other.

The measures investigated in this paper were applied
to specific music representations. A wider range of music
representations will be compared in future work. More-
over, the results will need to be analyzed in more detail
with special attention to the cases where the similarity mea-
sures err, i.e. are false positives and false negatives more
frequent for a specific tune family? And if so, do the an-
notators also disagree most on these same tune families?
Besides, it is important to investigate the true positives as
well, and ascertain that they are found in the correct posi-
tions in a melody.

The similarity measures compared in this article can
be applied to other music corpora, which will give even
deeper insights into relationships between melodies based
on melodic segments that are shared between them. We
can learn much about melodic identity and music similarity
from both the confirmation and refutation of our findings
in other music genres.

8. ACKNOWLEDGEMENTS

Berit Janssen and Peter van Kranenburg are supported by
the Computational Humanities Programme of the Royal
Netherlands Academy of Arts and Sciences, under the aus-
pices of the Tunes&Tales project. For further information,
see http://ehumanities.nl. Anja Volk is supported
by the Netherlands Organisation for Scientific Research
through an NWO-VIDI grant (276-35-001). We thank Gis-
sel Velarde, Maarten Grachten and Julián Urbano for kindly
providing their code and helpful comments, Sanneke van
der Ouw, Jorn Janssen and Ellen van der Grijn for their an-
notations, and the anonymous reviewers for their detailed
suggestions.

664 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



9. REFERENCES

[1] Samuel P. Bayard. Prolegomena to a Study of the
Principal Melodic Families of British-American Folk
Song. The Journal of American Folklore, 63(247):1–
44, 1950.

[2] Michael Scott Cuthbert and Christopher Ariza. mu-
sic21 : A Toolkit for Computer-Aided Musicology and
Symbolic Music Data. In 11th International Society
for Music Information Retrieval Conference (ISMIR
2010), number Ismir, pages 637–642, 2010.

[3] Elizabeth R. Delong, David M. Delong, and Daniel L.
Clarke-Pearson. Comparing the Areas Under Two
or More Correlated Receiver Operating Characteris-
tic Curves: A Nonparametric Approach. Biometrics,
44(3):837–845, 1988.

[4] Maarten Grachten, Josep Lluı́s Arcos, and Ramon
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ABSTRACT

Measuring rhythm similarity is relevant for the analysis
and generation of music. Existing similarity metrics tend
to consider our perception of rhythms as being in time
without discriminating the importance of some regions
over others. In a previously reported experiment we ob-
served that measures of similarity may differ given the
presence or absence of a pulse inducing sound and the im-
portance of those measures is not constant along the pat-
tern. These results are now reinterpreted by refining the
previously proposed metrics. We consider that the percep-
tual contribution of each beat to the measured similarity
is non-homogeneous but might indeed depend on the tem-
poral positions of the beat along the bar. We show that
with these improvements, the correlation between the pre-
viously evaluated experimental similarity and predictions
based on our metrics increases substantially. We conclude
by discussing a possible new methodology for evaluating
rhythmic similarity between audio loops.

1. INTRODUCTION

Rhythm similarity is an important problem for both music
cognition and music retrieval. Determining which aspects
of the musical flow are used by musical brains to decide
if two musical excerpts share similarities with respect to
rhythm, would make it possible to build algorithms that
approximate human ratings about such relatedness. The
applications of such algorithms in MIR contexts should
be obvious and some have already been addressed [33]
[13] [6] [20]. Unfortunately, there is a gap between the
knowledge provided by cognitive models and engineering
models with respect to similarity in general, and rhythm
similarity in particular. Rhythm similarity metrics used in
MIR are frequently based on superficial information such
as inter-onset intervals, overall tempo or beat rate, onset
density, and they usually consider full-length songs to de-
rive a single similarity value. Contrastingly, rhythm sim-
ilarity models developed by cognitive scientists insist on
the importance of syncopation, beat salience, periodici-

c© Daniel Gómez-Marı́n, Sergi Jordà, Perfecto Herrera.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Daniel Gómez-Marı́n, Sergi Jordà,
Perfecto Herrera. “PAD and SAD: Two Awareness-Weighted Rhythmic
Similarity Distances”, 16th International Society for Music Information
Retrieval Conference, 2015.

ties and shorter time-scales to determine similarity. In this
paper we address the above-mentioned gap and propose
two rhythm similarity distances that refine those currently
available (and probably rougher than desirable). The pro-
posed distances have been derived from music cognition
knowledge and have been tuned using experiments involv-
ing human listeners. We additionally show that they can
be adapted to work (at least) in a music-loop collection
organization context, where music creators want to orga-
nize their building blocks in rhythm-contrasting or rhythm
flowing ways where similarity would provide the criterion
for such concatenation of elements.

Previous work has used rhythmic descriptors, computed
from audio signals, to analyze song databases. A common
collection used for testing genre classification methodolo-
gies, The Ballroom Dataset, has been sorted automatically
using different rhythmic descriptors and methodologies [4]
[29] [9] [24]. Out of the ballroom dataset very few authors
have addressed rhythm in electronic music with rhythmic
descriptors [10] [23] [2]. The logic behind most of these
research is the assumption that if a corpus is classified ac-
cording to annotated labels, the features used for that clus-
tering are somehow related to the phenomena that generate
the clustering. In other words, a correct classification im-
plies that the features used are useful despite their percep-
tual relevance.

Using symbolic representations of music, other authors
propose metrics to evaluate rhythmic similarity that have
shown to be useful in melody classification [33] or have
proven correlation with cognitive judgements in rhythmic
similarity experiments [12] [25] [1].

However, neither the audio-based methodologies or the
symbolic metrics for rhythm similarity ( [23] being an ex-
ception) have been designed for exploring short audio seg-
ments such as loops. Moreover, methodologies to evaluate
rhythmic similarity between two audio loops and retrieve
a value that can be analogous to a human rating are not
yet available. Therefore we want to develop perceptually
grounded rhythm similarity metrics to be used with short
audio loops.

This paper is aimed to present two new rhythmic simi-
larity metrics derived from revisiting the results of our cog-
nitive experiments on rhythm similarity perception [8]. Af-
ter revisiting our previous experiments, two metrics arise
as useful in similarity prediction tasks. Based on those
metrics we then introduce a new methodology to explore
rhythmic similarity between audio loops.
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The metrics proposed are based on the requirement that
rhythmic similarity must be rooted in current knowledge
of rhythm perception, where the notions of beat entrain-
ment, reinforcement and syncopation are fundamental. We
hypothesize that a proper rhythmic similarity measure can
be built upon those perceptual considerations, emphasiz-
ing the idea that our attention when judging the similarity
between two rhythms is not evenly distributed in time. We
specifically propose that we are more aware of certain re-
gions of a rhythm than others, affecting the way in which
we measure their similarity. To test our hypothesis we
use the results of our previous perceptual experiments and
compare them with predictions computed with our metrics
for the same rhythmic patterns in order to determine their
correlation.

High correlation values between the similarity ratings
of our previous experiment and the metrics presented here
are found, suggesting that blending awareness and synco-
pation is important for accurately predicting rhythmic sim-
ilarity. Finally we want to explore if the measures we pro-
pose, besides providing good fits and predictions of human
judgements, can be used to organize loop collections. The
use of our metrics in audio analysis will be discussed in the
last sections of the paper, where we propose a methodology
and evaluate it using audio loops of drum break patterns.
Our results for this pilot validation present significant cor-
relations between the similarity judgements of the subjects
and the predicted distances proposed here.

2. STATE OF THE ART

2.1 Beat Induction

The fact that us humans induce a pulse sensation when lis-
tening to music is by no means trivial and it seems to be
an innate and involuntary process [34]. It is known that
the mechanisms that favour our acquisition of a beat when
listening to music can also be triggered by any sequence
of onsets [26]. This emergent beat entrainment is a cog-
nitive process that can be divided two stages: first, we try
to infer a metrical structure either by computing distances
from intervals of the musical surface, where at least 5 to
10 notes are needed [3], or just try to match the incom-
ing sound to an internal repertoire of known rhythms. Fi-
nally, once a meter has been hypothesized, it is maintained
in the form of expectancies that interact with the new in-
coming sounds [17]. During this interaction, the expected
pulse can be reinforced or disconfirmed. When challenged,
brain rejection signals have been measured by means of
EEG [15]. The occurrence of a disconfirmation is often
referred to as syncopation, indicating notes that were ex-
pected on the beat but were presented on a previous metri-
cal position [18].

In order to represent the variability of expectancies along
a rhythmic pattern, researchers use profiles that indicate
the metrical weight of a note depending on its position.
Different profiles that highlight the importance of a beat
reinforcement or a syncopated event, depending on its oc-
currence within a full metrical period, have been proposed.

Figure 1. Lerdhal and Jackendorf′s [16] metrical weight
profile (left) and the experimentally revised version of
Palmer and Krumhansl [22] measured for musicians
(right).

A main theoretical profile [16] and an updated version ex-
perimentally revised with musicians [22] are presented in
Figure 1. These profiles stress the existence of a percep-
tual hierarchy of sound events depending on their occur-
rence, suggesting that some reinforcements or syncopa-
tions are perceptually more relevant than others. These
ideas have led to algorithms that measure the syncopa-
tion of a monotimbral unaccented phrase [30]. Moreover,
these algorithms have been used to correlate syncopation
with the difficulty to tap along rhythms [5], musical com-
plexity [31] [7] [27] and musical pleasure and desire to
dance [35], stressing the idea that syncopation has a pow-
erful effect on our perception of music.

2.2 Rhythmic Similarity

Once we can extract a numerical value from a pattern of
onsets such as its syncopation value, comparing patterns
and establishing distances between them is mathematically
possible. One main approach, proposed by Johnson-Laird
[14], is to analyze the onsets present on every beat of a
rhythmic pattern and assign the beat to a category depend-
ing if it reinforces the beat, challenges the beat or does
nothing to the beat. This approach has been modified [28]
and successfully tested with humans under experimental
conditions [1]. These ideas will be further expanded through-
out this paper.

As most proposed similarity metrics are measured on
monotimbral, monotonal and unaccented symbolic repre-
sentations of rhythm, there are others who have explored
the use of string similarity techniques as the swap distance
or the edit distance [19] [21] to measure similarity between
patterns. The edit distance has proven to be a useful pre-
dictor of human similarity judgements [32] [11] [25]. But
still, the obtained fit between the edit distance and subjec-
tive similarity judgments has a big room for improvement.

Here we use similarity metrics based on syncopation,
specifically a variation of the theory of Johnson-Laird in
which we expand the possible groups that a beat can be
subscribed to (syncopation, reinforcement or nothing). In
the following sections we present, test and discuss an im-
provement over a previously published metric and explore
the possibility of using these symbolic metrics in rhythmic
analysis of audio signals.
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3. METHOD

In this section we present different concepts that are the
building blocks of our rhythmic similarity algorithms. We
have to make some simplifying assumptions, considering
one bar, monotimbral, monotonal, percussive patterns with
4/4 time signature and a minimum resolution of a sixteenth
note. The symbolic representation of such patterns is bi-
nary, where a 1 indicates an onset and 0 indicates a silence.
Therefore the patterns used throughout this work are 16
digit sequences of zeroes and ones.

3.1 Beats to syncopation groups

Rhythms are split in beats, in our case each beat has four
steps (four digits). Each beat of a rhythm is classified into
a group according to its relation with the pulse, either a re-
inforcement or a challenge (See table 1). This method is
a variation of Johnson-Laird′s method [14], in which beats
are clustered in three broad categories: syncopation, rein-
forcement or nothing depending if the elements of the beat
are a reinforcement, a challenge or have no interaction with
the pulse. We have expanded Johnson-Laird′s method by
splitting syncopation into three possible groups (groups 5
to 7, Table 1), reinforcement is split in three groups (groups
1 to 3, Table 1) and adding a new category where a syn-
copation and a reinforcement are both present (group 8,
Table 1). Expanding the groups in which a beat can be
classified offers more detail on the role of each segment
and helps differentiate between different syncopations or
different reinforcements.

The procedure to classify each beat is to compute its
syncopation value using the beat profile 2 0 1 0. This pro-
file is derived from Lerdahl and Jackendorf′s [16] in which
weights are proportional to the duration of the note each
accent represents: an accent of a whole note has a higher
weight than an accent on a half note, which is higher than
an accent on a quarter note, and so forth. In our beat pro-
file the first onset, that is coincident with the pulse, has a
higher weight than the third onset which is coincident with
an eighth note.

It is important to note that an onset on the fourth step
of a beat generates a syncopation only if the first step of
the next beat is a silence. Therefore to calculate the ap-
propriate syncopation values for every beat, the first step
of the following beat has to be considered. The syncopa-
tion value for each beat is the sum of each onset′s metrical
weights.

Each beat can then be assigned to one out of eight syn-
copation categories, but we have considered the case of a
reinforcement on the first step and a syncopation on the
fourth step 1001 (total syncopation value = 0) as special
cases belonging to syncopation group #8.

3.2 Coincidence

We propose here two metrics, one that explores if two pat-
terns have the same onsets and silences on a specific beat,
which we call pattern coincidence distance (PD) and the
other one, named syncopation coincidence distance (SD)

Group value Patterns
1 3 1010 1010x
2 2 1000 1000x 1001x 1011x
3 1 0010 0010x 0110 0110x 1110 1110x
4 0 0000 0000x 1111x 0011x 0001x 0111x
5 -1 0100 0100x 1100 1100x 0101x 1101x
6 -2 0001 0011 0111 1111
7 -3 0101 1101
8 0 1001 1011

Table 1. Relation between syncopation group, syncopa-
tion value and beat patterns. The symbol ‘ ’ indicates a
silence at the beginning of the next beat and the symbol ‘x’
indicates an onset at the beginning of the nest beat.

which explores if a specific beat of two patterns belong to
the same syncopation group (see Table 1).

Here we give an illustrative example to understand PD
and SD. The two first beats of a given pattern A have the
following onset/silence configuration 1001 0110 and an-
other pattern B has 1100 0010. Their respective syncopa-
tion groups are #8 #3 and #5 #3. The pattern coincidence
(PD) is computed by looking at the percentage of coin-
cident onsets and silences on the same beat of each pat-
tern. Their coincidence values would be (2+3)/8 = 0.625
because for the first beat there are 2 out of four notes co-
incident between 1001 and 1100; and for the second beat,
there are 3 coincidences between 0110 and 0010. In to-
tal there are 2+3 coincidences out of 8 possible. On the
other hand, to measure the syncopation coincidence (SD),
for the first beat of patterns A and B, we get that 1001 be-
longs to family #8 and 1100 belongs to family #5. Clearly
8 is different from 5. But if we look at the second beat,
0110 and 0010 belong to the same group #3, thus group
coincidence is 0+1=1. With these metrics we obtain two
methods for measuring a numerical value of the coinci-
dence between two coincident beats of different patterns.
If the coincidence between all the beats of two patterns is
computed, this value can be used as a measure of similar-
ity between the two patterns. However, we might consider
that, as different onsets have different metrical weights de-
pending on their position within a pattern (see Figure 1),
beats can also have different perceptual relevance depend-
ing on their position within the pattern. In this paper we
have conceptualized this factor as awareness.

3.3 Awareness as an effect of metrical hierarchy

Our previously published results [8] suggest a difference in
the relevance of each beat when measuring similarity be-
tween two patterns based on coincidence. This awareness
has proven important when exploring correlations between
our experimental results of similarity and the rhythmic pat-
terns compared. Thus we propose each beat to have dif-
ferent relevance when evaluating similarity between two
patterns in the presence of a pre defined metrical context.
Awareness is conceived as weight factors applied to each
beat′s coincidence metric (either PD or SD). These weights
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emphasize or moderate each beat′s importance on the final
distance value. This concept will be addressed in the fol-
lowing section and is decisive for explaining our results.

3.4 Rhythmic Similarity Metrics

Our metrics are straightforward and are based on comput-
ing any of the two types of coincidence (either beat or
syncopation group), and using them directly or with an
awareness-based weighting. We finally have four metrics,
two of them non-weighted. Pattern coincidence Distance
(PD) and Syncopation group coincidence Distance (SD),
Pattern coincidence and Awareness Distance (PAD) and
Syncopation group coincidence and Awareness Distance
(SAD). The weights of the PAD and SAD metrics will be
explored in the following sections.

PD = pc1 + pc2 + pc3 + pc4 (1)

SD = sc1 + sc2 + sc3 + sc4 (2)

PAD = pc1w1 + pc2w2 + pc3w3 + pc4w4 (3)

SAD = sc1w1 + sc2w2 + sc3w3 + sc4w4 (4)

Where pc(n) is pattern coincidence, sc(n) is syncopation
group coincidence, w(n) is the weighting of each beat, n is
the order of the beat within a full metric cycle.

4. EXPERIMENT

In previously published paper [8] we performed two rhyth-
mic similarity experiments, one inducing the beat and an-
other without inducing the beat. In this paper we are revis-
iting the beat-induced experiment to test our new metrics
with the similarity ratings obtained in the previous one.

In one of the experiments, twenty one subjects (recruited
among the MTG staff and UPF pool of students, all of them
with musical experience of more than 5 years as amateur
performers) rated different rhythm pairs in the presence of
a beat-inducing kick drum. The rhythm pairs were con-
structed by making variations of a main pattern as shown
in Table 2. A region of the base pattern was progressively
shifted, generating new patterns. Nine different main pat-
terns were designed and the length and origin of the re-
gion was varied systematically. Thirty six rhythm pairs
plus a control pair were tested by all the subjects who rated
similarity using a Likert scale of seven steps. To promote
rhythm entrainment, a kick drum, coincident with the start
of every beat, was presented before and simultaneously
with the tested rhythms.

5. RESULTS

The mode of the similarity ratings for each pair of patterns
was used as the value capturing their similarity. All the
pairs of patterns presented to the subjects are analyzed with
the metrics described in section 3, exploring the correla-
tions with the similarity ratings reported for each pair.

In our previously reported experiment, we computed the
PD distance for every tested pair and observed a Spear-
man Rank correlation with the subject′s similarity ratings

Base Pattern variation
1010 1110 1000 1010 1101 0110 1000 1010
1010 1110 1000 1010 1010 1011 1000 1010
1010 1110 1000 1010 1001 0101 1000 1010
1010 1110 1000 1010 1010 1010 1100 1010

Table 2. Example of four stimuli pairs used in the experi-
ment. The left column has the base pattern and the derived
variations are on the right column. The similarity measures
of the subjects are between the base pattern and each varia-
tion. The underlined portion of the base pattern is repeated
in the variations.

Figure 2. PD, PAD, SD and SAD predictions correlated
with similarity ratings. X axis: similarity ratings, y axis
PD, PAD, SD and SAD predictions from left to right.

of 0.54 (p-value < 0.005). We also computed the SD dis-
tance which has a Spearman rank correlation value of 0.46
with the similarity ratings (p-value < 0.01).

Here we calculate our newly introduced metrics PAD
and SAD (see Figure 2). To calculate PAD, a linear regres-
sion between the coincidence result of each beat and the
similarity ratings is computed. The normalized weights
obtained for beats 1 to 4 are 1, 0.27, 0.22 and 0.16 re-
spectively. We take the weights of the linear regression as
indications of the awareness for each beat. Using those
weights we get the PAD distance with a Spearman Rank
correlation value of 0.76 (p-value < 0.001).To calculate
SAD a linear regression between each beats coincidence
and similarity ratings generated the following normalized
weights for beat 1 to 4: 1, 0.075, 0.14 and 0.12 respec-
tively. Again, we take the weights of the linear regression
and use them as indications of the awareness for each beat.
Applying those weights we get the SAD distance which
has a Spearman Rank correlation value of 0.81 (p-value <
0.001).

The resulting awareness profiles of both PAD and SAD
metrics have a similar behaviour (see Figure 3). In both
cases the importance of the first beat is almost 5 times
larger than the other beats. Our experimental hypothesis
is that this phenomena evidences a hierarchical organiza-
tion of rhythmic elements in time where the first element
of a rhythmic sequence is of greater importance than the
rest.

The correlation values that have been obtained suggest
that the PAD and SAD metrics are better than previously
existing candidates to predict rhythmic similarity between
two patterns of onsets in the presence of a beat, the way
in which most of the music is experienced. The PAD and
SAD metrics surpass the results found and reported in our
previous experiment, which makes them suitable to be used
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Figure 3. Awareness profiles of the PAD and SAD dis-
tances that generated best correlations with rhythm simi-
larity ratings.

in real life scenarios.

6. DISCUSSION

It can be seen that the SAD metric has the highest corre-
lation values with human similarity, rating slightly above
the PAD metric, while the non-weighted metrics PD and
SD are significantly lower. This suggests that the concepts
of syncopation groups and beat awareness are perceptually
relevant.

The drop in correlation values when there is no aware-
ness weighting validates the idea of each beat having a dif-
ferent importance when beat induced subjects try to make
sense of them. It seems that the first beat is the most im-
portant followed by the third, the fourth and the second.

The SAD metric is based on comparing if syncopation
groups are coincident between different patterns (see sec-
tion 3.2). This means that a change from one family to any
other family is penalized by our algorithm despite if the
change is between syncopation to syncopation (groups 5
to 7 in Table 1) or reinforcement to reinforcement (groups
1 to 3 in Table 1) or if it is a change from a syncopation
to a reinforcement group or to the nothing group (or vice
versa). Since the SAD metric has a positive correlation
with similarity ratings, this suggests that any change be-
tween groups decreases our perception of similarity. On
the other hand, perception of rhythmic similarity is highly
influenced with the coincidence between syncopation groups
or patterns and the position of those coincidences within
the pattern.

7. PILOT VALIDATION

A straightforward application of PAD and SAD for explor-
ing rhythm-similarity-based loop exploration can be dis-
cussed. The simplest approach would be to use an onset
detector to the loop signal and extract a general onset pat-
tern. This would lead to a single-level pattern deprived of
any instrumental information where all musical interplay,
the main information, would be lost. On the other hand,
a robust source separation system would be ideal, where
an audio loop could be completely split into its different
instrumental components and then converted to a symbolic
representation. But the technologies to perform such a task
are not yet reliable. An alternative would be to extract on-
set patterns from meaningful frequency bands that could

Figure 4. Predicted similarity vs similarity ratings of ten
audio loops using our methodology with PAD and SAD
metrics.

preserve spectral information present on the audio loop.
We propose a methodology where a sound loop, of known

metric length, is segmented every sixteenth note value and
filtered in 23 Bark bands. This is a typical spectral repre-
sentation which approximates frequency resolution of the
human hearing. The energy peaks in each band are con-
sidered as onsets and the rest as silences. In this way we
convert an audio loop into a binary matrix of onset and si-
lences of 23 bands times the number of analysis windows.
An audio loop is then decomposed in 23 parallel rhyth-
mic patterns that can be compared with the 23 patterns of
another audio loop measuring PAD and SAD distances be-
tween bands. The sum of the band to band distances is the
overall PAD or SAD distance between two audio loops.
Note that this methodology is tempo independent if the
loops compared have the same known metrical length.

As a pilot validation for our methodology, an experi-
ment was carried out using nine different drum break loops
in audio format (downloaded from http://rhythm-lab.com).
All loops were post processed to have a metrical length of
two bars. Fifteen musically trained subjects were invited to
rate the rhythmic similarity between one audio loop and the
rest using a Likert scale divided in 5 steps, from ”very sim-
ilar” to ”very different”. The mode of the results for each
pair was used as the representative similarity value and the
correlations with PAD and SAD distances were measured.
The awareness profile used for both PAD and SAD was
1 0.075 0.14 0.12 extracted from the results presented in
section 5 (see Figure 3, right).

The obtained results present (p-value < 0.001) a signif-
icant correlation between the similarity reported by the fif-
teen subjects and the PAD and SAD distances (Figure 4).
The PAD distance has a 0.80 Spearman rank correlation
value (p-value < 0.01). The SAD distance has a Spear-
mann correlation value of 0.75 (p-value < 0.05).

It is quite interesting that PAD and SAD distances pro-
vide reliable similarity predictions, given the subjectivity
of the task and the fact that the breaks come form very dif-
ferent recordings with an obvious difference in timbre and
dynamics. For this pilot validation The PAD has a higher
correlation value with the similarity ratings than the SAD
metric.
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8. CONCLUSION AND FUTURE WORK

Based on these results, we propose that measuring the PAD
and SAD distance between two rhythms with an induced
beat as metrical context provider, is an effective way to
predict human rhythmic similarity ratings. Perceptually
motivated rhythm similarity measures that are applied to
MIR problems should take into account both the synco-
pation groups and a beat-awareness measure, in order to
match subjective appreciations of rhythm similarity.

The rhythms used in the foundational experiments of
our metrics are only limited to a 4/4 time signature, a 16
step length, sixteenth note resolution and binary dynam-
ics. Expanding the signature to other common signatures,
smaller note resolutions and subtler dynamics is important
in order to broaden the validity and usefulness of our met-
rics and methodology.

Even though our methodology for measuring similarity
among loops yielded significant high correlation values,
both with PAD and SAD, it is important to consider the
scale of the pilot validation is limited. New experiments
with a higher amount of loops should be carried out in or-
der to explore the real advantages and limitations of our
methodology.
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ABSTRACT

Automatic chord estimation (ACE) is a hallmark re-
search topic in content-based music informatics, but like
many other tasks, system performance appears to be con-
verging to yet another glass ceiling. Looking toward trends
in other machine perception domains, one might conclude
that complex, data-driven methods have the potential to
significantly advance the state of the art. Two recent efforts
did exactly this for large-vocabulary ACE, but despite ar-
guably achieving some of the highest results to date, both
approaches plateau well short of having solved the prob-
lem. Therefore, this work explores the behavior of these
two high performing, systems as a means of understanding
obstacles and limitations in chord estimation, arriving at
four critical observations: one, music recordings that inval-
idate tacit assumptions about harmony and tonality result
in erroneous and even misleading performance; two, stan-
dard lexicons and comparison methods struggle to reflect
the natural relationships between chords; three, conven-
tional approaches conflate the competing goals of recogni-
tion and transcription to some undefined degree; and four,
the perception of chords in real music can be highly subjec-
tive, making the very notion of “ground truth” annotations
tenuous. Synthesizing these observations, this paper of-
fers possible remedies going forward, and concludes with
some perspectives on the future of both ACE research and
the field at large.

1. INTRODUCTION

Among the various subtopics in content-based music in-
formatics, automatic chord estimation (ACE) has matured
into a classic MIR challenge, receiving healthy attention
from the research community for the better part of two
decades. Complementing our natural sense of academic
intrigue, the general music learning public places a high
demand on chord-based representations of popular mu-
sic, as evidenced by large online communities surround-
ing websites like e-chords 1 or Ultimate Guitar 2 . Given

∗Please direct correspondence to eric@museami.com
1 http://www.e-chords.com
2 http://www.ultimate-guitar.com

c© Eric J. Humphrey, Juan P. Bello.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Eric J. Humphrey, Juan P. Bello. “Four
Timely Insights on Automatic Chord Estimation”, 16th International So-
ciety for Music Information Retrieval Conference, 2015.

the prerequisite skill necessary to manually identify chords
from recorded audio, there is considerable motivation to
develop automated systems capable of reliably performing
this task.

The goal of ACE research is —or, at least, has been—
to develop systems that produce “good” time-aligned se-
quence of chords from a given music signal. Supplemented
by efforts in data curation [2], syntax standardization [8],
and evaluation [13], the bulk of chord estimation research
has concentrated on building better systems, mostly con-
verging to a common architecture [4]: first, harmonic fea-
tures, referred to as pitch class profiles (PCP) or chroma,
are extracted from short-time observations of the audio sig-
nal [7]; these features may then be processed by any num-
ber of means, referred to in the literature as pre-filtering;
next, pattern matching is performed independently over
observations to measure the similarity between the signal
and a set of pre-defined chord classes, yielding a time-
varying likelihood; and finally, post-filtering is applied to
this chord class posterior, resulting in a sequence of chord
labels over time.

However, despite continued efforts to develop bet-
ter features [11], more powerful classifiers [10], or ad-
vanced post-filtering methods [1], performance appears to
be tapering off, as evidenced by recent years’ results at
MIReX 3 . Thus, while other areas of machine perception,
such as computer vision and speech recognition, are able
to leverage modern advances in machine learning with re-
markable success, two recent efforts in large vocabulary
ACE were only able to realize modest improvements by
comparison [3, 9]. Acknowledging this situation begs an
obvious question: why is automatic chord estimation dif-
ferent, and what might be done about it? Through an in-
vestigation of system behaviour and detailed error analysis,
the remainder of this paper is an effort to shed some light
on the problem.

2. RESEARCH METHODOLOGY

2.1 Automatic Systems

Given its long history, there are ample potential automatic
chord estimation systems that could be considered in this
inquiry. Here, though, we choose to focus our investiga-
tion on two recent, data-driven, large vocabulary systems
for which we are able to obtain software implementations,

3 http://www.music-ir.org/mirex/wiki/MIREX\
_HOME
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providing control over training and choice of chord vocab-
ulary. Additionally, these system architectures are quite
different and should, as a result, yield different machine
perspectives, a strategy that has proven useful in the anal-
ysis of beat tracking systems [15].

2.1.1 K-stream GMM-HMM with Multiband Chroma

The first system considered is a modern, high-performing
GMM/HMM chord estimation system [3], referred to here
as “kHMM.” A multiband chroma representation is com-
puted from beat-synchronous audio analysis, producing
four parallel feature representations. Each is modeled by
a separate multivariate Gaussian Mixture Model (GMM),
whereby all chroma vectors and chord labels are rotated to
a C root. During inference, four separate observation like-
lihoods over all chord classes are obtained by circularly
rotating the feature vector the GMM, thereby making the
model transposition invariant. These four chord class pos-
teriors are then decoded jointly using a k-stream HMM,
resulting in a single beat-aligned chord sequence.

2.1.2 Deep Convolutional Neural Network

Acknowledging the recent widespread success of deep
learning methods, a deep convolutional network is also
considered [9], referred to as “DNN.” Time-frequency
patches of local contrast normalized constant-Q spectra, on
the order of one second, are transformed by a four-layer
convolutional network. Finding inspiration in the root-
invariance strategy of GMM training, explicit weight-tying
is achieved at the classifier across roots such that all qual-
ities develop the same internal representations, allowing
the model to generalize to chords unseen during training.
Following the lead of deep network research in automatic
speech recognition, likelihood scaling is performed after
training to control class bias resulting from the severe im-
balance in the distribution of chords. Finally, chord poste-
riors are decoded via the Viterbi algorithm [5].

2.2 Evaluation

Expressed formally, the modern approach to scoring an
ACE system is a weighted measure of chord-symbol re-
call, RW , between a reference,R, and estimated, E , chord
sequence as a continuous integral over time, summed over
a discrete collection of N annotation pairs:

RW =
1

S

N−1∑

n=0

∫ Tn

t=0

C(Rn(t), En(t)) dt (1)

Here, C is a chord comparison function, bounded on [0, 1],
t is time, n the index of the track in a collection, Tn the du-
ration of the nth track. This total is normalized by the sup-
port, S, corresponding to the cumulative amount of time
over which the comparison rule is defined for R, given by
the indicator function in a similar integral:

S =
N−1∑

n=0

∫ Tn

t=0

1Rn(t) dt (2)

Defining the normalization term S separately is useful
when comparing chord names, as it relaxes the assumption
that the comparison function is defined everywhere. Fur-
thermore, setting the comparison function as a free vari-
able allows for flexible evaluation of a system’s outputs,
and thus the focus on vocabulary can largely focus on the
choice of comparison function, C. The work presented
here leverages mir eval, an open source evaluation tool-
box providing a set of seven chord comparison functions,
characterizing different relationships between chords [14].

2.3 Reference Annotations

2.3.1 Ground Truth Data

The first major effort to curate reference chord annotations,
now part of the larger Isophonics 4 dataset, covers the en-
tire 180-song discography of The Beatles, as well as 20
songs from Queen, 14 from Carole King, and 18 from
Zweieck; due to content access, only the 200 songs from
The Beatles and Queen are used here. Two other large
chord annotation datasets were publicly released in 2011,
offering a more diverse musical palette. The McGill Bill-
board dataset consists of over 1000 annotations, of which
more than 700 have been made public. This project em-
ployed a rigorous sampling and annotation process, se-
lecting songs from Billboard magazine’s “Hot 100” charts
spanning more than three decades. The other, provided
by the Music and Audio Research Lab (MARL) at NYU 5 ,
consists of 295 chord annotations performed by undergrad-
uate music students; 195 tracks are drawn from the USPop
dataset 6 , and 100 from the RWC-Pop collection 7 , in the
hopes that leveraging common MIR datasets might facili-
tate access within the community. In all three cases, chord
annotations are provided as “ground truth,” on the premise
that the annotations represent the gold standard.

2.3.2 The Rock Corpus

Importantly, the reference chord annotations discussed pre-
viously offer a singular perspective, either as the output of
one person or the result of a review process. The Rock
Corpus, on the other hand, is a set of 200 popular rock
tracks with time-aligned chord and melody transcriptions
performed by two expert musicians [6]: one, a pianist, and
the other, a guitarist, referred to as DT and TdC, respec-
tively. This collection of chord transcriptions has seen little
use in the ACE literature, as its initial release lacked timing
data for the transcriptions. A subsequent release resolved
this issue, however, and doubled the size of the collection.
While previous efforts have sought to better understand the
role of subjectivity in chord annotations [12], this dataset
provides an opportunity to explore the behavior of ACE
systems as a function of multiple reference transcriptions
at a larger scale.

4 http://isophonics.net/content/
reference-annotations

5 https://github.com/tmc323/Chord-Annotations
6 http://labrosa.ee.columbia.edu/projects/

musicsim/uspop2002.html
7 https://staff.aist.go.jp/m.goto/RWC-MDB/

rwc-mdb-p.html
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Ref–DNN Ref–kHMM kHMM–DNN
root 0.789 0.808 0.840
thirds 0.757 0.775 0.815
majmin 0.759 0.776 0.798
mirex 0.769 0.783 0.806
triads 0.705 0.721 0.783
sevenths 0.620 0.645 0.691
tetrads 0.567 0.588 0.678
v157 0.649 0.659 0.678

Table 1. Weighted recall across comparison rules between
the ground truth references and both models, respectively,
as well as against each other.

3. LARGE-VOCABULARY CHORD ESTIMATION

Here we investigate large-vocabulary chord estimation as
a basis for experimentation. First and foremost, it presents
a particularly challenging problem, and therefore offers
a good deal of potential for subsequent analysis. Large
chord vocabularies also avoid the inherent noise intro-
duced by approximately mapping chords into the clas-
sic major-minor formulation, e.g. A:sus2→A:maj or
C:dim7→C:min. Additionally, the large amount of
available data should be sufficient for learning a large num-
ber of chord classes.

Before proceeding, the ground truth collections are
merged for training and evaluation, totaling 1235 tracks. A
total of 18 redundant songs are identified via the EchoN-
est Analyze API 8 and removed to avoid potential data
contamination during cross validation. All but one is
dropped for each collision, preferring content from Iso-
phonics, Billboard, and MARL, respectively, resulting in
a final count of 1217 unique tracks.

To ensure a fair comparison between algorithms, the
ground truth data is partitioned into five distinct splits.
Training is repeated five times for both systems addressed
in Section 2.1 for cross validation, such that each split is
used as a holdout test set once. Both models adopt the
same chord vocabulary, comprised of the thirteen most fre-
quent chord qualities in all twelve pitch classes, as well as
a no-chord class, for a total of 157 chord classes, consistent
with previous efforts [3]. Chords outside this strict vocab-
ulary are ignored during training, rather than mapped to
their nearest class approximation. The Rock Corpus data
is not used for training, and saved exclusively for analysis.

3.1 Experimental Results

Weighted recall is averaged over the five test splits are
for all reference chord labels according to the seven
mir eval comparison rules, shown in Table 1. At first
glance, the overall statistics seem to indicate that the two
systems are roughly equivalent, with “kHMM” outper-
forming “DNN” by a small margin. The automatic systems
perform best at root-level recall, and performance drops as
the comparison rules encompass more chords. Notably, a
comparison of algorithmic estimations, given in the third
column, shows that these two systems do indeed offer very

8 http://developer.echonest.com/docs/v4

DT–TdC (DT|TdC)–DNN (DT|TdC)–kHMM
root 0.932 0.792 0.835
thirds 0.903 0.750 0.785
majmin 0.905 0.723 0.766
mirex 0.902 0.737 0.776
triads 0.898 0.719 0.760
sevenths 0.842 0.542 0.595
tetrads 0.835 0.540 0.590
v157 0.838 0.539 0.590

Table 2. Weighted recall across comparison rules for the
two human annotators, and the better match of each against
the two automatic systems.

different perspectives. Therefore, it will be valuable to not
only investigate where the estimated chord sequences dif-
fer from the reference, but also how these estimated se-
quences differ from each other.

Similarly, weighted recall is also given for both systems
over the Rock Corpus in Table 2. It is an open question
as to how an estimated annotation might best be compared
against more than one human reference. For the purposes
of analysis, the best matching reference-estimation pair is
chosen at the track level and used to compute the weighted
average. Still, performance on the Rock Corpus is lower
for both automatic algorithms. This is likely a result of a
mismatch in chord vocabulary, as space of chords used in
the Rock Corpus is a smaller subset than the 157 estimated
by automatic systems. Additionally, it is curious to observe
a non-negligible degree of disagreement between the two
human perspectives, with more than a 15% discrepancy in
the tetrads condition. That said, the human annotators do
agree a deal more that is attained by either system, indicat-
ing that there is likely room for improvement.

3.2 Track-wise Visualizations

While weighted recall gives a good overall measure of sys-
tem performance, we are particularly interested in devel-
oping a more nuanced understanding of how these systems
behave. To this end, system performance is now examined
at the track-level, as real music is often highly self-similar
and the chords within a song with be strongly related.
Errors and other kinds of noteworthy behavior should be
well-localized as a result, making it easier to draw conclu-
sions from the data.

Two track-wise scatter plots are given in Figure 1, for
the ground truth and Rock Corpus datasets. The for-
mer compares the agreement between multiple estima-
tions, along x, with the better matching estimation for the
given reference, along y, where each quadrant character-
izes a different behavior: (I), all annotations agree; (II),
one estimation matches the reference better than the other;
(III), all annotations disagree; and (IV), the estimations
agree more with each other than the reference. Impor-
tantly, this track-wise comparison makes it easier to iden-
tify datapoints that can help address our original research
questions. Tracks for which only one algorithm performs
well (II) likely indicate boundary chords. Alternatively, in-
stances where both algorithms produce poor estimations,
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Figure 1. Trackwise recall for the “tetrads” in two condi-
tions: (top) over the ground truth data, illustrating model
agreement versus the better match between the reference
and estimated annotations; (bottom) over the Rock Cor-
pus data, illustrating annotator agreement versus the better
match between the two reference and kHMM annotations.

and yet neither agree (III), are curious and warrant further
inspection. Finally, tracks that result in similarly incorrect
estimations (IV) highlight some kind of greater challenge
to automatic systems.

The second plot, conversely, compares the agreement
between multiple references, along x, with the better
matching reference for the given estimation, along y, and
analogous characterizations by quadrant: (I), all annota-
tions agree; (II), one reference matches the estimation bet-
ter than the other; (III), all annotations disagree; and (IV),
the references agree more with each other than the esti-
mation. Here, annotator disagreement in the presence of a
matching estimation (II) is indicative of subjectivity, while
disagreement between all annotations (III) is suspicious
and should be explored. Furthermore, tracks with an es-

timated annotation that fails to match either human per-
spective (III & IV) likely identify room for improvement.

4. QUALITATIVE ANALYSIS, IN FOUR PARTS

Using this suite of analysis tools described previously, a
thorough exploration of the relationship between reference
and estimated annotations is conducted, resulting in four
significant insights. In the spirit of both reproducibility and
open access, a companion IPython notebook is made avail-
able online 9 , providing additional visualizations comple-
mentary to the following discussion.

4.1 Invalid Harmonic Assumptions

An exploration of quadrant (IV) from Figure 1 reveals that
a large source of error stems from musical content or ref-
erence chord annotations that violate basic assumptions
about how chords are used. One common form of this be-
havior is due to issues of intonation, where a handful of
recordings are not tuned to A440, with some varying by
more than a quarter-tone: for example, “Stand By Me” by
Jimmy Ruffin, “I’ll Tumble 4 Ya” by The Culture Club,
“Every Breath You Take” by The Police, or “Nowhere to
Run” by Martha Reeves and the Vandellas. Understand-
ably, as a result, the estimated annotations differ by a semi-
tone from the reference, and perform poorly across all
comparison rules.

The second observation finds that some tracks in the
dataset do not truly make use of, and are thus not well de-
scribed by, chords. While a few classic songs by The Bea-
tles have been known to be of questionable relevance for
their instrumentation and lack of standard chords, such as
“Revolution 9,” “Love You To,” or “Within You, Without
You”, analysis here identifies several other tracks, span-
ning rap, hip hop, reggae, funk and disco, that behave
similarly: for example, “Brass Monkey” by The Beastie
Boys, “I, Me, & Myself” by de la Soul, “Don’t Push” by
Sublime, “Get Up (I Feel Like Being a Sex Machine)” by
James Brown, or “I Wanna Take You Higher” by Tina and
Ike Turner. This realization encourages the conclusion that
chords may not be a valid way to describe all kinds of mu-
sic, and that using such songs for evaluation may lead to
erroneous or misleading results.

4.2 Limitations of Chord Comparisons

The second observation resulting from this analysis is the
difficulty faced in the comparison of related chords. By
and large, ACE systems are often forced to either map
chords to a finite dictionary, or develop embedding rules
for equivalence testing [14]. In either case, this quantiza-
tion process assigns all observations to a one-of-K repre-
sentation effectively making all errors equivalent. For the
purposes of stable evaluation, this can have significantly
negative consequences.

9 https://github.com/ejhumphrey/ace-lessons/
experiments.ipynb

676 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



E:7/3 A:min/b3 E:9

E:7/3

A:min/b3

E:7 E:maj A:maj B:maj B:7 A:7 N C:maj E:7/3 C:maj6 A:min/b3 Ab:hdim7 A:min A:sus4 E:9

Figure 2. Six perspectives on “I Saw Her Standing There”, by The Beatles, according to Isophonics (Iso), Billboard (BB),
David Temperley (DT), Trevor deClercq (TdC), the Deep Neural Network (DNN), and the k-stream HMM (kHMM).

Chords are naturally related to each other hierarchically,
and cannot always be treated as distinct classes. Flat clas-
sification problems —i.e. those in which different classes
are disjoint— are built on the assumption of mutually ex-
clusive relationships. In other words, assignment to one
class precludes the valid assignment to any other class con-
sidered. In the space of chords, C:dim7 and C:maj are
perhaps mutually exclusive classes, but it is difficult to say
the same of C:maj7 and C:maj, as the former contains
the latter. This conflict is a common source of disagree-
ment between annotators of the Rock Corpus tracks, which
are easily identified in or near the quadrant (II) of Figure 1-
b: for example, “Dancing In The Street” by Martha Reeves
& The Vandellas, “All Apologies” by Nirvana, or “Papa’s
Got a Brand New Bag” by James Brown. In each case,
the human perspectives each report related tetrads and tri-
ads, e.g. E:7 and E:maj, causing low annotator agree-
ment, while the machine estimation alternates between the
two trying to represent both. These kinds of errors are not
“confusions” in the classic sense, but a limitation of evalu-
ation methods to reliably quantify this behavior, and of the
model to represent this naturally structured output.

4.3 Conflicting Problem Definitions

Over the years, the automatic prediction of chord se-
quences from music audio has taken several names: es-
timation, recognition, identification, or transcription. The
analysis here motivates the notion that this is not merely
a matter of semantics, but actually a subtle distinction
indicative of two slightly different problems being ad-
dressed. Chord transcription is an abstract task related
to functional analysis, taking into consideration high-level
concepts such as long term musical structure, repetition,
segmentation or key. Chord recognition, on the other hand,
is quite literal, and is closely related to polyphonic pitch

detection. Both interpretations are easily found in the col-
lection of reference annotations, however, conflating these
two tasks to some unknown degree.

Furthermore, the goal in transcription is to assign chord
labels to regions, and is closer in principle to segmentation
than classic approaches to chord estimation. One illustra-
tive instance, “All Apologies” by Nirvana, is identified in
quadrant (II) of Figure 1. Here, the human annotators have
disagreed on the harmonic spelling of the entire verse, with
DT and TdC reporting C#:maj and C#:7, respectively.
On closer inspection, it would appear that both annotators
are in some sense correct; the majority of the verse is ar-
guably C#:maj, but a cello sustains the flat-7th of this key
intermittently. The regions in which this occurs are clearly
captured in the estimated annotations, corresponding to its
C#:7 predictions. This proves to be an interesting discrep-
ancy, because one annotator (DT) is using long-term struc-
tural information about the song to apply a single chord to
the entire verse.

4.4 Ground Truth vs. Subjectivity

While the role that subjectivity can play in chord esti-
mation is becoming better understood [12], it is not han-
dled gracefully in current ACE methodology, and there
are two examples worth analyzing here. The first, “I Saw
Her Standing There” by The Beatles, is given in Figure
2, where the pitch class of the chord’s root is mapped to
color hue, and the darkness is a function of chord quality,
e.g., all E:* chords are a shade of blue. No-chords are al-
ways black, and chords that do not fit into one of the 157
chord classes are shown in gray. Perhaps the most strik-
ing observation is the degree of variance between all an-
notations. Based on the tetrads comparison, no two refer-
ence annotations correspond to greater than a 65% agree-
ment, with the DNN and kHMM scoring 28% and 52%
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Ver. Chord Sequence Score Ratings Views
Billboard D:maj A:sus4(b7) B:min7 G:maj9 — — —
MARL D:maj D:maj/5 D:maj6/6 D:maj(4)/4 — — —

DT D:maj A:maj B:min G:maj — — —
TdC D:maj A:maj B:min G:maj — — —
DNN D:maj A:sus4 B:min7 G:maj7 — — —

kHMM D:maj A:sus4 B:min G:maj — — —
1 D:maj A:maj B:min G:maj 4/5 193 1,985,878
2 D:5 A:sus4 B:min7 G:maj 5/5 11 184,611
3∗ D:maj A:maj B:min G:maj 4/5 23 188,152
4∗ D:maj A:maj B:min G:maj7 4/5 14 84,825
5∗ D:maj A:maj B:min G:maj 5/5 248 338,222
6 D:5 A:5 D:5/B G:5 5/5 5 16,208

Table 3. Various interpretations of the verse from “With or Without You” by U2, comparing the reference annotations
and automatic estimations with six interpretations from a popular guitar tablature website; a raised asterisk indicates the
transcription is given relative to a capo, and transposed to the actual key here.

against the ground truth Isophonics reference, shown at the
top. Despite this low score, the DNN and kHMM esti-
mations agree with at least one of the four human annota-
tions 89.1% and 92.3% of the song, respectively. The two
exceptions occur during the out-of-gamut chords, E:7/3
and A:min/b3, which the DNN calls Ab:hdim7 and
C:maj6, respectively. While both estimated chords share
three pitches with the Isophonics reference, the other hu-
man annotators mark the A:min/b3 instead as a root po-
sition C:maj. Given how subjective it might be for human
experts to agree on possible inversions, typical evaluation
strategies may place too much emphasis on the root of a
chord.

A second example to consider in the larger discus-
sion of subjectivity is the verse of “With or Without You”
by U2. Musically, one finds reasonably ambiguous har-
monic content, consisting of a vocal melody, a moving
bass line, a guitar riff, and a string pad sustaining a high-
pitched D. Complementing the four expert perspectives
provided here, an Internet search yields six additional user-
generated chord transcriptions from the website Ultimate
Guitar 10 . All human perspectives and both machine in-
terpretations are consolidated in Table 3, noting both the
average and number of ratings, as well as the number of
views the public chord annotation has received. Though
view count is not directly indicative of a transcription’s ac-
curacy, it does provide a weak signal indicating that users
did not rate it negatively.

This particular example provides several valuable in-
sights. Nearly all perspectives are equivalent at the major-
minor level, with the exception of the MARL annotation,
which differs only slightly. That said, the differences be-
tween user-generated annotations do not noticeably impact
the average ratings. This is an important consideration
when building user systems, whereby objective measures
are valuable insofar as they correlate with subjective ex-
perience. Similarly, these annotations are indicative of, at
least for this song, a preference for root position chords.
Thus, subjectivity plays a role in the collection of refer-
ence annotations, as well as the end-user experience.

10 http://tabs.ultimate-guitar.com/u/u2/with_or_
without_you_crd.htm, accessed 19 April 2015.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, qualitative analysis of system performance
led to the identification of four key observations affecting
current chord estimation methodology: one, not all music
content is valid in the context of chord estimation; two,
conventional comparison methods struggle to accurately
characterize the complex relationships between chords;
three, conventional methodology has mixed the somewhat
conflicting goals of chord transcription and recognition to
an undefined degree; and four, the subjective nature of
chord perception may render objective ground truth and
evaluation untenable.

Looking to the future of automatic chord estimation, a
few opportunities stand out. First and foremost, subjectiv-
ity in reference annotations should be embraced rather than
resolved. Chord estimation may be better understood as a
time-aligned “tagging” problem, modeled as multinomial
regression, or as structured prediction. Furthermore, syn-
thesizing multiple human perspectives into a continuous-
valued chord affinity vector would allow for more stable
evaluation by encoding the degree to which a chord label
applies to an observation. From a system design perspec-
tive, chord transcription, as a disctinct task, stands to bene-
fit greatly from recent advances in music structure analysis.
To the point, however, it is also crucial to distinguish be-
tween the different flavors of harmonic analysis, and how
a collection of reference data does —or does not— reflect
the specific problem being addressed.

In a more general sense, this inquiry also has implica-
tions for the larger field of content-based MIR. Perhaps
most presssing, the most powerful model cannot compen-
sate for methodological deficiencies, and domain knowl-
edge can be crucial to help understand system behaviour.
Similarly, qualitative evaluation should play a larger role
in the assessment of automatic systems intended for user-
facing applications. If nothing else, users studies can help
identify objective measures that align well with subjec-
tive experience. Finally, on a more practical note, high-
performing systems can and should be used to facilitate the
curation of reference annotations. These systems can be
used to solicit human perspectives at a much larger scale,
for both new and previously annotated content.

678 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



6. REFERENCES

[1] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. Audio chord recognition with recur-
rent neural networks. In Proceedings of the 14th Inter-
national Society for Information Retrieval Conference
(ISMIR), pages 335–340, 2013.

[2] John Ashley Burgoyne, Jonathan Wild, and Ichiro Fuji-
naga. An expert ground truth set for audio chord recog-
nition and music analysis. In Proceedings of the 12th
International Society for Information Retrieval Confer-
ence (ISMIR), pages 633–638, 2011.

[3] Taemin Cho. Improved techniques for automatic chord
recognition from music audio signals. PhD thesis, New
York University, 2014.

[4] Taemin Cho and Juan Pablo Bello. On the relative
importance of individual components of chord recog-
nition systems. Audio, Speech, and Language Pro-
cessing, IEEE/ACM Transactions on, 22(2):477–492,
2014.

[5] Taemin Cho, Ron J. Weiss, and Juan Pablo Bello. Ex-
ploring common variations in state of the art chord
recognition systems. In Proceedings of the Sound and
Music Computing Conference, 2010.

[6] Trevor De Clercq and David Temperley. A corpus anal-
ysis of rock harmony. Popular Music, 30(01):47–70,
2011.

[7] Takuya Fujishima. Realtime chord recognition of mu-
sical sound: a system using common lisp music. In
Proceedings of the International Computer Music Con-
ference (ICMC), 1999.

[8] Christopher Harte, Mark B Sandler, Samer A Abdal-
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ABSTRACT

Detecting the occurrences of rāgs’ characteristic melodic
phrases from polyphonic audio recordings is a fundamen-
tal task for the analysis and retrieval of Indian art mu-
sic. We propose an abstraction process and a complex-
ity weighting scheme which improve melodic similarity
by exploiting specific melodic characteristics in this music.
In addition, we propose a tetrachord normalization to han-
dle transposed phrase occurrences. The melodic abstrac-
tion is based on the partial transcription of the steady re-
gions in the melody, followed by a duration truncation step.
The proposed complexity weighting accounts for the dif-
ferences in the melodic complexities of the phrases, a cru-
cial aspect known to distinguish phrases in Carnatic music.
For evaluation we use over 5 hours of audio data compris-
ing 625 annotated melodic phrases belonging to 10 differ-
ent phrase categories. Results show that the proposed mel-
odic abstraction and complexity weighting schemes sig-
nificantly improve the phrase detection accuracy, and that
tetrachord normalization is a successful strategy for deal-
ing with transposed phrase occurrences in Carnatic music.
In the future, it would be worthwhile to explore the appli-
cability of the proposed approach to other melody domi-
nant music traditions such as Flamenco, Beijing opera and
Turkish Makam music.

1. INTRODUCTION

The automatic assessment of melodic similarity is one of
the most researched topics in music information research
(MIR) [3,14,30]. Melodic similarity models may vary con-
siderably depending on the type of music material (sheet
music or polyphonic audio recordings) [4, 8, 22] and the
music tradition [5, 18]. Results until now indicate that the
important characteristics of several melody-dominant mu-
sic traditions of the world such as Flamenco and Indian art
music (IAM) need dedicated research efforts to devise spe-
cific approaches for computing melodic similarity [23,24].
These music traditions have large audio music repertoires
but comparatively very fewer number of descriptive scores

c© Sankalp Gulati†, Joan Serrà? and Xavier Serra†.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Sankalp Gulati†, Joan Serrà? and
Xavier Serra†. “Improving Melodic Similarity in Indian Art Music Using
Culture-specific Melodic Characteristics”, 16th International Society for
Music Information Retrieval Conference, 2015.

(they follow an oral transmission), the automatic detection
of the occurrences of a melodic phrase in audio recordings
is therefore a task of primary importance. In this article,
we focus on this task for IAM.

Hindustani music (also referred to as north Indian art
music) and Carnatic music (also referred to as south Indian
art music) are the two art music traditions of India [6, 31].
Both are heterophonic in nature, with melody as the dom-
inant aspect of the music. A typical piece has a main
melody being sung or played by the lead artist and a mel-
odic accompaniment with the tonic pitch as the base refer-
ence frequency [9]. Rāg is the melodic framework and tāl
is the rhythm framework in both music traditions. Rāgs are
characterized by their constituent svars (roughly speaking,
notes), by the āroh-avroh (the ascending and descending
melodic progression) and, most importantly, by a set of
characteristic melodic or ‘catch’ phrases. These phrases
are the prominent cues for rāg identification used by the
performer, to establish the identity of a rāg, and also the
listener, to recognize the rāg.

The characteristic melodic phrases of a rāg act as the
basis for the artists to improvise, providing them with a
medium to express creativity during a rāg rendition. Hence,
the surface representation of these melodic phrases can
vary a lot across their occurrences. This high degree of
variability in terms of the duration of a phrase, non-linear
time warpings and the added melodic ornaments together
pose a big challenge for melodic similarity computation
in IAM. In Figure 1 we illustrate this variability by show-
ing the pitch contours of the different occurrences of three
characteristic melodic phrases of the rāg Alaiya Bilawal.
We can clearly see that the duration of a phrase across its
occurrences varies a lot and the steady melodic regions are
highly varied in terms of the duration and the presence of
melodic ornaments. Because of these and other factors,
detecting the occurrences of characteristic melodic phrases
becomes a challenging task. Ideally, the melodic similar-
ity measure should be robust to a high degree of variation
and, at the same time, it should be able to discriminate
between different phrase categories and irrelevant melodic
fragments (noise candidates).

For melodic similarity computation, the string matching-
based and the set point-based approaches are extensively
used for both musical scores and audio recordings [30].
However, compared to the former, the set point-based ap-
proaches are yet to be fully exploited for polyphonic audio
music because of the challenges involved in melody extrac-
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Figure 1. Pitch contours of occurrences of three different characteristic melodic phrases in Hindustani music. Contours are
frequency transposed and time shifted for a better visualization.

tion and transcription [4]. A reliable melody transcription
algorithm is argued to be the key to bridge the gap between
audio and symbolic music, leading to the full exploitation
of the potential of the set point-based approaches for audio
music. However, for several music traditions such as Hin-
dustani and Carnatic music, automatic melody transcrip-
tion is a challenging and a rather ill-defined task [25].

In recent years, several methods for retrieving differ-
ent types of melodic phrases have been proposed for IAM,
following both supervised and unsupervised strategies [7,
12, 13, 16, 17, 24, 26, 27]. Ross et al. [27] detect the oc-
currences of the title phrases of a composition within a
concert recording of Hindustani music. The authors ex-
plored a SAX-based representation [20] along with several
pitch quantizations of the melody and showed that a dis-
similarity measure based on dynamic time warping (DTW)
is preferred over the Euclidean distance. Noticeably, in
that work, the underlying rhythm structure was exploited to
reduce the search space for detecting pattern occurrences.
An extension of that approach [26] pruned the search space
by employing a melodic landmark called nyās svar [11].

Rao et al. [24] address the challenge of a large within-
class variability in the occurrences of the characteristic phr-
ases. They propose to use exemplar-based matching after
vector quantization-based training to obtain multiple tem-
plates for a given phrase category. In addition, the authors
propose to learn the optimal DTW constraints in a previ-
ous step for each phrase category in order to exploit the
possible patterns in the duration variability. For Carnatic
music, Ishwar et al. [17] propose a two-stage approach for
spotting the characteristic melodic phrases. The authors
exploit specific melodic characteristics (saddle points) to
reduce the target search space and use a distance measure
based on rough longest common subsequence [19].

On the other hand, there are studies that follow an un-
supervised approach for discovering melodic patterns in
Carnatic music [7, 12]. Since the evaluation of melodic
similarity measures is a much more challenging task in an
unsupervised framework, results obtained from an exhaus-
tive grid search of optimal distance measures and parame-
ter values within a supervised framework are valuable [13].

In this study, we present two approaches that utilize spe-
cific melodic characteristics in IAM to improve melodic
similarity. We propose a melodic abstraction process based

on the partial transcription of the melodies to handle large
timing variations in the occurrences of a melodic phrase.
For Carnatic music we also propose a complexity weight-
ing scheme that accounts for the differences in the melodic
complexities of the phrases, a crucial aspect for melodic
similarity in this music tradition. In addition, we come
up with a tetrachord normalization strategy to handle the
transposed occurrences of the phrases. The dataset used
for the evaluation is a superset of the dataset used in a re-
cent study [13] and contains nearly 30% more number of
annotated phrases.

2. METHOD

Before we present our approach we first discuss the mo-
tivation and rationale behind it. A close examination of
the occurrences of the characteristic melodic phrases in
our dataset reveals that there is a pattern in the non-linear
timing variations [24]. In Figure 1 we show a few occur-
rences of three such melodic phrases. In particular, we see
that the transient regions of a melodic phrase tend to span
nearly the same time duration across different occurrences,
whereas the stationary regions vary a lot in terms of the
duration. In Figure 2 we further illustrate this by show-
ing two occurrences of a melodic phrase (P1a and P2a).
The stationary svar regions are highlighted. We clearly
see that the duration variation is prominent in the high-
lighted regions. To handle such large non-linear timing
variations typically a non-constrained DTW distance mea-
sure is employed [13]. However, such a DTW variant is
prone to noisy matches. Moreover, the absence of a band
constraint renders it inefficient for computationally com-
plex tasks such as motif discovery [12].

We put forward an approach that abstracts the melodic
representation and reduces the extent of duration and pitch
variations across the occurrences of a melodic phrase. Our
approach is based on the partial transcription of the melo-
dies. As mentioned earlier, melodic transcription in IAM
is a challenging task. The main challenges arise due to the
presence of non-discrete pitch movements such as smooth
glides and gamakas 1 . However, since the duration vari-
ation exists mainly during the steady svar regions, tran-
scribing only the stable melodic regions might be suffi-

1 Rapid oscillatory melodic movement around a svar
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Figure 2. Original pitch contours (P1a, P2a) and duration
truncated pitch contours (P1b, P2b) of two occurrences of a
characteristic phrase of rāg Alhaiya Bilawal. The contours
are transposed for a good visualization.
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Figure 3. Pitch contours of three melodic phrases (p1, p2,
p3). p1 and p2 are the occurrences of the same characteris-
tic phrase and both are musically dissimilar to p3.

cient. Once transcribed, we can then truncate the dura-
tion of these steady melodic regions and hence effectively
reduce the amount of timing variations across the occur-
rences of a melodic phrase. Additionally, since the dura-
tion truncation also reduces the overall length of a pattern,
the computational time for melodic similarity computation
is also reduced substantially.

The rapid oscillatory pitch movements (gamakas) in Car-
natic music bring up another set of challenges for the melo-
dic similarity computation. Very often, two musically dis-
similar melodic phrases obtain a high similarity score ow-
ing to a similar pitch contour at a macro level. However,
they differ significantly at a micro level. In Figure 3 we
illustrate such a case where we show the pitch contours
of three melodic phrases P1, P2 and P3, where P1 and
P2 are the occurrences of the same melodic phrase and
both are musically dissimilar to P3. Using the best per-
forming variant of the similarity measure in [13] we obtain
a higher similarity score between the pairs (P1, P3) and
(P2, P3) compared to the score between the pair (P1, P2).
This tendency of a high complexity time-series (higher de-
gree of micro level variations) obtaining a high similarity
score with another low complexity time-series is discussed
in [1]. We follow their approach and apply a complex-
ity weighting to account for the differences in the melodic
complexities between phrases in the computation of melo-
dic similarity.

In the subsequent sections we present our proposed ap-
proach. As a baseline in this study we consider the method
that was reported as the best performing method in a recent
study for the same task on a subset of the dataset [13]. We

denote this baseline method by MB .

2.1 Melody Estimation and post-processing

We represent melody of an audio signal by the pitch of the
predominant melodic source. For predominant pitch esti-
mation in Carnatic music, we use the method proposed by
Salamon and Gómez [29]. This method performed favo-
urably in MIREX 2011 (an international MIR evaluation
campaign) on a variety of music genres, including IAM,
and has been used in several other studies for a similar
task [7,12,13]. An implementation of this algorithm avail-
able in Essentia [2] is used in this study. Essentia is an
open-source C++ library for audio analysis and content-
based MIR. We use the default values of the parameters
for pitch estimation except the frame size and the hop size,
which are set to 46 ms and 2.9 ms, respectively. For Hin-
dustani music, we use the pitch tracks corresponding to the
predominant melody that are used in several other stud-
ies on a similar topic [24, 27] and are made available to
us by the authors. These pitch tracks are obtained using
a semi-automatic system for predominant melody estima-
tion. This allows us to compare results across studies and
avoid the effects of pitch errors on the computation of mel-
odic similarity. After estimating the predominant pitch we
convert it from Hertz to Cent scale for the melody repre-
sentation to be musically relevant.

We proceed to post-process the pitch contours and re-
move the spurious pitch jumps lasting over a few frames
as well as smooth the pitch contours. We first apply a me-
dian filter over a window size of 50 ms, followed by a low-
pass filter using a Gaussian window. The window size and
the standard deviation of the Gaussian window is set to
50 ms and 10 ms, respectively. The pitch contours are fi-
nally down-sampled to 100 Hz, which was found to be an
optimal sampling rate in [13].

2.2 Transposition Invariance

The base frequency chosen for a melody in IAM is the
tonic pitch of the lead artist [10]. Therefore, for a meaning-
ful comparison of the melodic phrases across the record-
ings of different artists, a melody representation should be
normalized by the tonic pitch of the lead artist. We per-
form this tonic normalization (Ntonic) by considering the
tonic of the lead artist as the reference frequency during
the Hertz to Cent conversion. The tonic pitch is automat-
ically identified using a multi-pitch approach proposed by
Gulati et al. [10]. This approach was shown to obtain more
than 90% tonic identification accuracy and has been used
in several studies in the past.

Tonic normalization does not account for the pitch of
the octave transposed occurrences of a melodic phrase with-
in a recording. In addition, estimated tonic pitch some-
times might be incorrect and a typical error is an offset
of fifth scale degree. To handle such cases, we propose a
novel tetrachord normalization (Ntetra). For this we anal-
yse the difference (∆) in the mean frequency values of the
two tonic normalized melodic phrases (p1, p2). We offset
the pitch values of the phrase p1 by the frequency in the set
{- 1200, - 700, - 500, 0, 500, 700, 1200, 1700, 1900} that
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is closest to ∆ within a vicinity of 100 Cents. In addition
to tetrachord normalization, we also experiment with mean
normalization (Nmean), which was reported to improve the
performance in the case of Carnatic music [13].

2.3 Partial Transcription

We perform a partial melody transcription to automatically
segment and identify the steady svar regions in the melody.
Note that even the partial transcription of the melodies is a
non-trivial task, since we desire a segmentation that is ro-
bust to different melodic ornaments added to a svar where
the pitch deviation from the mean svar frequency can be
up to 200 Cents. In Figure 2 we show such an example of
a steady svar region (P1a from 3-6 s) where the pitch de-
viation from the mean svar frequency is high due to added
melodic ornaments. Ideally, the melodic region between 1
and 6 s should be detected as a single svar segment.

We segment the steady svar regions using a method de-
scribed in [11], which addresses the aforementioned chal-
lenges. A segmented svar region is then assigned a fre-
quency value corresponding to the peak in an aggregated
pitch histogram closest to the mean svar frequency. The
pitch histogram is constructed for the entire recording and
smoothened using a Gaussian window with a variance of
15 cents. As peaks of the normalized pitch histogram, we
select all the local maximas where at least one peak-to-
valley ratio is greater than 0.01. For a detailed description
of this method we refer to [11].

2.4 Svar Duration Truncation

After segmenting the steady svar regions in the melody we
proceed to truncate the duration of these regions. We hy-
pothesize that, beyond a certain value δ, the duration of
these steady svar regions do not change the identity of a
melodic phrase (i.e. the phrase category). We experiment
with 7 different truncation durations δ = { 0.1 s, 0.3 s,
0.5 s, 0.75 s, 1 s, 1.5 s, 2 s} and select the one that results
in the best performance. In Figure 2 we show an example
of the occurrences of a melodic phrase both before (P1a,
P2a) and after (P1b, P2b) the svar duration truncation us-
ing δ = 0.1 s. This example clearly illustrates that the
occurrences of a melodic phrase after duration truncation
exhibit lower degree of non-linear timing variations. We
denote this method by MDT .

2.5 Similarity Computation

To measure the similarity between two melodic fragments
we consider a DTW-based approach. Since the phrase seg-
mentation is known beforehand, we use a whole sequence
matching DTW variant. We consider the best performing
DTW variant and the related parameter values for each mu-
sic tradition as reported in [13]. These variants were cho-
sen based on an exhaustive grid search across all possible
combinations and hence can be considered as optimal for
this dataset. For Carnatic music we use a DTW step size
condition {(2, 1), (1, 1), (1, 2)} and for Hindustani music
a step size condition {(1, 0), (1, 1), (0, 1)}. We use Sakoe-
Chiba global band constraint [28] with the width of the

Dataset Rec. PC Rāgs Artists Duration (hr)
CMD 23 5 5 14 3.82
HMD 9 5 1 7 1.76

Table 1. Details of the datasets in terms of the total num-
ber of recordings (Rec.), number of annotated phrase cate-
gories (PC), number of rāgs, unique number of artists and
total duration of the dataset.

band as ±10% of the phrase length. Note that before com-
puting the DTW distance we uniformly time-scale the two
melodic fragments to the same length, which is the maxi-
mum of the lengths of the phrases.

2.6 Complexity Weighting

The complexity weighting that we apply here to overcome
the shortcoming of the distance measure in distinguish-
ing two time series with different complexities is discussed
in [1]. We apply a complexity weighting (α) to the DTW-
based distance (DDTW ) in order to compute the final sim-
ilarity score Df = αDDTW . We compute α as:

α =
max(Ci, Cj)

min(Ci, Cj)
; Ci = 2

√√√√
N−1∑

i=1

(pi − pi+1)2 (1)

where, Ci is the complexity estimate of a melodic phrase
of length N samples and pi is the pitch value of the ith

sample. We explore two variants of this complexity esti-
mate. One of these variants is already proposed in [1] and
is described in equation 1. We denote this method variant
by MCW1. We propose another variant that utilizes mel-
odic characteristics of Carnatic music. This variant takes
the number of saddle points in the melodic phrase as the
complexity estimate [17]. This method variant is denoted
byMCW2. As saddle points we consider all the local mini-
mas and the local maximas in the pitch contour which have
at least one minima to maxima distance of half a semi-
tone. Since such melodic characteristics are predominantly
present in Carnatic music, the complexity weighting is not
applicable for computing melodic similarity in Hindustani
music.

3. EVALUATION

3.1 Dataset and Annotations

For a better comparison of the results, for our evaluations
we use a music collection that has been used in several
other studies for a similar task [13, 24, 27]. However, we
have extended the dataset by adding 30% more number of
annotations of the melodic phrases, which we make avail-
able at http://compmusic.upf.edu/node/269. The music col-
lection comprises vocal recordings of renowned artists in
both Hindustani and Carnatic music. We use two separate
datasets for the evaluation, Carnatic music dataset (CMD)
and Hindustani music dataset (HMD) as done in [13]. The
melodic phrases are annotated by two professional musi-
cians who have received over 15 years of formal music
training. All the annotated phrases are the characteristic
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CMD HMD
PC #Occ Lmean Lstd PC #Occ Lmean Lstd

C1 39 1.38 0.25 H1 62 1.93 0.98
C2 46 1.25 0.21 H2 154 1.40 0.79
C3 38 1.23 0.24 H3 47 1.30 0.78
C4 31 1.11 0.17 H4 76 2.38 1.33
C5 45 0.76 0.08 H5 87 1.17 0.36

Total 199 1.13 0.29 426 1.59 0.99

Table 2. Details of the 625 annotated melodic phrases.
PC: pattern category, #Occ: number of annotated occur-
rences, and Lmean, Lstd are the mean, standard deviation
of the lengths of the patterns of a PC in seconds.

phrases of a rāg. In Table 1 we summarize the relevant
dataset details. Table 2 summarizes the details of the an-
notated phrases in terms of their number of instances and
basic statistics of the length of the phrases.

3.2 Setup, Measures and Statistical Significance

We consider each annotated melodic phrase as a query and
perform a search across all the annotated phrases in the
dataset (referred to as target search space). In addition
to the annotated phrases, we add randomly sampled melo-
dic segments (referred to as noise candidates) in the target
space to simulate a real world scenario. We generate the
starting time stamps of the noise candidates by randomly
sampling a uniform distribution. The length of the noise
candidates are generated by sampling the distribution of
the duration values of the annotated phrases. The number
of noise candidates added are 100 times the number of total
annotations in the entire music collection. For every query
we consider the top 1000 nearest neighbours in the search
results ordered by the similarity value. A retrieved melodic
phrase is considered as a true hit only if it belongs to the
same phrase category as the query.

To assess the performance of the proposed approach
and the baseline method we use mean average precision
(MAP), a common measure in information retrieval [21].
To assess if the difference in the performance of any two
methods is statistically significant we use the Wilcoxon
signed rank-test [32] with p < 0.01. To compensate for
multiple comparisons, we apply the Holm-Bonferroni met-
hod [15].

4. RESULTS AND DISCUSSION

In Table 3 we summarize the MAP scores and the stan-
dard deviation of the average precision values obtained us-
ing the baseline method (MB), the method that uses dura-
tion truncation (MDT ) and the ones using the complexity
weighting (MCW1, MCW2), for both the CMD and the
HMD. Note that MCW1 and MCW2 are only applicable to
the CMD (Sec. 2).

We first analyse the results for the HMD. From Table 3
(upper half), we see that the proposed method variant that
applies a duration truncation performs better than the base-
line method for all the normalization techniques. More-

HMD
Norm MB MDT MCW1 MCW2

Ntonic 0.45 (0.25) 0.52 (0.24) - -
Nmean 0.25 (0.20) 0.31 (0.23) - -
Ntetra 0.40 (0.23) 0.47 (0.23) - -

CMD
Norm MB MDT MCW1 MCW2

Ntonic 0.39 (0.29) 0.42 (0.29) 0.41 (0.28) 0.41 (0.29)
Nmean 0.39 (0.26) 0.45 (0.28) 0.43 (0.27) 0.45 (0.27)
Ntetra 0.45 (0.26) 0.50 (0.27) 0.49 (0.28) 0.51 (0.27)

Table 3. MAP scores for the two datasets HMD and
CMD for the four method variants MB , MDT , MCW1

and MCW2 and for different normalization techniques.
Standard deviation of average precision is reported within
round brackets.
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Figure 4. MAP scores for different duration truncation
values (δ) for the HMD and the CMD.

over, this difference is found to be statistically significant
in each case. The results for the HMD in this table corre-
spond to δ =500 ms, for which we obtain the highest accu-
racy compared to the other δ values as shown in Figure 4.
Furthermore, we see that Ntonic results in the best accu-
racy for the HMD for all the method variants and the dif-
ference is found to be statistically significant in each case.
In Figure 5 we show a boxplot of average precision values
for each phrase category and for both MB and MDT to get
a better understanding of the results. We observe that with
an exception of the phrase category H2, MDT consistently
performs better thanMB for all the other phrase categories.
A close examination of this exception reveals that the error
often is in the segmentation of the steady svar regions of
the melodic phrases corresponding to H2. This can be at-
tributed to a specific subtle melodic movement in H2 that
is confused by the segmentation method as a melodic orna-
ment instead of a svar transition, leading to a segmentation
error.

We now analyse the results for the CMD. From Ta-
ble 3 (lower half), we see that using the method variants
MDT , MCW1 and MCW2 we obtain reasonably higher
MAP scores compared to the baseline method MB and the
difference is found to be statistically significant for each
method variant across all normalization techniques. This
MAP score for MDT corresponds to δ =1 s, which is con-
siderably higher than the MAP scores for other δ values
as shown in Figure 4. We also see that MCW2 performs
slightly better than MCW1 and the difference is found to
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Figure 5. Boxplot of average precision values obtained
using MB and MDT for each melodic phrase category for
the HMD. These values correspond to Ntonic.
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Figure 6. Boxplot of average precision values obtained
using methods MB , MDT and MCW for each melodic
phrase category for the CMD. These values correspond to
Ntetra.

be statistically significant only in the case ofNtetra. We do
not find any statistically significant difference in the perfor-
mance of methodsMDT andMCW2. Unlike the HMD, for
the CMDNtetra results in the best performance with a sta-
tistically significant difference compared to the other nor-
malization techniques across all method variants. We now
analyse the average precision values for every phrase cat-
egory for MB , MDT and MCW2. Since MCW2 performs
slightly better than MCW1 we only consider MCW2 for
this analysis. In Figure 6 we see that MDT performs better
than MB for all phrase categories. We also observe that
MCW2 consistently performs better thanMB with the sole
exception of C2. This exception occurs because MCW2

presumes a consistency in terms of the number of saddle
points across the occurrences of a melodic phrase, which
does not hold true for C2. This is because phrases corre-
sponding to C2 are rendered very fast and the subtle pitch
movements are not the characteristic aspect of such mel-
odic phrases. Hence, the artists often take the liberty of
changing the number of saddle points.

Overall we see that duration truncation of steady mel-
odic regions improves the performance in both the HMD
and the CMD. This reinforces our hypothesis that elon-
gation of steady svar regions in the melodies of IAM in
the context of the characteristic melodic phrase does not
change the musical identity of the phrase. This correlates

with the concept of nyās svar (nyās literally means home),
where the artist has the flexibility to stay and elongate a
single svar. A similar observation was reported in [24],
where the authors proposed to learn the optimal global
DTW constraints a priori for each pattern category. How-
ever, their proposed solution could not improve the perfor-
mance. Further comparing the results for the HMD and the
CMD we notice thatNtonic results in the best performance
for the HMD and Ntetra for the CMD. This can be at-
tributed to the fact that the number of the pitch-transposed
occurrences of a melodic phrase is significantly higher in
the CMD compared to the HMD [13]. Also, since the
non-linear timing variability in the HMD is very high, any
normalization (Nmean or Ntetra) that involves a decision
based on the mean frequency of the phrase is more likely
to fail.

5. CONCLUSIONS

In this paper we briefly presented an overview of the ap-
proaches for detecting the occurrences of the characteris-
tic melodic phrases in audio recordings of Indian art mu-
sic. We highlighted the major challenges involved in this
task and focused on two specific issues that arise due to
large non-linear timing variations and rapid melodic move-
ments. We proposed simple and easy to implement solu-
tions based on partial transcription and complexity weight-
ing to address these challenges. We also put forward a
new dataset by appending 30% more number of melodic
phrase annotations to those used in previous studies. We
showed that duration truncation of the steady svar regions
in the melodic phrases results in a statistically significant
improvement in the computation of melodic similarity. This
confirms our hypothesis that the elongation of steady svar
regions beyond a certain duration does not affect the per-
ception of the melodic similarity in the context of the char-
acteristic melodic phrases. Furthermore, we showed that
complexity weighting significantly improves the melodic
similarity in Carnatic music. This suggests that the extent
and the number of saddle points is an important character-
istic of a melodic phrase and is crucial to melodic similar-
ity in Carnatic music.

In the future, we plan to improve the method used for
segmenting the steady svar regions so that it can differen-
tiate melodic ornaments from subtle svar transitions. In
addition, we see a vast scope in further refining the com-
plexity estimate of a melodic phrase to improve the com-
plexity weighting. It would also be worthwhile to explore
the applicability of this approach to music traditions such
as Flamenco, Beijing opera and Turkish Makam music.
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Music Technology Group, Universitat Pompeu Fabra, Barcelona

{georgi.dzhambazov, sertan.senturk, xavier.serra}@upf.edu

ABSTRACT

Search by lyrics, the problem of locating the exact oc-
currences of a phrase from lyrics in musical audio, is a
recently emerging research topic. Unlike key-phrases in
speech, lyrical key-phrases have durations that bear im-
portant relation to other musical aspects like the structure
of a composition. In this work we propose an approach
that address the differences of syllable durations, specific
for singing. First a phrase is expanded to MFCC-based
phoneme models, trained on speech. Then, we apply dy-
namic time warping between the phrase and audio to esti-
mate candidate audio segments in the given audio record-
ing. Next, the retrieved audio segments are ranked by
means of a novel score-informed hidden Markov model,
in which durations of the syllables within a phrase are ex-
plicitly modeled. The proposed approach is evaluated on
12 a-capella audio recordings of Turkish Makam music.
Relying on standard speech phonetic models, we arrive at
promising results that outperform a baseline approach un-
aware of lyrics durations. To the best of our knowledge,
this is the first work tackling the problem of search by lyri-
cal key-phrases. We expect that it can serve as a baseline
for further research on singing material with similar musi-
cal characteristics.

1. INTRODUCTION

Searching by lyrics is the problem of locating the exact
occurrences of a key-phrase from textual lyrics in musical
signal. It has inherent relation to the equivalent problem
of keyword spotting (KWS) in speech. In KWS, a user is
interested to find at which time position a relevant keyword
(presenting a topic of interest) is spoken [16].

Most of the work on searching for keywords/key-
phrases in singing (a.k.a lyrics spotting) has borrowed con-
cepts from KWS. For spoken utterances phonemes have
relatively similar duration across speakers. Unlike that,
in singing durations of phonemes (especially vowels) have
higher variation [8]. When being sung, vowels are pro-
longed according to musical note values. Therefore, adopt-

c© Georgi Dzhambazov, Sertan Şentürk, Xavier Serra .
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Georgi Dzhambazov, Sertan Şentürk,
Xavier Serra . “Searching Lyrical Phrases in A-capella Turkish Makam
Recordings”, 16th International Society for Music Information Retrieval
Conference, 2015.

ing an approach from speech recognition might lack some
singing-specific semantics, among which the durations of
sung syllables. Furthermore, key-phrase detection has
high potential to be integrated with other relevant MIR-
applications, because lyrical key-phrases are often cor-
related to musical structure: For most types of music a
section-long lyrical phrase is a feature that represents the
corresponding structural section (e.g. chorus) in a unique
way. Therefore correctly retrieved audio segments for, for
example, the first lyrics line for a chorus can serve as a
structure discovery tool.

In this work we investigate searching by lyrics in the
case when a query represents an entire section or phrase
from the textual lyrics of a particular composition. Un-
like most works on lyrics spotting or query-by-humming,
where a hit would be a document from an entire collec-
tion, in our case a hit is the occurrence of a phrase, being
retrieved only from all performances of the given compo-
sition. In this respect the problem setting is more similar to
linking melodic patterns from score to musical audio (ad-
dressed in [15]), rather than to lyrics spotting. We assume
that the musical score with lyrics is present for the compo-
sition of interest. The proposed approach has been tested
on a small dataset of a-cappella performances from a reper-
toire of Turkish Makam music. For a given performance,
the composition is known in advance, but no information
about the structure is given. Characteristic for Makam mu-
sic is that, in a performance there might be reordering or
repetitions of score sections.

2. RELATED WORK

2.1 Lyrics spotting

A recent work proved that lyrics spotting is a hard problem
even when singing material is a-capella (for pop songs in
English) [8]. The authors adopt an approach from KWS,
using a compound hidden Markov model (HMM) with
keyword and filler model. Keywords are automatically ex-
tracted from a textual collection of lyrics. This work’s best
classifier (multi-layer perceptron) yielded an f-measure of
44%, averaged over top 50% of keywords. Notably, the
achieved results on singing material are not very different
from results on spoken utterances of same keywords.

One of the few attempts to go beyond keywords is the
work of [4]. Their goal was to automatically link phrases
that appear in the lyrics of one song to the same phrase
in another song. To this end, a keyword-filler model is
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Figure 1. Approach overview: A key-phrase query is constructed in two variants: in the first stage candidate segments
from audio are retrieved. In the second stage the query is modeled by a DBN-HMM aware of the position in music score.
The DBN-HMM decodes and ranks candidate segments

utilized for detecting characteristic phrases (of 2-3 words)
in sung audio. The method has been evaluated on poly-
phonic audio from Japanese pop, achieving 30% correctly
identified links. Another modeling approach has been cho-
sen in [1]. The authors propose subsequence dynamic time
warping (SDTW) to find a match to an example utterance
of a keyword as a subsequence of features from a target
recording.

In summary, performance of the few works on lyrics
spotting is not sufficiently good for practical applications.
A probable reason for this is that hitherto approaches do
not take into account the duration of syllables, which,
as stated above, is an important factor that distinguishes
speech from singing. In addition to that, syllable dura-
tions have been shown to be a strong reinforcing cue for
the related task of automatically synchronizing lyrics and
singing voice [3].

2.2 Position-aware DBN-HMMs

The modeling in most of the above mentioned approaches
relies on HMMs. A drawback of HMMs is that their capa-
bility to model exact state durations is restricted, because
the wait time in a state becomes implicitly an exponential
distribution density [13, 20, IV.D].

One alternative to tackle durations can be seen in dy-
namic Bayesian networks (DBN) [12], which allow mod-
eling of interdependent musical aspects in terms of proba-
bilistic dependencies. In [18] it was proposed how to apply
DBNs to represent jointly tempo and the position in a mu-
sical bar as latent variables in a HMM. In a later work this
idea was extended by explicitly modeling rhythmic patters
to track beats in music signals [7]. Relying on a similar
DBN-based scheme, in [5] it has been shown, that the de-
pendence of score position on structural sections makes it
possible to link musical performances to score. In this pa-
per for brevity we will refer to HMMs, which use DBNs to
describe their hidden states, as DBN-HMMs.

3. APPROACH OVERVIEW

Figure 1 presents an overview of the proposed approach. A
user first selects a query phrase from the lyrics of a compo-
sition of interest. Input are an audio recording, the queried
lyrics and their corresponding excerpt from musical score.

Only recordings of performances of the composition of the
query are being searched. Output is a ranked list of re-
trieved hit audio segments and their timestamps.

One of the common approaches to KWS in speech,
known as acoustic KWS, is to decompose a keyword into
acoustic phoneme models [16]. Similarly, in a first stage
of our approach a SDTW retrieves a set of candidate au-
dio segments that are acoustically similar to the phonemes-
decomposed query.

In a second stage, durations of the query phonemes are
modeled by a novel DBN-HMM (in short position-DBN-
HMM). Tracking the position in music score, it augments
the phoneme models with score reference durations. Next,
we run a Viterbi decoding on each candidate segment sep-
arately. This assures that only one (the most optimal) path
is detected for each candidate audio segment. Only full
matches of the query are considered as hits and all hit re-
sults are ranked according to the weights derived from the
Viterbi decoded path.

In what follows each of the two stages is described in
details, preceded by remarks on tempo estimation and how
a query key-phrase is handled.

3.1 Tempo factor estimation

Often a performance is not played at the tempo indicated
in the score. To estimate a factor τ , by which the aver-
age tempo of the performance differs relative to the score
tempo, we use the tonic-independent partial audio-score
alignment methodology explained in [15]. The method
uses Hough transform, a simple line detection method [2],
to locate the initial section from score in the audio record-
ing. We derive the tempo factor τ from the angle θ of
the detected line (approximating the alignment path) in the
similarity matrix between the score subsequence and the
audio recording.

3.2 Query construction

A selected lyrical phrase serves as a query twice: first a
simple query for retrieval of candidate segments and then
a duration-informed query for the decoding with position-
DBN-HMM.
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Figure 2. Distance matrix D for an audio excerpt of around 100 seconds. Retrieved paths are depicted as black contours.
White vertical lines indicate beginning (dashed) and ending (dotted) of candidate audio segments, whereas red lines with
triangle markers surround the ground truth regions.

3.2.1 Acoustic features

For each of 38 Turkish phonemes (and for a silent pause
model) a 3-state HMM is trained from a 5-hours corpus of
Turkish speech [14]. The 3 states represent respectively the
beginning, middle and ending acoustic state of a phoneme.
The transition probabilities of the HMMs are not taken into
account. The phoneme set utilized has been developed for
Turkish and is described in [14]. The formant frequen-
cies of spoken phonemes can be induced from the spec-
tral envelope of speech. To this end, we utilize the first
12 MFCCs and their delta to the previous time instant, ex-
tracted as described in [19]. For each state a 9-mixture
Gaussian distribution is fitted on the feature vector.

3.2.2 Simple query

For the first step no score-position information is utilized:
lyrics is merely expanded to its constituent phoneme mod-
els. Let λn ∈ Λ be a state of phoneme model at position n
in the query, where Λ is a set of all 3 × 38 states for the 3
phonemes.

3.2.3 Duration-informed query

Unlike the simple query, a duration-informed query ex-
ploits the note-to-syllable mappings, present in sheet mu-
sic. For each syllable a reference duration is derived by
aggregating values of its associated musical notes. Then
the reference durations are spread among its constituent
phonemes in a rule-based manner, resulting in reference
durations Rφ for each phoneme φ 1 .

To query a particular performance of a composition,Rφ
are rescaled by the tempo factor τ (see section 3.1). Now
this allows to define a mapping

f(pn, sn)→ λn (1)

1 In this work a simple rule is applied: consonants are assigned a fixed
duration (0.1 seconds) and the rest of the syllable is assigned to the vowel.

that determines the true state λn from a phoneme network,
being sung at position pn within a section sn. A position
pn can span the duration of a sectionD(sn) =

∑
φ∈sn Rφ.

4. RETRIEVAL OF CANDIDATE SEGMENTS

SDTW has proven to be an effective way to spot lyrics, in
which the feature series of an audio query can be seen as a
subsequence of features of a target audio [1]. In our case
a query of phoneme models Λ with length M can be seen
as subsequence of the series of MFCC features with length
N , extracted from the whole recording. To this end we
define a distance metric for an audio frame ym and model
state λn as a function of the posterior probability.

d(m,n) = − log P (ym|λn) (2)

where for phoneme state model λn

P (ym|λn) =

9∑

c=1

wc,λnN (ym;µc,λn ,Σc,λn) (3)

with N being the Gaussian distribution from a 9-
component mixture with weights wc,λn

. Based on the dis-
tance metric 2 a distance matrix DN×M is constructed.

4.1 Path computation

Let a warping path Ω be a sequence of L points (ω1, .., ωl),
l ∈ [1, L] and ωl = (m,n) refers to an entry d(m,n) in
D. Following the strategy and notation of [11] to generate
Ω we select step sizes ωl − ωl−1 ∈ {(1, 1), (1, 0), (1, 2)}
corresponding respectively to diagonal, horizontal and skip
step. A horizontal step means staying in the same phoneme
in next audio frame. The step size (0, 1) is disallowed
because each frame has to map to exactly one phoneme
model. To counteract the preference for the diagonal and
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Figure 3. Representation of the hidden layers of the pro-
posed model as a dynamic Bayesian network. Hidden vari-
ables (not shaded) are v - velocity, p - score position and
s - section. The observed feature vector y is not shaded.
Squares and circles denote respectively continuous and
discrete variables

the skip step, we set rather high values for the local weights
wd and ws [11].

A list of r candidate paths (Ω∗1, ...Ω
∗
r) is computed by

iteratively detecting the current path with maximum score.
After having detected a path Ω∗ with final position in frame
n∗ a small region of 5% of M : (n∗ − 5%M, n∗ + 5%M)
is blacklisted from further iterations, as described in [11].
This assures that the iterative procedure will not get stuck
in a set of paths from a vicinity of a local maximum, but
instead will retrieve as many relevant audio segments as
possible.

4.2 Candidate segment selection

Analysis of the detected query segments revealed that a
path often matches only partially the correct section seg-
ment. However, usually different parts of a segment have
been detected in neighbouring paths. To handle this, we
consider candidate segments - segments from the target au-
dio, within which a frame ym belongs to more than one
path Ω. In other words, a candidate segment spans audio
from the initial timestamp of the leftmost path to the final
timestamp of the rightmost path. An example of retrieved
candidate segments is presented in Figure 2. It can be seen
that the two ground truth regions lie within candidate seg-
ments, which consist of more than one path.

5. POSITION-DBN-HMM

In this section we present the novel position-DBN-HMM
for modeling a lyrical phrase. Its main idea is to incorpo-
rate the phonetic identities of lyrics and the syllable dura-
tions, available from musical score, into a coherent unit.
The dependence of the observed MFCC features (that cap-
ture the phonetic identity) on musical velocity and score
position are presented as DBN in Figure 3.

5.1 Hidden variables

1. Position pn from musical score for a section (pn ∈
{1, ..., D(sn)}). D(sn = Q) is the total duration
for a section sn as defined in section 3.2.3. Note
that D(sn) for a given section is different for two
performances with different tempo, because of the
tempo factor τ .

2. Velocity vn ∈ {1, 2, ..., V }. Unit is the number of
score positions per audio frame. Staying in state
vn = 2, for example, means that the current tempo
is steady and around 2 times faster than the slowest
one.

3. Structural section sn ∈ {Q,F} where Q is the
queried section and F is a filler section. A filler sec-
tion represents any non-key-phrase audio regions,
and practically allows with equal probability being
in any phoneme state (see section 5.3)

We compensate for tempo deviations by varying the local
step size of the v variable. To allow handling deviations
of up to half tempo, the derived D(sn = Q) is multiplied
by 2. This means that v = 1 corresponds to half of the
detected tempo. For the experiments reported in this paper,
we chose V = 5. Furthermore we set D(sn = F ) = V .
This assures that even in fastest tempo there is an option of
entering the filler section.

The proposed model is different from the model pro-
posed in [7] in two aspects:

• D(sn = Q) is not fixed but depends on the section
of interest and the detected tempo of performance

• a section sn (a pattern in the original model) is not
fixed, but can vary between a query and filler states
{Q,F}

Since all the hidden variables are discrete, one can reduce
this model to a regular HMM by merging all variables into
a single ’meta-variable’ xn:

xn = [vn, pn, sn] (4)

Note that the state space becomes the Cartesian product
of the individual variables.

5.2 Transition model

Due to the conditional independence relations presented in
Figure 3, the transition model reduces to

P (xn|xn−1) = P (vn|vn−1, sn−1)×
P (pn|vn−1, pn−1, sn−1)× P (sn|pn−1, sn−1, pn)

(5)

5.2.1 Velocity transition

p(vn|vn−1) =





φ/2, vn = vn−1 ± 1

1− φ, vn = vn−1

0, else

(6)

where φ is a constant probability of change in velocity and
is set to 0.2 in this work.
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5.2.2 Position transition

The score position is defined deterministically according
to:

pn = (pn−1 + vn−1 − 1) mod D(sn−1) + 1 (7)

where the modulus operator resets the position to be in
a beginning of a new section after it exceeds the duration
of previous section D(sn−1)

5.2.3 Section transition

P (sn|pn−1, sn−1, pn) =

{
P (sn|sn−1), pn ≤ pn−1

1, pn > pn−1 & sn = sn−1

(8)
A lack of increase in the position is an indicator that a

new section should be started. P (sn|sn−1) is set according
to a transition matrix A = {aij} where i ∈ {Q,F} and
self transitions aQQ and aFF for query and filler section
respectively can be set to reflect the expected structure of
the target audio signal. In this work we set aQQ = 0,
since we expect that a query might be decoded at most once
in a candidate audio segment. The value aFF = 0.9 is
determined empirically.

5.3 Observation model

For the query section the probability of the observed fea-
ture vector in position pn from section sn is computed for
the model state λn by a mapping function f(pn, sn), intro-
duced in section 3.2. A similar mapping function has been
proposed for the first time in the DBN-HMM in [5].

Then

P (yn|pn, sn = Q) = P (yn|λn) (9)

which reduces to applying the distribution defined in Equa-
tion 3.

In case of the filler section the most likely phoneme
state is picked.

P (yn|pn, sn = F ) = max
λ∈Λ

P (yn|λ) (10)

Note that position pn plays a role only in tracking the
total section duration D(sn = F ).

5.4 Inference

An exact inference of the ’meta-variable’ x can be per-
formed by means of the Viterbi algorithm. A key-phrase is
detected whenever a segment of the Viterbi path Ω̄ passes
through a section sn = Q. The likelihood of this path
segment is used as detection score for ranking all retrieved
key-phrases.

6. DATASET

The test dataset consists of 12 a-cappella performances
of 11 compositions with total duration of 19 minutes.

statistic value
#section queries 50

average cardinality C̄q 3.2
maximum cardinality CqM 6

#words per section 5-14
#sections per recording 6-16
#phonemes per section 26-63

Table 1. Statistics about queries (lyrics sections with
unique lyrics) in the test dataset. The low value of C̄q are
due to the small number of performances per composition.

The compositions are drawn from the CompMusic cor-
pus of classical Turkish Makam repertoire [17]. The a-
capella versions have been sung by professional singers
and recorded especially for this study. Scores are provided
in the machine-readable symbTr format [6], which con-
tain marks of section divisions. A performance has been
recorded in-sync with the original recording, whereby in-
strumental sections are left as silence. This assures that the
order, in which sections are performed, is kept the same 2 .

We consider as a query q each section from the scores,
which has unique lyrics: in total 50. Note that the search
space is restricted to all recordings of the composition,
from which the section is taken. In a given recording we
annotated the section boundary timestamps. Let Cq be
the total number of relevant occurrences (cardinality) of
a query q. Table 1 presents the average cardinality C̄q and
other relevant statistics about sections.

7. EVALUATION

7.1 Evaluation metrics

Having a ranked list of occurrences of each lyrical query,
the search-by-lyrics can be interpreted as a ranked retrieval
problem, in which the users are interested in checking only
the top K relevant results [10]. This allows to reject irrele-
vant results by considering only top K results in the evalu-
ation metric. We consider this strategy as appropriate since
a query has low average cardinality (C̄q = 3.2). Let the rel-
evance of ranked results for a query q be [rq(1), ..., rq(nq)]
where nq is the number of retrieved occurrences. Note
that a detected audio segment is either hit or not, making
rq(k) ∈ {0, 1}.

For each of the queried score sections an average preci-
sion P̄q at different values of K is computed as:

P̄q = 1
Cq

∑K
k=1 rq(k)Pq(k) (11)

as defined in [10], where Pq(k) is precision at k. The
relevance rq(k) of kth retrieved occurrence is binary and
set to 1 only if both retrieved boundary timestamps are
within a tolerance window of 3 seconds from ground truth.
This window size has been introduced in [9] and is com-
monly used for evaluating structural segments. The hits are

2 The dataset is available here: http://compmusic.upf.edu/turkish-
makam-acapella-sections-dataset

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 691



K 1 2 3 4 5 6
SDTW 8.3 12.1 16.2 19.0 22.0 25.7

DBN-HMM 5.0 7.7 18.75 28.8 35.0 37.9

Table 2. MAPs (in percent) for ranked result segments for
two system variants: baseline with SDTW and complete
with position-DBN-HMM.

ranked by the likelihoods of the relevant Viterbi path seg-
ments. Resultsacc are reported in terms of mean average
precision (MAP) as the average over all P̄q .

7.2 Experiments

To assess the benefit of the proposed modeling of positions,
we conduct a comparison of the performance of the com-
plete system and a baseline version without the position-
DBN-HMM 3 . For the baseline, as result set we consider
the audio segments corresponding to the list of candidate
paths (Ω∗1, ...Ω

∗
r) derived after SDTW (see section 4.1). As

a ranking strategy, SDTW-paths are ordered by means of
the sum of distance metrics d(m,n), which is derived from
the observation probability. We report results at different
values for K in Table 2. Results for K > CqM are om-
mited. Furthermore, we picked empirically r = 12 candi-
date paths in SDTW, which is twice CqM .

The results confirm the expectation that the perfor-
mance of SDTW alone is inferior. Retrieving relevant can-
didate paths seemed to be very dependent on the weights
wd and ws for the diagonal and skip steps. We noted
that adapting weights for a recording according to the de-
tected tempo factor τ might be beneficial, but did not con-
duct related experiments in this work. The optimal values
(wd = 6.5 and ws = 11) in fact guaranteed good coverage
of relevant segments in the slowest tempo in the dataset.

As K increases, the MAP for both DBN-HMM and
SDTW improves, as more hits are being found on lower
ranks. However top ranks are relatively low for DBN-
HMM. This indicates that the Viterbi weigthing scheme
might not be optimal. In general, MAP for DBN-HMM, at
higher values at K gets substantially better than the base-
line, which suggests that modeling syllable durations is
beneficial. A further reason might be that the position-
DBN-HMM can model tempo in a more flexible way and
is thus not affected by the difference between the tempo
indicated in the score and the real performance tempo.

7.3 Comparison to related work

For the sake of comparison to any future work we report
in Table 3 the f-measure, derived from the precision Pq(k)
and recall Rq(k) as defined in [10]. Unfortunately, no di-
rect comparison to previous work on lyrics spotting [1,4,8]
is possible, because these works rely on speech models for
languages different from Turkish. Furthermore, the evalu-
ation setting in none of the works is comparable to ours.

3 To facilitate reproducibility of this research source code is publicly
available here: https://github.com/georgid/Position-DBN-HMM-Lyrics

K 1 2 3 4 5 6
DBN-HMM 12.4 15.5 19.2 24.2 31.3 37.8

Table 3. F-measure (in percent) for the position-DBN-
HMM for ranked results segments

In [8] a result is considered true positive if a keyword is
detected at any position in an expected audio clip. The au-
thors argue that since a clip spans one line of lyrics (only 1
to 10 words) this is sufficiently exact, whereas we are inter-
ested in detecting the exact timestamps of a key-phrase. In
addition to that, their longest query has 8 phonemes, which
is much less than the average in our setting.

In [4] the accuracy of the key-phrase spotting module
is not reported, but instead only the percentage of the cor-
rectly detected links connecting key-phrases from a song
to another song. It can be inferred from it that an upper
bound on the performance of the key-phrase spotting lies
around an accuracy of 30%. Further, on creating a link for
a given key-phrase only the candidate section with highest
score for a song has been considered, which might ignore
any other true positives.

8. CONCLUSION

In this study we have investigated an important problem
that has started to attract attention of researchers only re-
cently. We tackle the linking between audio and struc-
tural sections from the perspective of lyrics: we proposed
a method for searching in musical audio for the occur-
rences of a characteristic section-long lyrical phrase. We
presented a novel DBN-based HMM for tracking sung
phoneme durations. Evaluation on a-cappella material
from Turkish Makam music shows that the search with the
proposed model brings substantial improvement compared
to a baseline system, unaware of syllable durations.

We plan to focus future work on applying the proposed
model to the case of polyphonic singing. We expect fur-
ther, that this work can serve as a baseline for further re-
search on singing material with similar musical character-
istics.

We want to point as well that, the proposed score-
informed scheme is applicable not necessarily only when
musical scores are available. Scores can be replaced by any
format, from which duration information can be inferred:
for example annotated melodic contour or singer-created
indications along the lyrics.
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ABSTRACT 

Novelty is an important psychological construct that 

affects both perceptual and behavioral processes.  Here, 

we propose a lexical novelty score (LNS) for a song’s 

lyric, based on the statistical properties of a corpus of 

275,905 lyrics (available at www.smcnus.org/lyrics/).  A 

lyric-level LNS was derived as a function of the inverse 

document frequencies of its unique words.  An artist-level 

LNS was then computed using the LNSs of lyrics 

uniquely associated with each artist.  Statistical tests were 

performed to determine whether lyrics and artists on 

Billboard Magazine’s lists of “All-Time Top 100” songs 

and artists had significantly lower LNSs than “non-top” 

songs and artists.  An affirmative and highly consistent 

answer was found in both cases.  These results highlight 

the potential utility of the LNS as a feature for MIR. 

 

1. INTRODUCTION 

From 2004 through 2013, both U.S. and worldwide 

Google searches for “lyrics” outnumbered searches for 

“games”, “news”, and “weather”, as computed by Google 

Trends
1
. The importance listeners place on song lyrics 

has motivated several explorations for translating a 

song’s lyric into queryable features: for example, by topic 

[1], genre [2], or mood [3–6]. All these cited examples 

have incorporated word frequency information: as a key 

statistic in the computational process.  The inverse 

document frequency (IDF) statistic, for example, is used 

to identify “diagnostic” terms within a lyric that can be 

further related to a particular topic, genre, or mood.   .                                       

     In the present paper, we propose using IDF 

information to derive a quantifiable and queryable feature 

of song lyrics: a lexical novelty score (LNS).  “Lexical” 

refers to properties of individual words, as distinct from 

their grammatical function or syntactical arrangement.  

Our LNS is based, in part, on the trimean of IDFs 

associated with the set of unique words in a lyric.  The 

greater the number of statistically infrequent (i.e., 

                                                           
1 http://www.google.com/trends/   
   explore#q=lyrics,+games,+news,+weather&cmpt 

“novel”) words in a lyric, the higher its IDF trimean.     . 

     Why might such a quantification of lexical novelty be 

useful?  A number of answers emerge from the domains 

of psycholinguistics and psychology. The novelty or 

unfamiliarity of a stimulus has a direct bearing on basic 

cognitive processing.  For example, words that are 

statistically infrequent (i.e., have a high IDF) are more 

difficult to perceive, recognize, and recall than more 

commonly encountered words (e.g., [7–9]).  The affective 

response associated with perceiving novelty, however, is 

a more complex process.  Berlyne [10], for example, 

extended a classic inverted–U relationship first proposed 

by Wilhelm Wundt [11]: a peak level of perceived 

pleasantness or “hedonic value” for moderately complex 

or moderately novel stimuli, and decreased liking for very 

simple/familiar or very complex/novel stimuli. Such a 

relationship has been documented across numerous 

classes of stimuli, including music [12], and can be 

further  modified by an individual perceiver’s preferences 

for novelty—a construct that has informed influential 

models of human personality [13].            .                      

     Taken together, this evidence suggests that a method 

to quantify novelty/complexity within song lyrics might 

find application within the domain of personalized music 

recommendation.  First, generated playlists could be 

optimized with the “right” level of lyric complexity based 

upon the user’s activity state (e.g., exercising, 

commuting, or intense studying) [14–15].  Second, by 

computing the level of lexical novelty in a user’s favorite 

artist, novel artists with a similar level of lexical novelty 

could be recommended. Third, songs with lyrics that are 

“not-too-simple” or “not-too-complex” could be used in 

paradigms supporting native or second language learning 

[16–17] or language recovery after brain injury [18].  

 
 

2. RELATED WORK 

Methods for translating a text into a single summary 

statistic or “grade” have been employed in a number of 

domains. Mid-twentieth century development of 

readability metrics—designed to quantify the ease with 

which a written text could be comprehended—emerged 

from the human factors literature (for a review and some 

context, see [19]), and have come to be widely applied in 

a variety of natural language settings [20–21]. 

Readability metrics are simple mathematical 

transformations of a text’s orthographic features: letter 
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count, syllable count, word count, and sentence count. 

2
 

Word frequency information is only rarely incorporated 

into readability calculations; for example, tallying the 

number of “difficult” [22] or “unfamiliar” [23] words (as 

defined by a set of 3000 words), or the “average grade 

level” of words (from a set of 100,000 words) [24].                    

     By contrast, word frequency information is fun-

damental to vector space model approaches for text 

retrieval [25]. The process by which candidate documents 

are matched to a particular query often involves the use 

of term frequency–inverse document frequency (tf*idf) 

calculations [26–27].  A useful summary statistic across a 

set of query terms is their average IDF [28–29].  It should 

be noted that our proposed idea of a lexical novelty score 

is distinct from prior uses of tf*idf for novelty detection 

[30], which attempts to detect new information in a 

“stream” of documents. It is also distinct from acoustic 

novelty audio segmentation methods based on changes in 

temporal self-similarity [31]. 

 

3. DATASETS AND PREPROCESSING STEPS 

3.1 Word frequency tables 

The two key data sources for the proposed IDF-based 

lyric LNS are a lyrics corpus and a look-up table of 

document frequencies (DFs).  Word frequencies could be 

estimated from the lyrics corpus itself.  However, such an 

operation could create a dependency between IDFs and 

resultant LNSs—or at least necessitate retabulating word 

frequencies and IDFs as more lyrics were added to the 

corpus.  Word frequency values derived from an 

independent corpus were thus desirable.           .               

     Numerous tables of word frequencies have been 

published (reviewed in [32]): for example, the Brown 

corpus (1 million words), British national corpus (100M 

words), Corpus of Contemporary American English 

(450M words), and Google Books corpus (155 billion 

words of American English).  In the present work, we 

selected the use word frequency tables derived from the 

SUBTLEXUS corpus [9]; a corpus of subtitle transcripts 

of 8388 American films and television programs. A list of 

74,286 non-stemmed words
5
 (46.7M word instances in 

total) has been compiled, with DFs (from 1 to 8388) and 

corpus frequencies (from 1 to 2,134,713) tabulated for 

each word.  In addition to being fully and freely 

available
6

, SUBTLEXUS word frequencies have the 

appealing property of being derived from spoken source 

material, which may provide a closer match to the usage 

patterns in sung speech.  The IDF of the ith word in the 

SUBTLEXUS table was computed as log10(8388/DFi).   

                                                           
2 For an illustration, www.readability-score.com 
5 The following items in the SUBTLEXUS table were excluded from this    

   tally: ’d, ’s, ’m, ’t, ’ll, ’re, don, gonna, wanna, couldn, didn, doesn.   
6 http://expsy.ugent.be/subtlexus/ 

3.2 Lyrics corpus 

Next, we discuss the issue of an appropriate lyrics corpus.  

The Million Song Dataset [33] is associated with a 

smaller lyrics corpus (237,662 lyrics)
7

, obtained in 

partnership with musiXmatch
8
. The bag-of-words format 

used to store each lyric, however, only references the 

5000 most frequent word stems (the part of a word 

common to all its inflectional and derivational variants; 

for example, “government”, “governor”, “governing”, 

and “governance” are all stemmed to “govern”) as 

computed by the Porter2 stemmer 

9
.  (In fact, the 5000-

item stemmed word list contains more than 1000 non-

English stems when cross-checked with a 266,447-item 

dictionary derived from existing dictionary lists
10

.) The 

manner in which word variants are used during 

communication, however, conveys rich information about 

the communicator’s language facility [35–37].  

Furthermore, word variants can have very different IDFs; 

in SUBTLEXUS, the four variants of “govern” listed 

above have IDFs of .74, 1.32, 2.58, and 3.22, 

respectively. As a result, a LNS derived from word stems 

would ignore potentially “diagnostic” differences in 

lexical usage between lyrics..                           .       

     For this reason, a new lyrics corpus was obtained via 

special arrangement with LyricFind
11

, a leading provider 

of legal lyrics licensing and retrieval.  In addition to the 

lyrics corpus itself, metadata comprising performing 

artist, album, lyricist, and license territory information for 

each lyric was made available.  The full corpus contained 

587,103 lyrics.  After restricting the corpus to lyrics with 

United States copyright, 389,029 lyrics remained. 

3.3 Lyrics pre-processing 

A multi-step procedure converted each lyric from its 

original text format into a bag-of-words format.  Each 

lyric was first “cleaned” using a series of hand-crafted 

transformation rules (i.e., x  x): (1) splitting of 

compounds (e.g., half-heartedhalf hearted) or removal 

of hyphenated prefixes (e.g., mis-heard misheard); (2) 

elimination of contractions (e.g., you’ll’veyou will 

have; gonna going to); (3) restoration of dropped initial 

(e.g., ’tiluntil), interior (e.g., ne’ernever), or final 

(tryin’trying) letters; (4) abbreviation elimination (e.g., 

mr.mister); (5) adjustment of British English to 

American English spellings (e.g., colourcolor)
12

; and 

(6) correction of 4264 commonly misspelled words
13

.             

     Each lyric was then cross-checked with the 266,447-

item dictionary. Lyrics in which fewer than 80% of 

                                                           
7 http://labrosa.ee.columbia.edu/millionsong/musixmatch 
8  www.musixmatch.com 
9  http://snowball.tartarus.org 
10  http://wordlist.aspell.net 
11 www.lyricfind.com 
12 Using http://wordlist.aspell.net/varcon 
13 Using http://en.wikipedia.org/wiki/Wikipedia:Lists_of_     
    common_misspellings/For_machines 
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unique words could be matched to the dictionary were 

eliminated; 360,919 lyrics remained.  After removing 

duplicate lyrics, the final corpus contained 275,905 lyrics.                          

     A total of 67.6M word instances was present in this set 

of songs, with 66,975 unique words.  Of these items, 

51,832 were an exact match with the 74,286-item 

SUBTLEXUS word list; this accounted for  99.7% of the 

67.6M word instances in the lyrics corpus.  IDFs derived 

from the SUBTLEXUS corpus were generally in 

agreement with IDFs derived from the LyricFind corpus 

itself (Pearson’s r = .837). 

 

4. LYRIC-LEVEL LEXICAL NOVELTY SCORE  

 4.1 First-pass LNS: IDFTM 

A first-pass LNS for a lyric was defined as the trimean of 

SUBTLEXUS-derived IDFs (IDFTM) associated with the 

set of w unique words in that lyric (wu): 

   
         

 
,                           (1) 

where Q1, Q2, and Q3 are the first quartile, second quartile 

(median), and third quartile, respectively. The trimean is 

an outlier-robust measure of central tendency [37]. For 

example, a low-frequency variant of a common word not 

“corrected” during the cleaning step would yield a 

spuriously high IDF; the trimean (but not the arithmetic 

mean) is robust to this kind of outlier.              .                        

     The higher a lyric’s IDFTM, the more low-frequency 

(i.e., novel) words it contains.  Figure 1 plots IDFTM as a 

function of wu for all 275,905 lyrics (using log10 scaling 

on the x-axis). Observed wu values range from 12 to 895.                                               

     A few illustrative cases are highlighted on Figure 1.   

The highest IDFTM (= 2.3212; LyricID 1142131; marked 

) is “Yakko’s World” from the cartoon Animaniacs. 

(Example text: “There’s Syria, Lebanon, Israel, Jordan / 

Both Yemens, Kuwait, and Bahrain / The Netherlands, 

Luxembourg, Belgium, and Portugal / France, England, 

Denmark, and Spain”.) The lowest IDFTM (= 0.0016; 

LyricID 53540; marked ) is “You Don’t Know” by 

Killing Heidi. (“I can see you / And you don’t have a clue 

/ Of what you’ve done / And there’s no reason / For what 

you’ve done to / Done to my ...”.)                     .                      

     Lyric  (LyricID 786811; “One More Bite of the 

Apple” by Neil Diamond) has the same wu as  (= 153), 

but a much lower IDFTM (= 0.0804), indicating lower 

lexical novelty: “Been away from you for much too long / 

Been away but now I’m back where I belong / Leave 

while I was gone away / But I do just fine”.  Lyric  

(LyricID 78427; “Revelation” by Blood) has nearly the 

same wu as  (24 vs. 23) but a much higher IDFTM  

(= 1.5454), indicating higher lexical novelty (“Writhe and 

shiver in agonies undreamable / Wriggling and gasping / 

Anticipating the tumescent / Revelation of the flesh”). 

     Finally, cases  (LyricID 335431; “The Tear Drop” 

by Armand van Helden) and  (LyricID 1452671; 

“Sunshine” by Bow Wow) both have wu = 195, but very 

different IDFTM values (1.8464 vs. 0.1378).  High lexical 

novelty is present in  (“A buttress breaching barrage 

blast / A tumultuous thunderbolt tirade / An annihilating 

eradicating avalanche of absolute absolution”); low 

lexical novelty is present  (“What you hear me talkin’ 

’bout / You just ain’t gonna find out / Walkin’ around in 

somebody’s club / Now she’s sayin’ her house”). 

                                       
Figure 1. Scatter plot of unique words (wu) versus IDFTM. 

 

      A clear relationship is visible between wu and IDFTM 

(Pearson’s r = .477): as wu increases, so does the 

minimum observed IDFTM.  This can be attributed to 

statistical patterns present in natural language.  

Specifically, a small number of words account for a large 

percentage of total word instances; a phenomenon which 

follows Zipf’s law (e.g., [38]). In the SUBTLEXUS 

corpus, for example, 10 words (you, i, the, to, a, it, that, 

and, of, what) account for 24.3% of all 46.7M word 

instances. Because IDFTM is derived from the set of 

unique words in a lyric, as wu increases, so too must the 

number of lower-frequency (i.e., higher-IDF) words, 

causing the IDFTM to rise.  Such a pattern would manifest 

for any L-estimator (mean, median, midhinge, etc.).   .            

     A more informative statistic could be obtained if the 

IDFTM of a lyric with w unique words were compared 

against a large distribution of simulated IDFTM values 

obtained from repeated random draws of w unique words 

from the set of lyrics that had more than w unique words.  

This procedure is formalized next. 

4.2 Scaling IDFTM: Monte Carlo simulations 

Consider two lyrics, one with IDFTM = 0.25 and wu = 50, 

and the other with IDFTM = 0.5 and wu = 200.  Two 

scaling distributions of simulated IDFTM values were 

created using a 10,000-iteration procedure.  To create the 

scaling distribution for wu = 50, on each iteration, a single 

lyric was randomly selected from the set of 239,225 

lyrics with wu > 50.  The full set of words in that lyric 

(including repeated words) was randomly permuted, the 

first 50 unique words pulled, and the IDFTM of those 

words was taken.  To create the scaling distribution for  

wu = 200, a similar procedure was performed, using the 

set of 15,124 lyrics with wu > 200.  Figure 2 presents an 
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empirical cumulative distribution function (ECDF) of 

these two scaling distributions.  The “scaled IDFTM” is 

defined as the percentile P (i.e., the y-axis value on the 

ECDF, multiplied by 100) where x = IDFTM.  In the above 

example, when IDFTM = 0.25 and wu = 50, P = 85.8.  By 

contrast, when IDFTM = 0.25 and wu = 200, P = 10.3.  

This can be interpreted as follows: with a longer lyric (wu 

= 200 vs. wu = 50), the likelihood of obtaining an IDFTM 

> 0.5 by chance (i.e., 100 – P) is much higher (89.7% vs. 

14.2%); that is, it is a less novel occurrence.                    . 
 

 
 

Figure 2. ECDFs of simulated IDFTM values for two 

representative values of wu.   

To scale the full set of IDFTM values, the above 

simulation was modified in the following manner.  First, 

the range of target wu values was capped at 275, thus 

reserving 5228 lyrics with wu > 275 to create the scaling 

distribution for wu = 275. Second, the set of target  

P-values was defined as .01 to 99.99 in increments of .01. 

Third, to accurately estimate the “tails” of P (i.e., values 

near 0 and 100), many more Monte Carlo iterations at 

each wu are needed; thus, the number of iterations was 

increased from 10,000 to 1 million.                            .                               

     Figure 3 highlights the results of this simulation.  A 

representative set of “iso-probability curves” resulting 

from the Monte Carlo simulation are superimposed on the 

scatter plot first shown in Figure 1.  A given curve plots 

the Pth percentile (where P = {.01, 10, 50, 90, 99, 99.9, 

99.99}) of simulated IDFTM values across the set of wu 

values.  IDFP ≈ 0 indicates very low lexical novelty, IDFP 

≈ 50 indicates moderate lexical novelty, and IDFP ≈ 100 

indicates very high lexical novelty.   As expected, the iso-

probability curves for low P-values mirror the pattern in 

the real data: higher IDFTM values as wu increases.     . 
                  

 
 

 

Figure 3. Representative iso-probability curves.  

4.3 Second-pass LNS: Percentiles 

Each IDFTM was mapped to its corresponding IDFP using 

nearest neighbor interpolation.  IDFTM values below  

P = .01 (n = 80) or above P = 99.99 (n = 52) were set to 

IDFP = 0 or IDFP = 100, respectively.  Figure 4 plots 

IDFP as a function of wu for the final set of 270,677 

unique lyrics. The relationship between wu and IDFP  

(r = –.106) is much weaker than between wu and IDFTM  

(r = .477).  IDFP values were roughly uniform (mean = 

44.29; standard deviation = 29.70; skewness = 0.255).                                

Figure 4. Percentile-transformed novelty scores (IDFP) 

as a function of wu.                                         . 
 

Figure 5 presents an ECDF of both IDFTM and IDFP, 

highlighting the six lyrics discussed earlier. Compared to 

IDFTM, IDFP better differentiates lyrics with high lexical 

novelty (cases , , and ) versus low novelty (cases 

, , and ).                                 . 
 

                                 
 

 Figure 5. ECDFs for IDFTM  (upper) and IDFP  (lower). 

5. ARTIST-LEVEL LEXICAL NOVELTY 

Having defined IDFP as the lyric-level LNS, we next 

sought to characterize lexical novelty at the artist level. 

Artist information was obtained via LyricFind ArtistIDs, 

which are distinct for different combinations of individual 

artists.  To increase the specificity of an artist-level score, 

lyrics recorded by multiple artists (e.g., holiday songs,  

jazz standards) were excluded.  Artists associated with 

fewer than 10 unique lyrics (λu) were deemed to have an 

insufficient catalog, and were ignored.  A final set of 

5884 artists (a total of 216,072 lyrics) remained.  The 

trimean of each artist’s λu IDFP values was then taken as 

a simple and intuitive artist-level LNS.                           .                 

     Figure 6 plots artist-level LNS as a function of λu; no 

correlation was present between them (r = –.009.)  The 

distribution of values (mean = 43.49; standard deviation 

= 21.20) was roughly symmetrical (skewness = .459).   
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Figure 6.  Artist-level LNS as a function of λu.          . 

 

6. BILLBOARD MAGAZINE “TOP” LISTS 

Having derived both a lyric-level and an artist-level point 

estimate of lexical novelty, any number of subsequent 

analyses may be performed.  As an illustrative example, 

we turn to Billboard Magazine’s 2013 ranking of the 

“All-Time Top 100 Songs”
14

 and “All-Time Top 100 

Artists”
15

. Rankings were calculated based on overall 

success on the magazine’s “Hot 100” chart, a weekly 

ranking of the top 100 popular music singles in the 

United States, published since August 1958 [40–41].   .                                                   

     The Top Songs list was determined by Billboard using 

an inverse point system, with time spent in the #1 

position of each weekly chart weighted highest, and time 

spent in the #100 position weighted lowest.  Of the 100 

songs on the list, 95 were present in the LyricFind corpus. 

Lyrics for the remaining five were queried from 

metrolyrics.com and processed as described in Section 4.                                                            

     The Top Artists list was determined by Billboard by 

aggregating all the songs which charted over the course 

of each artist’s career.  Of the 100 artists, 98 were among 

the set of 5884 artists with a valid artist-level LNS; the 

other two artists had λu < 10.  

 

7.  EXPERIMENTAL HYPOTHESES 

Two hypotheses were examined, both driven by the 

assumption that high lexical novelty is less likely to be 

“chart-worthy”.  Specifically, we predicted that both 

lyric-level and artist-level LNSs would be lower in the set 

of Top Songs and Top Artists relative to “non-top” songs 

and artists in the LyricFind corpus.              .                            

     Statistical significance was assessed using a 

nonparametric two-sample Mann–Whitney (MW) test.  A 

special sampling procedure was implemented to counter-

act the bias towards smaller p-values when comparing 

large samples [41].  On each of 10,000 iterations, two 

samples were drawn. The first sample was always the n 

Top Song or Top Artist LNSs, and the second sample 

was a random draw (without replacement) of n LNSs 

                                                           
14

 billboard.com/articles/list/2155531/the-hot-100-all-time-top-songs 
15

 billboard.com/articles/columns/chart-beat/5557800/hot-100-55th- 

      anniversary-by-the-numbers-top-100-artists-most-no 

from the remaining set of songs or artists (where n is 100 

for songs and 98 for artists).  The distribution of Z-values 

from the 10,000 MW tests indicates the strength of the 

difference between the samples: the more negative it 

falls, the greater our confidence that lexical novelty is 

systematically lower in the set of Billboard items.       .                          

. 
    .                 .                                                 

                   8. EXPERIMENTAL RESULTS 

8.1 Billboard Top Songs analysis 

Figure 7a shows the ECDFs of lyric-level LNS for the set 

of 100 Top Songs and the remaining 270,582 songs.  

They are markedly different: LNSs for the Top Songs are 

“pulled” towards zero, indicating reduced lexical novelty 

in this set.  Consistent with this, the distribution of Z-

values (Figure 7b) is strongly negative: 98.4% of MW 

tests result were significant at p < .05, 89.9% at p < .01, 

and 61.1% at p < .001.  No correlation was present 

between Billboard’s song ranking and a song’s LNS  

(r = –.148, p = .140).                                                  . 

                        . 

 

Figure 7. (a.) ECDFs of LNSs for the 100 Top Songs and 

the remaining 270,582 songs in the corpus. (b.) ECDF of 

Z-values from the 10,000 MW tests.  

8.2 Billboard Top Artists analysis 

Figure 8a shows the ECDFs of artist-level LNS for the set 

of 98 Top Artists and the remaining 5786 artists.  As with 

the Top Songs, LNSs for the Top Artists are pulled 

towards zero, indicating reduced lexical novelty (i.e., 

lower IDFP trimean values) for the set of 98 Top Artists.  

The Z-value distribution (Figure 8b) is more negative 

than in the Top Songs analysis: 99.3% of tests were 

significant at p < .001, 95.8% at p < .0001, and 85.5% at 

p < .00001.  As with the Top Songs, no correlation was 

present between Billboard’s artist ranking and artist-level 

LNS (r = –.059, p = .564).                          .      

                        . 
 

 

Figure 8. (a.) ECDFs of artist-level LNSs for the 98 Top 

Artists and the remaining 5786 artists in the corpus.  

(b.) ECDF of Z-values from the 10,000 MW tests. 
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9. DISCUSSION 

9.1 Summary 

Stimulus novelty has influence over perception, memory, 

and affective response.  Here, we define a lexical novelty 

score (LNS) for song lyrics.  The LNS is derived from 

the inverse document frequency of all unique words in a 

lyric, and is scaled with respect to the number of unique 

words.  Higher-order scores can be easily defined at the 

level of artists, albums, or genres, creating additional 

features for filtering operations or similarity assessments.  

     Although the construct validity of the LNS must be 

assessed by future user studies (see Section 9.2), a first-

pass validation was performed by comparing LNSs 

associated with Billboard Magazine’s “official” lists of 

the 100 Top Songs and 100 Top Artists with LNSs from 

random sets of songs and artists.  Lexical novelty was 

significantly lower—in a highly consistent way—for 

items on the Billboard lists, supporting the broad 

hypothesis that moderate stimulus novelty is preferred 

over high stimulus novelty [10–12].                . 

     The absence of  any significant correlation between 

Billboard’s actual ranking of items on the Top Songs or 

Top Artists lists and our lexical novelty score should not 

be read as a “strike” against either Billboard’s 

methodology or our own.  Rather, we regarded these lists 

as a source of well-known independent data that enabled 

us to make a priori predictions concerning differences in 

lexical novelty at the set (rather than the item) level. 

6.2 Future directions 

The present analyses of Billboard’s “Top 100” lists are 

but one of many analyses that could be performed.  

Further work could explore differences in lexical novelty 

among genres, subgenres, or styles (using external 

sources of metadata, such as Echo Nest
16

, Rovi
17

 or 

7digital
18

); changes in lexical novelty over time (e.g., 

using lyric copyright date information); or correlations 

between lexical novelty and other performance-related 

metrics, such as RIAA-tracked album sales
19

.      .                                                      

     A potential refinement of our LNS calculation would 

be to make it sensitive to parts of speech.  Numerous 

English words can serve as multiple parts of speech, often 

with very different word frequencies.  Capturing these 

usage patterns would, in principle, increase the sensitivity 

of the LNS. A revised SUBTLEXUS table of document 

frequencies is available that tallies parts-of-speech [42], 

as are widely used parts-of-speech taggers
20,21

, making 

this modification tractable.                                 . 

   .                                   

                                                           
16 http://developer.echonest.com/docs/v4 
17 http://developer.rovicorp.com 
18 http://developer.7digital.com/ 
19 https://www.riaa.com/goldandplatinumdata.php 
20 http://ucrel.lancs.ac.uk/claws/trial.html 
21 http://nlp.stanford.edu/software/lex-parser.shtml 

     Finally, user studies must be performed to answer 

whether the proposed LNS itself has construct validity.  

These studies should evaluate, for example, whether 

lyrics with a high LNS yield longer reaction times and 

increased effort during a sentence processing task (e.g., as 

in [43]); or whether lyrics with a moderate LNS receive 

higher ratings of pleasure or liking than lyrics with either 

a low or a high LNS.                                         .   

     Together, these future steps will enhance the utility of 

the LNS in the context of music retrieval and 

recommendation applications.                               . 

 

10. DATA SET AVAILABILITY 

With gratitude to LyricFind, much of the data presented 

here—lyrics in bag-of-words format; lyric, artist, and 

album IDs; and lyric- and artist-level lexical novelty 

scores—is made publically available for the first time: 

www.smcnus.org/lyrics/. 
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ABSTRACT

In this paper, an efficient, general-purpose model for multi-

ple instrument polyphonic music transcription is proposed.

The model is based on probabilistic latent component anal-

ysis and supports the use of sound state spectral templates,

which represent the temporal evolution of each note (e.g.

attack, sustain, decay). As input, a variable-Q transform

(VQT) time-frequency representation is used. Computa-

tional efficiency is achieved by supporting the use of pre-

extracted and pre-shifted sound state templates. Two vari-

ants are presented: without temporal constraints and with

hiddenMarkov model-based constraints controlling the ap-

pearance of sound states. Experiments are performed on

benchmark transcription datasets: MAPS, TRIOS,MIREX

multiF0, and Bach10; results on multi-pitch detection and

instrument assignment show that the proposed models out-

perform the state-of-the-art for multiple-instrument tran-

scription and is more than 20 times faster compared to a

previous sound state-based model. We finally show that a

VQT representation can lead to improved multi-pitch de-

tection performance compared with constant-Q represen-

tations.

1. INTRODUCTION

Automatic music transcription is defined as the process of

converting an acoustic music signal into some form of mu-

sical notation [16] and is considered a fundamental prob-

lem in the fields of music information retrieval and mu-

sic signal processing. The core problem of automatic mu-

sic transcription is multi-pitch detection (i.e. the detection

of multiple concurrent pitches), which despite recent ad-

vances is still considered an open problem, especially for a

large polyphony level and multiple instruments.

A large subset of music transcription approaches use

spectrogram factorization methods such as non-negative

matrix factorization (NMF) and probabilistic latent com-

ponent analysis (PLCA), which decompose an input time-

frequency representation into a series of note templates

c© Emmanouil Benetos, Tillman Weyde.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Emmanouil Benetos, Tillman Weyde.

“An efficient temporally-constrained probabilistic model for multiple-

instrument music transcription”, 16th International Society for Music In-
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and note activations. Several variants of the above meth-

ods propose more complex formulations compared to the

original NMF/PLCA models, and also add musically- and

acoustically-meaningful constraints. Such spectrogram fac-

torization methods include amongst others [4, 8, 10,13,15,

18, 24]. Issues related to spectrogram factorization meth-

ods include: the choice of an input time-frequency rep-

resentation, the ability to recognize instruments, the sup-

port of tunings beyond twelve-tone equal temperament, the

presence or absence of a pre-extracted dictionary, the in-

corporation of any constraints, as well as computational

efficiency (given ever-expanding collections and archives

of music recordings).

In this paper, a model for multiple-instrument transcrip-

tion is proposed, which uses a 5-dimensional dictionary of

sound state spectral templates (sound states correspond to

the various states in the evolution of a note, such as the

attack, sustain, and decay states). The proposed model is

based on PLCA and decomposes an input time frequency

representation (in this case, a variable-Q transform spec-

trogram) into a series of probability distributions for pitch,

instrument, tuning, and sound state activations. This model

is inspired by a convolutive model presented in [4] that

used a 4-dimensional dictionary and was able to transcribe

a recording at 60 × real-time. This model uses pre-shifted

spectral templates across log-frequency, thus introducing a

new dimension in the dictionary and eliminating the need

for convolutions. Thus, tuning deviations from equal tem-

perament are supported and at the same time this model

only uses linear operations that result in a system that is

more than 20 times faster compared to the system of [4].

In addition, temporal constraints using pitch-wise hidden

Markov models (HMMs) are incorporated, in order to model

the evolution of a note as a sequence of sound states. Ex-

periments are performed on several transcription datasets

(MAPS, MIREX multiF0, Bach10, TRIOS) and experi-

mental results for the multi-instrument datasets using the

proposed system outperform the state-of-the-art. Finally,

we show that a VQT representation leads to an improve-

ment in transcription performance compared to the more

common constant-Q transform (CQT) representation, es-

pecially on the detection of lower pitches. Code for the

proposed model is also supplied (cf. Section 4).

The outline of this paper is as follows. The proposed

system is presented in Section 2. The employed training

and test datasets, evaluation metrics, and experimental re-
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Figure 1. Diagram for the proposed system.

sults are shown in Section 3. Finally, a discussion on the

proposed system followed by future directions is made in

Section 4.

2. PROPOSED SYSTEM

2.1 Motivation

The overall aim of the proposed work is the creation of

a system for automatic transcription of polyphonic mu-

sic, that supports the identification of instruments along

with multiple pitches, supports tunings beyond twelve-tone

equal temperament along with frequency modulations, is

able to model the evolution of each note (as a temporal

succession of sound states), and is finally computation-

ally efficient. The proposed system is based on work car-

ried out in [4], which relied on a convolutive PLCA-based

model and a 4-dimensional sound state dictionary. The

aforementioned model was able to transcribe recordings at

approximately 60 × real-time (i.e. for a 1min recording,

transcription took 60min). This paper proposes an alterna-

tive linear model able to overcome the computational bot-

tleneck of using a convolutive model, which is supported

by the use of a 5-dimensional dictionary of pre-extracted

and pre-shifted sound state spectral templates, at the same

time providing the same benefits with the model of [4]. Fi-

nally, this paper proposes the use of a variable-Q transform

(VQT) representation, in contrast with the more common

constant-Q transform (CQT) or linear frequency represen-

tations (a detailed comparison is made in Section 3). On

related work, a linear model that used a 4-dimensional dic-

tionary which did not support sound state templates or tem-

poral constraints was proposed in [3].

In Fig. 1, a diagram for the proposed system can be

seen. As motivation on the use of sound state templates,

two log-frequency representations for a G1 piano note are

shown in Fig. 2; it is clear that the note evolves from

an attack/transient state to a steady state, and finally to a

decay state. Fig. 3 shows 3 spectral templates extracted

for the same note, which correspond to the 3 sound states

(the lower corresponds to the attack state, the middle to the

steady state and the top to the decay state).

2.2 PLCA-based model

The first variant of the proposed system takes as input a

normalised log-frequency spectrogram Vω,t (ω is the log-

frequency index and t is the time index) and approximates

it as a bivariate probability distribution P (ω, t). In this

work, Vω,t is a variable-Q time-frequency representation

with a resolution of 60 bins/octave and minimum frequency

(b)

t

ω

(a)

ω

50 100 150 200 250 300

50 100 150 200 250 300

100

200

300

400

500

100

200

300

400

500

Figure 2. (a) The CQT spectrogram of a G1 piano note.

(b) The VQT spectrogram for the same note.
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Figure 3. Sound state spectral templates for a G1 piano

note (extracted using a VQT representation).

of 27.5Hz, computed using the method of [22]. As dis-

cussed in [22], a variable-Q representation offers increased

temporal resolution in lower frequencies compared with a

constant-Q representation. At the same time, a log-frequency

transform represents pitch in a linear scale (where inter-

harmonic spacings are constant for all pitches), thus allow-

ing for pitch changes to be represented by shifts across the

log-frequency axis.

In the model, P (ω, t) is decomposed into a series of

log-frequency spectral templates per sound state, pitch, in-

strument, and log-frequency shifting (which indicates de-

viation with respect to equally tempered tuning), as well as

probability distributions for sound state, pitch, instrument,

and tuning activations. As explained in [4], a sound state

represents different segments in the temporal evolution of

a note; e.g. for a piano, different sound states can corre-

spond to the attack, sustain, and decay.
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The model is formulated as:

P (ω, t) =

P (t)
∑

q,p,f,s

P (ω|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)

(1)

where q denotes the sound state, p denotes pitch, s de-

notes instrument source, and f denotes log-frequency shift-

ing. P (t) is the energy of the log-spectrogram, which is a

known quantity. P (ω|q, p, f, s) is a 5-dimensional tensor

that represents the pre-extracted log-spectral templates per

sound state q, pitch p and instrument s, which are also pre-
shifted across log-frequency f . The proposed pre-shifting

operation is made in order to account for pitch deviations,

without needing to formulate a convolutive model across

log-frequency, as in [4]. Pt(f |p) is the time-varying log-

frequency shifting distribution per pitch, Pt(s|p) is the in-
strument source contribution per pitch over time, Pt(q|p)
is the time-varying sound state activation per pitch, and fi-

nally Pt(p) is the pitch activation, which is essentially the

resulting multi-pitch detection output.

In the proposed model, f ∈ [1, . . . , 5], where f = 3 is

the ideal tuning position for the template (using equal tem-

perament). Given that the input time-frequency represen-

tation has a resolution of 5 bins per semitone, this means

that all templates are pre-shifted across log-frequency on a

±20 and ±40 cent range around the ideal tuning position,

thus accounting for small tuning deviations or frequency

modulations. The proposed model also uses 3 sound states

per pitch; more information on the extraction of the sound

state spectral templates is given in subsection 3.1.

The unknownmodel parameters (Pt(f |p), Pt(s|p), Pt(p),
Pt(q|p)) can be iteratively estimated using the expectation-

maximization (EM) algorithm [9]. For the Expectation

step, the following posterior is computed:

Pt(q, p, f, s|ω) =
P (ω|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)∑

q,p,f,s P (ω|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)
(2)

For the Maximization step, unknown model parameters

are updated using the posterior from (2):

Pt(f |p) =
∑

ω,s,q Pt(q, p, f, s|ω)Vω,t∑
f,ω,s,q Pt(q, p, f, s|ω)Vω,t

(3)

Pt(s|p) =
∑

ω,f,q Pt(q, p, f, s|ω)Vω,t∑
s,ω,f,q Pt(q, p, f, s|ω)Vω,t

(4)

Pt(p) =

∑
ω,f,s,q Pt(q, p, f, s|ω)Vω,t∑

p,ω,f,s,q Pt(q, p, f, s|ω)Vω,t
(5)

Pt(q|p) =
∑

ω,f,s Pt(q, p, f, s|ω)Vω,t∑
q,ω,f,s Pt(q, p, f, s|ω)Vω,t

(6)

Eqs. (2)-(6) are iterated until convergence; typically 15-

20 iterations are sufficient. No update rule for the sound

state templates P (ω|q, p, f, s) is included, since they are

considered fixed in the model. As in [4], we also incor-

porated sparsity constraints on Pt(p) and Pt(s|p) in order

to control the polyphony level and the instrument contribu-

tion in the resulting transcription. The resulting multi-pitch

detection output is given by P (p, t) = P (t)Pt(p), while a
time-pitch representation P (f ′, t) can also be derived from
the model, as in [4] (this representation has the same pitch

resolution as in the input representation, i.e. 20 cent reso-

lution).

2.3 Temporally-constrained model

This model variant proposes a formulation that expresses

the evolution of each note as a succession of sound states,

following work carried out in [4]. These temporal con-

straints are modelled using pitch-wise hiddenMarkov mod-

els (HMMs). This also follows the work done by Mysore

in [17] on the non-negative HMM (a spectrogram factor-

ization framework where the appearance of each template

is controlled by an HMM).

As discussed, one HMM is created per pitch p, which
has as hidden states the sound states q (assuming 88 pitches

that cover the entire note range of a piano, 88 HMMs are

used). Thus, the basic elements of this pitch-wise HMM

are: the sound state priors P (q
(p)
1 ), the sound state transi-

tions P (q
(p)
t+1|q

(p)
t ), and the observations P (ω̄t|q(p)

t ). Fol-
lowing the notation of [17], ω̄ corresponds to the sequence

of observed spectra from all time frames, and ω̄t is the ob-

served spectrum at the t-th time frame. Also, q
(p)
t is the

value of the hidden sound state at the t-th frame for pitch

p.
In this paper, the model formulation is the same as in

(1), where the following assumption is made:

Pt(q|p = i) = Pt(q
(p=i)
t |ω̄) (7)

which means that the sound state activations are assumed

to be produced by the posteriors (also called responsibili-

ties) of the HMM for pitch p. Following [17], the observa-
tion probability is calculated as:

P (ω̄t|q(p)
t ) =

∏

ωt

P (ωt|q(p)
t )Vω,t (8)

where P (ωt|q(p)
t ) is the approximated spectrum for a given

sound state and pitch. The observation probability is cal-

culated as above since in PLCA-based models, Vω,t rep-

resents the number of times ω has been drawn at the t-th
time frame [17].

In order to estimate the unknown parameters of this pro-

posed temporally-constrained model, the EM algorithm is

also used, which results in a series of iterative update rules

that combine PLCA-based updates as well as the HMM

forward-backward algorithm [20]. For the Expectation step,

the HMM posterior per pitch is computed as:

Pt(q
(p)
t |ω̄) = Pt(ω̄, q

(p)
t )

∑
q
(p)
t

Pt(ω̄, q
(p)
t )

=
αt(q

(p)
t )βt(q

(p)
t )

∑
q
(p)
t

αt(q
(p)
t )βt(q

(p)
t )

(9)
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where αt(q
(p)
t ) and βt(q

(p)
t ) are the forward and backward

variables for the p-th HMM, respectively, and can be com-

puted using the forward-backward algorithm [20]. The

posterior for the transition probabilities Pt(q
(p)
t+1, q

(p)
t |ω̄) is

also computed as in [4]. Finally, the model posterior is

computed using (2) and (7).

For theMaximization step, unknown parametersPt(f |p),
Pt(s|p), and Pt(p) are computed using eqs. (3)-(5). Fi-

nally, the sound state priors and transitions per pitch p are

estimated as:

P (q
(p)
1 ) = P1(q

(p)
1 |ω̄) (10)

P (q
(p)
t+1|q

(p)
t ) =

∑
t Pt(q

(p)
t , q

(p)
t+1|ω̄)∑

q
(p)
t+1

∑
t Pt(q

(p)
t , q

(p)
t+1|ω̄)

(11)

In our experiments, it was found that an initial estimation

of the pitch and source activations using the PLCA-only

updates in the Maximization step leads to a good initial

solution. In the final iterations (set to 3 in this case), the

HMM parameters are estimated as well, which leads to an

estimate of the sound state activations, and an improved so-

lution over the non-temporally constrained model of sub-

section 2.2.

2.4 Post-processing

For both the non-temporally constrained model of subsec-

tion 2.2 and the temporally-constrained model of subsec-

tion 2.3, the resulting pitch activation P (p, t) = P (t)Pt(p)
(which is used for multi-pitch detection evaluation) as well

as the pitch activation for a specific instrument P (s, p, t) =
P (t)Pt(p)Pt(s|p) (which is used for instrument assign-

ment evaluation) need to be converted into a binary repre-

sentation such as a piano-roll or a MIDI file. As in the vast

majority of spectrogram factorization-based music transcrip-

tion systems (e.g. [10, 15]), thresholding is performed on

the pitch and instrument activations, followed by a process

for removing note events with a duration less than 80ms.

3. EVALUATION

3.1 Training data

Sound state templates are extracted for several orchestral

instruments, using isolated note samples from the RWC

database [14]. Specifically, templates are extracted for bas-

soon, cello, clarinet, flute, guitar, harpsichord, oboe, pi-

ano, alto sax, and violin, using the variable-Q transform as

a time-frequency representation [22]. The complete note

range of the instruments (given available data) is used. The

sound state templates are computed in an unsupervised man-

ner, using a single-pitch and single-instrument variant of

the model of (1), with the number of sound states set to 3.

3.2 Test data

Several benchmark and freely available transcription datasets

are used for evaluation (all of them contain pitch ground

truth). Firstly, thirty piano segments of 30s duration are

used from the MAPS database using the ‘ENSTDkCl’ pi-

ano model. This test dataset has in the past been used for

System F P R
§2.2 70.08% 76.78% 65.27%

§2.3 71.56% 77.95% 66.89%

Table 1. Multi-pitch detection results for the MAPS-

ENSTDkCl dataset using the proposed models.

multi-pitch evaluation (e.g. [7,18], the latter also citing re-

sults using the method of [24]).

The second dataset consists of the woodwind quintet

recording from theMIREX 2007multiF0 development data-

set [1]. The multi-track recording has been evaluated in the

past either in its complete duration [4], or in shorter seg-

ments (e.g. [19, 24]).

Thirdly, we employ the Bach10 dataset [11], a multi-

track collection of multiple-instrument polyphonic music,

suitable for both multi-pitch detection and instrument as-

signment experiments. It consists of ten recordings of J.S.

Bach chorales, performed by violin, clarinet, saxophone,

and bassoon.

Finally, the TRIOS dataset [12] is also used, which in-

cludes five multi-track recordings of trio pieces of classi-

cal and jazz music. Instruments included in the dataset are:

bassoon, cello, clarinet, horn, piano, saxophone, trumpet,

viola, and violin.

3.3 Metrics

For assessing the performance of the proposed system in

terms of multi-pitch detection we utilise the onset-based

metric used in the MIREX note tracking evaluations [1]. A

note event is assumed to be correct if its pitch corresponds

to the ground truth pitch and its onset is within a ±50 ms

range of t ground truth onset. Using the above rule, pre-

cision (P), recall (R), and F-measure (F) metrics can be

defined:

P =
Ntp

Nsys
, R =

Ntp

Nref
, F =

2 · R · P
R + P (12)

whereNtp is the number of correctly detected pitches,Nsys

is the number of detected pitches, and Nref is the number

of ground-truth pitches. For comparison with other state-

of-the-art methods, we also use frame-based multiple-F0

estimation metrics, defined in [2], denoted as Pf , Rf , Ff .

For the instrument assignment evaluations with the Bach-

10 dataset, we use the pitch ground-truth of each instru-

ment and compare it with the instrument-specific output of

the system. As for the multi-pitch metrics, we define the

following note-based instrument assignment metrics: Fv ,

Fc, Fs, Fb, corresponding to violin, clarinet, saxophone,

and bassoon, respectively. We also use a mean instrument

assignment metric, denoted as Fins .

3.4 Results

Experiments are performed using the two proposed model

variants from Section 2: the non-temporally constrained

version of subsection 2.2 and the HMM-constrained ver-

sion of subsection 2.3. In both versions, the post-processing
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System F P R
§2.2 71.75% 68.78% 74.98%

§2.3 72.50% 73.31% 71.71%

Table 2. Multi-pitch detection results for the MIREX mul-

tiF0 recording using the proposed models.

System F P R
§2.2 64.43% 56.99% 74.16%

§2.3 65.01% 57.35% 75.11%

Table 3. Multi-pitch detection results for the Bach10

dataset using the proposed models.

steps are the same. For the HMM-constrained model, the

HMMs are initialized as ergodic, with uniform priors and

state transition probabilities.

In terms of multi-pitch detection evaluation, results for

theMAPS,MIREX, Bach10, and TRIOS datasets are shown

in Tables 1, 2, 3, and 4, respectively. In all cases, the

HMM-constrained model outperforms the non-temporally

constrained model. The difference over the two models

in terms of F-measure is more prominent for the MAPS

dataset (1.48%) and the TRIOS dataset (1.81%) compared

to the MIREX (0.75%) and Bach10 (0.58%) datasets. This

can be attributed to the presence of piano in the MAPS and

TRIOS datasets, compared to the woodwind/string instru-

ments present in the other two datasets; since the piano

is a pitched percussive instrument with a clear attack and

transient state, the incorporation of temporal constraints on

sound state evolution can be considered more important

compared to bowed string and woodwind instruments, that

do not exhibit a clear decay state. As an example of the

transcription performance of the proposed system, Fig. 4

shows the resulting pitch activation for the MIREX mul-

tiF0 recording along with the corresponding ground truth.

Instrument assignment results for the Bach10 dataset

are presented in Table 5. As can be seen, the performance

of the proposed system regarding instrument assignment is

much lower compared to multi-pitch detection, which this

can be attributed to the fact that instrument assignment is a

much more challenging problem, since it not only requires

a correct identification of a note, but also a correct clas-

sification of that detected note to a specific instrument. It

is worth noting however that a clear improvement is re-

ported when using the temporally-constrained model over

the model of subsection 2.2. That improvement is consis-

tent across all instruments.

3.4.1 Comparison with state-of-the-art

On comparison of the proposed system with other state-of-

the art multi-pitch detection methods, for MAPS the pro-

posed HMM-constrained method outperforms the spectro-

gram factorization transcription methods of [18] and [24]

by 13.2% and 2.5% in terms of F , respectively. It is how-

ever outperformed by the transcription system of [7] (4.9%

difference); it should be noted that the system of [7] is

System F P R
§2.2 57.55% 64.60% 54.04%

§2.3 59.36% 60.18% 59.45%

Table 4. Multi-pitch detection results for the TRIOS

dataset using the proposed models.

System Fv Fc Fs Fb Fins

§2.2 10.55% 39.99% 33.87% 40.80% 31.30%

§2.3 12.28% 41.55% 34.53% 42.33% 32.67%

Table 5. Instrument assignment results for the Bach10

dataset using the proposed models.

developed specifically for piano, in contrast with the pro-

posed multiple-instrument system.

Regarding comparison on the MIREX recording, the

proposed method outperforms the method of [6] by 3.9%

in terms ofF . In terms ofFf , the first 30sec of the MIREX

recording were evaluated using the systems of [24] and

[19], leading to Ff = 62.5% and Ff = 59.6%, respec-

tively. The proposed HMM-constrained method reaches

Ff = 70.35%, thus outperforming the aforementioned

systems.

For the Bach10 dataset, a comparison is made using

the accuracy metric defined in [11]. The proposed HMM-

constrained method reaches an accuracy of 72.0%, whereas

the method of [11] reaches 69.7% (the latter results are

with unknown polyphony level, for direct comparison with

the proposed method).

Finally, for the TRIOS dataset, multi-pitch detection re-

sults were reported in [6], with F = 57.6%. The pro-

posed method reaches for the HMM-constrained case F =
59.3%, thus outperforming the system of [6].

3.4.2 Comparing time-frequency representations

In order to evaluate the use of the proposed input VQT

time-frequency representation, a comparative experiment

is made using the proposed system and having as input a

constant-Q representation (using the method of [21], with a

60 bins/octave log-frequency resolution as with the VQT).

For the comparative experiments, the MAPS-ENSTDkCl

dataset is employed and both the non-temporally constrained

and HMM-constrained models are evaluated. The post-

processing steps are exactly the same as in the proposed

method. Results show that when using the constant-Q rep-

resentationF = 63.98% for the non-temporally constrained

model and F = 65.51% for the temporally-constrained

model, which are both significantly lower when compared

to using a VQT representation as input (cf. Table 1).

In order to show the improved detection performance

of a VQT representation with respect to lower pitches, the

transcription performance for the MAPS dataset was com-

puted when only taking into account notes below or above

MIDI pitch 60 (middle C in the piano). Using the VQT,

F = 65.18% for the lower pitches and F = 74.98%
for the higher pitches. In contrast when using the CQT,
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Figure 4. (a) The pitch activation output P (p, t) for the
first 10 sec of the MIREX multiF0 recording. (b) The cor-

responding pitch ground truth.

F = 51.17% for the lower pitches and F = 74.58%
for the higher pitches. This result clearly demonstrates

the benefit of using a VQT representation with respect to

temporal resolution in lower frequencies, and by extension,

to detecting lower pitches. As an example, Fig. 2 shows

the CQT and VQT spectrograms for a G1 piano note, with

the VQT exhibiting better temporal resolution in lower fre-

quencies.

3.4.3 Sound state templates vs. note templates

Here, a comparison is performed between the use of the

proposed 5-dimensional dictionary of sound state templates

against the use of a 4-dimensional note template dictio-

nary (which contains one template per pitch, instrument,

and log-frequency shifting); the latter is supported by the

method of [3]. In order to have a direct comparison, the

method of [3] (for which the source code is publicly avail-

able) is modified as to use the same input VQT represen-

tation as well as post-processing steps with the proposed

method, and is compared against the non-temporally con-

strained model of subsection 2.2.

When using a 4-dimensional dictionary, multi-pitch de-

tection performance for theMAPS dataset reaches 64.65%,

in contrast to 70.1% when using the 5-dimensional sound

state dictionary. This shows the importance of using sound

state templates, which are able to model the transient parts

of the signal in contrast to simply using one (typically har-

monic) note template for each pitch and instrument.

3.4.4 Runtimes

On computational efficiency, the proposed model requires

linear operations like matrix/tensor multiplications in the

EM steps; on the contrary, the previous model of [4] re-

quired the computation of convolutions which significantly

slowed down computations. Regarding runtimes, the orig-

inal HMM-constrained convolutive model of [4] runs at

about 60 × real-time using a Sony VAIO S15 laptop. Us-

ing the proposed method, the runtime is approximately 1

× real-time for the non-temporally constrained model, and

2.5 × real-time for the HMM-constrained model (i.e. for

a 1min recording, runtimes are 1min and 2.5min, respec-

tively). Thus, the proposed system is significantly faster

compared to the model of [4], making it suitable for large-

scale MIR applications.

4. CONCLUSIONS

In this paper, we proposed a computationally efficient sys-

tem for multiple-instrument automatic music transcription,

based on probabilistic latent component analysis. The pro-

posed model employs a 5-dimensional dictionary of sound

state templates, covering different pitches, instruments, and

tunings. Two model variants were presented: a PLCA-

only method and a temporally constrained model that uses

pitch-wise HMMs in order to control the order of the sound

states. Experiments were performed on several transcrip-

tion datasets; results show that the temporally-constrained

model outperforms the PLCA-based variant. In addition,

the proposed system outperforms several state-of-the-art

multiple-instrument transcription systems using theMIREX

multiF0, Bach10, and TRIOS datasets. We also showed

that a VQT representation can yield improved results com-

pared to a CQT representation. Finally, the non-temporally

constrained variant of the model is able to transcribe a

recording at 1 × real-time, thus making this method use-

ful for large-scale applications. The Matlab code for the

HMM-constrained model can be found online 1 in the hope

that this model can serve as a framework for creating tran-

scription systems useful to the MIR community.

This system can also be extended beyond the proposed

formulations, by exploiting recent developments in spec-

trogram factorization-based approaches for music and au-

dio signal analysis. Thus, the proposed model can also

incorporate prior information in various forms (e.g. instru-

ment identities, key information, music language models),

following the PLCA-based approach of [23]. It can also

use alternate EM update rules to guide convergence [8] or

can use additional temporal continuity and sparsity con-

straints [13]. Drum transcription can also be incorporated

into the system, in the same way as in [5]. In the future,

we will also incorporate temporal constraints on note tran-

sitions and polyphony level estimation and will continue

work on instrument assignment by combining timbral fea-

tures with PLCA-based models.
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ABSTRACT

For a complete transcription of a guitar performance, the
detection of playing techniques such as bend and vibrato
is important, because playing techniques suggest how the
melody is interpreted through the manipulation of the
guitar strings. While existing work mostly focused on
playing technique detection for individual single notes, this
paper attempts to expand this endeavor to recordings of
guitar solo tracks. Specifically, we treat the task as a time
sequence pattern recognition problem, and develop a two-
stage framework for detecting five fundamental playing
techniques used by the electric guitar. Given an audio
track, the first stage identifies prominent candidates by
analyzing the extracted melody contour, and the second
stage applies a pre-trained classifier to the candidates for
playing technique detection using a set of timbre and pitch
features. The effectiveness of the proposed framework
is validated on a new dataset comprising of 42 electric
guitar solo tracks without accompaniment, each of which
covers 10 to 25 notes. The best average F-score achieves
74% in two-fold cross validation. Furthermore, we also
evaluate the performance of the proposed framework for
bend detection in five studio mixtures, to discuss how it can
be applied in transcribing real-world electric guitar solos
with accompaniment.

1. INTRODUCTION

Over the recent years there has been a flourishing number
of online services such as Chordify 1 and Riffstation 2 that
are dedicated to transcribing the chord progression of real-
world guitar recordings [10]. As manual transcription de-
mands on musical training and time, such services, despite
not being perfect, make it much easier for music lovers
and novice guitar learners to comprehend and appreciate

1 http://chordify.net/ (accessed: 2015-7-15)
2 http://play.riffstation.com/ (accessed: 2015-7-15)

c© Yuan-Ping Chen, Li Su, Yi-Hsuan Yang.
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License (CC BY 4.0). Attribution: Yuan-Ping Chen, Li Su,
Yi-Hsuan Yang. “ELECTRIC GUITAR PLAYING TECHNIQUE
DETECTION IN REAL-WORLD RECORDINGS BASED ON F0
SEQUENCE PATTERN RECOGNITION”, 16th International Society
for Music Information Retrieval Conference, 2015.

Figure 1. The spectrogram and tablature of a guitar phrase
that contains the following techniques: bend (a, b, c, g),
vibrato (d, h), hammer-on & pull-off (e) and slide (f, i).

music, thereby creating valuable educational, recreational
and even cultural values.

For solo guitar recordings, a note-by-note transcription
of the pitches and the playing techniques associated with
each note is needed. While the sequence of notes con-
stitutes a melody, playing techniques such as bend and
vibrato determine how the notes are played and accord-
ingly influence the expression of the guitar performance.
As shown by the guitar tablature in Figure 1, a complete
transcription of a guitar performance should contain the
notations of the playing techniques. 3

Unlike pitch estimation or chord recognition, research
on playing technique detection is still in its early stages.
Most of the existing work, if not all, is only concerned
with audio recordings of pre-segmented individual single
notes. For example, Abeßer et al. [1] collected around
4,300 bass guitar single notes to investigate audio based
methods to distinguish between 10 bass guitar playing
techniques. Reboursière et al. [20] evaluated a number of
audio features to detect 6 playing techniques over 1,416
samples of hexaphonic guitar single notes. More recently,
Su et al. [18] recorded 11,928 electric guitar single notes
and investigated features extracted from the cepstrum and
phase derivatives to detect 7 playing techniques. It is,

3 Fretted stringed instruments such as the guitar usually employ the
tablature as the form of musical notation. Various arrows and symbols are
used in a guitar tablature to denote the playing techniques. To “generate”
the tablature from an audio recording, one would also need to predict the
finger positions on the guitar fret, which is beyond the scope of this paper.
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however, not clear how these methods can be applied to
detect playing techniques in a real-world guitar solo track,
such as the one shown in Figure 1.

The only exception, to our best understanding, is the
work presented by Kehling et al. [16], which extended the
work presented in [1] and considered playing technique
detection in 12 phrases of guitar solo. They proposed
to use onset and off detection first to identify each note
event in a guitar solo track, after which the statistics (e.g.
minimum, maximum, mean, or median) of frame-level
spectral features over the duration of each note event are
extracted and fed to a pre-trained classifier for playing
technique detection. Using the multi-class support vector
machine (SVM) with radial basis function (RBF) kernel,
they obtained 83% average accuracy in distinguishing
between the following 6 cases: normal, bend, slide,
vibrato, harmonics, and dead notes. It appears that lower
recall rates are found for slide, vibrato, and bend: the recall
rates are 50.9%, 66.7%, and 71.3%, respectively.

Although Kehling et al.’s work represented an impor-
tant step forward in playing technique classification, their
approach has a few limitations. First, using the whole
note event as a fundamental unit in classification cannot
deal with techniques that are concerned with the transition
between successive notes, such as pull-off and hammer-on,
which are also widely used in guitar. Second, extracting
features from the whole note may include information not
relevant to techniques that are related to only the beginning
phase of note events, such as bend and slide. Third,
existing techniques for onset and offset detection may not
be robust to timbre variations commonly seen in guitar
performance [2, 14], originating from the predominant use
of sound effects such as distortion or delay [9]. Onset
and offset detection would be even more challenging in the
presence of accompaniments such as bass and drums.

In light of the above challenges, we propose in this work
a new approach to playing technique detection in guitar,
by exploiting the time sequence patterns over the melody
contour. Given a guitar recording, our approach firstly
employs a melody extraction algorithm to estimate the
melody contour, i.e. sequence of fundamental frequency
(F0) estimates. Then, we apply a number of signal pro-
cessing methods to analyze the estimated melody contour,
from which candidate regions of target playing techniques
are identified. Because the candidates are identified from
the melody contour, the proposed approach can deal with
techniques employed during the transition or the beginning
phase of notes. The candidate selection algorithms are
designed in such a way that emphasizes more on recall
rates. Finally, we further improve the precision rates by
extracting spectral and pitch features from the candidate
regions and using SVM for classification.

The effectiveness of the proposed approach is validated
on a new dataset comprising of 42 electric guitar solos
taken from the teaching material of the textbook, Rock
Lead Basics: Techniques, Scales and Fundamentals for
Guitar, by Danny Gill and Nick Nolan [13]. While the
guitar phrases employed in Kehling et al.’s work are not

associated with any sound effect [16], the phrases we take
from this book are recorded with distortion sound effect
and are perceptually more melodic and realistic. Moreover,
according to the data from the book, we consider the
following five playing techniques in this work: slide,
vibrato, bend, hammer-on, and pull-off, which are viewed
as the most frequently used and fundamental techniques in
rock lead guitar by the textbook authors.

The guitar solos collected from the book are not ac-
companied by any other instruments. To examine how
the proposed approach can be applied to real-world record-
ings with accompaniment, we also conduct a preliminary
evaluation using 5 well-known guitar solo tracks with
different tones and accompaniments. The use of a source
separation algorithm as a pre-processing step to suppress
the accompaniments is also investigated.

2. DATASETS AND PLAYING TECHNIQUES

Two datasets are employed in this work. The first one is
composed of 42 tracks of unaccompanied electric guitar
solo obtained from the CD of the textbook by Danny Gill
and Nick Nolan. The duration of the tracks is about 15–
20 seconds, summing up to about 10 minutes. The tracks
are recorded by a standard tuned electric guitar with clean
tone and distortion sound effect, covering 10–25 notes per
track. For evaluation purposes, we have the timestamps
of the playing techniques employed in each track carefully
annotated by an experienced electric guitar player, with the
help of the corresponding guitar tablature. In total, we have
143 pull-offs, 70 hammer-ons, 143 bends, 74 slides, and 61
vibratos. While the audio tracks are copyright protected,
we have made the annotations publicly available with the
research community through a project webpage. 4

The first dataset contains a variety of different possible
realizations of the techniques in real-world performances.
To illustrate this, we combine a few passages of different
phrases and show in Figure 1 the spectrogram and guitar
tab. The five playing techniques and their possible varia-
tions are described below.
• Bend refers to stretching the string with left hand to

increase the pitch of the bended note either gradually
or instantly. The region (a) in Figure 1 shows a
note full-bended from A4 to B4 gradually. In (b),
the note is pre-bended to B4, i.e. bend the note
without sounding it, and then released to A4 with
the hitting of string. Region (c) shows a half-step
bend commonly seen in Blues. A grace note bend is
when you strike the string and at the same time bend
the note to the target, as shown in (g).

• Vibrato represents minute and rapid variations in
pitch. Regions (d) and (h) of Figure 1 show a very
subtle vibrato with smaller extent and a wide vibrato
with larger extent, respectively.

4 http://mac.citi.sinica.edu.tw/
GuitarTranscription. Note that we label the instant of transition
between two notes for pull-off and hammer-on, the middle of the
employment of bend and slide, and the whole duration (including the
beginning and end timestamps) for vibrato.
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Figure 2. Flowchart of the proposed approach to guitar
playing technique detection.

• Hammer-on is when a note is sounded, a left hand
finger is used to quickly press down a fret that is on
the same string while the first note is still ringing.

• Pull-off is when you have strummed one note and
literally pull off of the string to a lower note. Rapid
and successive use of pull-of and hammer-on is often
referred to as trill, which is illustrated in (e).

• Slide refers to the action of slide left hand finger
across one or more frets to reach another note. A
slide between B3 and D4 is shown in (f). There are
shift slides and legato slides. A guitar solo usually
begins or ends with another variant known as slide
from/into nowhere,” which is illustrated in (i).

The second dataset, on the other hand, consists of 5
excerpts of real-world guitar solo (with accompaniment)
clipped from the following famous recordings: segments
1’48”–2’39” and 2’51”–3’23” from Bold as Love by Jimi
Hendrix, segments 0’17”–1’26” and 3’50”–4’33” from
Coming Back to Life by Pink Floyd, and segment 4’22”–
5’04” from Wet Sand by Red Hot Chili Peppers. The first
two are both played in fuzzy tone (akin to overdrive), the
third one with reverb effect in clean tone, the fourth one
in overdrive, and the fifth one is played with the distortion
effect. The excerpts last 3 minutes 57 seconds in total. We
also manually label the playing techniques for evaluation.

3. PROPOSED APPROACH

3.1 Overview

Kehling et al. [16] employs a two-stage structure in detect-
ing playing techniques in audio streams. The first stage
uses onset and offset detection to identify each note event
from the given audio track, and the second stage applies
a pre-trained classifier to the note events for multiclass
classification. A similar two-stage structure is also adopted
in the proposed approach, but in our first stage we make use
of the melody contour extracted from the given audio track,
and employ a number of algorithms to identify candidates
of playing techniques from the melody contour. Different
candidate selection algorithms are specifically designed
for the 5 playing techniques. Depending on the target
playing technique, the input to the second-stage classifier
can be temporal segments falling between note events or
fragments of whole note events. In this way, the proposed
approach can deal with techniques such as hammer-on and
pull-off, while Kehling et al.’s approach cannot.

Figure 2 shows the flowchart of the proposed ap-
proach, which includes source separation as an optional
pre-processing step to cope with instrumental accompani-
ments. We provide the details of each component below.

3.2 Source Separation

In real-world guitar performance, the guitar solo is usually
mixed with strong bass line, percussion sounds, or others.
Due to the accompaniments, the performance of estimating
the melody contour of the lead guitar may degrade.

We experiment with the robust principal component
analysis (RPCA) algorithm [6, 7, 15] to separate the sound
of the lead guitar from the accompaniments, before ex-
tracting the melody. Given the magnitude spectrogram
D ∈ Rt×m of the mixture, where t denotes temporal
length and m the number of frequency bins, RPCA seeks
to decompose D into two matrices of the same size, a
low-rank matrix A and a sparse matrix E, by solving the
following convex optimization problem:

min
A,E:D=A+E

‖A‖∗ + λ‖E‖1 , (1)

where the trace norm ‖ · ‖∗ and l1 norm ‖ · ‖1 are
convex surrogate of the rank and the number of nonzero
entries of a matrix, respectively [6], and λ is a positive
weighting parameter. As the background component of a
signal is usually composed of repetitive elements in time
or frequency, its spectrogram is likely to have a lower
rank comparing to that of the foreground. RPCA has been
applied to isolating the singing voice (foreground) from the
accompaniment (background) [15]. We use the same idea,
assuming that the guitar solo is the foreground (i.e. in E).

3.3 Melody Extraction

Melody extraction has been an active field of research in
the music information retrieval society for years [5, 8, 19].
It is concerned with the F0 sequence of only the main
melody line in a polyphonic music recording. Therefore,
it consists of a series of operations for creating candidate
pitch contours from the F0 estimates and for selecting one
of the pitch contours as the main melody. We employ
the state-of-the-art melody extraction algorithm proposed
by Salamon and Gòmez [21], for its efficiency and well-
demonstrated effectiveness. Specifically, we employ the
implementation of the MELODIA algorithm developed by
the authors for an open-source library called Essentia [3].
It is easy to use and the estimate is in general accurate.

3.4 Candidate Selection (CS)

We propose to mine the melody contour for the following
time sequence patterns specific to each playing technique.
Following this process of pattern finding, we can find
candidates of the playing techniques scattered in the time
flow of a music signal. We refer to this process as candidate
selection, or CS for short.
• Bend: arc-like or twisted trajectories.
• Vibrato: sinusoidal patterns.
• Slide: upward or downward stair-like patterns.
• Hammer-on, pull-off: two adjacent parallel horizon-

tal lines resulting from two notes of different F0s.
Clearly, such patterns may not necessarily correspond

to true instances (or, true positives) of the playing tech-
niques. For example, sounding two notes with pick picking
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Figure 3. The procedure of candidate selection (best seen in color). (a) The raw melody contour of a bend (red segment)
and a vibrato (yellow segment). (b) The processed melody contour by median filter, note tracking and mean filter. Four
local extrema of pitch value create a window to determine vibrato. (c) The candidate segment for vibrato (blue). (d) The
candidate segments for bend (blue). (e) The candidate segments for bend, after excluding candidates of vibrato (blue).
(f) The raw melody contour of a pull-off and a hammer-on. The red vertical lines show the groundtruth instants of the
playing techniques. (g) The processed melody contour by note tracking and quantization, and the blue vertical lines denote
the candidates instants. (h) The raw melody contour of a “slide into nowhere” (red segment). (i) The processed melody
contour by quantization, and the selected candidates for slide (blue segments).

also results in a pitch trajectory of two parallel horizontal
lines akin to the case of hammer-on or pull-off. There
might also be errors in the estimate of the melody contour
(e.g. when the lead instrument is silent, the estimated
melody contour may correspond to the sounds of other
instruments). Therefore, the purpose of the CS process is
actually to identify the candidates with high recall rates
(i.e. not missing the true positives) and moderate precision
rates (i.e. it is fine to have false positives). In the next
stage, we will use SVM classifiers that are discriminatively
trained to distinguish between true positives and false
positives by exploiting both timbre and pitch features com-
puted from these candidates. Because the CS process only
considers pitch information, the additional use of timbre
information in the classification stage has the potential to
boost the precision rates.

As described below, the CS process is accomplished
with a few simple signal processing methods for simplicity
and efficiency. The methods are illustrated in Figure 3.

3.4.1 Vibrato and Bend

We use similar procedures to select the candidates of
vibrato and bend, because the two techniques share the
same arc-like trajectories. Indeed, a vibrato can be viewed
as succession of bend up and then releasing down. The
two techniques mainly differ in the number of the cycles.
The following operations are firstly employed to process
the (raw) melody contour estimated by MELODIA [3].

• First, we flatten the rugged raw contour and remove
the outliers produced by the melody extraction algo-
rithm by a 10 points (100ms in 44.1 kHz sampling
rate) median filter, whose length is approximately
shorter than a period of vibration. The median filter
also slightly corrects octave errors made by melody
tracking.

• Second, we perform a simple note tracking step by
grouping adjacent F0s into the same note if the pitch
difference between them is smaller than 80 cents,
according to the auditory streaming cues [4]. The
step leads to a number of segments corresponding to
different note events, from which segments shorter
than 80ms are discarded, assuming that the a single
note should last at least 80ms, approximately the
length of a semiquaver in 180 BPM.

• Finally, we convolve each segment with a 5 points
(50ms) mean filter with hop of 10ms for smoothing.

The segments are then considered as possible note events.
We then use different ways to detect vibrato and bend.
For vibrato, we search for all the local maxima and
minima in each note [12]. A temporal fragment of four
consecutive extrema within a note is considered as a
vibrato candidate if the following conditions meet: 1)
the temporal distance between two neighboring extrema
should fall within 30ms and 400ms for valid vibrato rate,
i.e., the modulation frequency from 1.25Hz to 16.67Hz; 2)
the pitch difference between neighboring extrema should
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be smaller than 225 cents, which is slightly larger than
a whole note; 3) dividing the fragment into three shorter
fragments of pitch sequence by the four extrema, the
variance in the logarithmic pitch of each short fragment
should be larger than an empirical threshold. Please see
Figure 3(c) for an example.

On the other hand, we consider a temporal fragment as
a bend candidate if the following conditions meet: 1) it is
not a vibrato candidate; 2) the pitch sequence continuously
ascends or descends for more than 80ms; 3) the pitch
difference between two neighboring frames is smaller than
50 cents. An example can be found in Figure 3(e).

3.4.2 Pull-off and Hammer-on

While bend and vibrato can last a few frames, pull-off and
hammer-on are considered as the temporal instance (i.e. a
frame) during the transition of notes. Therefore, without
using either a median or mean filter, we perform the note
tracking procedure described in Section 3.4.1, and then
quantize each F0 to its closest semitone in terms of cent.
After this, we consider all the temporal instances in the
middle of two notes as a candidate for both pull-off and
hammer-on, as long as the following conditions meet: 1)
the gap between the note transition is shorter than 20ms;
2) the pitch cannot be away from its closest semitone by
35 cents. The former condition is set, because it is known
that the contact of pick (or right hand finger) and the string
would temporarily stop the vibration of the string when a
note is sounded by plucking the string, thereby creating the
gap in the note transition [20]. The latter condition is set
because there might be such gaps within the employment
of a vibrato or a bend due to the F0 quantization.

Because each candidate for pull-off or hammer-on only
lasts one frame, to characterize the temporal moment, we
use a 100ms fragment centering at the candidate frame for
the feature extraction step described in Section 3.5.

3.4.3 Slide

To recognizing the ladder-like pitch sequence pattern,
we simply quantize all the F0s into its closest semitone
without any pre-processing, in order not to falsely remove
the transition notes of a bend (which is usually around
tens of milliseconds). After quantization, we search for
the ladders in the melody contour with the following rules:
1) the number of steps should be at least three (i.e. slide
across at least three frets); 2) the length of transitional steps
(notes) should fall within 10 to 70ms, according to our
empirical observation from the data; 3) the pitch difference
between neighboring steps should be exactly one semitone
(i.e. a fret). Please refer to Figure 3(i) for an example.

3.5 Feature Extraction and Classification

After applying CS, we would have candidates of the 5
playing techniques spreading over the input guitar track.
As we have mentioned, our design of the signal processing
methods and the setting of some parameter values have
been informed by the need of reaching high recall rate. It is
then the job of the classifier to identify false positives of the

techniques and improve precision rates.The candidates are
represented by the following three sets of audio features.
• TIMBRE (T) includes the statistics of the following

features: spectral centroid, brightness, spread, skew-
ness, kurtosis, flux, roll-off, entropy, irregularity,
roughness, inharmonicity, zero-crossing rate, low-
energy ratio, and their 1st-order time difference. We
use the mean, standard deviation (STD), maximum,
minimum, skewness, kurtosis as the statistics mea-
sure, so there are 13×8×2=208 features in total.

• MFCC (M) contains mean and STD of the 40-D
Mel-frequency cepstral coefficients and its 1st-order
time difference, totalling 160 features. Both the
TIMBRE and MFCC sets are computed by the open-
source library MIRtoolbox [17].

• Pitch (P) is computed from the log scale F0 se-
quence on the processed (instead of the raw) melody
contour. Except for vibrato, we use the following
6 features for all the playing techniques: skewness,
kurtosis, variance, the difference between the max-
imum and minimum, and the mean and STD of the
1st-order time difference. For vibrato, as there are
3 short temporal fragments for each candidate (see
Section 3.4.1), we calculate the 6 features for each
of the fragment, and additionally use the variance
of difference between the four pitch extrema in
log scale and the variance of the temporal distance
between the four pitch extrema, totalling 20 features.

4. EXPERIMENT

4.1 Experimental Setup

For short-time Fourier transform, we use the Hamming
window of 46ms and 10ms overlap under the sampling rate
of 44.1 kHz. For MELODIA, we set the lowest and highest
possible F0 to 77Hz (E2b) and 1400 (F6) respectively,
considering the frequency range of a standard-tuned guitar
plus additionally half step tolerance of inaccurate tuning.
We train 5 binary linear kernel SVMs [11], one for each
technique, 5 and employ z-score normalization for the fea-
tures. The parameter C of SVM is optimized by an inside
cross validation on the training data. We conduct training
and testing 10 times under a two-fold cross validation
scheme and report the average result, in terms of precision,
recall and F-score. An estimate of bend or slide is deemed
correct as long as the ground truth timestamp falls between
the detected bend or slide segment. An estimate of pull-
off or hammer-on is deemed correct if the detected instant
of employment falls between the interval of ground truth
instant with a tolerance time-window of 50ms. Vibrato is
evaluated in the frame level, e.g. the recall of vibrato is the
proportion of frames labeled as vibrato which are detected
as vibrato. For evaluation on the studio mixtures, the SVM
is trained over the 42 unaccompanied phrases. Source
separation is only performed for the 5 studio mixtures.

5 It would have been better if a multi-class classification scheme
is adopted to avoid possible overlaps of the estimates of different
techniques. We leave the issue as a future work.
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Bend Vibrato Pull-off Hammer-on Slide
Recall 94.4 94.2 94.4 94.3 85.1
Precision 53.1 63.0 30.1 24.7 15.0
F-score 68.0 75.5 45.7 39.2 25.5

(a)

Bend Vibrato Pull-off Hammer-on Slide
Recall 86.2 79.5 73.6 65.7 58.6
Precision 89.3 89.1 75.3 66.7 56.8
F-score 87.7 84.0 74.4 66.3 57.7

(b)

Table 1. Recall, precision, and F-scores (in %) of playing
technique detection in the unaccompanied set using (a) CS
only and (b) CS+SVM{MFCC,TIMBRE,Pitch}.

4.2 Expriment Result

4.2.1 Evaluation on Unaccompanied Guitar Solos

Table 1 shows the per-class result of playing technique
detection over the 42 unaccompanied guitar solos, using
either (a) only candidate selection (CS) or (b) both CS and
SVM. The following observations can be made.
• Except for slide, the proposed CS methods can lead

to recall rates higher than 94% for the considered
playing techniques. Slide appears to be the most
challenging one, as its detection can be affected by
octave errors from the melody extraction step.

• By comparing Tables 1(a) and (b), we see that the
second-stage SVM can remarkably improve the pre-
cision rates, and accordingly the F-scores, for all the
playing techniques. This validates the effectiveness
of the proposed approach.

• Bend and vibrato appear to be easier to detect, with
F-scores 87.7% and 84.0%, respectively. Although
it is not fair to compare the numbers with the ones
reported in [16] due to differences in settings and
datasets, the performance of the proposed approach
seems to be promising. Interestingly, slide appears
to be the most challenging case in our study and
the one presented by [16], with comparable F-scores
(57.7% versus 50.9%).

Figure 4 provides the F-scores of using different fea-
tures in the SVM. Although not shown in the figure, MFCC
appears to be the best performing individual feature set
among the three. Better result is seen by concatenating the
features (i.e. early fusion). Pitch features contribute more
to the detection of hammer-on but less for others, possibly
because pitch information has been exploited in CS.

4.2.2 Evaluation on Real-World Studio Mixtures

As bend detection is found to be promising, we focus
on bend detection for our evaluation over the 5 studio
mixtures, which include in total 85 bends. Figure 5 com-
pares the F-score of bend detection of various methods,
including the case when RPCA is employed before melody
extraction. It is not surprising that the F-scores are lower
than that obtained for the unaccompanied tracks. However,
it is interesting to note that the best result can be obtained
by CS only, regardless of whether RPCA or SVM is
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Figure 4. F-scores of playing technique detection in 42
unaccompanied guitar solos using various methods.
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Figure 5. F-scores of bend detection of 5 accompanied
guitar solos, without (left) or with (right) RPCA.

used. Actually, the result of using CS+SVM degrades a lot
comparing to the case of CS only, except for the case that
pitch features are considered in SVM. The performance of
CS+SVM can be improved by using RPCA, but the result
is still inferior to the result of CS only. We conjecture
that the inferior result of CS+SVM can be attributed to
the difference between the data used for training the SVM
(i.e. the unaccompanied tracks) and the data for testing
(i.e. the mixtures). The result might be better if we have a
few training data that are with accompaniment. However,
if such data are not available, it seems to be advisable to
use the CS process only for the bend detection in mixtures.

5. CONCLUSION

In this paper, we have presented a two-stage approach
for detecting 5 guitar playing techniques in guitar solos.
The proposed approach is characteristic of its use of time
sequence patterns mined from the melody contour of the
lead guitar for candidate selection in the first stage, and
then using classifiers to refine the result in the second
stage. The F-scores for the unaccompanied set range from
57.7% to 87.7% depending on the playing techniques. The
average F-score across the techniques reaches 74%. We
have also evaluated the case of bend detection for a few
guitar solos with accompaniment, and shown that the best
F-score 67.3% is obtained by candidate selection alone.
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ABSTRACT

Computers are now powerful enough and data sets
large enough to enable completely data-driven studies of
Schenkerian analysis, the most well-established variety of
hierarchical music analysis. In particular, we now have
probabilistic models that can be trained via machine learn-
ing algorithms to analyze music in a hierarchical fashion
as a music theorist would. Most of these models, however,
only analyze the monophonic melodic content of the mu-
sic, as opposed to taking all of the musical voices into ac-
count. In this paper, we explore the feasibility of extending
a probabilistic model developed for analyzing monophonic
music to function with homophonic music. We present de-
tails of the new model, an algorithm for determining the
most probable analysis of the music, and a number of ex-
periments evaluating the quality of the analyses predicted
by the model. We also describe how varying the way the
model interprets rests in the input music affects the result-
ing analyses produced.

1. INTRODUCTION

Music analysis is primarily concerned with studying the
structure of music compositions, both at the small- and
large-scale levels. Hierarchical music analysis, best exem-
plified by Schenkerian analysis, illustrates the structure of
a music composition by identifying hierarchical relation-
ships among the notes of the music. These relationships
collectively group the notes into a series of hierarchical
levels that demonstrate the function of each note in the mu-
sic in relation to other notes at various levels of the hierar-
chy.

One of the complicating factors of Schenkerian analy-
sis is that there is no single established algorithm for per-
forming the analysis. Instead, textbooks present guidelines
and sample analyses from which students gradually learn
the techniques, often through trial and error. Historically,
there have been a number of research endeavors that at-
tempted to replicate the Schenkerian analysis procedure:
purely algorithmic efforts run into problems because of the

c© Phillip B. Kirlin and David L. Thomas.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Phillip B. Kirlin and David L. Thomas.
“Extending a Model of Monophonic Hierarchical Music Analysis to Ho-
mophony”, 16th International Society for Music Information Retrieval
Conference, 2015.

conflicting and ambiguous nature of the Schenkerian anal-
ysis rule set [4, 6] and up until recently, machine learning
approaches often hit roadblocks due to the lack of a large
standardized corpus of Schenkerian analysis upon which
to train [5, 10, 11].

However, more recent efforts to create such a corpus
of Schenkerian analysis have led to a data-driven system
capable of learning to analyze music in a hierarchical fash-
ion [7, 9]. This system, however, is only capable of hier-
archically analyzing the monophonic main melody of the
composition, with any other voices or harmonic parts con-
tributing only auxiliary information to the algorithms. In
this work, we study the practicality of extending this mono-
phonic model of music analysis to support homophonic
textures with a soprano part and a supporting bass line. We
present evidence that there are homophonic patterns that
can be harnessed by machine learning techniques, demon-
strate the workings of a probabilistic model on homophonic
input, and evaluate the system both for accuracy and for
determining where mistakes are made.

Because Schenkerian analysis is one of the most com-
prehensive forms of music analysis available today [3], the
uses of this work extend beyond the obvious application
of studying computationally-produced analyses of music.
Algorithms for calculating music similarity or identifying
musical styles or genres could be enhanced with the prob-
abilistic model described here, as could systems for music
recommendation or new music discovery. At a more fun-
damental level, studying computational models of music
analysis can lead us towards a better understanding of mu-
sical perception and structure [1].

2. MODELING MONOPHONY AND
HOMOPHONY

Schenkerian analysis hypothesizes that music composi-
tions are structured as a series of hierarchical levels de-
fined by prolongations: situations where a note, chord, or
melodic interval remains in control of a passage of mu-
sic even though it may not be sounding constantly during
that time. Consider the five-note descending phrase in Fig-
ure 1, occurring over G major harmony. In this melody, a
music theorist would identify a prolongation over the first
three notes D–C–B: the note C prolongs the passing mo-
tion from the D to the B. A similar prolongation occurs
among the notes B–A–G. This places the notes D, B, and
G — the notes being prolonged — at a higher structural
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level than the C or the A.

!"# !! !!!
D C B A G

Figure 1. An arpeggiation of a G-major chord with passing
tones. The slurs are a Schenkerian notation used to indicate
the locations of prolongations.

However, there is another level of prolongation at work
in this melody. The interval of a fifth between the first note
D and the last note G is prolonged by the motion to and
from the B in the middle. This leads to a three-level hierar-
chy of intervals as shown in the binary tree in Figure 2(a).
An equivalent structure, illustrated in Figure 2(b), is known
as a maximal outerplanar graph or MOP: this structure is
equivalent to a binary tree of melodic intervals but repre-
sents the same information more succinctly [14]. We claim
that any hierarchical analysis can be represented as a MOP,
and therefore, illustrated as a fully-triangulated polygon.

(a) (b)D–G
D–B B–G

D–C C–B B–A A–G

D G
B

C A

Figure 2. The prolongational hierarchy of a G-major chord
with passing tones represented as (a) a tree of melodic in-
tervals, and (b) a MOP.

By combining a corpus of musical excerpts and corre-
sponding MOP analyses with a supervised machine learn-
ing algorithm, it is possible to learn a probabilistic model
over MOP structures. This model admits a O(n3) algo-
rithm for determining the most probable MOP for a new
piece of music [9].

In the original MOP model of prolongation, a single tri-
angle describes the elaboration of a parent melodic interval
by two child intervals. This model, as first conceived, can
only represent monophonic note sequences. As it would be
desirable to enable hierarchical music analysis of all the
voices within a composition, it is worth exploring exten-
sions to represent multi-voice musical textures. One pos-
sibility is using a separate MOP to represent the structure
of each voice in the music: this would allow for indepen-
dent analyses of each voice. This representation, however,
would increase the computational complexity of the al-
gorithm for determining the most probable MOP analysis
from O(n3) to O(n6) for a two-voice composition [13].

Instead, we investigate MOPs that store multiple pitches
in a single vertex. In particular, we study MOPs that store
up to two pitches per vertex, with the pitches derived from
separate soprano and bass voices. We call these new MOPs
interval MOPs, so named because the two pitches stored in
a vertex form a harmonic interval between the soprano and
bass parts. Where it is necessary to differentiate between
the two varieties of MOPs, we will call the original type of
MOP a monophonic MOP.

2.1 The Interval MOP Model

Consider the five-note descending melodic pattern from
Figure 1, now augmented with a bass line, as in Figure
3(a). The equivalent interval MOP is shown alongside, in
Figure 3(b). Clearly, the triangles within an interval MOP
have the same prolongational interpretations as in mono-
phonic MOPs. One will observe, however, that there can
be potential conflicts in the prolongational structure be-
tween different voices. For instance, consider the melodic
voices in Figure 4(a), where the prolongational slurs imply
that the MOP-like structure in Figure 4(b) is necessary to
represent the prolongations in the soprano and bass parts.
Unfortunately, the definition of a MOP prohibits any edge-
crossings of this variety: such a crossing breaks the strict
hierarchy necessary to maintain the mathematical (and as
we will show later, computational) properties inherent in a
MOP.

(a) (b) D-G G-G
B-B

C-G A-D!
!

!

!!!! "
#

$% #
!!
!

Figure 3. (a) A musical passage with independent soprano
and bass parts, and (b) the corresponding interval MOP.

(a) (b) D-D C-A

C-F B-G

 

! !!!" !! !! ? ?

Figure 4. (a) A musical passage with conflicting soprano
and bass prolongations and (b) the only way of represent-
ing both prolongations in a MOP-like structure, illustrating
the conflicting edges that would arise.

Though note-against-note textures are easily represented
in interval MOPs, some explanation is necessary for how
to handle more complicated rhythms. When one voice has
a change in pitch while another voice has a sustained pitch
(i.e., oblique motion), the sustained note may be duplicated
in the interval MOP. For example, consider the first and
second beats in Figure 3(a): the bass note G is held for both
of these beats and is duplicated in the first two vertices of
the interval MOP in Figure 3(b).

Rests can be explicitly represented in an interval MOP.
Suppose that the half note G in the bass part of of Figure
3(a) were a quarter note followed by a quarter rest. This
would alter the interval MOP of Figure 3(b) to have the
vertex C–G store the pair C–(rest) instead.

Every interval MOP contains two additional vertices,
representing the START and FINISH of a composition. The
START vertex is always (temporally) the first vertex in a
MOP: it does not correspond to the first note in the mu-
sic, but rather should be thought of as occurring before the
start of the music. Similarly, the FINISH vertex is always
the last vertex in a MOP and temporally occurs after the
end of the music. These extra vertices are necessary to per-
mit any pair of intervals in a MOP to represent the most
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abstract level of the musical hierarchy. Consider a MOP
not containing such extra vertices: because prolongations
are oriented temporally, with the left and right vertices of
a prolongation always higher in the structural hierarchy
than the middle vertex, the most abstract edge of the MOP
would have to be between the first harmonic interval of the
music and the last. Because the first and last harmonic in-
tervals are not always the most musically important pair
of events, including START and FINISH allow for any pair
of harmonic intervals in the music to represent the most
abstract level in the structural hierarchy [14].

In the remainder of this paper, we study the feasibility of
using interval MOPs to represent Schenkerian analyses for
two-voice homophonic compositions. We do not consider
polyphonic textures with completely independent voices
due to the likelihood of encountering conflicting prolon-
gational structures, such as in Figure 4(a), and the inability
of interval MOPs to represent such structures, as discussed
earlier. We show that there are patterns that arise in the en-
coding of music analyses in the interval MOP structure,
we illustrate algorithms for harnessing these patterns and
identifying the probabilistically most likely interval MOP
analysis for new pieces of music, and we conclude with
experiments showing how (1) accurately these algorithms
can reproduce ground truth analyses and (2) what sorts of
errors the algorithms make.

3. CONSTRUCTING INTERVAL MOPS FROM
REAL-WORLD ANALYSES

Earlier work in computational Schenkerian analysis has
verified that there are regularities in the prolongations that
humans identify during the analysis procedure. Specifically,
if we recall that each triangle in a MOP corresponds to a
three-note prolongation, then it has been shown that var-
ious types of triangle occur more frequently than others
[9]. However, in order to confirm this finding for interval
MOPs, we first require an algorithm to convert a pair of
monophonic MOPs — one representing the soprano line
and one representing the bass line — into a single inter-
val MOP. The strategy we use is to first align the notes
of the monophonic MOPs to create an initial completely-
untriangulated interval MOP consisting of corresponding
pairs of notes between the soprano and bass MOPs. A pair
of notes is created any time there is an temporal overlap
between a soprano note and a bass note, so an individual
note may appear multiple times in an interval MOP. Next,
interior edges are added from the original soprano MOP
in corresponding locations in the interval MOP; this has
the same effect as copying every prolongation from the so-
prano MOP to the interval MOP. Lastly, all edges are added
from the original bass MOP to the interval MOP that can be
added without creating conflicts (overlapping edges). We
prioritize the soprano prolongations because the soprano
voice is more easily heard in the overall music and usually
is more melodically significant.

We ran an experiment to verify the appropriateness of
using interval MOPs as a representation of a multi-voice
Schenkerian analysis. We used an updated version of the

SCHENKER41 corpus: a data set containing 41 excerpts of
common practice period music and corresponding Schenke-
rian analyses. All of the music in the corpus is for a solo
keyboard instrument or for voice with keyboard accompa-
niment, is in a major key, and does not modulate. All of the
excerpts are between two and sixteen measures in length,
but most are either four or eight measures long. 39 of the
Schenkerian analyses in the corpus are taken from text-
books and two analyses were sourced from a local expert
music analyst [7]. We translated all the musical excerpts
from monophonic MOPs to interval MOPs using the algo-
rithm described above. Because we are interested in con-
firming that there are patterns in prolongational data as rep-
resented by interval MOPs, we examined how often every
type of triangle appeared in the converted interval MOPs.

Specifically, we calculated the frequencies of all trian-
gle types in the corpus in order to test the statistical sig-
nificance given the null hypothesis that the corpus anal-
yses represented as interval MOPs resemble randomly-
constructed MOPs in their triangle frequencies. Determin-
ing the expected frequency of a triangle in a MOP under
this null hypothesis is straightforward precisely because of
the mathematical underpinnings of the MOP formulation.

Assume we have a polygon with n vertices, numbered
clockwise from 0 to n−1, and we are interested in the num-
ber of times that the triangle between vertices x, y, and z
(x < y < z) appears across all complete triangulations
of this polygon. We observe that any triangle drawn inside
a polygon necessarily divides the interior of the polygon
into four regions: the triangle itself, plus the three regions
outside the triangle but inside the polygon, as in Figure 5
(though it is possible for some of these regions to be de-
generate line segments). Any complete triangulation of the
polygon that contains 4xyz must necessarily completely
triangulate the three regions outside of the triangle, and we
simply multiply the number of ways of triangulating each
of those three regions to obtain the total number of com-
plete triangulations that contain4xyz.

x

y

z

Cn+x-z-1

Cz-y-1

Cy-x-1

Figure 5. The number of times 4xyz appears in all pos-
sible triangulations of the octagon can be calculated from
the sizes of the shaded regions.

The number of ways of triangulating each of the three
regions is directly related to the size of each region, which
we can calculate from the values of the vertices x, y, and
z. The sizes (number of vertices in the polygons) of these
regions are y − x + 1, z − y + 1, and n + x − z + 1, re-
spectively. Precisely because edges in MOPs cannot cross,
the number of triangles that will appear in each of these
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regions is solely a function of the size of each region: the
number of ways to triangulate each region is the Catalan
number for the size of each region minus two, and there-
fore the complete calculation for the expected frequency is
Cy−x−1 · Cz−y−1 · Cn+x−z−1, where Ci =

1
i+1

(
2i
i

)
.

We ran binomial tests for each type of triangle by com-
paring the expected frequencies of the triangles with the
observed frequencies in the corpus. We found that there
were 48 different types of triangles that were possible in
the corpus of interval MOPs, where a triangle type was de-
fined by categorizing the three harmonic intervals between
the endpoints as either consonant, dissonant, single (for
single notes), or not applicable (for MOP vertices contain-
ing a START or FINISH vertex). We checked for triangles
that were statistically significant at the 5% level. By us-
ing the Šidák correction, we found that only triangles that
had a p-value of less than 0.001 would be considered sig-
nificant; there were six triangles that matched this criteria.
These triangles are described in Figure 6.

4. A PROBABILISTIC INTERPRETATION OF
INTERVAL MOPS

Now that we have verified that there are statistically sig-
nificant prolongational patterns in the corpus of interval
MOPs, we may continue towards our goal of developing
an algorithm to harness the patterns in such a way as to be
able to analyze new compositions. We proceed in a manner
similar to that which was used in the original probabilistic
model of monophonic MOPs [9].

Given two monophonic sequences of notes, a soprano
line S = s1, s2, . . . , sn, and a bass lineB = b1, b2, . . . , bm,
our goal is to calculate the most probable analysis A for
these notes, which means maximizing P (A | S,B). An in-
terval MOP is defined by the set of triangles T1, T2, . . . , Tk
within, and thus we define

P (A | S,B) = P (T1, T2, . . . , Tk).

This full joint probability distribution cannot be efficiently
estimated using the amount of training data available to
us, so we decompose it into a product of probabilities of
individual triangles:

P (T1, T2, . . . , Tk) ≈ P (T1) · P (T2) · · ·P (Tk).
In other words, we assume that each triangle in an interval
MOP is independent of the other triangles. An earlier ex-
periment [8] verifies that this does not appreciably alter the
probabilistic rankings of the MOP analyses.

We define the individual probability of a triangle within
an interval MOP analysis in terms of random variables rep-
resenting the three endpoints of the triangle:

P (Ti) = P (Ci | Li, Ri).

The three random variables in this distribution each repre-
sent either a harmonic interval or a single soprano or bass
note with a rest in the other voice. The endpoints are unam-
biguously named because MOPs are oriented by the tem-
poral dimension: later notes always appear to the right of
earlier notes.

Our goal is to use the SCHENKER41 data set to esti-
mate P (C | L,R), but this is impractical due to the high-
dimensional nature of the random variables involved: we
would like to use melodic, harmonic, and rhythmic fea-
tures of the triangle endpoints, and a data set of 41 analyses
does not give us enough data to do this by directly counting
triangle frequencies and normalizing them into a probabil-
ity distribution. Instead, we use random forests [2], a type
of ensemble classifier, to estimate this probability. Specif-
ically, we create a large collection of decision trees, with
each tree designed to predict a certain feature of the middle
point C, trained on a subset of the features of the left and
right endpoints L and R. The predictions of all the trees
for a given feature of C are then aggregated and normal-
ized into a probability distribution [12].

4.1 Features

We use a set of twenty-seven features to represent a trian-
gle. Specifically, we use eighteen features solely involving
the left and right endpoints (L and R) to predict nine fea-
tures for the center point (C). These features are:
• The category of the interval involving the soprano and

the bass note, listed either as Cons (Consonant) or Dis
(Dissonant) (three features, one each forL,C, andR).
• For a given note in an interval, the scale degree (1-7)

of the note (six features).
• The harmony present in the music at the time of the

interval as a Roman numeral (six features). These har-
monic labels, provided by experts, are included in the
SCHENKER41 corpus.

• The broader category of harmony present in the music
at the time of the interval, such as tonic or dominant
(six features).
• For a given note in an interval, whether the note was

a chord tone in the harmony present at the time (six
features).

In some situations, certain features are not applicable.
In the case that L or R is a START or FINISH vertex, the
features are marked with invalid values to denote their in-
eligibility. Furthermore, in situations where L, C, or R is
not an interval, but instead a single note, only half of the
attributes per category listed above are applicable.

5. EVALUATION

As mentioned earlier, one reason for preferring interval
MOPs to a more complicated representation for multi-voice
prolongational hierarchies is the mathematical elegance of
the structure, which makes it an efficient choice from which
to infer probabilistic patterns. No less important is fact that
computing the optimal triangulation of a polygon can be
done in O(n3) time by using a standard dynamic program-
ming algorithm. This is the basis of the existing PARSE-
MOP algorithms designed for monophonic MOPs; we adapt
the algorithms to work with interval MOPs.

There are three variations of PARSEMOP; each varia-
tion is given different amounts of a priori information re-
garding the most abstract level of the hierarchical analysis
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Figure 6. Types of triangles statistically significant at the 5% level.

being produced. Heinrich Schenker theorized that all tonal
music compositions were derived from one of a small set
of simple structures involving a short melodic progression
harmonized in a specific way. Thus, the Schenkerian anal-
ysis process of finding prolongations theoretically always
reveals one of these structures, known as the fundamental
structure or Ursatz, at the background level.

All variants of the PARSEMOP algorithm accept the mu-
sical score as input, and are told which notes of the score
constitute the soprano and bass lines. PARSEMOP-A has
no conception of the Ursatz built into the algorithm, and
therefore will not necessarily find one of the fundamen-
tal structures in the music when it runs. PARSEMOP-B, on
the other hand, in addition to the musical score, is also
informed as to which specific notes in the score should
be placed into the background fundamental structure. This
version of PARSEMOP, therefore, will always find the cor-
rect background structure. PARSEMOP-C is a compromise
between the structurally-unaware PARSEMOP-A, and the
overly-aware PARSEMOP-B: this version is informed as to
which musical pitches constitute the fundamental structure
and in what order they should appear in the output, but the
algorithm is not told the exact locations of the correspond-
ing notes in the score.

We used leave-one-out cross-validation in conjunction
with the SCHENKER41 corpus to evaluate how well the
three PARSEMOP algorithms could reproduce the ground-
truth analyses in the corpus. Specifically, for each of the
41 excerpts in the corpus, we trained our probabilistic
model on the interval MOPs derived from the other 40 ex-
cerpts, and then used each PARSEMOP algorithm to de-
rive the most probable analysis for the original piece omit-
ted. We compared the algorithmically-produced MOPs to
the ground-truth MOPs using an metric called edge accu-
racy, which is the proportion of internal edges in an inter-
val MOP that correspond to an edge in the ground-truth
interval MOP. We use this metric rather than proportion of
triangles that match between two analyses because there
are cases where two analyses can have edges in common,
indicating some similarity, yet have no triangles in com-
mon.

Although occasionally music analysts may disagree on
what the “correct” Schenkerian analysis should look like
for a piece of music, the limited amount of data allowed us
only one ground-truth analysis per musical excerpt.

Figure 7 shows the aggregate edge accuracy levels for
the three PARSEMOP algorithms. For the sake of compar-

ison, we included the average edge accuracy as would be
obtained by a baseline algorithm that analyzes music ran-
domly: this hypothetical algorithm creates triangulations
uniformly at random from the space of all possible com-
plete triangulations.
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Edge accuracy

Baseline

ParseMop-C

ParseMop-B

ParseMop-A 0.404

0.770

0.579

0.270

Figure 7. Edge accuracies for the three PARSEMOP algo-
rithms and the baseline randomized algorithm.

Interestingly, the accuracy levels obtained by analyzing
all possible analyses for a given piece of music do not fol-
low a uniform or normal distribution. In fact, the distri-
bution of edge accuracies as would be obtained by select-
ing a complete triangulation uniformly at random is quite
skewed, as can be seen in Figure 8. This means that even
though the PARSEMOP algorithms never break 80% accu-
racy, when compared against the baseline algorithm, they
are doing quite well. In fact, we can use the distribution
of edge accuracies from the baseline algorithm to judge
each PARSEMOP algorithm’s accuracy against the null hy-
pothesis that the PARSEMOP algorithm does no better than
random. This results in p-values of 0.1022, < 0.0001, and
0.0061 for the -A, -B, and -C varieties of PARSEMOP, re-
spectively.
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Figure 8. Distribution of edge accuracies under the base-
line random algorithm.

We also analyzed where in the algorithmically-produced
MOP analyses PARSEMOP was making mistakes. Specifi-
cally, for each non-perimeter edge in a PARSEMOP analy-
sis that did not correspond to an edge in the ground MOP,
we computed the edge depth: a number between 0 and 1 in-
dicating how far down in the structural hierarchy the edge
lies, with 0 being the most abstract level of the hierarchy
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Figure 9. Probability distributions of the locations of errors in the PARSEMOP analyses.

and 1 being the surface level of the music. We produced
probability distributions illustrating the hierarchical loca-
tions where PARSEMOP is most likely to make an error;
these are shown in Figure 9. These distributions are unsur-
prising: PARSEMOP-A and -C make fewer errors at the ex-
treme levels of the hierarchy due to the surface-level music
constraining the low-level decisions at one end and fewer
high-level decisions to be made at the other. Furthermore,
PARSEMOP-B makes fewer mistakes at the most abstract
level because the Ursatz has been supplied ahead of time.
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Figure 10. Edge accuracies after three varieties of rest ad-
justment for the three PARSEMOP algorithms and the base-
line randomized algorithm.

6. ACCOUNTING FOR RESTS

Though the results from the previous section indicate that
the PARSEMOP algorithms using interval MOPs are doing
relatively well when compared against the baseline algo-
rithm, there is still plenty of room for improvement. One
area we hypothesized that could be adversely affecting ac-
curacy is the presence of rests in the soprano and bass parts.
Recall that each vertex in an interval MOP holds both a so-
prano and bass note, but only for note pairs sounding at
the same time. Notes may be paired with rests if a rest is
“sounding” at the same time as a note in the other voice.
This may be the wrong musical interpretation, however,
in situations where rests are stylistic indications for perfor-
mance (e.g., a substitute for staccato markings), rather than
indications that a melodic line contains a true pause. Thus,
we present a modification to the interval MOP construction
algorithm that within a voice, extends each note through

any intervening rests up to the start of the next note within a
voice. In essence, all rests are eliminated from the soprano
and bass parts, and notes durations are increased to fill the
gaps. There are three different versions of the rest adjust-
ment algorithm that control which voices are adjusted: just
the soprano, just the bass, or both voices adjusted.

The rest adjustment algorithm, when applied to all of
the soprano lines in the corpus, modifies the durations of
102 notes out of a total of 931. When applied to the bass
line, the algorithm elongates 316 notes out of a total of 908.

We re-ran the earlier cross-validation experiment with
each of the three versions of the rest adjustment algorithm;
the updated edge accuracies are shown in Figure 10. In-
terestingly, the only situation in which the rest adjustment
algorithm had any large affect on the edge accuracy was
for PARSEMOP-A, where it increased the edge accuracy
from roughly 40% to between 44% and 47%. Effects on
PARSEMOP-B and PARSEMOP-C were much smaller, and
in some cases caused a slight decrease in accuracy. The
effects on the p-values under the null hypothesis that the
PARSEMOP analyses resemble analyses chosen at random
were also small; these new p-values are shown in Table 1.

PARSEMOP variant: A B C
Sop only 0.0420 < 0.0001 0.0090
Bass only 0.0853 < 0.0001 0.0133
Sop & Bass 0.0601 < 0.0001 0.0110

Table 1. p-values calculated under the null hypothesis that
PARSEMOP analyses (with the rest adjustment algorithm)
resemble analyses done randomly.

7. DISCUSSION

Overall, the results from this study are encouraging. The
edge accuracies and their improvement over the random
baseline algorithm imply that interval MOPs can success-
fully model a homophonic prolongational hierarchy. In-
terval MOPs maintain all of the mathematical and com-
putational advantages of monophonic MOPs, including a
straightforward learning algorithm and a computationally-
efficient method for finding the most probable analysis for
a new piece of music.

However, it is clear that interval MOPs cannot represent
all of the prolongational situations that could arise in poly-
phonic textures, namely conflicting prolongations between
voices. We plan on studying the feasibility of using inde-
pendent MOPs for the soprano and bass; this will alleviate
the representational issue, but may require an approxima-
tion algorithm for finding the most probable MOPs for new
compositions in order to remain computationally tractable.
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ABSTRACT 

Understanding the evolution of mainstream music is of 
high interest for the music production industry. In this 
context, we argue that a MIR perspective may be used to 
highlight, in particular, relations between dynamics and 
various properties of mainstream music. We illustrate this 
claim with two results obtained from a diachronic 
analysis performed on 7200 tracks released between 1967 
and 2014. This analysis suggests that 1) the so-called 
“loudness war” has peaked in 2007, and 2) its influence 
has been important enough to override the impact of 
genre on dynamics. In other words, dynamics in 
mainstream music are primarily related to a track’s year 
of release, rather than to its genre. 

1. INTRODUCTION 

Mainstream popular music is in constant evolution. There 
may be more differences than common points between 
progressive rock albums from the 1970’s such as Pink 
Floyd’s best-selling “Dark Side of the Moon” and con-
temporary rap albums such as Nicki Minaj’s platinum-
certified “Roman Reloaded”. Studies tracking down the 
yearly evolution of signal descriptors are useful to char-
acterize this diversity.  

In 1982, Moller [1] established that recent recordings 
feature a larger dynamic excursion than older ones. More 
recently, Tardieu [2] studied the evolution of stereo, dy-
namic and spectral features on pop/rock songs, and 
showed that decade classification accuracies using spec-
tral and dynamic features are equal. Pestana [3] focused 
on spectral features and found that while spectra are de-
pendent on genre, they also follow the yearly evolution of 
production standards. Serrà [4] performed a systematic 
analysis of more than 400,000 tracks and concludes that 
popular music “show[s] no considerable changes in more 
than fifty years” other than becoming louder, a result 
challenged by Mauch [5]. Deruty [6] focused on the 
changes in loudness and dynamics over the same period, 
and provided a characterization of the phenomenon re-
ferred to as the “loudness war”. The loudness war, or 
loudness race, is a trend in popular music production that 
affects mainstream music dynamics [7]. It has been de-

scribed as a contest between bands and record companies, 
in which music is engineered to be louder than the com-
petition’s [8, pp. 237–292]. Starting at the end of the 80’s 
[4], [6], [9], its effects have been spectacular enough to 
reach the general media [10]–[11]. A distinction is made 
between dynamics occurring on different time-scales. The 
large-scale variations are known as macrodynamics, 
whereas the faster variations are referred to as micrody-
namics [12]–[13]. The loudness war favors high loudness 
tracks with reduced microdynamics [4], [6], [9], although 
some authors claim it has also reduced macrodynamics 
[14]. Efforts have been made to reverse the trend, through 
measurement protocols [15]–[16], integrated loudness-
leveling engines such as iTunes’ Sound Check [17], or 
public communications [18]–[19]. 

In this paper, we perform a diachronic analysis on 
7200 mainstream tracks released between 1967 and 2014, 
and present two results. First, we show that the evolution 
towards louder and less dynamic content peaked in 2007, 
and then started to decrease. If this trend continues, pre-
loudness war values for most descriptors of music dy-
namics may be observed sometimes between 2017 and 
2026. Second, we demonstrate that the loudness war’s 
impact supersedes the influence of music genre on dy-
namics. In mainstream music, a piece’s dynamics are 
more typical of a given year than they are of a given gen-
re. 

2. METHOD 

2.1 Music corpus 
The music corpus we rely on is a revision and extension 
of the corpus used in [6]. It includes 7200 tracks released 
between 1967 and 2014, 150 tracks per year. Track 
selection is based on Besteveralbums.com, a review 
aggregator. For each year, we choose the albums with the 
best ratings. If a given artist is the author of more than 
three well-rated albums, we select the artist’s complete 
discography. While this method does not lead to a 
random sampling, it ensures that the corpus is based on 
music that is popular. We choose to start the corpus at the 
end of the sixties because these years can be considered 
as the advent of the contemporary pop/rock era, 
characterized by the creative use of the recording studio 
[8, p. 157] along with mass media availability [20]. 

2.2 Signal descriptors 
We use the signal descriptors defined in [6]. The track’s 
physical level is measured using the RMS power of the 
signal after normalization. Track loudness evaluation is 
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performed using the EBU3341 integrated loudness [21], 
which has been shown to be as robust as more complex 
measures such as detailed perceptual models [22]. 
Microdynamics are measured using a variation of the 
crest factor, as defined in [6]. For macro-dynamics, we 
rely on the EBU3342 Loudness Range [23], which is, to 
our knowledge, the only normative descriptor to quantify 
dynamics in a musical sense (piano, forte…) [9]. We 
evaluate the overall amount of dynamic processing using 
the Peak to RMS Regression Coefficient (PRRC). PRRC 
values below 1 indicate usage of dynamic compression, 
values above 1 usage of dynamic expansion [6]. Finally, 
we estimate the amount of limiting applied to the tracks 
using the High Level Sample Density (HLSD) [6]. HLSD 
can be linked to the practice of limiting [6], which is 
suspected to have a decisive impact on mainstream music 
production during the last 30 years [8, pp. 237-292], [9], 
[14], [24]–[27]. Using relations between limiting and 
HLSD as shown in [6], we indeed find that a significant 
amount of limiting (> 3dB) seems to have been applied 
on 33% of all tracks from our corpus, and on 65% of 
tracks released after 1994. 

For each descriptor, we provide a projection based on 
the current trend by fitting the descriptor’s smoothed 
median values using a second-degree polynomial, starting 
from the year for which the loudness war is observed to 
peak. As illustrated in Figure 1 (black dot at the right of 
the graphs), estimation of the return to pre-loudness war 
values is obtained using the crossing of the projected 
values with the median of the pre-1990 descriptor values. 

2.3 Genre labels 
Following [28]–[30], we draw the music genre labels 
from AllMusic, a website that provides “unoptimized 
expert annotated ground truth dataset for music genre 
classification” [30] in the form of a database of 
commercial music annotated in terms of “genres”, “meta-
styles” and “styles”. Whereas AllMusic provides only 21 
“genres”, album information also comes with 905 
“styles” and “meta-styles” that can be interpreted as sub-
genres to refine the major genre labels. In this paper, 
while relying on the “styles” provided by Allmusic, we 
designate them as “genres”, “a conventional category that 
identifies pieces of music as belonging to a shared 
tradition or set of conventions” [31]. Under this 
terminology, the 7500 tracks from the corpus correspond 
to 272 distinct mainstream music genres, each track being 
associated with a mean of 4 genres, the minimum being 1 
and the maximum 11. Conversely, each genre is 
represented with a mean of 110 tracks, the minimum 
being 3 and the maximum 2482. Issues linked to the 
pertinence of the results regarding this diversity of 
representation are discussed in Section 4.3. 

3. DIACHRONIC STUDY OF DYNAMICS 

Figure 1 illustrates the descriptors’ behavior over time. 
The boxes’ upper and lower limits indicate the 25th and 
75th percentiles of the distribution. The darker box indi-
cates the peak of the loudness war for the descriptor, i.e. 
the year for which the median value is maximal. The 

small horizontal lines inside the boxes indicate the medi-
an. The outer whiskers stand for the 5th and 95th percen-
tiles. The solid, thick black curve is the smoothed medi-
an, on which the projection is based. The projection itself 
is represented by a dashed gray line. The thin horizontal 
line indicates the median pre-1990 descriptor values. 
 

 
 
Figure 1. Descriptor evolution over the years. From top 
to bottom RMS power, EBU3341 integrated loudness, 
crest factor, PRRC, HLSD and EBU3342 Loudness 
Range. 
 

The loudness war may be characterized by a change 
towards previously unobserved descriptor values that 
starts around 1990 and indicates the use of more dynamic 
compression [6]. Table 1 summarizes the loudness war 
timeline depending on the descriptor. It took ca. 15 years 
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for the loudness war to peak. The return to pre-loudness 
war values could take between 10 and 20 years. Figure 1 
shows that macrodynamics are not affected by the loud-
ness war. No significant change of values starting around 
1990 and pointing toward more dynamic compression can 
be observed. The loudness war has increased music level 
and micro-dynamics, but has not decreased macro-
dynamics. 

 
Descriptor Corresponding 

phenomenon 
Peak Estimated re-

turn to pre-
loudness war 
values 

RMS power Physical level 2007 2018 
EBU3341 Loudness [21] 2007 2020 
Crest factor Microdynamics 

[6], [12] 
2008 2026 

PRRC Overall amount 
of dynamic 
processing [6] 

2008 2017 

HLSD Amount of lim-
iting [6] 

2006 2023 

Table 1. Loudness war timeline summary. 

 
Since 2006, macrodynamics have increased consist-

ently, and are higher in 2014 than they have ever been 
during the time-span covered by the corpus. This increase 
can be put in relation with a demand for more dynamics 
combined with the confusion that’s often made between 
micro- and macrodynamics [6], [10]–[11], [14], [32]. 
Musicians and producers may be trying to counter the ef-
fects of the loudness war by raising macrodynamics, 
whereas raising microdynamics would be more produc-
tive in that respect. However, examination of Figure 1 
shows that macrodynamics follow relatively shorter 
trends than other descriptors, and a reversal of the present 
tendency towards less macrodynamics could be witnessed 
as soon as 2015. 

4. DYNAMICS AND MAINSTREAM GENRES 

4.1 Dependency of dynamics on genres and trends 
In this section, we show that dynamics of mainstream 
music are more typical of a given year than they are of a 
given genre. Figure 2 illustrates the distribution of RMS 
power values depending of the music genre of the track. 
On first approach, it suggests that music genre and RMS 
power are related. However, as illustrated in Figure 1, 
RMS power is also related to the year of the album 
release. Figure 3 provides more details, by illustrating 
RMS power evolution for the four most represented 
genres in the corpus (Alternative Pop/Rock, 
Alternative/Indie Rock, Album Rock and Contemporary 
Pop/Rock). It indicates that genres follow the year’s trend 
in terms of RMS power. This phenomenon, previously 
mentioned in [32], suggests that RMS values may be 
primarily related to the year of the track release, rather 
than to its genre. We use two methods to confirm the 
tendency: a standard ANOVA and a variance evaluation. 

The second method possesses the advantage of 
providing results formulated using the original 
descriptor’s unit, and therefore being easier to interpret 
than the ANOVA’s results. It involves the evaluation of 
the RMS distribution’s variance for each genre and for 
each year, followed by the computation of the weighted 
arithmetic means of the variances, taking into account 
genre and year representativeness. The process is 
illustrated in Figure 4. The weighted mean variance for 
each year is 9.03dB, whereas the weighted mean variance 
for each style is 14.19dB. This shows that RMS values 
primarily originate from the track’s year of release. In 
other words, particular physical levels are more typical of 
a given year than they are of a given genre. As shown in 
Table 2, this result is confirmed by the ANOVA’s F-
statistic. We repeat the experiment using the other 
descriptors described in Section 2.2. Results are similar. 
With the exception of the EBU3342 LRA, descriptors are 
clearly more related to the year’s trend than to the piece’s 
genre. 

 
Descriptor Mean variance 

for each year 
Mean variance 
for each genre 

ANOVA’s F-statistic 
(years as classes) 

ANOVA’s F-statistic 
(genres as classes) 

RMS power 9.03dB 14.2dB 107.7 6.4 
EBU3341 4.57LU 7.41.LU 104.9 6.5 
Crest factor 1.35dB 2.25dB 110.4 5.4 
PRRC 0.04 0.06 77.5 4.9 
HLSD 0.79 2.08 274.7 8.6 
EBU3342 14.5LU 14.3LU 7.3 4.7 

Table 2. Comparison of the weighted mean arithmetic means of the descriptor variances for each year and each genre, 
as well as comparison of the ANOVA’s F-statistics, show that dynamics in mainstream music are primarily linked to 
the piece’s year of release, rather than to its genre. 
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Figure 3. In gray, RMS power values corresponding to 
the music genres most represented in the corpus. Lighter 
gray sections indicate years with fewer tracks. The three 
black lines represent the 25th, 50th and 75th percentiles. 

4.2 The particular cases of HLSD and LRA 
As shown in Table 2, a particularly high dependence to 
trends is clear in the case of the HLSD, with an F-statistic 
being higher than in the case of the other descriptors. As 
seen in Section 2.2, it implies that the amount of limiting 
applied by audio engineers during mastering can be con-
sidered as independent from genre. Therefore, main-
stream genres cannot be said to sound more or less “hot". 
This is an important information in the context of main-
stream music mastering: it can help engineers choose and 
argue the output level with their client, which is often a 
critical debate [33]. On the other hand, dependency to 
trends is much lower in the case of the EBU3342 LRA. 
As a result, macrodynamics can be considered as relative-
ly independent from both genre and year of release. 

 
Figure 4. Distribution of RMS power variances. Top, by 
year. Middle, by genre. The dashed vertical line 
represents the weighted mean of the distribution. Bar 
hues indicates style representativeness. Bottom, style 
representativeness displayed quantitatively. 
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Figure 2. Distribution of RMS power values depending on the tracks’ genres. Darker shades of gray indicate higher levels 
of distribution. The black rectangles indicate the median. This Figure is restricted to styles corresponding to more than 50 
tracks. 
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Figure 5. Top, distance between each genre and the all-
genre median value for the RMS descriptor, against genre 
representation. Bottom, result of the same process using 
random values between 0 and 1. The horizontal line rep-
resents the linear regression. 
 

4.3 Discussion 
It may seem counter-intuitive to conclude that dynamics 
are more dependent on trends than they are on genres. 
Indeed, genres such as Euro-Pop exhibit high micro-
dynamics and low overall loudness, whereas other genres 
such as Trip-Hop are associated with low micro-
dynamics and high overall loudness. However, the Euro-
Pop genre is most represented in the 1970s and 1980s 
[34], at a period when music was produced to feature 
high microdynamics and low overall loudness [6]. Trip-
Hop is mainly a mid-1990s trend [35], a moment when 
low microdynamics and high overall loudness were 
common in music production [6]. Conversely, all genres 
that span several decades follow the trend of the year of 
production. 

As mentioned in Section 2.3, not all genres are equal-
ly represented. This may bring the suspicion that dynam-
ics are only dependent on the trends followed by the most 
represented genres, such as the subgenres of rock repre-
sented in Figure 3, but independent from the trends fol-
lowed by most other genres, in which case our conclusion 
would not stand. To discard this suspicion, we evaluate 
the distance between each genre and the all-genre median 
value for the descriptors over the years. This distance is 
then matched against the genre’s number of occurrences. 
Figure 5, top, illustrates the case of the RMS descriptor. 
A few well-represented genres are indeed closer to the 
median than most other genres. However, Figure 5, bot-
tom, illustrates the same process using 1000 sets of 7500 
random values in place of the 7500 RMS values. Both 
graphs are similar, and the few well-represented genres 
are closer to the median in both cases. Therefore, a par-
ticular dependency to a few genres is not a property of the 
present corpus. This discards the suspicion according to 
which the dependency to trends we found is only valid as 
far as a few genres are concerned. 

 

5. CONCLUSION 

Mainstream music dynamics are thought to be 
conditioned by genre, in terms of overall track loudness 
[36], microdynamics [9], [37], macrodynamics [15], [38] 
or amount of dynamic processing applied to music pieces 
during the production stage [7], [39, p. 121]. However, 
using a MIR perspective, we have shown that dynamics 
and overall loudness depend more on the track’s year of 
release than on its genre. We have also found, as 
suspected by [40], that the loudness war has influenced 
all mainstream genres indiscriminately. A notable 
exception lies in macrodynamics as measured by the 
EBU3342 Loudness Range, which are more independent 
from both genre and year of release. In other words, 
dynamic range in the musical sense (pianissimo to 
fortissimo) is only marginally dependent on either 
mainstream genre or trend.  

According to mastering engineer Bob Katz, the 
loudness wars were over in 2013 [41]. We have shown 
that the loudness war has peaked in 2007, and that a 
return to pre-loudness war dynamics may be reached in 
about ten years. As an exception, macrodynamics, which 
have not been significantly influenced by the loudness 
war, appear to increase since the loudness war’s peak, 
and are currently reaching very high values. 

This is useful knowledge in several situations. Many 
artists and producers ask sound engineers to increase 
loudness during mastering [33], arguing that the music 
genre to which their tracks belong is well suited to a 
“hot”, loud and compressed sound. The present study 
provides objective data to challenge this claim. Loudness 
war activists argue for more important dynamics [32], 
[41]. We have shown that this concerns only 
microdynamics. Automatic mixing and mastering rely on 
constraints to be applied on initial audio content [42]–
[44]. The present study has demonstrated that constraints 
relative to dynamics in mainstream music may be derived 
from trends rather than genres. 

More generally, we suggest that the present method 
could be used for other audio descriptors, in order to 
establish their dependency to either diachronic trends, 
genre, or to any other musical dimension. 
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ABSTRACT

The Theme And Variation Encodings with Roman Nu-
merals (TAVERN) dataset consists of 27 complete sets of
theme and variations for piano composed between 1765
and 1810 by Mozart and Beethoven. In these theme and
variation sets, comparable harmonic structures are realized
in different ways. This facilitates an evaluation of the ef-
fectiveness of automatic analysis algorithms in generaliz-
ing across different musical textures. The pieces are en-
coded in standard **kern format, with analyses jointly en-
coded using an extension to **kern. The harmonic con-
tent of the music was analyzed with both Roman numer-
als and function labels in duplicate by two different expert
analyzers. The pieces are divided into musical phrases, al-
lowing for multiple-levels of automatic analysis, including
chord labeling and phrase parsing. This paper describes
the content of the dataset in detail, including the types
of chords represented, and discusses the ways in which
the analyzers sometimes disagreed on the lower-level har-
monic content (the Roman numerals) while converging at
similar high-level structures (the function of the chords
within the phrase).

1. INTRODUCTION

There are a wealth of musical scores in digitized form cur-
rently available. While the vast majority exist as images,
a combination of hand encoding of the visual data and
advances in optical music recognition (OMR) technology
have increased the amount of symbolic music data avail-
able. Unfortunately, most of this data is unlabeled, limiting
its utility in developing predictive systems for analyzing
symbolically represented music. Accurately segmenting
and labeling symbolic music data requires a higher level of
musical expertise than can be reasonably obtained through
crowd-sourcing platforms, like Mechanical Turk 1 . Even
with expert-annotators, there is the challenge of ensuring

1 http://www.mturk.com/

c© Johanna Devaney, Claire Arthur, Nathaniel Condit-
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cense (CC BY 4.0). Attribution: Johanna Devaney, Claire Arthur,
Nathaniel Condit-Schultz, and Kirsten Nisula. “Theme And Variation
Encodings with Roman Numerals (TAVERN): A new data set for sym-
bolic music analysis”, 16th International Society for Music Information
Retrieval Conference, 2015.

that they all conform to the same conventions in label-
ing the data. In this regard, conforming to the analytic
approach in a published textbook provides a measure of
consistency for analyzing classical music.

This paper presents the Theme And Variation Encod-
ings with Roman Numerals (TAVERN) datase 2 , a new
dataset of segmented and analyzed symbolic classical mu-
sic. TAVERN consists of 27 theme and variations sets by
Mozart and Beethoven, segmented into phrases and ana-
lyzed in terms of both Roman numeral chord labels and
chord function. All of the pieces were analyzed in du-
plicate by different PhD-level music theory students and
both the notes and analyses were encoded in Humdrum-
related formats [9]. The dataset focuses on pieces in theme
and variation form where the underlying harmony remains
relatively constant across variations, while rhythmic and
textural aspects of the music change. The utility of theme
and variations in symbolic music analysis has been demon-
strated in the case of folk songs [27, 28] and for both har-
mony [8,14] and melody [5] in classical themes and varia-
tions. This is the first such dataset, however, that includes
harmonic and functional data, facilitating the development
of algorithms of automatic symbolic chord recognition and
symbolic similarity, through a deeper understanding of the
impact of texture on both of these tasks. This paper begins
with a survey of existing symbolic music datasets, both an-
notated and unannotated, before describing in detail the an-
notation process and the contents of the dataset.

2. EXISTING DATASETS

As noted above, there is a growing number of unannotated
symbolic music datasets available, many items of which
are available in several collections. The most popular in
MIR research are those that are hand-encoded and, to a cer-
tain degree, curated. This includes the KernScores dataset
[22], which has more than 100,000 files in **kern for-
mat [9] from a range of styles from folk [23] to classi-
cal. A number of the kern score pieces are available in
other datasets, such as the music21 corpus [3], which con-
tains files in MusicXML [6] and **kern format. The mu-
sic21 corpus also includes the Yale Classical Archives Cor-
pus [29], which contains almost 9000 pieces/movements
divided into vertical slices. The Yale corpus is also part of
the ELVIS database [1] along with the Josquin Research

2 http://getTAVERN.org
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Project 3 and a number of smaller corpora of other Re-
naissance composers. While some datasets are focused on
making printed versions of the musical scores available,
they often supply symbolic data. For example, the Mu-
topia Project 4 contains not only PDFs of the scores but
also hand-encoded Lilypond 5 and MIDI files. The Peach-
note dataset [26] provides similar access to the Petrucci
Music Library 6 by running OMR on the scanned scores,
which typically has a higher error rate than hand encoding.
Researchers have also made use of publicly available Band
in a Box lead sheets, e.g, [4], and MIDI files, e.g., [15].

There is a much smaller number of harmonically an-
notated datasets. Temperley encoded the analyses from
the Tonal Harmony textbook by Kostka and Payne [11]
for his work on key finding [24] and examined statistical
properties of harmony [25]. These encodings have been
used by other researchers for evaluating symbolic chord
recognition systems [12, 18]. The note data and annota-
tions are available both in a format Temperley defined as
“note files” 7 and as MIDI files (with the chord annotation
inserted as lyrics). 8 The KSN harmonic annotations [10]
provide Roman numeral labels with duration and inver-
sion information for the Real World Computing (RWC)
dataset [7] and have been used for modeling pitch struc-
tures in polyphonic music [19].

3. ANALYTIC APPROACH

TAVERN comprises 27 sets of theme and variations, 10
by Mozart and 17 by Beethoven (listed in Table 1). The
Beethoven set is nearly complete, with 18 of his 20 theme
and variation sets included (Opus 35 was excluded because
of the inclusion of a fugue in the piece and Wo0 79 was
excluded because it included only 5 variations, which was
below our 6 variation minimum). The Mozart set is less
complete: due to time and resource restrictions, we tempo-
rally sampled variations across his career (leaving out K.
24, 54, 180, 264, 352, 460, 500). Going forward we plan
to analyze and include these variations in the dataset once
additional resources become available.

The pieces have been analyzed in duplicate by multi-
ple expert-annotators using the hierarchical model of har-
mony defined in [13] that includes both Roman numeral
and function labels, specifically a variant of functional anal-
ysis known as the ‘Phrase Model’. Section 3.1 provides
some background on the ‘Phrase Model’ in general and
Section 3.2 describes the annotation process.

3.1 Phrase Model

Phrases are complete musical statements built from an or-
dered presentation of three harmonic functions and end-
ing with a cadence. One way of analyzing phrases is in

3 http://jrp.ccarh.org/
4 http://www.mutopiaproject.org
5 http://www.lilypond.org
6 http://imslp.org
7 http://theory.esm.rochester.edu/temperley/

kp-stats/index.html
8 http://www.cs.northwestern.edu/˜pardo/

kpcorpus.htm

Composer Piece # Variations

Mozart K.25 7
K.179 12
K.265 12
K.353 12
K.354 12
K.398 6
K.455 10
K.501 12
K.573 9
K.613 8

Beethoven WoO 63 9
WoO 64 6
WoO 65 24
WoO 66 13
WoO 68 12
WoO 69 9
WoO 70 6
WoO 71 12
WoO 72 8
WoO 73 10
WoO 75 7
WoO 76 8
WoO 77 6
WoO 78 7
WoO 80 32
Opus 34 6
Opus 76 6

Table 1. Summary of the sets of themes and variations in
the data set.

terms of functions. The tonic function at the beginning
of a phrase serves to establish the tonal centre, and at the
end of a phrase to signal its return. The pre-dominant
function prepares for the arrival of the dominant function,
which sets up an opposition to tonic. The tension created
by the movement to the dominant is ultimately resolved
by a return to tonic. A phrase typically contains all three
harmonic functions, but may contain just tonic and dom-
inant. The cadences may close with the dominant func-
tion (termed a half cadence) or return to the tonic func-
tion (termed an authentic or deceptive cadence, depend-
ing on the chords used). Ideas about functional harmony
can be found in Rameau [20], although the specification
of the terms tonic, pre-dominant, and dominant were not
defined until the late nineteenth century by Riemann’ [21].
We have included function labels in addition to the Ro-
man numeral labels because we believe that they are essen-
tial in developing and testing hierarchical models of har-
mony. Since function harmony has some limitations for
music outside of the Classical era, we focused this dataset
on Mozart and early-mid career Beethoven pieces.

The ‘Phrase Model’ is a contemporary adaption of Rie-
mann’s thinking and is defined in several textbooks. For
the purposes of this project, we followed the specifics laid
out in The Complete Musician by Steven Laitz [13]. Gen-
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Figure 1. Example of a theme and variation from the dataset with harmonic analyses marked, note the similarity in the
harmonic structure and the differences in the texture.

erally, the majority of I and iii chords (i and III in the minor
mode) have a tonic function, although inversions of these
chords may have other function, such as I64 functioning as
dominant, depending on their harmonic context. vi (or VI)
chords may have either a tonic or pre-dominant function,
while ii or IV (iio or iv) chords are typically pre-dominant.
V and viio chords are typically assigned a dominant func-
tion, except for when their inversions occur in passing or
neighbor contexts with I or vi chords in a tonic function.
An example of the ‘Phrase Model’ analytical approach is
shown in Figure 1. In the Theme, the Roman numerals I-
V7-I-I6 are assigned a tonic function, with the V7 in the
first bar functioning as a ornamentation of the surrounding
I chords, rather than having a dominant function. The ii6

chord has a pre-dominant function and the V chord has a
dominant function. Since the phrase ends on the dominant
function, rather than returning to the tonic function, it ends
with a half cadence. The variation has a similar structure,
with the first 2.5 measures having a tonic function, the sec-
ond half of the third measure having a pre-dominant func-
tion (albeit with a IV chord instead of ii6 chord), and the
fourth measure having a dominant function.

3.2 Annotators

The annotators are three PhD-level music theory students,
who each have spent at least two years teaching the har-
monic analysis technique described in Section 3.1 to un-
dergraduate students within the same curricular framework.
Thus the annotators are intimately familiar with the work-
ings of Laitz’s version of the ‘Phrase Model’ and its ana-

lytic conventions, ensuring a common interpretation across
the annotators on these conventions. Each of the theme
and variations sets was analyzed by two annotators, with
the annotators analyzing 18 theme and variations sets each.
The annotators worked independently, dividing each of the
themes and variations into phrases on their own and ana-
lyzing each phrase both in terms of Roman numerals and
phrase-level function. In cases where there was disagree-
ment between the annotators, a third annotator reviewed
the analyses and sided with one interpretation. The adju-
dicated version of the analysis was then joined with the
note data, as described in Section 4.1. On occasion, the
analyzers would disagree on the Roman numerals while
still agreeing about the function of the chords, an exam-
ple of which is discussed in Section 4.2 We believe that
points of disagreement between the trained annotators are
an interesting source of information, particularly if chord
recognition algorithms run into accuracy issues in the same
situations, and so we are also releasing the individual an-
notations in addition to the adjudicated data.

4. DATASET DETAILS

4.1 Encoding Format

The musical scores of pieces were converted from pub-
licly available MIDI files sourced online. The MIDI files
were less error-prone than running OMR on printed scores
of the pieces, but still required some manual correction.
In the correction process, the MIDI files were first con-
verted into **kern format after which the errors were hand-
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Figure 2. Example of the encoding format for the theme
in Figure 1. The leftmost column contains the function la-
bels, the second one contains the harmonic labels, and the
remaining columns contain the notes. Dots indicate that a
label is continued from a previous row while elements of
another spine change.

corrected in reference to public domain scores available in
the Petrucci Music Library (namely 19th century publica-
tions from Breitkopf & Hartel [2,16,17]). In the correction
process, ornamentation and grace notes were removed in
order to simplify the data. In addition to pitch and duration
information, **kern format allows for information about
slurs and stem directions to be encoded. Where this in-
formation was encoded in the MIDI data, it was converted
into the **kern data.

The analyses were encoded as separate spines and then
joined with the **kern data. For the Roman numeral anal-
ysis the existing **harm representation 9 was used. In this
format, the labels are the same as standard Roman numeral
labels except that the inversions are marked with the letters
a (for first inversion, typically notated as 6 for triads or 6

5

for seventh chords), b (for second inversion, 6
4 or 4

3), and c
(for third inversion, 4

2) in order to maintain consistency for
the number of character used to indicate inversions. We
developed a new format, named **func, for the function
encoding, which simply consists of the labels T (tonic), P
(pre-dominant), and D (dominant). Thus each file consists
of one **func spine, one **harm spine and a number of

9 http://www.humdrum.org/Humdrum/
representations/harm.rep.html

**kern spines, each of which corresponds to one staff in
the piano score. An example of a file, corresponding to the
upper scores in Figure 1, is shown in Figure 2. Each file in
the dataset represents one phrase, with measure numbers
marked in reference to the entire piece. This allows for the
phrases across the corresponding theme and variations to
be easily recombined into a single piece while at the same
time providing an indication of where each phrase begins
and ends. The files are readable by Humdrum, a MATLAB
parser for the files is currently available on github 10 and
extensions to the music21 Humdrum parser will be avail-
able shortly. We have also generated audio versions of each
file from the symbolic data via MIDI.

4.2 Theme and Variations Form

All 27 of theme and variations sets in TAVERN are in
‘sectional’ form, meaning that all of the themes and varia-
tions are tonally-closed distinct units. Within the sets, the
harmony remains relatively constant across the theme and
variations, while the theme’s melody is embellished in the
variations. Additional musical interest is created through
changes in rhythm, tempo, texture, key, and mode. There
are some inconsistencies in the harmonies across related
themes and variations, but these are typically substitutions
of different chords with the same harmonic function. An
example of this is present in Figure 1, where the ii6 chord
in the penultimate measure of the theme is substituted with
a IV chord in the variation. However, ii6 and IV share two
common notes (the 4th and 6th scale degrees) and a com-
mon function (P), meaning that this substitution has very
little harmonic impact.

In total, the dataset consists of 1060 phrases. Of these,
66 phrases occur as codas to isolated variations, so for
these phrases there is no corresponding phrase in the re-
lated theme or variations. These have been included for
the purposes of completeness. Of the 1060 phrases, 917 of
the phrases are in the major mode, with the remaining 143
being in the minor mode. Seven different major and minor
keys are occur in the dataset: A, B flat, C, D, E flat, F, G).
Within the phrases there are 290 unique sonorities (count-
ing each inversion as a separate sonority), this includes
both diatonic chords and applied chords. A tally of the top
40 unique chords with the highest number of occurrences
(at least 25) is shown in Figure 3, along with the number of
times that each chord occurs in each function. In addition
to highlighting the large number of chords that are anno-
tated in the dataset, Figure 3 also demonstrates the utility
of annotating function labels by showing that most of the
chord inversions have two if not three possible functions
(depending on the context in which they occur). This high-
lights the need for such labelled data in order to learn these
contexts, rather than simply relying on rule-based systems.

The relatively large proportion of non-standard tonic
chords with a tonic function in Figure 3 (e.g., ii, IV, V, viio)
are a result of “embedded phrases” within the tonic func-
tion in some of phrases [13]. An example of this is shown
in the **comments spine of Annotator Two’s analysis of

10 https://github.com/jcdevaney/TAVERN
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Figure 3. A tally of the number of times each of the top forty unique chords occurs in the dataset in regards to the
function (Tonic, Pre-dominant, Dominant) in which they occur. The data for the I and V chords are shown the number of
occurrences per 1000, scaled from their total number of occurrences (2133 and1239 occurrences, respectively). This was
done to facilitate the readability of the figure. The chords are grouped, from top to bottom, by the scale degree of their root
note (or in the case of applied chords, the diatonic scale degree which functions as their relative tonic). Within each chord
group, the chords are ordered by inversion followed by occurrences of applied dominant chords on that scale degree.
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Figure 4. An example of a phrase where the two annotators disagreed on specific chord labels. In the third measure
(marked with a box), Annotator 1 analyzed the measure as ‘I- I64- V6

5-I’ while Annotator 2 analyzed the measure as ‘I-
viio6-I’. The adjudicating annotator sided with Annotator 2 because in this context ‘ viio6’ label is a complete chord. ’ V6

5’,
despite being technically correct, is less desirable because the root of the chord (E) is missing. Annotator 2’s analysis also
demonstrates the nomenclature of ‘embedded phrases’, which are marked when there is a low-level ‘T-P-D-T’ or ‘T-D-T’
pattern within the main T function that does not result in a cadence. Where applicable, ‘embedded phrase’ analyses are
available in the individual annotators’ files in the **comments spine.

musical phrases reproduced in Figure 4. Instances of em-
bedded phrases are not included in the main database files,
but are available in the individual annotator’s files that are
also released as part of TAVERN. Figure 4 also provides
an example where the two annotators agreed on the over-
all harmonic function, but disagreed on the specific Roman
numerals (as seen in the different analyses for measure 3).
Ultimately, in this case, a third annotator determined the
second annotator’s analysis to be superior both because
the chord labels described complete chords and because it
better mirrored the harmonic activity in the corresponding
phrases in the related theme and variations.

5. CONCLUSIONS

This paper has presented TAVERN, a new dataset of 27
harmonically annotated theme and variations piano pieces
by Mozart and Beethoven that will facilitate research on
symbolic chord recognition and similarity in symbolic mu-
sic. Each musical phrase in the dataset is encoded as a sep-
arate file. The note information is encoded in **kern for-

mat, the Roman numerals in **harm format, and the har-
monic function of each Roman numeral label in the newly
defined **func format.

This dataset will be useful for systematically evaluating
the effect of textural changes on symbolic chord recogni-
tion algorithms since the consistency of harmonic mate-
rials and melodic frame across each theme and variations
set occurs against a wide range of musical textures. Also,
the segmentation of the pieces into phrases can facilitate
the development and evaluation of algorithms for musical
structure analysis. In addition to the symbolic music data,
MIDI-generated audio files are available. In the future, we
plan to use score-audio alignment to generate a mapping
between the symbolic data and public-domain recordings
of real piano performances, extending the utility of this
dataset to include audio chord recognition research.
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ABSTRACT

Benford’s law defines a peculiar distribution of the lead-
ing digits of a set of numbers. The behavior is logarith-
mic, with the leading digit 1 reflecting largest probability
of occurrence and the remaining ones showing decreasing
probabilities of appearance following a logarithmic trend.
Many discussions have been carried out about the applica-
tion of Benford’s law to many different fields. In this paper,
a novel exploitation of Benford’s law for the analysis of au-
dio signals is proposed. Three new audio features based on
the evaluation of the degree of agreement of a certain au-
dio dataset to Benford’s law are presented. These new pro-
posed features are succesfully tested in two concrete audio
tasks: the detection of artificially assembled chords and the
estimation of the quality of the MIDI conversions.

1. INTRODUCTION

Benford’s law, also known as the ‘first-digit law’, describes
a peculiar distribution of the leading digits of datasets of
numbers, especially those related to the measure of ‘real-
life phenomena’. Unlike the central limit theorem, Ben-
ford’s law states that the typical distribution of the lead-
ing digits of a large number of datasets, derived from the
measure of several common variables follows a logarithm-
shaped law.

Most of the measures from real-life (tax returns, street
addresses, population number or length of rivers) seem to
present this peculiar distribution. Many works have been
published on Benford’s law, mixing the empirical evidence
with some more mathematical formalism.

Benford’s law has been widely proposed as a discrimi-
nating tool for ‘naturally-shaped’ datasets [6] and even em-
ployed [8] or criticized [5] as a somewhat reliable diagnos-
tic tool to detect a large variety of frauds.

In this paper, Benford’s law is evaluated as a discrimina-
tor for audio signals. In particular it is employed to detect

c© Isabel Barbancho, Lorenzo J. Tardón, Ana M. Barban-
cho, Mateu Sbert. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Isabel Barbancho,
Lorenzo J. Tardón, Ana M. Barbancho, Mateu Sbert. “Benford’s Law
for Music Analysis”, 16th International Society for Music Information
Retrieval Conference, 2015.

differences between natural and artificially created chords
and real music and MIDI-generated music.

The article is organized as follows: in Section 2, Ben-
ford’s law is discussed and its probabilistic framework is
detailed. In Section 3, the three new audio features based
on the evaluation of the degree of agreement of a certain
dataset to Bendford’s law are defined. These descriptors
are widely employed in Section 4 for the aforementioned
tasks, as part of the audio signals analysis. Finally, in Sec-
tion 5, some conclusions are drawn.

2. BENFORD’S LAW

Benford’s law affirms that the frequency of occurrence of
the leading significative digit of a large dataset coming
from real-life measurements, presents a peculiar histogram
in which the height of the bars follows a logarithmic scale
(see Figure 1).
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Figure 1. The logarithm-shaped distribution of the leading
digits, following Benford’s law.

More specifically, the probability value of the d-th digit
is computed as follows:

P (d) = log10

(
1 +

1

d

)
(1)

where d is the digit number.
Simon Newcomb [11] first described this peculiar be-

havior after the observation of the pages of the tables of
common logarithms. He noticed that the logarithms begin-
ning with the digit 1 were more frequently browsed than
the others. In his two-page paper, he briefly described the
empirical evidence of such observation, extending it to all
the digits.
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However, his work remained unknown for several years.
In 1938, the General Electric physicist Frank Benford,
apparently unaware of Newcomb’s paper, formalized the
same observations with a more consistent article published
by the American Philosophical Society [4]. He included
the formalization of the same law and a large amount of
observations of real-life phenomena gathered during sev-
eral years of research.

The rigorous mathematical discussion of the law was
tackled several years after, and it is currently a matter of
question. In 1976, the mathematician Ralph Raimi wrote
about the mathematical explanation of the law, citing the
‘scale-invariance’ as one of the possible keys for inter-
pretation of the phenomenon [14]. Theodore Hill [7], in
1995, described the statistical derivation of the law, while
in 1997, Stephen Smith [15], in his book “The Scientist and
Engineer’s Guide to Digital Signal Processing” presented
a rigorous complete description, under the point of view of
the signal processing.

Nowadays, Benford’s law is a well defined probabilistic
problem, and it has been demonstrated that it is based on
an intrinsic property of a large number of real-life datasets.
According to the central limit theorem [13], the distribu-
tion of a certain measure of a quantity follows a normal dis-
tribution. The larger the amount of data, the closer the fit
of the sample histogram to the Gaussian distribution. Nev-
ertheless, when a single measure is iteratively repeated, its
variance tends to be steady and to robustly define the range
of variability of the quantity measured. Usually, it limits
the width of the distribution to few orders of magnitude.
In fact, it is infrequent that a series of iterative measures of
the same variable could span across a wide range of values.

Also, if we multiply groups of random numbers, each
following a normal distribution, we will obtain a new
dataset following the so called ‘log-normal’ distribution
[9]. Its name derives from the dome-shaped histogram that
this kind of distribution shows, when it is represented on a
logarithmic scale. In log-normal distributions, 95% of the
values are distributed within the mean μ minus twice the
standard deviation σ and the mean μ plus twice the stan-
dard deviation σ, on the logarithmic scale. This leads to an
accumulation of values on the left edge of the distribution,
on the linear scale [15]. Actually, in log-normal distribu-
tions the median is lower than the mean and they present
large positive values of skewness [9] (see Figure 2).

The fact that the log-normal distribution usually de-
rives from the combination of normally distributed vari-
ables, leads one to assume that, in nature, it is as common
as the normal distribution [15]. Most of the datasets of
real-life variables are log-normally distributed, especially
those with only-positive values, where the intrinsic limita-
tion leads to an increase of probability around the smallest
values. Most of these datasets follow Benford’s law. In en-
vironmental pollutants datasets, for instance, most of the
measures are typically very low and only few of them are
larger than their mean. Moreover, these variables are typ-
ically only positive, but they usually show very low val-
ues, very close to zero. This leads to a compression of the
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(a) The histogram of a log-normal shaped dataset (linear axis).
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(b) The histogram of a log-normal shaped dataset (logarithmic axis).

Figure 2. An example of log-normal shaped dataset in lin-
ear and logarithmic axis. The median and the mean are
represented with continuous and dashed line, respectively.
Note that the median and the mean coincide when the his-
togram is spaced on the logarithmic axis (the distribution is
normally-shaped). The histogram bins have been equally
spaced on the logarithmic axis, such to define a constant
width of the bars.

histogram toward the minimum, resulting in a typical log-
normal distribution.

Nevertheless, the shape of the histogram is not sufficient
to be an index of the degree of fit to Benford’s law. Usually,
the log-normal distributions derived from the combination
of multiple normal distributions (with different widths) are
broader than them, because of the larger range of variabil-
ity they present. In fact, it is the width of these kinds of
distributions, that is key to understand their relation to Ben-
ford’s law. Smith [15] shows how the degree of fit to the
law of a certain dataset is a mere question of distribution
width. The broader the distribution of the data, the more
accurate the fit to the theoretical law.

This is a very important issue, related to the data ma-
nipulation by humans. The most common way to system-
atically extract the leading digit of a number is to multiply
or divide it by ten, until it reaches a value between 1 and
9.9 periodic. In particular, the number must be divided by
10, if it is higher than 10 and multiplied by 10, if it is lower
than 1.

Thus, for instance, the number 0.00567 will be multi-
plied by 10 three times to obtain the number 5.67, whose
integer part (5) is taken into account as the leading digit.
Similarly, for the number 7865, it has to be divided by 10
three times to obtain 7.865, and the correspondent leading
digit (7).

This ’human-driven’ mechanism is primarily responsi-
ble for dependence of the distribution of the leading digits
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on the logarithmic law [15]. Hence, the amount of depen-
dence, namely the degree of fit to Benford’s law, depends
on the broadness of the original data distribution. If the
data span across a large number of orders of magnitudes,
with respect to unity, they will need several steps of mul-
tiplications/divisions to be scaled to range between 1 and
9.9 periodic. Conversely, if the dataset ranges from 1 to
9, the numbers will not require any operation. The impact
of these kinds of manipulations is directly related to the
degree of agreement to Benford’s law.

3. BENFORD’S LAW BASED AUDIO FEATURES

In order to evaluate the degree of agreement of a certain
dataset to Benford’s law, several approaches can be em-
ployed. The task is to obtain new features to be used as
comparative measure among the different audio elements
to be classified. In this section three new features will be
extracted: the one-scaling-test, the Fourier-based method
and the goodness-of-fit test.

3.1 The one-scaling-test

Raimi [14], still speaking about a “universal law”, intro-
duced the scale-invariance principle to define the validity
of the law. He affirmed that “...since God is not known
to favor either the metric system or the English system...”,
Benford’s law must be scale-invariant. Smith [15] formal-
ized a test based on the scale-invariance of the law, by mea-
suring the variation of the probability of occurrence of the
leading digit 1, when the dataset is iteratively multiplied
by a constant.

The theoretical probability of occurrence, by Benford’s
law, of the first leading digit is 0.301. If the empirical prob-
ability of the digit 1 of a certain dataset is close to this
value, we can suppose that the dataset follows (potentially)
Benford’s law. This is obviously not sufficient. Recalling
the concept about the scale-invariance, we can affirm that
if the dataset follows the law, the empirical probability of
occurrence of its leading digits (the digit 1 in this case)
should not vary, or vary very weakly, if the dataset is itera-
tively multiplied or divided. The so called one-scaling-test
proposed by Smith [15] exploits this property to evaluate
the agreement of a certain dataset to Benford’s law.

If we take two log-normally distributed datasets with
equal mean, 10, and different standard deviation, 0.5 and
3, respectively, and we multiply them iteratively by a con-
stant (e.g.: 1.01), we will observe a certain variation of the
probability of occurrence of the first leading digit around
the value 0.301 (Figure 3).

A broader distribution presents a much weaker varia-
tion of the probability of occurrence of the first leading
digit around the value 0.301, than a narrower distribution.
The means of the distribution of the probability values are
0.3010 and 0.3013, for the broader and the narrower dis-
tribution, respectively. That is, they both follow Benford’s
law, showing a value close to the expected theoretical prob-
ability (0.301). However, their standard deviations 0.0069
and 0.1450 reveal a much larger variation around the mean
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(a) The variability of the probability of occurrence of the leading digit 1
for a broad log-normally distributed dataset (σ = 3).
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(b) The variability of the probability of occurrence of the leading digit 1
for a narrow log-normally distributed dataset (σ = 0.5).

Figure 3. An example of the effect of the width of the (log-
normal) distribution on the one-scaling-test. Means are
represented with thick lighter line. The equivalent PDFs
are displayed on the right side of the plots.

for the dataset with the narrower distribution. Although
both datasets seem to follow Benford’s law, the broader
one required a heavier manipulation of the original data
to extract the leading digits and it emphasized the loga-
rithmic pattern attributed to their distribution, leading it to
approach the theoretical law closer.

Note that in both cases, the variation of the probability
shows a periodic pattern due to the factor chosen for the
multiplication. The leading digit is unchanged when the
numbers are multiplied by 10. In our example, this occurs
every 232 times (1.01232 ≈ 10).

The one-scaling-test presents a main drawback related
to the high computational cost derived from the iterative
multiplication of the whole dataset. If we consider one
single minute of an audio signal recorded at a sampling
frequency of 44.1 kHz, we have to handle with a vector of
more than 2.5millions samples. If we want to multiply this
dataset at least 232+1 times (to observe at least one whole
period), we must do more than 600 millions of operations.
In the case of exploiting Benford’s law in a classifier tool
for music genres, we should have to handle hundreds of
songs, each of them with a length of several minutes. This
would become an unfeasible task from the point of view of
the computational cost.

3.2 The Fourier transform-based method

Smith [15] reinterprets the problem from the point of view
of signal processing. He proves that the degree of agree-
ment of a certain dataset to Benford’s law, can be estimated
by evaluating the behavior of the Fourier transform (FT) of
the normalized histogram in logarithmic axes. In particu-
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lar, the measure of how fast the transform falls, from its
maximum value (1 at frequency 0) to its minimum value
(zero at some frequency higher than zero), is directly re-
lated to the width of the distribution measured with the
normalized histogram and, consequently, with the degree
of correspondence with the law.

Ideally, in order to follow perfectly Benford’s law, the
Fourier transform should present a unitary value at fre-
quency zero and a zero value at all the remaining frequen-
cies. This would occur if the distribution was uniform from
−∞ to +∞ [12].

In real-life, this does not occur. Hence, the faster the
Fourier transform drops to zero, the closer the agreement
of the dataset to Benford’s law. In particular, Smith de-
fines the value at frequency 1 as the threshold to discrim-
inate between the agreement or not of the dataset to the
law [15]. If the transform of the histogram in logarithmic
axes (denoted as PDF) falls to zero before frequency 1Hz,
the correspondent dataset follows Benford’s law. If it does
not occur, the dataset does not follow the law. In practice,
the value of the PDF at f = 1Hz is a reliable index of the
degree of agreement with the law.

In Figure 4, an example of the application of the Fourier
transform to the histograms of the dataset tested in the pre-
vious section, is shown.
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(a) Broad log-normally distributed dataset. Left: distribution on a loga-
rithmic axis. Right: Fourier transform of the distribution (PDF).
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(b) Narrow log-normally distributed dataset. Left: distribution on a loga-
rithmic axis. Right: Fourier transform of the distribution (PDF).

Figure 4. Example of the application of the Fourier trans-
form for the estimation of the agreement of the data to Ben-
ford’s law. The transform of the broader distribution drops
to zero faster than the narrower one, revealing a closer cor-
relation with the law.

The distribution of the data shown in Figure 4(a) is broa-
der than the one in Figure 4(b). Actually the two datasets
are the same that were previously analyzed in Figure 3,
with standard deviation 3 and 0.5, respectively. The PDF
of the broader distribution falls to zero much faster than
the narrower one. In particular, the amplitude of the PDF
at frequency 1Hz is 0.0023 and 0.4184, for the broader

and the narrower distribution, respectively. This issue re-
veals a closer agreement to Benford’s law of the broader
distribution, as observed previously.

Note that unlike the one-scaling-test, the method based
on the Fourier transform has a reasonable computational
cost. Furthermore, this method returns a higher discrim-
inant range for the two datasets: The ratio between the
two standard deviations of the one-scaling-test is about 20,
while the ratio between the two values of the transforms at
frequency 1Hz is about 180. If the aim of the application
of Benford’s law is a boolean discrimination of the data,
then the Fourier transform-based method is efficient.

3.3 The χ2 divergence and the goodness-of-fit test

An alternative to the the two empirical methods proposed
so far, is the well known χ2 test [9]. It is called the
goodness-of-fit test and it returns a measure of how well
an empirical distribution fits a theoretical one.

The divergence is calculated as follows:

D =
(f(d) − P (d))2

P (d)
(2)

where f(d) is the empirical relative frequency of the digit
d and P (d) stands for its theoretical probability defined, in
our case, by Benford’s law, detailed in equation (1).

The null hypothesis H0 is verified if its associated prob-
ability (the p-value) does not exceed the significance level
fixed a priori. This probability value, when the test is
passed, can be employed as additional information for the
measure of the agreement to Benford’s law.

The goodness-of-fit test applied to the two datasets an-
alyzed before, returns a divergence value of 0.2484 and
0.0009, for the narrower and the broader distribution, re-
spectively. Actually, the narrower distributed dataset did
not pass the test. In Figure 5, the two empirical distribu-
tions of the leading digits are shown.
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Figure 5. The distribution of the leading digits for the two
datasets of the previous example. Both empirical distribu-
tions are compared against the theoretical values.

Once again, the broader distribution reveals a larger cor-
relation with Benford’s law, than the narrower one. Note
that the ratio between the two divergences (about 280) is
even larger than the one measured between the two values
of the transform in the previous example.

Nevertheless, the approach based on the Fourier trans-
form does not need to extract the samples in the dataset and
it is, therefore, more efficient.
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4. EVALUATION OF BENFORD’S LAW
PERFORMANCE IN PATTERN RECOGNITION

TASKS FOR MUSIC SIGNALS

In this section, the performance of the proposed features
based on quantitative measurements of agreement to Ben-
ford’s law is evaluated in two concrete audio tasks.

4.1 Real and artificially assembled chords

Often, the methods employed in the evaluation of the al-
gorithms for multi-pitch estimation are based on the usage
of ground-truth datasets of artificially assembled chords,
i.e. made up by the summation of individual waveforms of
the single notes that compose the chords. In this context,
this procedure leads to cleaner spectra that can be more
easily analysed. Benford’s law based audio features are
employed to discriminate between real and artificially as-
sembled chords. A set of 230 chords has been examined.
The half of them are real chord [3] and the other half are the
same chords but artificially assembled adding single notes.
The two sets of chords do not reveal any kind of signifi-
cant difference when submitted to a perceptual evaluation.
They sound practically the same.

Using this data set, the descriptors to evaluate the agree-
ment of the data to Benford’s law have been calculated
for each pair of chords (real and artificially assembled).
The ones-scaling test has not been performed because of
its high computational costs. In order to evaluate the per-
formance of the new Bendford’s law based features, they
have been compared against a set of time and frequency
features commonly used for the music classification task
(RMS, ZCR, CER, SPF) [16].

The descriptors defined in this context reflect a notable
discrepancy between the two classes of chords. Surpris-
ingly, an average value of the 30% of the samples (12 out
of 115 for the artificial chords and 56 out of 115 of the
real chords) did not pass the χ2 test. The signals showed
rather skewed distributions on the logarithmic axis with the
consequent decrease of the level of agreement to Benford’s
law.

A knn classifier has been adopted here to perform the
classification of the chords using both the set of single
features selected and the two groups of features with and
without the two Benford’s law-based descriptors. As it
is shown in Table 1, Benford’s law-based features behave
rather well when compared against the typical features for
audio classification. Also, the multidimensional set of de-
scriptors improves its performance with the inclusion of
the two Benford’s law-based features. It is interesting to
note that the artificial chords returned smaller values of
PDF (f = 1Hz) than the real chords (see Figure 6).

4.2 Quality of MIDI conversion

Recalling the ‘Nature-dependence’ of Benford’s law, we
formulate the hypothesis that the agreement of MIDI [10]
audio to Benford’s law, could be used as a ranking measure
for the quality of automatic MIDI converters. Two soft-
ware tools for automatic MIDI conversion were tested: the

Feature Success rate (%)
Benford’s law-based features
PDF (f = 1Hz) 80.87
χ2 divergence 71.74
Time and Frequency features
Root mean square 82.61
Zero crossing rate 68.70
Cepstrum residuals 58.26
Spectral flux 72.61
Grouped-feature set
Time and Frequency features set 79.57
Benford’s law-based features added 82.17

Table 1. Real and artificial chord classification accuracy
of the single-feature tests and the grouped-feature tests.
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Figure 6. Box-whiskers plot of the amplitude of
PDF (f = 1Hz), for artificial and real chords. The non-
overlapping notches, indicating the 95% confidence inter-
val of the two medians, reveal good discrimination power
of the analyized feature.

freeware software AMAZING MIDI (v1.70) by arakisoft-
ware [2] and the shareware software AKoff Music Com-
poser (v2.0) by the AKoff Sound Labs [1]. Both of them
present at least two different configuration sets. In particu-
lar, the AKoff software has been run with and without the
application of the ‘overtones filtering’, a utility to filter the
highest harmonics of the spectrum, while the AMAZING
MIDI software has been executed with and without a time
and an amplitude filter (to reduce the range of amplitude
and note duration).

The term “quality of a MIDI conversion” is a rather sub-
jective concept, i.e., it may depend on the person who is
evaluating that quality. Therefore, the sounds of the au-
tomatic conversion tools have been listened carefully by a
team of ten expert musicians who have evaluated person-
ally both the similarity between the converted track and
the original one, and the overall quality of the MIDI audio.
Each listener had to rank the MIDI converters with a score
in the range 0 (the worst quality) to 100 (the best quality).
Table 2 shows the mean of the subjective test scores ob-
tained by each tool/configuration.

In Figure 7, an example of the test performed, applied
to the song ‘Come sei veramente’ by the pianist G. Allevi,
is shown. The original track returned the smallest value in
the ones-scaling test, PDF (f = 1Hz) and the χ2 diver-
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Software/configuration Mean score
AKoff with overtone control 27/100
AKoff without overtone control 48/100
AmazingMIDI with filters 75/100
AmazingMIDI without filters 80/100

Table 2. Mean subjective ranks of the four combination of
tool and configuration employed in the MIDI-quality test.

gence, with respect to the other four MIDI versions. The
two outcomes of the AKoff software returned the largest
values of each descriptor, revealing the lowest accordance
to Benford’s law. Note the relation between features ex-
tracted and the subjective ranks in Table 2. Therefore, the
accordance to Benford’s law provide us with a measure of
the quality of the MIDI converters.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

w/ filters
AmazingMIDI

AmazingMIDI
w/o filters

overtone control
AKoff w/o

AKoff w/
overtone control

Original track

Amplitude/Divergence/Standard deviation

PDF (f=1)
χ2

 divergence (*10)
Ones−scaling test

Figure 7. The three Benford’s law-based features calcu-
lated for the track ‘Come sei veramente’ by the Italian pi-
anist Giovanni Allevi. Divergence values are multiplied by
10 for displaying purposes.

5. CONCLUSIONS

In this paper, it has been shown how Benford’s law can be
conveniently exploited to extract useful features that can
be successfully used in different audio pattern recognition
tasks. Three new Benford’s law based audio features based
on different measurement of the agreement to Benford’s
law have been proposed.

Two concrete tasks have been addressed to highlight
this novel context of application of Bendford’s law for au-
dio signal. For chord analysis, the new proposed features
are rather compelling as good discriminators when com-
pared against other typical features for speech and audio
classification and also the results obtained for the determi-
nation of the quality of the automatic MIDI conversions
are promising.

Therefore, through this paper it has been illustrated how
Benford’s law, that substantially arises as a matter of shape
and width of the distribution of the leading digits of the
data, can be conveniently exploited for audio classification
problems.
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ABSTRACT

In this paper, we present an audio to score alignment
framework based on spectral factorization and online Dy-
namic Time Warping (DTW). The proposed framework
has two separated stages: preprocessing and alignment.
In the first stage, we use Non-negative Matrix Factoriza-
tion (NMF) to learn spectral patterns (i.e. basis functions)
associated to each combination of concurrent notes in the
score. In the second stage, a low latency signal decomposi-
tion method with fixed spectral patterns per combination of
notes is used over the magnitude spectrogram of the input
signal resulting in a divergence matrix that can be inter-
preted as the cost of the matching for each combination
of notes at each frame. Finally, a Dynamic Time Warping
(DTW) approach has been used to find the path with the
minimum cost and then determine the relation between the
performance and the musical score times. Our framework
have been evaluated using a dataset of baroque-era pieces
and compared to other systems, yielding solid results and
performance.

1. INTRODUCTION

In this work, we address the problem of audio-to-score
alignment (or score matching), which is the task of syn-
chronizing an audio recording of a musical piece with the
corresponding symbolic score. There are two approaches
to this problem, often called “offline” and “online” align-
ment. In offline alignment, the whole performance is ac-
cessible for the alignment process, i.e. it allows us to “look
into the future” while establishing the matching. This is
interesting for applications that do not require the real-
time property such as Query-by-Humming, intelligent au-
dio editors and as a front-end for many music information
retrieval (MIR) systems. Online alignment, also known
as score following, processes the data in realtime as the

c© J.J. Carabias-Orti, F.J. Rodriguez-Serrano, P. Vera-
Candeas, N. Ruiz-Reyes, F.J. Cañadas-Quesada. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: J.J. Carabias-Orti, F.J. Rodriguez-Serrano, P. Vera-Candeas,
N. Ruiz-Reyes, F.J. Cañadas-Quesada. “An Audio to Score Alignment
Framework using Spectral Factorization and Dynamic Time Warping”,
16th International Society for Music Information Retrieval Conference,
2015.

signal is acquired. This tracking is very useful for appli-
cations such as automatic page turning, automated com-
puter accompaniment of a live soloist, synchronization of
live sound processing algorithms for instrumental electroa-
coustic composition or the control of visual effects syn-
chronized with the music (e.g. stage lights or opera super-
titles).

Audio-to-score alignment is traditionally performed in
two steps: feature extraction and alignment. On the one
hand, the features extracted from the audio signal charac-
terize some specific information about the musical content.
Different representations of the audio frame have been
used such as the output of a short-time Fourier transform
(STFT) [1], auditory filter bank responses [2], chroma or
”chroma-like” vectors [3, 4], multi-pitch analysis infor-
mation [5–8]. On the other hand, the alignment is per-
formed by finding the best match between the feature se-
quence and the score. In fact, most systems rely on cost
measures between events in the score and in the perfor-
mance. Two methods well known in speech recognition
have been extensively used in the literature: statistical ap-
proaches (e.g. HMMs) [6–11], and dynamic time warping
(DTW) [3, 12, 13].

In this paper we propose an audio to score framework
based on two stages: preprocessing and alignment. On
the first stage, we analyze the provided MIDI score to de-
fine the set of combinations of concurrent notes and the
transitions between them (i.e. the different states of the
provided MIDI). Then the score is converted into a ref-
erence audio signal using a synthesizer software and we
use a method based on Non-Negative Matrix Factorization
(NMF) with Beta-divergence to learn spectral patterns (i.e.
basis functions) for each combination of notes. A simi-
lar approach was used by Fritsch and Plumbey in [14], but
they use one component per instrument and note plus some
extra-components to model the residual sounds. NMF was
also used by Cont [8] as a multi-pitch estimator which de-
fines the observation model. Joder et al. [10] also defined a
set of template vectors for each combination of concurrent
notes but directly from the score (i.e. without using audio
synthesis). The combination templates are obtained as a
linear mapping of individual notes trained patterns using
several representations. On the second stage, alignment
is performed in two steps. First, the matching measure be-
tween events in the score and in the performance is defined.
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Concretely, a divergence (i.e. cost) matrix is estimated us-
ing a low latency signal decomposition method previously
developed by the authors in [15] that uses the spectral pat-
terns fixed from the previous stage. Finally a DTW strat-
egy has been used to find the path with the minimum cost
and then determine the relation between the performance
and the musical score times. Both, offline and online DTW
approaches are implemented as in [23] and [13], respec-
tively.

The structure of the rest of the paper is as follows. In
Section 2, we briefly review the DTW principles. In Sec-
tions 3 the proposed audio to score framework is explained.
In Section 4, the evaluation set-up is presented and, in Sec-
tion 5 the proposed method has been tested and compared
with other reference systems. Finally, we summarize the
work and discuss future perspectives in Section 6.

2. DTW BACKGROUND

DTW is a technique for aligning two time series or se-
quences. The series are represented by 2 vectors of fea-
tures U = u1, ..., ui, ...uI and V = v1, ..., vj , ..., vJ where
i and j are the point indices in the time series. I and J
represent the length of time series U and V , respectively.
As a dynamic programming technique, it divides the prob-
lem into several sub-problems, each of which contribute in
calculating the distance (or cost function) cumulatively.

The first stage in the DTW algorithm is to fill a local
distance matrix (a.k.a cost matrix) D as follows:

D(i, j) = ψ(ui, vj) (1)

where matrix D has IxJ elements which represent the
match cost between every two points in the time series.
The cost function ψ could be any cost function that returns
cost 0 for a perfect match, and a positive value otherwise
(e.g. euclidean distance).

In the second stage (forward step), a warping matrix C
is filled recursively as:

C(i, j) = min





C(i, j − cj) +D(i, j)
C(i− ci, j) +D(i, j)

C(i− ci, j − cj) + σD(i, j)



 (2)

where ci and cj are step size at each dimension and range
from 1 to αi and 1 to αj , respectively. αi and αj are
the maximum step size at each dimension. Parameter σ
controls the bias toward diagonal steps. C(i, j) is the
cost of the minimum cost path from (1, 1) to (i, j), and
C(1, 1) = D(1, 1).

Finally, in the last stage (traceback step), the minimum
cost path w = w1, ..., wk, ..., wK is obtained by tracing the
recursion backwards from C(I, J). Each wk is an ordered
pair (ik, jk) such that (i, j) ∈ w means that the points ui
and vj are aligned. Moreover, the path has to satisfy the
following three conditions: i) w is bounded by the ends of
both sequences, ii) w is monotonic and iii) w is continu-
ous.

Figure 1: Block diagram of the proposed system

3. SYSTEM OVERVIEW

The proposed framework for audio-to-score alignment is
presented in Figure 1. As can be seen, the framework has
two stages. First, the preprocessing stage must be com-
puted beforehand and only the MIDI score is required.
Then, once the parameters are learned, alignment can be
computed in realtime.

3.1 Preprocessing Stage

In this stage, the parameters for the alignment are learned
from the score, which must be provided beforehand using
MIDI representation. This stage is performed in two suc-
cessive steps: states definition and spectral patterns learn-
ing, as detailed below.

3.1.1 States Definition

The aim of this step is to adequately organize the informa-
tion given by the score to be used for alignment purposes.

First of all, the binary ground-truth transcription ma-
trix GT(n, τ) (see Figure 2(a)) is inferred from the MIDI
score, where τ is the time in frames referenced to the score
(MIDI time) and n are the notes in MIDI scale. In Fig-
ure 2(a) the MIDI score involves just one instrument (a
piano) but more instruments can be defined in a score. For
those cases the n index refers to each note of the different
instruments. Consequently, the number of total notes for
a composition, N , is obtained as the sum of the number
of different notes per instrument. The score can be inter-
preted as a consecutive sequence of M states. Each state
m is defined by its combination of concurrent notes in the
score (for all instruments). Also, the score informs about
the time changes from one state to the next state. In fact,
a score follower must determine the time (referenced to
the input signal) of all transitions between states. There
are only K unique combination of notes in a score where
K ≤M because some states represent the same combina-
tion of notes.

From the ground-truth transcription matrix GT(n, τ),
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we obtain the following decomposition of binary matrixes

GT(n, τ) = Q(n, k)R(k, τ) (3)

where Q(n, k) is the notes-to-combination matrix, k the
index of each unique combination of notes and R(k, τ)
represents the activation of each combination in MIDI
time. In Figure 2(b), the note-to-combination matrix
Q(n, k) is represented. This matrix contains the notes
belonging to each combination but no information about
MIDI time. Conversely, R(k, τ) matrix retains the MIDI
time activation per combination but no information about
the notes active per combination, as can be seen in Figure
2(d).

In order to obtain the information for states required
to perform the alignment, the notes-to-combination matrix
Q(n, k) is further decomposed as

Q(n, k) = S(n,m)H(m, k) (4)

where S(n,m) is the notes-to-state matrix, m the index
for the states, M the number of states and H(m, k) rep-
resents the unique combination k of notes active at each
state m. In Figure 2(c), the notes-to-state matrix S(n,m)
is represented, this matrix contains the notes belonging to
each state, while H(m, k) matrix informs about the com-
binations active at each state, as can be seen in Figure 2(e).

The matrixes here defined will be used in the next stages
to perform the alignment and are computed from the MIDI
score.

3.1.2 Spectral Patterns Learning

When a signal frame is given to a score follower, the first
step should be the computation of a similarity measure be-
tween the current frame and the different combinations of
notes defined by the score. Our approach is to compute a
distance (or divergence) between the frequency transform
of the input and just one spectral pattern per combination
of notes. A spectral pattern is here defined as a fixed spec-
trum which is learned from a signal with certain charac-
teristics. The use of only one spectral pattern per com-
bination allows us to compute the divergence with a low
complexity signal decomposition method. This means that
our method must learn in advance the spectral pattern as-
sociated to each unique combination of notes for the score.
To this end, a state-of-the-art supervised method based
on Non-Negative Matrix Factorizacion (NMF) with Beta-
divergence and Multiplicative Update (MU) rules [15] is
used, but in this work, we propose to apply it on synthetic
signal generated from the MIDI score 1 instead of the real
audio performance.

First of all, let us define the signal model as

Y(f, τ) ≈ Ŷ(f, τ) = B(f, k)G(k, τ) (5)

where Y(f, τ) is the magnitude spectrogram of the
synthetic signal, Ŷ(f, τ) is the estimated spectrogram,
G(k, τ) matrix represents the gain of the spectral pattern

1 MIDI synthetic signals are generated using Timidity++ with the Flu-
idR3 GM soundfont on Mac OS

for combination k at frame τ , and B(f, k) matrix, for
k = 1, ...,K, represents the spectral patterns for all the
combinations of notes defined in the score.

When the parameters are restricted to be non-negative,
as it is the case of magnitude spectra, a common way to
compute the factorization is to minimize the reconstruction
error between the observed spectrogram and the modeled
one.

The most popular cost functions are the Euclidean
(EUC) distance, the generalized Kullback-Leibler (KL)
and the Itakura-Saito (IS) divergences.

Besides, the Beta-divergence (see eq. 6) is another com-
monly used cost function that includes in its definition the
three previously mentioned EUC (β = 2), KL (β = 1) and
IS (β = 0) cost functions.

Dβ(x|x̂) =





x log x
x̂
− x+ x̂ β = 1

x
x̂
+ log x

x̂
− 1 β = 0

1
β(β−1)

(
xβ + (β − 1)x̂β − βxx̂β−1

)
otherwise,

(6)

In order to obtain the model parameters that minimize
the cost function, Lee et al. [18] proposes an iterative algo-
rithm based on MU rules. Under these rules, Dβ(Y(f, τ)|
Ŷ(f, τ)) is shown to be non-increasing at each iteration
while ensuring non-negativity of the bases and the gains.
Details are omitted to keep the presentation compact, for
further information please read [18, 19]. For the model of
eq. (5), multiplicative updates which minimize the Beta-
divergence are defined as

B(f, k)← B(f, k)�

(
Y(f, τ)� Ŷβ−2(f, τ)

)
GT (τ, k)

(
Ŷβ−1(f, τ)

)
GT (τ, k)

(7)

G(k, τ)← G(k, τ)�
B(f, k)

(
Y(f, τ)� Ŷβ−2(f, τ)

)

B(f, k)
(
Ŷβ−1(f, τ)

) (8)

where operator � indicates Hadamard product (or
element-wise multiplication), division and power are also
element-wise operators and (·)T denotes matrix transposi-
tion.

Finally, the method to learn the spectral patterns for
each state is described in Algorithm 1.

Algorithm 1 Method for learning spectral patterns combina-
tions

1 Initialize G(k, τ) as the combinations activation matrix
R(k, τ) and B(f, k) with random positive values.

2 Update the bases using eq. (7).
3 Update the gains using eq. (8).
4 Normalize each spectral pattern of B(f, k) to the unit β-

norm.
5 Repeat step 2 until the algorithm converges (or maximum

number of iterations is reached).

As explained in Section 3.1.1, R(k, τ) is a binary com-
bination/time matrix that represents the activation of com-
bination k at frame τ of the training data. Therefore, at
each frame, the active combination k is set to one and the
rest are zero. Gains initialized to zero will remain zero,
and therefore the frame becomes represented with the cor-
rect combination.
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Figure 2: Music signal from the test database in Section 4 (“01-AchGottundHerr”). (a) MIDI Ground-Truth Transcription GT(n, τ).
(b) Notes-to-combination matrix Q(n, k). (c) Notes-to-state matrix S(n,m). (d) Combinations activation matrix R(k, τ). (e) States-
to-combination matrix H(m, k).

3.2 Alignment Stage

In this stage, the alignment between the score and the au-
dio performance is accomplished in realtime using the in-
formation from the preprocessing stage.

3.2.1 Observation Model

As explained in Section 3.1.2, the spectral patterns B(f, k)
for theK different combinations of notes are learned in ad-
vance using a MIDI synthesizer and kept fixed. Each spec-
tral pattern models the spectrum of a unique combination.

Now, the aim is to compute the gain matrix G(k, t) and
the cost matrix D(τ, t) that measures the suitability of each
combination of notes belonging to each MIDI time τ to
be active at each frame t (referenced to the signal input)
by analyzing the similarity between the spectral patterns
B(f, k) and the input signal spectrogram 2 . From the cost
matrix D(τ, t), a classical DTW approach can be applied
to compute the alignment path.

In this work, we propose to perform the factorization us-
ing the realtime single-pitch constrained method proposed
in [15]. Although this method was designed to address mu-
sic transcription of monophonic signals, it can be adapted
for audio to score alignment of polyphonic signals because
only one combination will be active at a time. In this tran-
scription method, the optimum combination kopt is cho-
sen to minimize the Beta-divergence function at frame t
under the assumption that only one gain is non-zero at
each frame. Taking the combinations as the index of gains
G(k, t), this assumption is fair because only a unique com-
bination k of notes is active at each time (at least when
producing the audio signal).

Thus, the signal model with the single-combination
constraint for the signal input vector at time t, xt(f), is
defined as follows.

xt(f) ≈ x̂kopt,t(f) = gkopt,tbkopt(f) (9)

2 Note that we are using X and t instead of Y and τ to represent the
signal magnitude spectrogram and the time frames to distinguish between
real world and synthetic signals.

where x̂kopt,t(f) is the modeled signal for the optimum
combination kopt at frame t.

kopt(t) = arg min
k=1,...,K

Dβ (xt(f)|gk,tbk(f)) (10)

The signal model in eq. (9) assumes that when combi-
nation k is active all other combinations are inactive and,
therefore, the gain gk,t is just a scalar and represents the
gain of the k combination. The model of eq. (10) al-
lows the gains to be directly computed from the input data
X(f, t) and the trained spectral patterns B(f, k) without
the need of an iterative algorithm and thus, reducing the
computational requirements. To obtain the optimum com-
bination at each frame, we must first compute the diver-
gence obtained by the projection of each combination at
each frame and then select the combination that achieves
the minimum divergence as the optimum combination at
each frame.

In the case of Beta-divergence, the cost function for
combination k and frame t can be formulated as

Dβ(xt(f)|gk,tbk(f)) =
∑

f

1

β(β − 1)
(xβt (f) + (β − 1)(gk,tbk(f))

β −

βxt(f)(gk,tbk(f))
β−1) (11)

The value of the gain for combination k and frame t
is then computed by minimizing eq. (11). Conveniently,
this minimization has a unique non-zero solution due to
the scalar nature of the gain for combination k and frame t
(see more details in [15]).

gk,t =

∑
f

xt(f)bk(f)
(β−1)

∑
f

bk(f)β
(12)

Finally, the divergence matrix for each combination at
each frame is defined as:

Φ(k, t) = Dβ(xt(f)|gk,tbk(f)) (13)

where β can take values in the range ∈ [0, 2].
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As can be inferred, the divergence matrix Φ(k, t) pro-
vides us information about the similitude of each combina-
tion k spectral pattern with the real signal spectrum at each
frame t. Using this information, we can directly compute
the cost matrix between the MIDI time τ and the time of
the input signal t as

D(τ, t) = RT (τ, k)Φ(k, t) (14)

where R(k, τ) is the combinations activation matrix de-
fined in Section 3.1.1 and superscript “T” stands for matrix
transposition. The process is detailed in Algorithm 2.

Algorithm 2 Divergence matrix computation method

1 Initialize B(f, k) with the values learned in Section 3.1.2.
2 for t=1 to T do
3 for k=1 to K do
4 Compute the gains gk,t using eq. (12).
5 Compute the current value the divergence matrix

Φ(k, t) using eq. (13).
6 end for
7 end for
8 Compute the cost matrix D(τ, t) between MIDI time and in-

put signal time using (14).

To resume, we propose the use the divergence matrix
D(τ, t) as the input of the DTW algorithm in order to per-
form the alignment.

3.2.2 Path Computation

We here propose to use a DTW based method to per-
form the alignment using the cost matrix D(τ, t) obtained
in eq. (14). This cost matrix is computed from the in-
put signal X(f, t) and the “synthetic” spectral patterns per
combination B(f, k) explained in Section 3.1.2. The term
“synthetic” comes from the fact that the spectral patterns
B(f, k) are computed from the score using a MIDI syn-
thesizer.

a) Offline approach: This approach represents the clas-
sical offline alignment using DTW. To this end, we have
used the code from [23]. The forward step is computed as
in the classical DTW (see eq. (2)). In this experiment, ci
and cj range from 1 to 4 in order to allow 4 times faster
speed of interpretation. Finally the optimum path is ob-
tained by tracing the recursion backwards from C(I, J) as
in the original formulation of DTW (see Section 2).

b) Online approach: The online algorithm differs from
an standard (i.e. offline) DTW algorithm in some points.
Firstly, the signal is partially unknown (or the future of
the signal is not known when making the alignment de-
cisions), so the global path constraints cannot be directly
implemented, in other words, the recursion backwards can
not be traced from the last frame T of the signal. Secondly,
if some latency (i.e. delay in the decision) is permitted,
the recursion backwards can be traced in equally spaced
frames of the input signal making the latency equal to the
difference in time of the frame when the backtracking is
done and the input signal frame. Finally, in order to run

in realtime, the complete algorithm should not increase the
complexity with the length of the signal.

In this work, we used the online scheme proposed by
Dixon in [13]. In fact, Dixon’s algorithm calculates an
“adaptive diagonal” through the cost matrix by seeking the
best path considering a searching band with a fixed width.
Here, we propose an online algorithm with a fixed latency
of just one frame. In order to obtain this low latency, no
backtracking is allowed, taking the decision directly from
the forward information at each frame t. As a consequence
of the low latency of online algorithms (apart from the
complexity reduction), the obtained results are degraded
from their offline counterparts. In fact, for those situations
in which a higher latency can be supported, delaying the
decision in time using a limited traceback can improve the
obtained results of the online algorithms.

4. EXPERIMENTAL SETUP

a) Time-Frequency representation: In this paper we use a
low-level spectral representation of the audio data which
is generated from a windowed FFT of the signal. A Han-
ning window with the size of 128 ms, and a hop size of
10 ms is used (for both synthetic and real-world signals).
Here, we use the resolution of a single semitone as in [21].
In particular, we implement the time-frequency represen-
tation by integrating the STFT bins corresponding to the
same semitone.

b) Evaluation metrics: We have used the same evaluation
metrics as in the MIREX Score Following task. Detailed
information can be found in [22]. For each piece, aligned
rate (AR) or precision is defined as the proportion of cor-
rectly aligned notes in the score and ranges from 0 to 1. A
note is said to be correctly aligned if its onset does not de-
viate more than a threshold (a.k.a tolerance window) from
the reference alignment. Missed notes are events that are
present in the reference but not reported. Recognized notes
whose onsets are far from the given threshold are consid-
ered misaligned notes.

c) Dataset: The dataset used to evaluate our method is
comprised of excerpts from 10 human played J.S. Bach
four-part chorales. The audio files are sampled from real
music performances recorded at 44.1 kHz that are 30 sec-
onds in length per file. Each piece is performed by a quartet
of instruments: violin, clarinet, tenor saxophone and bas-
soon. Each musician’s part was recorded in isolation. In-
dividual lines were then mixed to create 10 performances
with four-part polyphony. Ground-truth alignment is pro-
vided for both, individual sources and mixture, the latter
assuming constant tempo between annotated beats and a
perfect synchronization between the musicians. More in-
formation about this dataset can be found in [6].

5. RESULTS

To analyze the performance of the proposed (offline and
online) methods in Section 3. Evaluation has been per-
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formed using the metrics detailed in Section 4. The pro-
posed systems are compared with four reference methods
that are detailed below: a) Ellis’ Offline DTW [23] [24], b)
Dixon’s Online DTW [13], c) Soundprism [6] and d) Ora-
cle. Note that the latter is not a score following system but
the provided aligned MIDI score assuming constant tempo
between annotated beats and perfect synchronization be-
tween musicians as explained in Section 4. The evalua-
tion of this oracle information is very interesting to ana-
lyze the deviation of the different instrument performances
between themselves and also to measure the best perfor-
mance that can be obtained by score followers that are only
capable of aligning on a global level (i.e., cannot detect the
onset positions of individual notes). Note that there are
several works that attempt to refine the alignment by syn-
chronizing the onsets/offsets individually for each note in
a post-processing stage [25–27].

In a first experiment, we have evaluated the precision of
the analyzed methods as a function of the onset deviation
threshold. To this end, the threshold value was varied from
50 to 2000 ms in 50 ms steps. Obtained results are plotted
in Figure 3. As can be seen, the Oracle method, which can
be considered as the upper bound for score followers per-
forming global alignment, requires around 200 ms thresh-
old to obtain a perfect alignment. This value comes from
the difference between the ground-truth alignment for each
instrument played in isolation and the global ground-truth
of the whole mixture, obtained by interpolating the anno-
tated beat times of each audio.

In general, our offline approach obtain the best results
in terms of precision. In fact, our offline approach clearly
outperforms Ellis’ offline approach, mainly due to the fac-
torization based feature extraction stage. Regarding the on-
line methods, our online approach and Soundprism obtain
similar results on average than the Ellis’ offline approach
and clearly outperform Dixon’s online approach. Sound-
prism seems to perform better when using lower threshold
values while our online approach allows convergence to
the optimum alignment as the threshold is increased.

In a second experiment (see Table 1), we evaluate the
performance of the proposed methods as a function of the
polyphony. A fixed threshold (a.k.a tolerance window) of
200ms is used because, as illustrated in Figure 3, this value
represents the difference between isolated instruments and

Poly Precision Miss Missalign Av offset Av |offset| Std Offset
2 94,59 0,00 5,41 -11,27 33,43 44,38

Prop. Offline 3 94,75 0,00 5,25 -11,78 34,25 44,89
4 94,50 0,00 5,50 -11,09 35,16 46,51
2 90,57 0,00 9,42 66,90 71,28 47,30

Ellis Offline 3 90,39 0,00 9,60 65,67 71,53 50,24
4 89,80 0,00 10,19 66,97 72,62 49,93
2 88,44 0,00 11,56 -41,18 57,78 56,40

Prop. Online 3 90,13 0,00 9,86 -42,96 60,56 57,65
4 90,70 0,00 9,30 -44,15 62,97 58,58
2 81,69 0,00 18,31 53,93 70,51 67,02

Dixon Online 3 83,17 0,00 16,83 53,88 70,65 67,02
4 83,94 0,00 16,06 51,29 71,64 70,26
2 83,01 0,00 16,99 -25,90 48,08 55,36

Soundprism 3 88,81 0,00 11,19 -21,23 43,73 51,54
4 93,50 0,00 6,50 -22,05 42,91 49,13
2 100,00 0,00 0,00 6,15 32,79 42,47

Oracle 3 100,00 0,00 0,00 6,09 32,67 43,08
4 100,00 0,00 0,00 6,07 32,58 43,38

Table 1: Audio-to-score results as a function of polyphony in
terms of piecewise precision (%). Offset values in ms. The bold
percentage shows the best result for each measure.

mixture ground-truth alignment.
As explained in the previous section, offline methods

perform better in general than the online ones. The pro-
posed offline method obtains the best results among the
compared methods and has demonstrated to be robust
against polyphony in the analyzed dataset (polyphony 2 to
4). Regarding the online methods, our online approach and
Soundprism obtain similar results on average and clearly
outperforms Dixon’s online approach, although the former
seems to be more robust against the polyphony.

In relation to the offset, the oracle solution exhibits the
minimum possible std offset due to the differences in start-
ing times for the same states between musicians. More-
over, our offline approach and the online Soundprism have
the lower average offset values which means that both
methods are more responsive and thus provide better re-
sults when dealing with lower thresholds.

6. CONCLUSIONS

In this paper we present a score following framework based
on spectral factorization and DTW. Spectral factorization
is used to learn spectral patterns for each combination of
concurrent notes in the MIDI score. Then, a cost matrix
is computed using the divergence matrix obtained using a
non-iterative signal decomposition method previously de-
veloped by the authors in [15] that has been tuned to per-
form the projection of each combination of notes. Finally,
a DTW strategy is performed in an offline and online man-
ner. The proposed offline and online approaches have been
tested using a dataset with different polyphony levels (from
2 to 4) and compared them with other reference methods.
On average, our approaches (offline and online) obtain the
best results in terms of precision within the compared of-
fline and online approaches, respectively, and has demon-
strated to be robust agains the analyzed polyphony.

In the future we plan to track the tempo changes in or-
der to enforce a certain degree of continuity in the online
decisions. Besides, we will extend the evaluation of our
method using a lager dataset of a varied range of instru-
ments, dynamics and different styles.
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ABSTRACT

In this paper, a framework for automatic mixing of early
jazz recordings is presented. In particular, we propose
the use of sound source separation techniques as a pre-
processing step of the mixing process. In addition to an ini-
tial solo and accompaniment separation step, the proposed
mixing framework is composed of six processing blocks:
harmonic-percussive separation (HPS), cross-adaptive mul-
ti-track scaling (CAMTS), cross-adaptive equalizer
(CAEQ), cross-adaptive dynamic spectral panning
(CADSP), automatic excitation (AE), and time-frequency
selective panning (TFSP). The effects of the different pro-
cessing steps in the final quality of the mix are evaluated
through a listening test procedure. The results show that
the desired quality improvements in terms of sound bal-
ance, transparency, stereo impression, timbre, and overall
impression can be achieved with the proposed framework.

1. INTRODUCTION

When early jazz recordings are analyzed from a modern
audio engineering perspective, clear stylistic differences
can be identified with respect to modern recording tech-
niques. These characteristics mainly evidence the techno-
logical and stylistic differences between the two eras. For
example, solo instruments such as the saxophone or the
trumpet often completely dominate the audio mix in early
jazz recordings. At the same time, the rhythm section, i.e.,
double bass, piano, drums, and percussion, often falls in
a secondary place, recorded or mixed with much lower in-
tensity and often perceived as unclear and undifferentiated.
Additionally, from today’s perspective, early jazz record-
ings often present an unusual stereo image. Instrument
groups are sometimes assigned to extreme stereo positions
which can cause the solo instrument to be panned to the
left and the accompaniment band panned to the right. As a
consequence, the energy distribution over the stereo width
is unbalanced and is often perceived today as irritating and
disturbing, especially when listened through headphones.

c© Daniel Matz, Estefanía Cano, Jakob Abeßer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Daniel Matz, Estefanía Cano, Jakob
Abeßer. “New sonorities for early jazz recordings using sound source
separation and automatic mixing tools”, 16th International Society for
Music Information Retrieval Conference, 2015.

Several initiatives have arisen that attempt to give such
early recordings a more modern sonority. Remastering and
Automatic Mixing (AM) techniques offer various meth-
ods for a sonic redesign of such recordings. However,
given that the original individual stems of the instruments
in the recordings are usually not available, these techniques
can only achieve minor modifications to the sound charac-
teristics of mono and stereo mixtures. In-depth remixing
usually requires the original multi-track recordings to be
available. For this purpose, sound source separation meth-
ods developed in the Music Information Retrieval (MIR)
community can be useful tools to retrieve individual in-
struments from a given mix.

2. GOALS

The main goal of this study is to identify suitable signal
processing methods to modify the above-mentioned char-
acteristics in a selection of early jazz recordings. These
methods are combined in a fully automatic mixing frame-
work. In particular, we focus on modifying the audio mix
in terms of transparency, stereo impression, frequency re-
sponse, and acoustic balance in order to improve the over-
all perception of sound and the quality of the mix with re-
spect to the original recording.

Our main approach for remixing is to modify the char-
acteristic of the backing track to make it more present in
the mix. We also aim at improving the acoustical and spa-
tial balance of th audio mix. The solo signal is balanced
with respect to its loudness and spectral energy to mini-
mize spectral masking as well as to improve its position in
the stereo image.

3. RELATED WORK

In the field of automatic mixing, several approaches have
been presented in the literature. In [1], a method is pro-
posed to automatically adjust gain and equalizer param-
eters for multi-track recordings using a least-squares op-
timization. In [12] the idea of modifying the magnitude
spectrogram of a signal towards a target spectrogram called
target mixing, is presented. Other approaches for auto-
matic mixing of multi-track recordings have incorporated
machine learning algorithms to perform the mixing pro-
cess [16, 17].
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In [14] and [19], several cross-adaptive signal process-
ing methods for automatic mixing such as source enhancer,
panner, fader, equalizer, and polarity and time offset cor-
rection are proposed. These modules can be combined
into a full mixing application. In [4], the authors propose
a knowledge-engineered autonomous mixing system and
propose to include expert knowledge within an automatic
mixing system. The included audio effects are automat-
ically controlled based on extracted low-level and high-
level features such as musical genre, instrumentation, and
the type of sound sources. The authors evaluated the sys-
tem using short four bar audio signals with vocals, bass,
guitar, keyboard, and other instruments.

Harmonic-percussive source separation was used as pre-
processing step for manual remixing in [6], in particular to
adjust the sound source levels of the signals. To the au-
thors’ best knowledge, a framework for automatic remix-
ing that suits the requirements discussed in section 2 has
not been proposed so far.

4. PROPOSED METHOD

For our mixing framework, we propose the use of sound
source separation techniques as a pre-processing step of
the mixing process. For this purpose, we first isolate the
solo instrument from the audio mix by applying an algo-
rithm for pitch-informed solo and accompaniment separa-
tion [2]. The two separated signals, i.e., the solo and the
residual/backing signal, are the starting point for the au-
tomatic remixing process. Additionally, based on the re-
quirements discussed in section 2, our proposed framework
comprises six subcomponents:

1. Harmonic-percussive separation (HPS)

2. Cross-adaptive multi-track scaling (CAMTS)

3. Cross-adaptive equalization (CAEQ)

4. Cross-adaptive dynamic spectral panning (CADSP)

5. Automatic excitation (AE)

6. Time-frequency selective panning (TFSP)

Figure 1 presents a block diagram of the proposed frame-
work. There are three main signal pathways A, B, and C. If
the CADSP is activated, pathway A is chosen. If CADSP
is not activated, pathway B and C are chosen depending
on whether the harmonic-percussive separation (HPS) is
used. All signal paths output a stereo mix. In the following
sections, the individual subcomponents are first described,
followed by a description of the three proposed signal path-
ways.

4.1 Solo and Backing track Separation

The algorithm as proposed in [2] automatically extracts
pitch sequences of the solo instrument and uses them as
prior information in the separation scheme. In order to
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Figure 1: Signal flow-chart of the developed automatic
remixing framework

obtain more accurate spectral estimates of the solo instru-
ment, the algorithm creates tone objects from the pitch se-
quences, and performs separation on a tone-by-tone basis.
Tone segmentation allows more accurate modeling of the
temporal evolution of the spectral parameters of the solo
instrument. The algorithm performs an iterative search
in the magnitude spectrogram in order to find the exact
frequency locations of the different partials of the tone.
A smoothness constraint is enforced on the temporal en-
velopes of each partial. In order to reduce interference
from other sources caused by overlapping of spectral com-
ponents in the time-frequency representation, a common
amplitude modulation is required for the temporal enve-
lopes of the partials. Additionally, a post-processing stage
based on median filtering is used to reduce the interference
from percussive instruments in the solo estimation.

4.2 Harmonic-percussive Separation (HPS)

We use the algorithm for harmonic-percussive separation
proposed in [6]. The algorithm is based on median filter-
ing of the magnitude spectrogram to split the original au-
dio signal into its horizontal (harmonic sources) and verti-
cal elements (percussive sources). In an automatic mixing
context, these components can be understood as separate
subgroups which can be processed individually and finally
remixed.
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4.3 Cross-adaptive Multi-track Scaling (CAMTS)

The method proposed in [19] which is commonly referred
to as automatic fader control, is used for automatic scaling
of the sound sources. The algorithm is used to automati-
cally modify the amplification of separate sound sources.
A psychoacoustic model based on the EBU R-128 stan-
dard [9] is used to compute the loudness of each track us-
ing a histogram-based approach. All tracks are individu-
ally amplified to be perceived as equally loud.

4.4 Cross-adaptive Equalizer (CAEQ)

We use the cross-adaptive equalizing algorithm proposed
in [19] to obtain a spectrally balanced mixture. The main
approach is to modify the spectral envelopes of the au-
dio signals and to minimize the spectral masking between
the solo signal and the backing track. The algorithm is
a multi-band extensions of the CAMTS algorithm as dis-
cussed in section 4.3. The spectral characteristics of the
separated signals are modified by enhancing or attenuat-
ing pre-defined frequency bands depending on the signal’s
perceived loudness with respect to the overall loudness. In
contrast to the CAMTS algorithm, the loudness model pro-
posed in [19] is used since it outperformed the loudness
model based on EBU R-128 during informal testing. In
particular, the mix results based on EBU-R 128 showed too
strong of an emphasis on treble frequencies while lacking
energy in the lower frequency range. We use a 10-band oc-
tave equalizer with second-order biquad IIR filters follow-
ing [19] and frequency bands uniformly distributed over
the audible frequency range. Standard frequency values
based on [8] are used to adjust the center frequencies of the
peak filter as well as the cutoff frequencies of the shelving
filters.

4.5 Cross-adaptive Dynamic Spectral Panning
(CADSP)

Dynamic spectral panning is a technique that allows the
creation of a stereophonic impression in a given mono-
phonic multi-track recording. We use the algorithm pro-
posed in [15] to create a spatialization effect given multi-
track signals. The method dynamically assigns
time-frequency bins of the original tracks towards azimuth
positions. The assignment reduces masking due to shared
azimuth positions between multiple sound sources. This
improves the overall transparency of an audio mix. In the
cases where the original audio mix is a stereo track, it is
first down-mixed to mono and then up-mixed to a new
stereo image using the CADSP algorithm.

4.6 Automatic Exciter (AE)

The exciting algorithm improves the assertiveness of the
backing track. The digital signal processing methods are
implemented following the APHEX Aural Exciter descri-
bed in [18]. The audibility of the mixed signal is enhanced
by adding harmonic distortions in the upper frequency range.
These distortions create additional harmonic signal com-

ponents which improve the presence, clarity, and bright-
ness of the audio signal.

The automation of the exciting step is implemented fol-
lowing a target mixing approach. Based on [5], the mix-
ing parameters are iteratively adjusted to a target energy
ratio. The target energy ratio is computed from the rela-
tionship between the energy of the high-pass filtered signal
and the energy of the target signal. In the side chain, an
asymmetric soft clipping characteristic, harmonic genera-
tor block, with adaptive threshold was used. This allows a
level-independent distortion as well as the preservation of
the signal dynamics [5].

4.7 Time-frequency selective Panning (TFSP)

Time-frequency selective panning improves the stereo im-
age as well as the overall spatial impression of an audio
mix. In our framework, the method for time-frequency se-
lective panning presented in [3] was used. The azimuth po-
sitions of the sound sources are modified using a non-linear
warping function. The stereo image is widened while the
initial arrangement of the sound sources, as well as the
sound quality of the original source is maintained. Within
the proposed automatic remixing framework, the TFSP al-
gorithm can be interpreted as an extension of the CADPS
algorithm. The panning algorithm is only applied to the
residual signal (see section 4.8.1). We set the aperture pa-
rameter ρ to a fixed value based on initial informal testing.

4.8 Processing Pathways

4.8.1 Signal path A (Main Path)

The main processing path includes all system components.
Stereo files must be down-mixed to mono first due to con-
straints of the cross-adaptive dynamic spectral panning
(CADSP) algorithm as detailed in section 4.5. All sound
sources, which are initially distributed in the stereo pano-
rama, are first centered to the mono channel and later re-
distributed over the stereo panorama again based on the
harmonic-percussive sound separation [6]. This up-mixing
step that can involve a modification of the stereo arrange-
ment is only possible in this signal path.

The cross-adaptive equalization (CAEQ) and multi-track
scaling (CAMTS) are the first processing steps in all three
pathways. After applying the dynamic spectral panning
(CADSP) to the percussive and harmonic signal compo-
nents, all stereophonic signals are summed up to a backing
track with a more homogeneous distribution of the sound
sources. The backing track can now be processed with the
automatic excitation (AE) and the time-frequency selective
panning (TFSP) algorithms. The solo signal is split into
stereo channels in the Stereo Split stage and scaled such
that the overall gain remains constant. In the final mix-
down step, the backing track is mixed with the solo track
by adjusting the individual amplification factors as given
by the CAMTS stage. If the cross-adaptive equalization
(CAEQ) was performed, the spectral envelope of the back-
ing track is perceivably modified due to the minimization
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of the spectral masking. The stereo sum signal is finally
normalized.

4.8.2 Signal path B

Signal path B resembles signal path A, however, the equal-
ization (CAEQ) and scaling (CAMTS) steps offer more
ways to modify parameters due to the prior harmonic per-
cussive separation stage.

4.8.3 Signal path C

In the signal path C, no harmonic-percussive separation is
performed. The equalization (CAEQ) and scaling
(CAMTS) are applied to both the backing and the solo
track. However, the automatic excitation is only applied
to the backing track since we particularly want to enhance
the presence, clarity, and brightness of the backing track.
As shown in figure 1, the time-frequency selective panning
(TFSP) can only be applied to the backing track if it is a
stereo signal. For monaural signals, the signal is split to
the stereo channels (Stereo Split) and scaled such that the
overall gain remains constant. Similar to signal path B, the
signals are finally mixed down and normalized.

5. EVALUATION

5.1 Experimental Design

To evaluate the proposed framework, a listening test pro-
cedure was conducted following the guidelines of the Multi
Stimulus Test with Hidden Reference and Anchor
(MUSHRA) described in the ITU-R BS.1534-2 recommen-
dation [11], and modifying them to fit the characteristics of
this study. The main difference of our test with respect to
the original MUSHRA is that a reference signal, which in
our case would be an ideal mix of the original recording,
is not available. Moreover, the notion of an ideal mix is
ill-posed in the automatic remixing context.

The listening test was conducted in a quiet room and
all signals were played using open headphones (AKG K
701). A total of 19 participants conducted the listening
test. The participants included audio signal processing ex-
perts, professional audio engineers, music students (jazz,
classical music), musicologists, as well as amateur musi-
cians and regular music consumers. The average age of
the participants was 30.7 years old. Further demographic
information such as gender, hearing impairments, listen-
ing test experience, and educational background were also
collected. A summary of the demographic information is
presented in table 1.

The listening test was divided into five evaluation tasks,
each focusing on a different subjective quality parameter.
The following parameters were selected based on the ITU-
R BS.1248-1 recommendation [10], and were adopted to
our requirements: (QP1) Sound Balance, (QP2) Transpa-
rency, (QP3) Stereo/Spatial Impression, (QP4) Timbre, and
(QP5) Overall Impression. In each evaluation task, a train-
ing phase was first conducted to allow the participants to
familiarize themselves with the test material and to adjust
playback levels to a comfortable one.

Gender
M 16
F 3

Hearing impairment?
Yes 0
No 19

Listening test experience?
Yes 9
No 10

Expert in audio engineering?
Yes 11
No 8

Educational background in music?
Yes 15
No 4

Table 1: Demographics of the listening test participants

Following the training phase, an evaluation phase was
conducted for each task. Five audio tracks as described in
Table 2 with ten mixtures each were rated by the partic-
ipants. The five tracks used in this study are part of the
Jazzomat Database 1 . Among the presented mixtures, the
original signal, eight mixes created with different config-
urations of the proposed framework, and an anchor signal
(rhythm section reduced by 6 dB, the sum signal low-pass
filtered at 3.5 kHz) were used. Table 3 gives an overview
of all the remix configurations.

Title Soloist (Instrument) Style Year
Body and Soul Chu Berry (ts) Swing 1938
Tenor Madness Sonny Rollins (ts) Hardbop 1956
Crazy Rhythm J.J. Johnson (tb) Bebop 1957

Bye Bye Blackbird Ben Webster (ts) Swing 1959
Adam’s Apple Wayne Shorter (ts) Postbop 1966

Table 2: Dataset description

Mix HPS CAEQ CAMTS CADSP AE TFSP
1 off on off off on off
2 off off on off on off
3 off on on off on off
4 on on off off on off
5 on off on off on off
6 on off off on on on
7 on on on on on on
8 on on on off on off

(mono)

Table 3: Configurations of the eight remixes used in the
listening test

The automatic exciting (AE) component is active in all
the mixes. The panning (TFSP) algorithm is only acti-
vated in conjunction with the cross-adaptive dynamic spec-
tral panning (CADSP). This way, a further stereo expan-
sion of critical stereo recordings with an unbalanced stereo
panorama is avoided. Mixture 8 was added to investigate
the influence of the stereo effects (CADSP and TFSP) onto
the input signals in the pre-processing step of pathway B
that are mixed monophonic.

1 A description of the Jazzomat Database is available at: http://
jazzomat.hfm-weimar.de/dbformat/dbcontent.html
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Figure 2: Listening test results for the five evaluated parameters.

5.2 Results

5.2.1 General

Figure 2 shows the results of the listening test for the five
acoustic quality parameters. The figure legend summarizes
all the system configurations that were evaluated. It is ev-
ident from the plot that the anchor stimulus was always
correctly identified. Results also suggest that the use of
harmonic-percussive separation does not bring perceptual
quality gains for HPS+CAEQ (mix 4) when compared to
the CAEQ (mix 3). Unexpectedly, results even got worse
for the parameters timbre and overall impressions. Simi-
larly, the combined settings in HPS+CAMTS (mix 5) do
not show an improvement in the ratings when compared to
CAMTS (mix 2).

To facilitate analysis of results, table 4 lists the percent-
age improvement obtained for each of the five quality pa-
rameters (QP), subject to the presence or absence of the
individual framework components compared to the origi-
nal signal. Mixes 4 and 5, which include the harmonic-
percussive separation, were not listed due to the reasons
previously described. The five mixtures listed in the table
are further analyzed in the following sections.

QP1 QP2 QP3 QP4 QP5
Mix 1 (CAEQ) 18 % 17 % 4 % - -
Mix 2 (CAMTS) 15 % 19 % 10 % 16 % 9 %
Mix 3 (CAEQ+CAMTS) 10 % 12 % 6 % - 4 %
Mix 6 (HPS+CADSP+TFSP) 9 % 16 % 18 % - 8 %
Mix 7 (All components) 29 % 24 % 43 % 3 % 6 %

Table 4: Percentage improvement of the remixed signal
compared to the original audio recording subject to the
presence (or absence) of the individual framework com-
ponents shown for each of the five perceptual quality pa-
rameters.

5.2.2 Mix 1 (CAEQ)

Mix 1 does not include a prior separation of the residual
component and outperforms the original mix for most of
the quality parameters. The highest improvements were
18% for sound balance and 17% for transparency. How-
ever, for timbre and overall impressions, no improvement
was observed.

5.2.3 Mix 2 (CAMTS)

Despite the absence of the harmonic percussive separation
step, mix 2 showed improvements for transparency (19 %),
sound balance (15%), and overall impression (9 %). The
reason for the improvement in timbre by 16% is not en-
tirely clear in this case; however, a possible explanation
is that the increased loudness of the rhythm section led to
more balanced dynamic levels and a clearer perception of
the instrument and overall timbres.

5.2.4 Mix 3 (CAEQ+CAMTS)

The combination of the CAEQ and CAMTS components
showed inferior results compared to the exclusive appli-
cation of both components. However, the ratings are still
slightly higher than the ratings of the original audio file.

5.2.5 Mix 6 and Mix 7

Both mixtures 6 and 7 outperformed the original audio file.
The highest ratings were achieved with mixture 7 which
was extracted with the full processing chain. In particular,
the improvements compared to the original audio file were
29 % for sound balance, 24 % for transparency, as well as
43 % for stereo and spatial impression. The small improve-
ments with respect to the overall impression are likely due
to the individual aesthetic preferences of the listening test
participants.

Additionally, to analyze the influence of the stereo ef-
fects to the input signals of pathway B (which are initially
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downmixed to mono), Table 5 presents the percentage im-
provement obtained with mix 7 (all components active) in
comparison to mix 8 (mono).

QP 1 QP 2 QP 3 QP 4 QP 5
39 % 16 % 33 % 12 % 18 %

Table 5: Mean ratings of the five quality parameters for
the additional usage of the stereo effects (CADSP+TFSP)
in mix 7 compared with the non-processed monophonic
input signal in the same framework setting of mix 8 (HPS,
CAEQ, CAMTS, AE).

As can be observed in the table, the use of the CADSP
and TFSP modules improved the ratings for all five quality
parameters. The improvement was statistically significant
for sound balance (39 %) and stereo/spatial impression (33
%).

6. CONCLUSIONS

In this paper, we proposed a prototype implementation of
an automatic remixing framework for tonal optimization of
early jazz recordings. The main focus was on improving
the balance between the solo instrument and the rhythm
section. The framework consists of six components which
include different processing steps to modify the loudness,
frequency response, timbre, and stereophonic perception
of the separated sound sources. We compared different
configurations of the framework and evaluated the improve-
ment of the transparency of the backing track as well as
the acoustic balance, stereophonic homogeneity, and over-
all quality perception. The evaluation was performed with
a MUSHRA-like listening test based on the ratings given
by 19 participants.

The usage of automatic equalization (CAEQ) and multi-
track scaling (CAMTS) showed clear improvement in the
quality parameter ratings, whereas the combination of both
led to a smaller improvements than the independent ap-
plication of each approach. The improvement based on
harmonic-percussive separation (HPS) within the automatic
mixing framework is not easy to assess. The usage of HPS
in conjunction with CAEQ and CAMTS did not improve
the ratings. On the other hand, HPS is a basic requirement
for the application of CADSP on the backing track of mix
7, and therefore contributes to its consistent high ratings.
HPS is irrelevant for the automatic excitation (AE) step,
since it is applied to the full residual track.

Particularly with mix 7 (all components), the initially
targeted improvements in sound balance, stereo and spatial
impression, and transparency with respect to the original
audio recording were achieved.

In future work, the most relevant processing modules
must be further investigated and improved with respect to
the aforementioned quality parameters. Modules that
showed none or only minor improvements must be replaced
and alternative algorithms must be evaluated for the given
tasks. Promising algorithms seem to be a mastering equal-
izer [7] or dynamic range compression [13]. The additional

use of semantic information of music genre and instrumen-
tation seems to be another fruitful approach as discussed in
section 3.

Finally, the integration of audio restoration methods such
as denoising will likely help to remove unwanted back-
ground noise and spurious signals from the main signal to
be processed.
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ABSTRACT

This paper presents an automatic system for note tran-
scription of Irish traditional flute music containing orna-
mentation. This is a challenging problem due to the soft
nature of onsets and short durations of ornaments. The
proposed automatic transcription system is based on hid-
den Markov models, with separate models being built for
notes and for single-note ornaments. Mel-frequency cep-
stral coefficients are employed to represent the acoustic
signal. Different setups of parameters in feature extraction
and acoustic modelling are explored. Experimental evalu-
ations are performed on monophonic flute recordings from
Grey Larsen’s CD. The performance of the system is eval-
uated in terms of the transcription of notes as well as detec-
tion of onsets. It is demonstrated that the proposed system
can achieve a very good note transcription and onset de-
tection performance. Over 28% relative improvement in
terms of the F -measure is achieved for onset detection in
comparison to conventional onset detection methods based
on signal energy and fundamental frequency.

1. INTRODUCTION

Automatic transcription of music is concerned with con-
verting an acoustic signal into a symbolic representation
that provides the information on individual notes played
and possibly also other higher-level information about the
structure of music. Over the last decade, there has been a
considerable research interest in this field. Although most
of the current research is devoted to polyphonic music tran-
scription, transcription of monophonic music is still of in-
terest due to existing large amount of real-world mono-
phonic music of specific properties. This paper deals with
the transcription of notes and detection of their onsets
in monophonic flute recordings of Irish traditional music
that contains ornamentation. Ornamentation is used exten-
sively in Irish traditional music by players of all melody
instruments. Ornaments are notes of a very short duration.

c© Peter Jančovič, Münevver Köküer, Wrena Baptiste. Li-
censed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Peter Jančovič, Münevver Köküer,
Wrena Baptiste. “Automatic transcription of ornamented Irish traditional
flute music using hidden Markov models”, 16th International Society for
Music Information Retrieval Conference, 2015.

They are central to the style of the performer, adding to the
liveliness and expression of the music.

A wide range of different approaches for automatic mu-
sic transcription have been proposed. A variety of al-
gorithms for estimating the fundamental frequency (F0),
e.g., [4, 10, 16], were employed in transcription of music,
e.g., [1, 5, 10]. As the F0 estimation may suffer from mak-
ing octave errors, music transcription systems typically
employ some way of temporal filtering or post-processing.
The use of hidden Markov models (HMMs) for post-
processing was presented in several works. In [2, 15] the
sequence of pitch salience and onset strength or energy dif-
ference of adjacent signal frames were used as the input
features to HMMs. In [6], the acoustic signal was first seg-
mented by applying an onset detection algorithm and then
HMM was used to track note candidates. Bayesian mod-
eling that exploits knowledge of musical sound generation
was proposed in [3, 9] and applied for piano transcription.
Recently, several methods based on learning of a model /
classifier of notes were presented, e.g., [7, 14]. In [14], a
support vector machine classifier, trained on spectral fea-
tures, was used to clasify frame-level note instances and
the classifier output was then temporally smoothed using a
note level HMM to perform transcription of piano record-
ings. Modelling of a time-frequency representation of au-
dio as a sum of basic elements representing the spectrum
of a single note was presented in [7]. The transcription of
ornamented Irish traditional flute music was investigated
at the level of onset and ornament detection in [8, 11]. In
both works, the presented ornament detection system was
based on detecting onsets and using rules of musical or-
namentation. An energy-based onset detection algorithm
was employed in [8], while a comparison of two energy-
and F0-based onset detection algorithms was performed
in [11].

In this paper, we investigate an automatic transcription
of ornamented Irish traditional flute music by employing
hidden Markov models (HMMs). The proposed system is
based on building an individual HMM for each note as well
as for each ornament. This enables to model the differ-
ences in realisation of ornaments and notes and then detect
ornaments whose fundamental frequency is close to the or-
namented note. Music signal is represented as a sequence
of Mel-frequency cepstral coefficients. Different param-
eter setups at various stages of the feature extraction and
acoustic modelling are explored. Experimental evaluations
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are performed using recordings of Irish traditional tunes
played by flute from Grey Larsen’s CD [13]. Evaluations
are presented for the task of onset detection and note tran-
scription. Results are presented in terms of the precision,
recall and F -measure. Onset detection evaluations are also
compared to energy- and F0-based conventional onset de-
tection algorithms. It is demonstrated that the proposed
HMM-based transcription system achieves over 28% rela-
tive improvement in terms of the F -measure in onset de-
tection task over conventional onset detection algorithms.

2. ORNAMENTED FLUTE MUSIC

2.1 Ornamentation in Irish traditional flute playing

Ornaments are used as embellishments in Irish traditional
music [13]. They are notes of a very short duration, cre-
ated through the use of special fingered articulations. They
can be split into single- and multi-note ornaments. Single-
note ornaments, namely ‘cut’ and ‘strike’, are pitch artic-
ulations. The ‘cut’ involves quickly lifting and replacing
a finger from a tonehole, and corresponds to a higher note
than the ornamented note. The ‘strike’ is performed by
momentarily closing an open hole, and corresponds to a
lower note than the ornamented note. Multi-note orna-
ments, namely ‘crann’, ‘roll’ and ‘shake’, are successive
use of single-note ornaments. A schematic visualisation of
the single- and multi-note ornaments in the time-frequency
plane is given in Figure 1.
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Figure 1. A schematic representation of single-note (a)
and multi-note (b) ornaments in the time-frequency plane.

2.2 Annotation of the audio data

The audio signal was manually annotated by an experi-
enced player of Irish traditional flute. The annotation pro-
vides segmentation of the audio signal, where each seg-
ment is characterised by the following: the time of onset,
time of offset, type of segment, note identity (if applica-
ble), and note frequency (if applicable). The type of seg-
ment may be one of the following: note, one of the types of
single-note or multi-note ornaments, and breath. The note
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Figure 2. An extract from the tune ‘The Lonesome Jig’,
depicting the waveform (top) and spectrogram (bottom).

frequency is initially estimated automatically but checked
by the annotator, and, if needed, then corrected manually.
Further information on the process of annotation of the au-
dio recordings is presented in [12].

2.3 Data statistics

The flute music we are dealing with contains notes in the
range from D4 to B5, i.e., with the fundamental frequency
from 293 Hz to 987 Hz. Typically, only first few harmon-
ics of the notes are having sufficient energy. An example of
waveform and spectrogram is given in Figure 2. There are
four instances of the ‘cut’ ornament indicated in the spec-
trogram at around frame indices 400, 540, 890 and 1130.

Based on the manual annotation, we examined the dura-
tion of the notes and single-note ornaments in our record-
ings. The obtained histograms, depicted in Figure 3, indi-
cate that the duration of ornaments is considerably lower
than that of notes. The mean duration of single-note or-
naments is 63 ms, while it is 209 ms for notes. In 95%
of cases, the duration of single-note ornaments is between
32 ms to 95 ms and of notes between 118 ms to 400 ms.
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Figure 3. The distribution of the duration of single-note
ornaments (a) and notes (b) in our recordings.
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3. HMM-BASED NOTE TRANSCRIPTION AND
ONSET DETECTION

This section presents the proposed HMM-based system for
transcription of notes and detection of their onsets. We
first describe the representation of the audio signal and then
modelling using HMMs.

3.1 Feature representation

The acoustic signal is represented by a sequence of feature
vectors, each vector capturing short-time spectral proper-
ties of the signal. Since we are dealing with unaccom-
panied music and in order to obtain lower-dimensional
and less-correlated features, the signal is represented us-
ing Mel-frequency cepstral coefficients (MFCCs). MFCCs
have been widely used in speech and audio processing.
The steps involved in converting audio signal into MFCCs
is depicted in Figure 4.

Figure 4. Processing steps used for converting the audio
signal into a sequence of Mel-frequency cepstral features.

The signal is first segmented into overlapping frames.
The frame length determines the temporal and frequency
resolution. While longer frames allow for a finer frequency
resolution, we are limited in the setting due to possibly
very short duration of ornaments. Each signal frame is
multiplied by Hamming window. The windowed frames
are then zero padded and the Fourier transform is applied
to provide the short-term Fourier spectrum. The short-
time magnitude spectrum is passed through Mel-scale fil-
ter bank analysis and discrete cosine transform is applied
on the logarithm of the filter-bank energies to provide
MFCCs. In order to include information on local dynam-
ics, MFCCs were appended with their temporal deriva-
tives, referred to as the delta and accelleration features,
which were calculated as in [17]. The values of the pa-
rameters within the processing steps need to reflect that we
are dealing with ornamented flute music. As such, in our
experimental evaluations, we explored various parameter
setups.

3.2 Modelling

The model of each note is obtained by modelling the tem-
poral evolution of feature vectors using a left-to-right (no
skip allowed) hidden Markov model (HMM). We found
that in addition to having an HMM for each note, it is es-
sential to have also a separate HMM for each single-note
ornament. This allows to deal with the fact that the real-
isation of single-note ornaments may not fully reach the

notional frequency of a note but rather be somewhere be-
tween two notes. In addition to this, we also create a model
for breath and silence. These are used to model the tak-
ing a breath by the player and the initial and final silences
in recordings, respectively. Overall, we have 42 models,
consisting of 14 models for notes, 14 models for cuts, 11
models for strikes (strikes for some notes did not occur in
our data) plus breath and silence. The state output prob-
ability density function (pdf) at each HMM state is mod-
elled using a mixture of Gaussians. This allows for a more
accurate modelling of variations in playing notes than us-
ing a single Gaussian distribution. Gaussian distributions
with a diagonal covariance matrix are used due to compu-
tational reasons, as is typically done in speech and audio
pattern processing. We explore the effect of using differ-
ent number of HMM emitting states and Gaussian mixture
components in the experimental section. The transcription
system was built using the HTK [17].

3.2.1 Training

The initial values for the parameters of individual HMMs
were estimated using isolated extracts from the audio sig-
nal, by applying several iterations of the Viterbi style train-
ing procedure. The isolated extracts were obtained based
on the manual time-stamp annotation, i.e., onset and offset
times. Further training of the models was then performed
using several iterations of the Baum-Welch (aka forward-
backward) algorithm. This uses continuous audio signal as
input and requires only the sequence of notes/ornaments
labels (i.e., no time-stamp). As such, this can eliminate the
effect of possible errors in time-stamp annotation at bor-
ders of notes/ornaments on the trained models.

3.2.2 Recognition

To perform recognition, we need to construct a recogni-
tion network. This defines the allowed sequences of mod-
els (i.e., notes/ornaments). A network that closely reflects
the knowledge of music could be employed. In this pa-
per, we did not employ any such knowledge. We used a
loop network that allows any note to follow any other note.
We modified this slightly to reflect that an ornament model
need to be followed by a note model. The network we used
is depicted in Figure 5. As this network allows the same
note to be subsequently repeated in the recognition output,
we post-process the results such that the repetitions of the
same note are considered to be a single instance of the note,
for example, the original recognition output B4 D4 D4 A5
is considered to be B4 D4 A5. Note that a fixed proba-
bility value, aka word insertion penalty, can be associated
with the transition from the end of one model to the start
of the next model. This is useful in controlling the balance
between the number of models being incorrectly inserted
and deleted in the recognition result and we used it in our
experimental evaluations.

Given a sequence of feature vectors, the Viterbi algo-
rithm is used to find the optimal state sequence. This pro-
vides the sequence of recognised models as well as the start
(and the end) times of each recognised model, i.e., the on-
set detection result.

758 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Figure 5. The recognition network used in the HMM-
based note transcription system. The elipses denote indi-
vidual HMMs. Models of ornaments are denoted by note
identity appended with either ‘cut’ or ‘str’, representing
models for ‘cut’ and ‘strike’ ornaments, respectively. ‘BR’
denotes breath and ‘SIL’ silence models.

4. EXPERIMENTAL EVALUATIONS

4.1 Data description

Evaluations are performed using recordings of Irish tra-
ditional tunes and training exercises played by flute from
Grey Larsen’s CD which accompanied his book “Essential
Guide to Irish Flute and Tin Whistle” [13]. The tunes are
between 16 sec and 1 min 22 sec long. All recordings are
monophonic and are sampled at 44.1 kHz sampling fre-
quency.

The collection consists of 19 tunes. The list of the tunes,
with the number of notes and ornaments, is given in Ta-
ble 1. In total, there are 3929 onsets, including notes and
ornaments. Out of these there are 804 single-note orna-
ments (which includes also counts from parts of multi-note
ornaments), consisting of 620 cuts and 184 strikes.

First evaluations are performed to demonstrate the ef-
fect of different parameter setups – due to computational
reasons, these experiments use all files for training of mod-
els and also for testing. Final evaluations are performed us-
ing the leave-one-out cross-validation procedure, in which
in turn 1 file is kept for testing and all the 18 remaining
files are used for training. The results were accummulated
over all files and then the evaluation measures calculated.

4.2 Evaluation measures

Performance of both the onset detection and note recog-
nition is evaluated in terms of the precision (P ), re-
call (R) and F -measure. The definition of these measures
is the same as used in MIREX onset detection evaluations,
specifically,

P =
Ntp

Ntp +Nfp
, R =

Ntp

Ntp +Nfn
, F =

2PR

P +R
.

In the case of onset detection, Ntp is the number of cor-

Tune Title Number of Time
Notes Ornaments (sec.)

Cut Strike
Study 5 55 16 0 20
Study 6 56 24 0 20
Study 11 76 20 0 26
Study 17 48 19 0 16
Study 22 127 0 28 47
Maids of Ardagh 98 28 5 32
Hardiman the .. 112 22 7 28
The Whinny Hills .. 117 34 6 30
The Frost is All .. 151 39 14 41
The Humours of .. 289 113 19 82
The Rose in the .. 152 33 13 39
Scotsman over .. 153 33 9 38
A Fig for a Kiss 105 27 9 28
Roaring Mary 176 42 22 44
The Mountain Road 105 20 6 25
The Shaskeen 181 52 23 42
Lady On The Island 118 21 1 21
The Lonesome Jig 153 27 0 46
The Drunken .. 185 50 22 43
Total 2457 620 184 668

Table 1. The list of tunes contained in the dataset, with the
number of onsets and single-note ‘cut’ and ‘strike’ orna-
ments and duration of each tune.

rectly detected onsets and Nfp and Nfn is the number of
inserted and deleted onsets, respectively. The onset de-
tection is considered as correct when it is within ±50 ms
around the onset annotation.

In the case of note recognition, Ntp is the number of
correctly recognised notes andNfp andNfn is the number
of inserted and deleted notes, respectively.

4.3 Results for various parameter setups in feature
extraction and modelling

This section explores the effect of different setups of pa-
rameters in the feature extraction and HMM-based mod-
elling on the task of onset detection. A comparison with
three conventional onset detection methods is also given.

4.3.1 Conventional onset detection algorithms

The conventional onset detection methods we employed to
provide a comparison are: two methods which exploit the
change of the signal amplitude over time, with process-
ing performed in the temporal and spectral domain, and
a method based on the fundamental frequency (F0). The
description of these methods, which we also used in our
previous onset detection research, is provided in [11].

We performed extensive evaluations with different pa-
rameter values for each of the conventional onset detection
methods. The best achieved performance for each of the
methods is presented in Table 2. It can be seen that the F0-
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based method performed better than each of the energy-
based methods and achieved the F -measure of 91.2%.

Algorithm for onset Evaluation performance (%)
detection Precision Recall F -measure

sig-energy (spectral) 94.8 85.6 89.9
sig-energy (temporal) 90.8 88.4 89.6

F0 89.3 93.2 91.2

Table 2. Results of onset detection obtained using conven-
tional onset detection methods.

4.3.2 HMM-based onset detection

Now we explore the performance of the HMM-based sys-
tem when using various parameter setup in the feature ex-
traction and acoustic modelling.

First, we compare results achieved by the HMM-based
system when using the estimated F0 with energy and the
MFCCs (see the first row in Table 4 for the parameter
setup) as the input features. Results are presented in Ta-
ble 3. It can be seen that when using the estimated F0

as input features to HMMs, the F -measure improved to
93.8%, from 91.2% that was achieved using the conven-
tional F0-based method (as in Table 2). The performance
of the HMM-based system improved considerably further
to 96.7% when using MFCC features as input, instead of
the estimated F0. As such, the use of HMMs driven with
MFCC features provided over 60% error rate reduction
over the best conventional method. The considerably better
performance of the HMM-based system may be attributed
to several factors. First, it is the statistical modelling of the
temporal evolution of features. Second, the features used
provide information about the spectral content. This is un-
like the energy-based and F0-based conventional methods
which accummulate the information from the entire sig-
nal bandwidth into a single detection function or into an
F0 estimate. Third, the use of HMM effectively incorpo-
rates smoothing of the frame-based decisions and imposes
a minimum duration of notes and ornaments.

Features input to HMM F -measure (%)
F0 and energy, both with ∆ and ∆2 93.8

MFCC, both with ∆ and ∆2 96.7

Table 3. Results of the HMM-based onset detection when
using an estimate of F0 and MFCCs as input features.

Results obtained using diferent parameter setups in the
MFCC feature extraction are presented in Table 4. The first
line in the table presents the best parameter setup values
and this is: bandwidth of 4 kHz, frame length of 12.5 ms,
frame-shift of 5 ms, Mel-scale filter-bank with 21 chan-
nels, using 12 cepstral coefficients, and appending delta
and acceleration coefficients (which were extracted using

Parameters in MFCC feature F -measure
extraction (%)

BW=4kHz, FrmL=12.5ms, FrmS=5ms, 96.7
nFB=21, nCC=12, ∆ and ∆2

Bandwidth 6 kHz 95.5
(BW) 8 kHz 95.4
Frame-length 10 ms 95.9
(FrmL) 15 ms 96.3

20 ms 96.3
30 ms 95.7

Frame-shift 3 ms 95.5
(FrmS) 7 ms 95.4
number of Mel filter-bank 17 96.1
(nFB) 25 96.5
Cepstral coefficients 10 95.8
(nCC) 14 96.6
∆2 coefficients no 95.8
∆ and ∆2 coefficients no 91.6

Table 4. Results of the HMM-based onset detection in
terms of the F -measure obtained with different parameter
setup in MFCC feature extraction.

the window of 3 and 2 signal frames, respectively). We
now analyse the effect of each parameter – in each exper-
iment, only one parameter is modified at a time in refer-
ence to the above best parameter setup. Let us start with
varying the frequency bandwidth of the signal. This was
performed at the stage of designing the Mel filter-banks.
For the bandwidth of 6 kHz and 8 kHz, the number of fil-
ters was adjusted such that the lower 4 kHz was in all cases
covered by 21 filters. It can be seen that the performance is
similar when using the bandwidth of 6 kHz and 8 kHz but
it improves considerably when the bandwidth is reduced to
4 kHz. This reflects, as we have also noticed in our visual
inspection of spectrograms, that there is little signal con-
tent above 4 kHz in our flute recordings and as such the
inclusion of the higher frequency range acts detrimentally
to performance. This result may be used when analysing
flute playing that contains accompaniments in higher fre-
quencies or is recorded in live performances where other
unwanted sounds may be present in higher frequencies.
Next, results using different length of frames show that
similar performance is achieved for lengths between 12 to
20 ms. The performance starts to decrease considerably
when frames of 30 ms are used. This is due to the pres-
ence of ornaments, duration of which may be as short as
20 ms. In the case of frame shift, it can be seen that set-
ting this to 3 ms or 7 ms considerably degrades the per-
formance in comparison to the use of 5 ms shift. Varying
the number of filter-bank channels from 17 to 25 has only
relatively little effect, with performance being at the peak
for 21 channels. The use of 12 or 14 cepstral coefficients
provides very similar performance, while reducing this to
10 has quite negative effect. Finally, experiments when
the delta and accelleration features, denoted by ∆ and ∆2,
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respectively, are not included in feature representation are
presented. Results show a large decrease in performance
when neither delta nor accelleration features are used. This
demonstrates the importance of incorporating information
on local dynamics of the acoustic signal.

Next, we present the effect of different parameter setups
in acoustic modelling. We vary the number of states and of
mixture components of each state pdf for models of notes
and ornaments. Results are presented in Table 5. The suit-
able range of values for the number of states of note and or-
nament models is determined based on the frame shift used
in the feature extraction and statistics of the duration of the
notes and ornaments. As such, we explored the range from
6 to 12 for notes and from 2 to 6 for ornaments. It can be
seen that there is not much performance variation when us-
ing this range of values. In regard to the number of mixture
components, it can be seen that it is useful to have at least 4
mixture components for note models, while even 2 mixture
components seem sufficient for models of ornaments.

Parameters in acoustic modelling F -measure (%)
nStates for N / O / B: 8 / 4 / 8, 96.7

nMix for N / O / B: 6 / 2 / 6
nStates for notes 6 95.9

10 96.1
12 95.8

nStates for ornaments 2 95.8
6 96.4

nMix for notes 2 95.6
4 96.3
8 96.6

nMix for ornaments 1 96.0
4 96.7
6 96.6

Table 5. Results of HMM-based onset detection in terms
of the F -measure obtained with different parameter setup
in acoustic modelling. N, O, and B stand for note, orna-
ment and breath, respectively.

4.4 Results using the leave-one-out cross-validation

The final experimental evaluations are performed using the
leave-one-out cross-validation. The feature extraction and
acoustic modelling parameter setup that achieved best per-
formance in previous section is used. The achieved results
of onset detection and note identity recognition are pre-
sented in Table 6. It can be seen that very good perfor-
mance is obtained for both tasks. The drop in onset de-
tection performance in comparison to the results presented
in the previous section is expected as the testing files have
now not been seen during the training. Nevertheles, the
performance is improved by over 28% relative over the
conventional onset detection algorithms whose parameters
were actually tuned based on both training and testing data.

Evaluation performance (%)
Precision Recall F -measure

Onset detection 95.0 92.4 93.7
Note recognition 96.4 95.2 95.8

Table 6. Results of onset detection and note recognition
obtained by the HMM-based system using the leave-one-
out cross-validation procedure.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented work on transcription of Irish
traditional flute music containing ornamentation. The pre-
sented system is based on modelling of individual notes
and ornaments using hidden Markov models. Acoustic sig-
nal is represented as a sequence of Mel frequency cepstral
coefficients. A wide range of parameter setup values in
both the feature extraction and acoustic modelling were
explored. Experimental evaluations were performed us-
ing recordings of 19 Irish traditional flute tunes, contain-
ing in total 3929 onsets, out of which 804 corresponds to
ornaments. Using the leave-one-out cross-validation pro-
cedure, the proposed HMM-based system achieved the F -
measure of 93.7% in detecting onsets of ornaments and
notes. This represents over 28% error rate reduction com-
pared to conventional onset detectors whose parameters
were even tuned to the testing data. The F -measure in the
task of recognising the note identity was 95.8%.

There are several possible extensions of this work we
are currently considering. First, the presented evaluations
were performed using recordings from the same CD. We
plan to perform evaluations on a range of recordings from
several CDs in order to explore the capability of the system
in dealing with variability due to different recording condi-
tions, makes of flute instruments and performers. We will
investigate techniques to compensate for such variability
in order to improve robustness. Second, we plan to anal-
yse the errors the automatic system makes in onset detec-
tion and note identity recognition tasks and reflect this in
modifications to the system to further improve the perfor-
mance. Then, the current HMM-based framework allows
directly and in a probabilistic manner to incorporate musi-
cal knowledge on the sequences of notes used in flute mu-
sic. Such knowledge could be obtained from musicologists
and/or extracted automatically from annotations. Next, in-
corporation of an explicit duration modelling of notes and
ornaments could help to reduce the number of falsely in-
serted and deleted onsets. Finally, we plan to expand the
system to deal with recordings, in which the flute is accom-
panied by other instruments and/or singing.
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P. Jančovič, and C. Athwal. Towards the creation

of digital library content to study aspects of style in
Irish traditional music. In Proc. of the Int. Workshop
on Digital Libraries for Musicology (DLFM), London,
2014.

[13] G. Larsen. The Essential Guide to Irish Flute and
Tin Whistle. Mel Bay Publications, Pacific, Missouri,
USA, 2003.

[14] G. E. Poliner and D. Ellis. A discriminative model for
polyphonic piano transcription. EURASIP Journal on
Advances in Signal Processing, 2007(1):048317, 2007.

[15] M. P. Ryynänen and A. P. Klapuri. Automatic tran-
scription of melody, bass line, and chords in poly-
phonic music. Computer Music Journal, 32(3):72–86,
2008.
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ABSTRACT

Music imagery information retrieval (MIIR) systems may one
day be able to recognize a song from only our thoughts. As
a step towards such technology, we are presenting a public
domain dataset of electroencephalography (EEG) recordings
taken during music perception and imagination. We acquired
this data during an ongoing study that so far comprises 10
subjects listening to and imagining 12 short music fragments
– each 7–16s long – taken from well-known pieces. These
stimuli were selected from different genres and systematically
vary along musical dimensions such as meter, tempo and the
presence of lyrics. This way, various retrieval scenarios can
be addressed and the success of classifying based on specific
dimensions can be tested. The dataset is aimed to enable music
information retrieval researchers interested in these new MIIR
challenges to easily test and adapt their existing approaches
for music analysis like fingerprinting, beat tracking, or tempo
estimation on EEG data.

1. INTRODUCTION

We all imagine music in our everyday lives. Individuals can
imagine themselves producing music, imagine listening to oth-
ers produce music, or simply “hear” the music in their heads.
Music imagination is used by musicians to memorize music
pieces and anyone who has ever had an “ear-worm” – a tune
stuck in their head – has experienced imagining music. Recent
research also suggests that it might one day be possible to
retrieve a music piece from a database by just thinking of it.

As already motivated in [29], music imagery information re-
trieval (MIIR) – i.e., retrieving music by imagination – has the
potential to overcome the query expressivity bottleneck of cur-
rent music information retrieval (MIR) systems, which require
their users to somehow imitate the desired song through singing,
humming, or beat-boxing [31] or to describe it using tags, meta-
data, or lyrics fragments. Furthermore, music imagery appears
to be a very promising means for driving brain-computer in-

c© Sebastian Stober, Avital Sternin, Adrian M. Owen and
Jessica A. Grahn.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Sebastian Stober, Avital Sternin, Adrian M. Owen
and Jessica A. Grahn. “Towards Music Imagery Information Retrieval:
Introducing the OpenMIIR Dataset of EEG Recordings from Music Perception
and Imagination”, 16th International Society for Music Information Retrieval
Conference, 2015.

terfaces (BCIs) that use electroencephalography (EEG) – a
popular non-invasive neuroimaging technique that relies on
electrodes placed on the scalp to measure the electrical activity
of the brain. For instance, Schaefer et al. [23] argue that “music
is especially suitable to use here as (externally or internally
generated) stimulus material, since it unfolds over time, and
EEG is especially precise in measuring the timing of a response.”
This allows us to exploit temporal characteristics of the signal
such as rhythmic information.

Still, EEG data is generally very noisy and thus extracting
relevant information can be challenging. This calls for sophisti-
cated signal processing techniques as they have emerged in the
field of MIR within the last decade. However, MIR researchers
with the potential expertise to analyze music imagery data usu-
ally do not have access to the required equipment to acquire
the necessary data for MIIR experiments in the first place. 1

In order to remove this substantial hurdle and encourage the
MIR community to try their methods in this emerging interdis-
ciplinary field, we are introducing the OpenMIIR dataset.

In the following sections, we will review closely related
work in Section 2, describe our approach for data acquisition
(Section 3) and basic processing (Section 4), and outline further
steps in Section 5.

2. RELATED WORK

Retrieval based on brain wave recordings is still a very young
and largely unexplored domain. A recent review of neuroimag-
ing methods for MIR that also covers techniques different from
EEG is given in [14]. EEG signals have been used to measure
emotions induced by music perception [1,16] and to distinguish
perceived rhythmic stimuli [28]. It has been shown that oscilla-
tory neural activity in the gamma frequency band (20-60 Hz) is
sensitive to accented tones in a rhythmic sequence [27]. Oscilla-
tions in the beta band (20-30 Hz) entrain to rhythmic sequences
[2, 17] and increase in anticipation of strong tones in a non-
isochronous, rhythmic sequence [5,6,13]. The magnitude of
steady state evoked potentials (SSEPs), which reflect neural os-
cillations entrained to the stimulus, changes when subjects hear
rhythmic sequences for frequencies related to the metrical struc-
ture of the rhythm. This is a sign of entrainment to beat and me-
ter [19,20]. EEG studies have further shown that perturbations

1 For instance, the Biosemi EEG system used here costs several ten-
thousand dollars. Consumer-level EEG devices with a much lower price have
become available recently but it is still open whether their measuring precision
and resolution is sufficient for MIIR research.
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of the rhythmic pattern lead to distinguishable event-related
potentials (ERPs) 2 [7]. This effect appears to be independent
of the listener’s level of musical proficiency. Furthermore, Vlek
et al. [32] showed that imagined auditory accents imposed on
top of a steady metronome click can be recognized from EEG.

EEG has also been successfully used to distinguish per-
ceived melodies. In a study by Schaefer et al. [26], 10 partic-
ipants listened to 7 short melody clips with a length between
3.26s and 4.36s. For single-trial classification, each stimulus
was presented 140 times in randomized back-to-back sequences
of all stimuli. Using a quadratically regularized linear logistic-
regression classifier with 10-fold cross-validation, they were
able to successfully classify the ERPs of single trials. Within
subjects, the accuracy varied between 25% and 70%. Apply-
ing the same classification scheme across participants, they
obtained between 35% and 53% accuracy. In a further analysis,
they combined all trials from all subjects and stimuli into a
grand average ERP. Using singular-value decomposition, they
obtained a fronto-central component that explained 23% of the
total signal variance. The time courses corresponding to this
component showed significant differences between stimuli that
were strong enough to allow cross-participant classification.
Furthermore, a correlation with the stimulus envelopes of up
to 0.48 was observed with the highest value over all stimuli at
a time lag of 70–100ms.

FMRI studies [10,11] have shown that similar brain struc-
tures and processes are involved during music perception and
imagination. As Hubbard concludes in his recent review of the
literature on auditory imagery, “auditory imagery preserves
many structural and temporal properties of auditory stimuli”
and “involves many of the same brain areas as auditory per-
ception” [12]. This is also underlined by Schaefer [23, p. 142]
whose “most important conclusion is that there is a substantial
amount of overlap between the two tasks [music perception
and imagination], and that ‘internally’ creating a perceptual
experience uses functionalities of ‘normal’ perception.” Thus,
brain signals recorded while listening to a music piece could
serve as reference data. The data could be used in a retrieval
system to detect salient elements expected during imagination.
A recent meta-analysis [25] summarized evidence that EEG
is capable of detecting brain activity during the imagination
of music. Most notably, encouraging preliminary results for
recognizing imagined music fragments from EEG recordings
were reported in [24] in which 4 out of 8 participants produced
imagery that was classifiable (in a binary comparison) with an
accuracy between 70% and 90% after 11 trials.

Another closely related field of research is the reconstruc-
tion of auditory stimuli from EEG recordings. Deng et al. [3]
observed that EEG recorded during listening to natural speech
contains traces of the speech amplitude envelope. They used
independent component analysis (ICA) and a source local-
ization technique to enhance the strength of this signal and
successfully identify heard sentences. Applying their technique
to imagined speech, they reported statistically significant single-
sentence classification performance for 2 of 8 subjects with
better performance when several sentences were combined for

2 A description of how event-related potentials (ERPs) are computed and
some examples are provided in Section 4.

a longer trial duration.
Recently, O’Sullivan et al. [21] proposed a method for de-

coding attentional selection in a cocktail party environment
from single-trial EEG recordings approximately one minute
long. In their experiment, 40 subjects were presented with 2
classic works of fiction at the same time – each one to a differ-
ent ear – for 30 trials. To determine which of the 2 stimuli a
subject attended to, they reconstructed both stimulus envelopes
from the recorded EEG. To this end, they trained two different
decoders per trial using a linear regression approach – one to
reconstruct the attended stimulus and the other to reconstruct
the unattended one. This resulted in 60 decoders per subject.
These decoders where then averaged in a leave-one-out cross-
validation scheme. During testing, each decoder would predict
the stimulus with the best reconstruction from the EEG using
the Pearson correlation of the envelopes as measure of qual-
ity. Using subject-specific decoders averaged from 29 training
trials, the prediction of the attended stimulus decoder was cor-
rect for 89% of the trials whereas the mean accuracy of the
unattended stimulus decoder was 78.9%. Alternatively, using
a grand-average decoding method that combined the decoders
from every other subject and every other trial, they obtained a
mean accuracy of 82% and 75% respectively.

3. STUDY DESCRIPTION

This section provides details about the study that was conducted
to collect the data released in the OpenMIIR dataset. The study
consisted of two portions. We first collected information about
the participants using questionnaires and behavioral testing
(Section 3.1) and then ran the actual EEG experiment (Sec-
tion 3.2) with those participants matching our inclusion criteria.
The 12 music stimuli used in this experiment are described in
Section 3.3.

3.1 Questionnaires and Behavioral Testing

14 participants were recruited using approved posters at the
University of Western Ontario. We collected information about
the participants’ previous music experience, their ability to
imagine sounds, and information about musical sophistication
using an adapted version of the widely used Goldsmith’s Mu-
sical Sophistication Index (G-MSI) [18] combined with an
adapted clarity of auditory imagination scale [33]. Questions
from the perceptual abilities and musical training subscales of
the G-MSI were used to identify individual differences in these
areas. For the clarity of auditory imagery scale, participants
had to self-report their ability to clearly hear sounds in their
head. Our version of this scale added five music-related items
to five items from the original scale.

We also had participants complete a beat tapping and a stim-
uli familiarity task. Participants listened to each stimulus and
were asked to tap along with the music on the table top. The
experimenter then rated their tapping ability on a scale from 1
(difficult to assess) to 3 (tapping done properly). After listening
to each stimulus participants rated their familiarity with the
stimuli on a scale from 1 (unfamiliar) to 3 (very familiar). To
participate in the EEG portion of the study, the participants
had to receive a score of at least 90% on our beat tapping task.
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Figure 1. Setup for the EEG experiment. The presentation and
recording systems were placed outside to reduce the impact
of electrical line noise that could be picked up by the EEG
amplifier.

Participants received scores from 75%–100% with an average
score of 96%. Furthermore, they needed to receive a score
of at least 80% on our stimuli familiarity task. Participants
received scores from 71%–100% with an average score 87%.
These requirements resulted in rejecting 4 participants. This
left 10 participants (3 male), aged 19–36, with normal hear-
ing and no history of brain injury. These 10 participants had
an average tapping score of 98% and an average familiarity
score of 92%. Eight participants had formal musical training
(1–10 years), and four of those participants played instruments
regularly at the time of data collection. After the experiment,
we asked participants the method they used to imagine music.
The participants were split evenly between imagining them-
selves producing the music (singing or humming) and simply
“hearing the music in [their] head.”

3.2 EEG Recording

For the EEG portion of the study, the 10 participants were
seated in an audiometric room (Eckel model CL-13) and con-
nected to a BioSemi Active-Two system recording 64+2 EEG
channels at 512 Hz as shown in Figure 1. Horizontal and
vertical EOG channels were used to record eye movements.
We also recorded the left and right mastoid channel as EEG
reference signals. Due to an oversight, the mastoid data was
not collected for the first 5 subjects. The presented audio was
routed through a Cedrus StimTracker connected to the EEG re-
ceiver, which allowed a high-precision synchronization (<0.05
ms) of the stimulus onsets with the EEG data. The experiment
was programmed and presented using PsychToolbox run in
Matlab 2014a. A computer monitor displayed the instructions
and fixation cross for the participants to focus on during the
trials to reduce eye movements. The stimuli and cue clicks
were played through speakers at a comfortable volume that was
kept constant across participants. Headphones were not used
because pilot participants reported headphones caused them
to hear their heartbeat which interfered with the imagination
portion of the experiment.

The EEG experiment was divided into 2 parts with 5 blocks
each as illustrated in Figure 2. A single block comprised of all

Table 1. Information about the tempo, meter and length of the
stimuli (without cue clicks) used in this study.
ID Name Meter Length Tempo

1 Chim Chim Cheree (lyrics) 3/4 13.3s 212 BPM
2 Take Me Out to the Ballgame (lyrics) 3/4 7.7s 189 BPM
3 Jingle Bells (lyrics) 4/4 9.7s 200 BPM
4 Mary Had a Little Lamb (lyrics) 4/4 11.6s 160 BPM

11 Chim Chim Cheree 3/4 13.5s 212 BPM
12 Take Me Out to the Ballgame 3/4 7.7s 189 BPM
13 Jingle Bells 4/4 9.0s 200 BPM
14 Mary Had a Little Lamb 4/4 12.2s 160 BPM
21 Emperor Waltz 3/4 8.3s 178 BPM
22 Hedwig’s Theme (Harry Potter) 3/4 16.0s 166 BPM
23 Imperial March (Star Wars Theme) 4/4 9.2s 104 BPM
24 Eine Kleine Nachtmusik 4/4 6.9s 140 BPM

mean 10.4s 176 BPM

12 stimuli in randomized order. Between blocks, participants
could take breaks at their own pace. We recorded EEG in 4
conditions:

1. Stimulus perception preceded by cue clicks
2. Stimulus imagination preceded by cue clicks
3. Stimulus imagination without cue clicks
4. Stimulus imagination without cue clicks, with feedback

The goal was to use the cue to align trials of the same stimulus
collected under conditions 1 and 2. Lining up the trials allows
us to directly compare the perception and imagination of music
and to identify overlapping features in the data. Conditions 3
and 4 simulate a more realistic query scenario during which
the system does not have prior information about the tempo
and meter of the imagined stimulus. These two conditions
were identical except for the trial context. While the condition
1–3 trials were recorded directly back-to-back within the first
part of the experiment, all condition 4 trials were recorded
separately in the second part, without any cue clicks or tempo
priming by prior presentation of the stimulus. After each con-
dition 4 trial, participants provided feedback by pressing one
of two buttons indicating on whether or not they felt they had
imagined the stimulus correctly. In total, 240 trials (12 stimuli
x 4 conditions x 5 blocks) were recorded per subject. The event
markers recorded in the raw EEG comprise:

• Trial labels (as a concatenation of stimulus ID and condition)
at the beginning of each trial
• Exact audio onsets for the first cue click of each trial in

conditions 1 and 2 (detected by the Stimtracker)
• Subject feedback for the condition 4 trials (separate event

IDs for positive and negative feedback)

3.3 Stimuli

Table 1 shows an overview of the stimuli used in the study.
This selection represents a tradeoff between exploration and
exploitation of the stimulus space. As music has many facets,
there are naturally many possible dimensions in which music
pieces may vary. Obviously, only a limited subspace could be
explored with any given set of stimuli. This had to be balanced
against the number of trials that could be recorded for each
stimulus (exploitation) within a given time limit of 2 hours for a
single recording session (including fitting the EEG equipment).
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Figure 2. Illustration of the design for the EEG portion of the study.

Based on the findings from related studies (c.f. Section 2),
we primarily focused on the rhythm/meter and tempo dimen-
sions. Consequently, the set of stimuli was evenly divided into
pieces with 3/4 and 4/4 meter, i.e. two very distinct rhythmic
“feels.” The tempo spanned a range between 104 and 212 beats
per minute (BPM). Furthermore, we were also interested in
whether the presence of lyrics would improve the recognizabil-
ity of the stimuli. Hence, we divided the stimulus set into 3
equally sized groups:
• 4 recordings of songs with lyrics (1–4),
• 4 recordings of the same songs without lyrics (11–14), and
• 4 instrumental pieces (21–24).
The pairs of recordings for the same song with and without
lyrics were tempo-matched by pre-selection and subsequent
fine adjustment using the time-stretching function of Audac-
ity. 3 Due to minor differences in tempo between pairs of
stimuli with and without lyrics, the tempo of the stimuli had
to be slightly modified after the first five participants.

All stimuli were considered to be well-known pieces in the
North-American cultural context. They were normalized in
volume and kept as similar in length as possible with care taken
to ensure that they all contained complete musical phrases start-
ing from the beginning of the piece. Each stimulus started
with approximately two seconds of clicks (1 or 2 bars) as an
auditory cue to the tempo and onset of the music. The clicks
began to fade out at the 1s-mark within the cue and stopped at
the onset of the music.

3.4 Data and Code Sharing

With the explicit consent of all participants and the approval of
the ethics board at the University of Western Ontario, the data
collected in this study are released as OpenMIIR dataset 4 un-
der the Open Data Commons Public Domain Dedication and
License (PDDL). 5 This comprises the anonymized answers
from the questionnaires, the behavioral scores, the subjects’
feedback for the trials in condition 4 and the raw EEG and
EOG data of all trials at the original sample rate of 512 Hz.
This amounts to approximately 700 MB of data per subject.

3 http://web.audacityteam.org/
4 https://github.com/sstober/openmiir
5 http://opendatacommons.org/licenses/pddl

Raw data are shared in the FIF format used by MNE [9], which
can easily be converted to the MAT format of Matlab.

Additionally, the Matlab code and the stimuli for running
the study are made available as well as the python code for
cleaning and processing the raw EEG data as described in Sec-
tion 4. The python code uses the libraries MNE-Python [8]
and deepthought 6 , which are both published as open-source
under the 3-clause BSD license. 7

This approach ensures accessibility and reproducibility. Re-
searchers have the possibility to just apply their methods on
the already pre-processed data or change any step in the pre-
processing pipeline according to their needs. No proprietary
software is required for working with the data. The wiki on
the dataset website can be used to share code, ideas and results
related to the dataset.

4. BASIC EEG PROCESSING

This section describes basic EEG processing techniques that
may serve as a basis for the application of more sophisticated
analysis methods. More examples are linked in the wiki on the
dataset website.

4.1 EEG Data Cleaning

EEG recordings are usually very noisy. They contain artifacts
caused by muscle activity such as eye blinking as well as pos-
sible drifts in the impedance of the individual electrodes over
the course of a recording. Furthermore, the recording equip-
ment is very sensitive and easily picks up interferences such
as electrical line noise from the surroundings. The following
common-practice pre-processing steps were applied to remove
unwanted artifacts.

The raw EEG and EOG data were processed using the
MNE-Python toolbox. The data was first visually inspected for
artifacts. For one subject (P05), we identified several episodes
of strong movement artifacts during trials. Hence, these partic-
ular data need to be treated with care when used for analysis
– possibly picking only specific trials without artifacts. The bad

6 https://github.com/sstober/deepthought
7 http://opensource.org/licenses/BSD-3-Clause
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trials might however still be used for testing the robustness of
analysis techniques.

For recordings with additional mastoid channels, the EEG
data was re-referenced by subtracting the mean mastoid sig-
nal [30]. We then removed and interpolated bad EEG channels
identified by manual visual inspection. For interpolation, the
spherical splines method described in [22] was applied. The
number of bad channels in a single recording session varied be-
tween 0 and 3. The data were then filtered with an fft-bandpass,
keeping a frequency range between 0.5 and 30 Hz. This also
removed any slow signal drift in the EEG. Afterwards, we
down-sampled to a sampling rate of 64 Hz. To remove artifacts
caused by eye blinks, we computed independent components
using extended Infomax ICA [15] and semi-automatically re-
moved components that had a high correlation with the EOG
channels. Finally, the 64 EEG channels were reconstructed
from the remaining independent components without reducing
dimensionality.

4.2 Grand Average Trial ERPs

A common approach to EEG analysis is through the use of
event-related potentials (ERPs). An ERP is an electrophysio-
logical response that occurs as a direct result of a stimulus. Raw
EEG data is full of unwanted signals. In order to extract the
signal of interest from the noise, participants are presented with
the same stimulus many times. The brain’s response to the stim-
ulus remains constant while the noise changes. The consistent
brain response becomes apparent when the signals from the
multiple stimulus presentations are averaged together and the
random noise is averaged to zero. In order to identify common
brain response patterns across subjects, grand average ERPs
are computed by averaging the ERPs of different subjects.

The size and the timing of peaks in the ERP waveform
provide information about the brain processes that occur in
response to the presented stimulus. By performing a principle
component analysis (PCA), information regarding the spatial
features of these processes can be obtained.

As proposed in [26], we computed grand average ERPs by
aggregating over all trials (excluding the cue clicks) of the same
stimulus from all subjects except P05 (due to the movement
artifacts). In their experiment, Schaefer et al. [26] used very
short stimuli allowing each stimulus to be repeated many times.
They averaged across hundreds of short (3.26s) trials, concate-
nated the obtained grand average ERPs and then applied PCA,
which resulted in clearly defined spatial components. We had
fewer repetitions of our stimuli. Therefore, to preserve as much
data as possible, we used the full length of the trials as opposed
to the first 3.26 seconds. We then concatenated the grand av-
erage ERPs and applied a PCA, which resulted in principal
components with poorly defined spatial features as shown in
Figure 3 (A and B). As an alternative, we performed a PCA on
the concatenated raw trials without first calculating an average
across trials. This approach produced clearly defined spatial
components shown in Figure 3 (C and D). Components 2 to
4 are similar to those described in [26]. Except for their (ar-
bitrary) polarity, the components are very similar across the
two conditions, which may be indicative of similar processes
being involved in both perception and imagination of music as
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68.3%
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Figure 3. Topographic visualization of the top 4 principle
components with percentage of the explained signal variance.
Channel positions in the 64-channel EEG layout are shown
as dots. Colors are interpolated based on the channel weights.
The PCA was computed on A: the grand average ERPs of
all perception trials, B: the grand average ERPs of all cued
imagination trials, C: the concatenated perception trials, D: the
concatenated cued imagination trials.

described in [11,25].
Schaefer et al. [26] were able to use the unique time course

of the component responsible for the most variance to differen-
tiate between stimuli. Analyzing the signals corresponding to
the principle components, we have not yet been able to repro-
duce a significant stimulus classification accuracy. This could
be caused by our much smaller number of trials, which are
also substantially longer than those used by [26]. Furthermore,
the cross-correlation between the stimulus envelopes and the
component waveforms were much lower (often below 0.1) than
reported in [26].

4.3 Grand Average Beat ERPs

In the previous section, we computed ERPs based on the trial
onsets. Similarly, it is also possible to analyze beat events.
Using the dynamic beat tracker [4] provided by the librosa 8

library, we obtained beat annotations for all beats within the au-
dio stimuli. To this end, the beat tracker was initialized with the
known tempo of each stimulus. The quality of the automatic
annotations was verified through sonification.

Knowing the beat positions allows to analyze the respective
EEG segments in the perception condition. For this analysis,
the EEG data was additionally filtered with a low-pass at 8
Hz to remove alpha band activity (8–12 Hz). Figure 4 shows

8 https://github.com/bmcfee/librosa
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Figure 4. Grand average beat ERP for the perception trials (16515 beats). All times are relative to the beat onset. Left: Individual
channels and mean over time. Right: Topographic visualization for discrete time points (equally spaced at 1/30s interval).
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Figure 5. Grand average beat ERP for the cued imagination
trials (16515 beats). All times are relative to the beat onset.
Note the difference in amplitude compared to Figure 4.

the grand average ERP for all beats except the cue clicks 9

in all perception trials of all subjects except P05. Here we
considered epochs, i.e., EEG segments of interest, from 200 ms
before until 300 ms after each beat marker. Before averaging
into the ERP, we applied a baseline correction of each epoch
by subtracting the signal mean computed from the 200 ms
sub-segment before the beat marker.

The ERP has a negative dip that coincides with the beat
onset time at 0 ms. Any auditory processing related to the beat
would occur much later. A possible explanation is that the dip
is caused by the anticipation of the beat. However, this requires
further investigation. There might be potential to use this effect
as the basis for an MIIR beat or tempo tracker. For comparison,
the respective grand average ERP for the cued imagination
trials is shown in Figure 5. This ERP looks very different from
the one for the perception conditions. Most notably the ampli-
tude scale is very low. This outcome was probably caused by
the imprecise time locking. In order to compute meaningful
ERPs, the precise event times (beat onsets) need to be known.
However, small tempo variations during imagination are very
likely and thus the beat onsets are most likely not exact.

9 Cue clicks were excluded because these isolated auditory events illicit
a different brain response than beats embedded into a stream of music.

5. CONCLUSIONS AND OUTLOOK

We have introduced OpenMIIR – an open EEG dataset in-
tended to enable MIR researchers to venture into the domain
of music imagery and develop novel methods without the need
for special EEG equipment. We plan to add new EEG record-
ings with further subjects to the dataset and possibly adapt
the experimental settings as we learn more about the problem.
In our first experiments using this dataset, we were able to
partly reproduce the identification of overlapping components
between music perception and imagination as reported earlier.

Will it one day be possible to just think of a song and the
music player will start its playback? If this could be achieved,
it would require the intense interdisciplinary collaboration be-
tween MIR researchers and neuroscientists. We hope that the
OpenMIIR dataset will facilitate such a collaboration and con-
tribute to new developments in this emerging field for research.
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ABSTRACT

The dominant approach to musical emotion variation
detection tracks emotion over time continuously and usu-
ally deals with time resolutions of one second. In this paper
we discuss the problems associated with this approach and
propose to move to bigger time resolutions when tracking
emotion over time. We argue that it is more natural from
the listener’s point of view to regard emotional variation in
music as a progression of emotionally stable segments. In
order to enable such tracking of emotion over time it is nec-
essary to segment music at the emotional boundaries. To
address this problem we conduct a formal evaluation of dif-
ferent segmentation methods as applied to a task of emo-
tional boundary detection. We collect emotional boundary
annotations from three annotators for 52 musical pieces
from the RWC music collection that already have struc-
tural annotations from the SALAMI dataset. We investi-
gate how well structural segmentation explains emotional
segmentation and find that there is a large overlap, though
about a quarter of emotional boundaries do not coincide
with structural ones. We also study inter-annotator agree-
ment on emotional segmentation. Lastly, we evaluate dif-
ferent unsupervised segmentation methods when applied
to emotional boundary detection and find that, in terms of
F-measure, the Structural Features method performs best.

1. INTRODUCTION

Improving automatic music emotion recognition (MER)
methods is crucial to enhance accessibility of large music
collections for both personal and commercial use. Driven
by this interest, the MER field greatly expanded in the last
decade. One of the fundamental MER problems is tracking
emotion over time, or music emotion variation detection
(MEVD). This problem is usually approached by a contin-
uous approach to MER (dynamic MER), when the emotion
of a piece of music is predicted on a second-by-second ba-
sis. Though dynamic MER does not actually assume that
emotion in music should change every second, the current
methods tend to work on very low time resolutions both
by choosing rather short excerpts where no serious mu-
sical development could occur (e.g., 15 seconds) and by

c© Anna Aljanaki, Frans Wiering, Remco C. Veltkamp.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Anna Aljanaki, Frans Wiering, Remco
C. Veltkamp. “Emotion based segmentation of musical audio”, 16th In-
ternational Society for Music Information Retrieval Conference, 2015.

collecting the ground truth with certain task demands on
the annotators. It has been notoriously difficult to collect a
ground truth for MEVD with a reasonable inter-annotator
agreement, and the reason may lie in the fact that musi-
cal meaning is usually communicated during bigger time
spans than several seconds, and it is therefore difficult and
unnatural for the listeners to evaluate their emotional re-
sponse to music in such a way. Though it might still be in-
teresting and important to track musical change over time,
the question should be raised whether change on such a
short time scale is actually an expression of musical emo-
tion or the means of creating emotional expression on a
higher level (e.g., accelerando or crescendo).

A bordering MER field (static MER) studies identifi-
cation of emotion in somewhat longer musical segments.
Static MER methods usually deal with excerpts of 15 to
30 seconds. It is natural for listeners to describe musical
content by applying emotional labels to musical excerpts
or complete pieces. This kind of labels are used by most
music services to categorize their data. However, the real
world problem of MEVD requires music to be presegmen-
ted into fragments with stable emotion. This problem is
usually just neglected by static MER methods, which of-
ten use ground-truth excerpts picked by randomly sam-
pling the audio and filtering out the excerpts that receive
contradictory ratings from experts. Also, sometimes the
problem is solved (or rather avoided) by trying to pick the
most representative part of the song for classification (e.g.,
chorus).

Hence, many questions about emotional segmentation
of music remain unsolved. What is a typical length of
an emotionally stable fragment in music? (Ironically, both
static and dynamic MER methods usually deal with musi-
cal excerpts of more or less the same lengths, ranging from
15 to 45 seconds in an attempt to cover as much different
music as possible while reducing the annotation burden.)
Is emotional segmentation explained by structural segmen-
tation? How many emotional boundaries are there typi-
cally in a piece of music? Which segmentation methods
work best when applied to emotional boundary detection?

These are the questions that we are going to deal with
in this paper. For these purposes we assemble a dataset of
52 double-annotated pieces from the RWC music database
[6], which also have structural annotations in the SALAMI
dataset [13]. We obtain a little under 2000 annotated emo-
tional boundaries (around 630 from each of the annota-
tors). We compare emotional and structural segmentation
of music, analyze the inter-annotator agreement and the
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average stable segment length. Then we apply four seg-
mentation algorithms to emotional segmentation problem
and benchmark them on our dataset. Though the dataset
is not big, a formal evaluation of emotional segmentation
performance has never been conducted before.

In this work, we are not going to deal with MER in a tra-
ditional sense (predicting emotion from a musical excerpt).
There already exist numerous state-of-the-art approaches
to this problem [20]. Here we will address the question
how to do the preprocessing step before static MER, i.e.,
emotional segmentation of music.

The rest of the paper is organized as follows. In section
2 we describe related research. In section 3 we explain
why dynamic MER methods, at least in their current form,
might not produce a good solution to the MEVD problem.
In section 4 we analyze the obtained emotional segmen-
tation. In section 5 we compare different segmentation
methods when applied to a problem of detecting emotional
boundaries in music. Section 6 concludes the paper.

2. RELATED WORK

Though the problem of emotional boundary detection has
not yet been addressed systematically, there exist MER
methods that can be applied to this problem, and we will
review them in this section. For a more general overview
of MER, [20] can be consulted.

2.1 Static MER for MEVD

The most simple approach to MEVD when using a static
MER method is detecting emotion over time using a slid-
ing window. This method would give a distorted result
when a sliding window has an emotional boundary in it.
In [21], a sliding window of ten seconds and 1/3 overlap
is used to segment a music piece, and a fuzzy classifier
is trained to detect the emotion of the segments. In [9]
it is suggested that a homogeneous music segment is usu-
ally around 16 seconds, and therefore a sliding window of
16s is used to detect the boundaries by comparing feature
distributions from neighboring windows. This approach is
shown to be viable, though many questions are left open.
For instance, only two features — intensity and timbre —
are tested, and the evaluation is conducted only on 9 pieces.
A similar approach is attempted in [15] to solve a multi-
label classification problem (with two sliding windows of
10s and 30s). It is concluded that a more sophisticated
emotional segmentation strategy is needed. Multi-label
classification approaches recognize that one musical piece
can express a variety of emotions and several labels are
applicable to one piece. However, the music is often still
handled in the same way as in the static MER approach. A
short excerpt (e.g., 30s) is selected ( [16], [17]), and several
labels are applied to it, which addresses the problem of mu-
sical ambiguity, but not musical change. As opposed to this
approach, in [18] a multi-label classification was applied
to whole musical pieces, which were pre-segmented us-
ing aligned lyrics annotations on an assumption that most
often emotion is stable within one sentence. Then, a hi-

erarchical Bayesian model was applied to a task of multi-
label classification. Due to the absence of ground-truth on
emotional boundaries in [18], it is left unclear how well
the annotated sentences in the lyrics actually correspond to
emotional structure of the musical piece.

To answer the question of what is the typical length of
musical segments that represent stable emotion, Xiao et
al. tried to classify excerpts of different lengths by emo-
tion and found that excerpts of 8 or 16 seconds have a
better classification accuracy than excerpts of 4 or 32 sec-
onds [19]. This experiment gives an indirect indication of
emotional segmentation resolution.

2.2 Dynamic MER

Dynamic MER methods are usually trained on time-series
of annotations, typically with a resolution of 1 or 2 Hz. In
Korhonen et al. [7], musical emotion is modeled as a func-
tion of musical features using system identification tech-
niques. In [11], conditional random fields were used to
model continuous emotion with a resolution of 11× 11 in
valence-arousal space. A similar strategy was employed
in [4], where dynamic texture models were trained corre-
sponding to quadrants of resonance-arousal-valence model
and applied to predict musical emotion continuously. When
separate models are trained to predict different emotions,
emotional boundary detection occurs naturally. This ap-
proach might be problematic, however, due to lack of reso-
lution in the emotional space. Also, for boundary detection
it might be more important to keep track of the local con-
text and relative changes in musical attributes rather than
predict an absolute rating at every moment. This is why
unsupervised methods might work very well in this case.

3. MOTIVATION

While static MER methods cannot deal with emotionally
non-homogenous music, dynamic MER methods approach
this problem by taking the fragmentation to the extreme
(the typical resolution of a dynamic MER method is 1 sec-
ond), which might create even more problems than it solves.
Firstly, the output (per-second emotion prediction) produ-
ced by a dynamic MER method is not easily interpretable
and useful. Secondly, it seems that musical emotion is not
conceptualized in this way by listeners.

3.1 Analyzing dynamic MER ground-truth

Dynamic MER relies on human ground-truth in the form
of per-second emotional annotations, which are typically
recorded from an annotator continuously moving their cur-
sor in a one or two-dimensional space [1, 14]. It seems
that this task is extremely difficult for humans, which is, in
particular, indicated by a very low inter-annotator agree-
ment as compared to static annotations (where, due to task
subjectivity, it is also not very high). For the MediaEval
dataset [1], the average Kendalls W is 0.23 ± 0.16 for
arousal and 0.28 ± 0.21 for valence, and for the Mood-
Swings Lite dataset [14] the mean Kendall’s W is 0.21 ±
0.14 for arousal and 0.23 ± 0.17 for valence. All these
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Figure 1. Dynamic annotation of 45 seconds of audio from
[1]. One third of the annotators react to every beat of slow
music by a peak in arousal.

numbers indicate weak agreement. There are several typi-
cal problems arising when annotating music continuously:

1. A dimensional annotation interface has an absolute
scale. For instance, on an axis with a slider control-
ling valence, the leftmost side represents the most
miserable music imaginable, and the rightmost the
most ecstatic one. Giving absolute ratings is rela-
tively easy when evaluating music statically (com-
paring a piece to all existing music). When compar-
ing piece with itself over time, humans tend to think
of occurring changes relatively. This leads to a huge
difference in magnitude of given ratings, though the
direction of change can be indicated uniformly (e.g.,
see Figure 1).

2. Though it is not explicitly requested from the anno-
tators to move their cursor at all times, the task de-
mands (short excerpt, necessity to track and respond
continuously) lead to some of the annotators evalu-
ating every single musical event (e.g., see Figure 1).
This results in annotations on widely different ‘zoom
level’.

We argue that continuous annotation is so difficult (al-
beit through training in the lab and a careful selection of
complete music pieces it is possible to obtain satisfying
results [3]) because it is unnatural for humans to evalu-
ate their emotional response on a per-second basis, since
emotional expression occurs on a much larger time-scale.
Though through years of exposure to music listeners ac-
quire an ability to associate certain timbres with genre and
emotion, and a crude emotional interpretation is possible
even from short sounds snippets of 300ms [8], we believe
that real-life emotional interpretation of music is much more
complex and happens during longer time spans, most cer-
tainly when it concerns induced emotion.

Figure 2. Histogram of segment durations for the three
annotators separately.

4. ANALYSIS OF EMOTIONAL BOUNDARIES

4.1 Data

The dataset consists of 52 complete pieces [6] from Pop,
Jazz and Genre (the latter contains rock, soul, world etc.
music) collections of RWC music database. We picked the
pieces that already had SALAMI [13] annotations in order
to compare structural and emotional segmentation. The
SALAMI annotations for these pieces are single-keyed,
our annotations are triple-keyed in order to enable mea-
suring agreement.

The three annotators received instructions to mark when
emotion of the piece changes. There were no explicit in-
structions as to what could be interpreted as an emotional
boundary. They were also instructed to mark the transi-
tions between stable emotional states as separate sections,
in case those were long enough to be perceived as sepa-
rate ‘transition states’. In practice, this meant for instance
marking long diminuendo (fade-out) at the end of a musi-
cal piece as a separate section.

In total, annotators marked 562, 602 and 746 emotional
boundaries, respectively. The dataset is available from the
website osf.io/jpd5z.

Evaluation metric A2→A1 A3→A2 A1→A3
Precision @ 0.5 0.47 0.43 0.52
Recall @ 0.5 0.48 0.33 0.55
F-measure @ 0.5 0.46 0.37 0.67
Precision @ 3 0.73 0.88 0.72
Recall @ 3 0.76 0.79 0.88
F-measure @ 3 0.73 0.77 0.78

Table 1. Inter-annotator boundary retrieval with a toler-
ance window of 0.5 and 3 seconds.

4.2 Inter-annotator agreement

The mean number of boundaries per piece was 12.2 (me-
dian = 11.5). The average segment length was 19.5± 18s.
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Figure 2 shows the histograms of segment lengths from
the three annotators. We can see that the distribution is
skewed, 90% of intervals are shorter than 37 seconds. An-
notators 1 and 3 have annotated more short segments than
annotator 2, which was caused mostly by their different
decisions about short (1–3 seconds) transition segments in
music (e.g., short pauses between verse and chorus).

Unfortunately, segmentation tasks are not well-adapted
for formal inter-annotator agreement calculation. We per-
form the standard F-measure evaluation as is common in
the literature [13]:

F1 = 2
precision · recall

precision + recall
. (1)

Table 1 shows the F-measure at 0.5 and 3 seconds. The
metrics are similar to those obtained for the structural seg-
mentation task, though a bit lower for a 0.5s window [13].
It seems that 0.5s window is too strict for these particular
annotations. This might be caused by the nature of the task.
Though some emotional boundaries are rather abrupt, oth-
ers are smeared by a transitional musical process necessary
for an emotion to modulate from one state to another.

4.3 Structural segmentation explaining emotional
segmentation

In order to check how well emotional segmentation is ex-
plained by structural segmentation we compared the emo-
tional boundary annotations to structural boundaries in the
SALAMI dataset. The SALAMI dataset contains hierar-
chical annotations on multiple levels — musical function
(verse, chorus, etc.), lead instrument, and musical similar-
ity on large and small scale. Table 2 shows the precision,
recall and F-measure obtained when predicting emotional
segmentation from structure. From the table we can see
that about 69 to 80% of the emotional boundaries coin-
cide with large section boundaries. More than a half of
the boundaries coincide with the lead instrument change.
Small-scale similarity was not included in the table be-
cause of the abundance of small-scale boundaries (mean-
ing close to 100% recall and very low precision). We also
didn’t include the 0.5s time resolution, because emotional
segmentation seems to be less precise than structural and
0.5s time resolution is too detailed.

It is important to note that, with regard to F-measure, the
emotional annotations when retrieved from each other have
a bigger score than with any of the structural segmentation
annotations.

5. SEGMENTATION METHODS EVALUATION

Segmentation methods are usually categorized into homo-
geneity, novelty and similarity based methods. We argue
that for emotional boundary detection only the first two
categories are relevant, because an emotional boundary is
usually signified by changes in loudness, timbral proper-
ties, harmony, instrumentation, etc., and though it might
coincide with repetitive segments (i.e., chorus), there is no
straightforward connection between them. Hence, in this
section we are mostly going to evaluate homogeneity and
novelty based methods, namely Convex NMF [10], Mood
Tracking [9], the classic method by Foote [5] and Struc-
tural Features [12]. We implemented the Mood Tracking
method as described in the article, and adapted an imple-
mentation 1 of the rest for our purposes (i.e., feature ex-
traction, thresholds etc. as described below).

All of these methods are unsupervised and take as in-
put time-series of features extracted from audio. We ex-
tract both low (mfcc, chroma, energy, dissonance and other
spectral features) and high-level (scale, tempo, tonal stabil-
ity) beat-synchronized audio features using Essentia [2].
Beats are determined using the Essentia BeatTracker algo-
rithm. All the music files have 44100 Hz sampling rate
and are converted to mono. To extract low-level timbral
features we use a half-overlapping window of 100ms, and
a window of 3 seconds for high level features. The fea-
tures are smoothed with median sliding window, normal-
ized, and resampled according to detected beats (see Figure
3a).

We use the same feature set to evaluate all the algo-
rithms. Many segmentation algorithms limit themselves to
using only MFCC or chroma features, but through experi-
mentation with different feature sets we found that adding
other spectral and high-level features significantly improves
the performance on our dataset.

To combine the annotations, we decided to select only
the boundaries which were marked by all the annotators
with a tolerance window of 3 seconds. We will call them
common. It can be assumed that the boundaries present in
all the three annotations are the most prominent and im-
portant ones.

5.1 Summary of evaluated methods

5.1.1 Foote

Foote’s method [5] relies on a self-similarity matrix (com-
posed using pairwise sample comparisons). A short-time

1 https://github.com/urinieto/SegmenterMIREX2014

Evaluation metric Functions Large scale Instruments

A1 A2 A3 A1 A2 A3 A1 A2 A3

Precision @ 3 0.61 0.68 0.67 0.63 0.63 0.67 0.52 0.50 0.51
Recall @ 3 0.74 0.78 0.75 0.69 0.80 0.75 0.55 0.55 0.58
F-measure @ 3 0.65 0.71 0.69 0.64 0.68 0.69 0.50 0.50 0.55

Table 2. Retrieving emotional segmentation from structural segmentation
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C-NMF SF Foote MT (enh.)

Evaluation
metric C A1 A2 A3 C A1 A2 A3 C A1 A2 A3 C A1 A2 A3

P@3 .27 .35 .36 .47 .33 .43 .49 .57 .31 .38 .41 .50 .18 .28 .27 .34
R@3 .71 .67 .69 .67 .67 .61 .68 .61 .72 .67 .72 .66 .43 .47 .47 .41
F@3 .36 .43 .45 .52 .41 .47 .55 .56 .39 .45 .50 .53 .23 .34 .33 .35

Table 3. Performance of investigated methods on emotional segmentation task (F-measure).

Figure 3. An illustration of the boundary detection pro-
cess on the Radetzky March by J. Strauss Sr.. a) Beat-
synchronized features. b) Annotations. c) Novelty curves
and detected boundaries.

Gaussian checkerboard-shaped kernel is slided over the di-
agonal of the matrix, resulting in a novelty curve. The
boundaries are detected by picking the peaks on the nov-
elty curve. We experimented with different distance mea-
sures to compute the SSM and found that standardized eu-
clidean distance gave the best results, which is computed
between two vectors u and v as follows:

√∑
(ui − vi)2/V [xi] , (2)

where V is the variance vector; V[i] is the variance com-
puted over all the ith components of the points. We set the
size of the checkerboard kernel to the size of the average
emotionally stable segment — 20 seconds.

5.1.2 Convex NMF

The Convex non-negative matrix factorization method [10]
(Convex NMF) uses a convex variant of NMF in order to

divide the audio features into meaningful clusters. This
algorithm focuses both on finding segments and grouping
them by similarity. If a NMF of input feature matrix X is
FG, Convex NMF adds a constraint to the columns of the
matrix F (f1, f2, ..., fn) that the columns should become
convex combinations of the features of X:

fi = x1w1j + ...+ xpwpj = Xwj , j ∈ [1 : r], (3)

where xp is a column of matrix X , r is a rank of decom-
position, and wij ≥ 0,

∑
j wij = 0. This makes columns

fi interpretable as cluster centroids. We set the rank of
decomposition to 2.

5.1.3 Mood Tracking

A method by Lu et al. [9] finds boundaries by comparing
the audio features extracted from the two consecutive win-
dows of 16 seconds and computing a difference between
them. A novelty curve is formed using an obtained differ-
ence feature, from which peaks are picked. The difference
between the consecutive windows is computed using diver-
gence shape measure:

Di|i+1 =
1

2
Tr
[
(Ci − Ci+1)(C−1i+1 − C−1i )

]
, (4)

where Ci and Ci+1 are the covariance matrices of features
of windows i and i + 1. Then, confidence of boundary is
computed:

Confi|i+1 = exp

( |Di|i+1 −Dmean|
Dvar

)
, (5)

where Dmean and Dvar are the mean and variance of all di-
vergence shapes for this song. From a list of boundary
confidences the boundaries are retrieved by satisfying con-
ditions of being a local maximum and exceeding a local
adaptive threshold.

We implemented the method as it was described in [9],
but it didn’t work well in its original form on our data. The
constraint of 16 seconds was too conservative and adaptive
threshold window was too narrow. We describe an opti-
mized version below. The optimized version performs on
average about 10% better than the original method, and we
only show the performance of the optimized version in Ta-
ble 3.
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5.1.4 Enhanced Mood Tracking

The best results with Lu et al. method were obtained using
a window of 4 seconds to compute the divergence shape
measure. We smoothed the boundary confidence vector
with a median filter before peak picking. To pick the peaks,
we select a maximum in a neighbourhood of 10 beats in
case it exceeds both of the two threshold – a moving aver-
age and half of the global average.

Though the performance of the method improved with
modifications, it still performed worse than other methods
in our evaluation.

5.1.5 Structural Features

The Structural Features (SF) method is both homogene-
ity and repetition based. It uses a variant of lag matrix to
obtain structural features. The SF are differentiated to ob-
tain a novelty curve, on which peak picking is performed.
The SF method calculates self-similarity between samples
i and j as follows:

Si,j = Θ (εi,j − ||xi − xj ||) , (6)

where Θ(z) is a Heaviside step function, xi is a feature
time series transformed using delay coordinates, ||z|| is a
Euclidean norm, and ε is a threshold, which is set adap-
tively for each cell of matrix S. From matrix S structural
features are then obtained using a lag-matrix, and comput-
ing the difference between successive structural features
yields a novelty curve.

5.2 Evaluation results

Table 3 shows the results obtained in evaluation. We only
use a tolerance window of 3 seconds, because for our dataset
a tolerance window of 0.5s is too strict. From the table we
can see that the SF method consistently shows the best re-
sults in terms of F-measure. The method proposed in [9]
consistently shows the worst results.

6. DISCUSSION

In this paper we discussed the problems associated with
dynamic MER and argued that these problems originate
from the unnaturally low time resolutions that dynamic
MER is usually dealing with (Section 3). We proposed
to move to bigger time resolutions by tracking emotionally
stable segments over time and identifying transitions be-
tween them. We call this problem emotion based segmen-
tation, and conduct a formal evaluation procedure, which
has not been done before for this task.

We collected data on emotional segmentation of music;
in total about 2000 emotional boundaries were annotated.
In general, the annotators could agree rather well when
identifying stable emotional segments, the inter-annotator
F-measure was comparable to the one obtained for, sup-
posedly less ambiguous, structural segmentation task, ex-
cept for the very high resolution level (0.5 s). In terms of
F-measure the emotional annotations coincide with each
other better than any of the structural segmentation lev-
els. That means that there exist some robust and important

emotional boundaries which are not explained by structural
segmentation.

We compared emotional and structural segmentation and
found that emotional boundaries coincide with structural
boundaries very often. About half of the emotional bound-
aries were accompanied by a lead instrument change. Ap-
proximately 25% of the emotional boundaries did not coin-
cide with the structural boundaries. For instance, an emo-
tional change can occur within a structural section due to a
modulation to a different tonality.

We found that the average length of stable emotional
segment is approximately 20 seconds. This finding could
be used to calculate a suitable length of musical excerpts to
be employed for MEVD algorithms development and eval-
uation. Namely, we believe that length of such excerpts
should be several times bigger than 20 seconds.

We evaluated different unsupervised segmentation al-
gorithms on the task of emotional segmentation and found
that the SF method performed best. This segmentation
method is different from the second best Foote’s method by
incorporation of repetition-based criteria along with homo-
geneity-based ones. This shows that sequences of emotion-
ally stable segments, probably, repeat in the same way as
structural sequences, and therefore repetition-based cues
are useful for emotional boundary detection. This find-
ing goes against our initial intuition that novelty and ho-
mogeneity cues must be the only ones important to de-
tect emotional change. The Mood Tracking method was
demonstrated to be least useful. This method only uses a
very narrow local context to find the discontinuities in a
feature matrix, which appears to be not enough. We also
found that employing higher level audio features, along
with traditional chroma features and MFCCs, improves the
performance of the methods on emotional segmentation
task.

Though SF’s method performed reasonably well, its per-
formance was still much worse than the performance achie-
ved by best methods for structural segmentation, which is
a more mature area of research now. Developing better
emotional segmentation methods is a crucial task to enable
applying static MER algorithms to real world problems.
We leave this task for future work, which can be facilitated
by the data provided in this study.
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ABSTRACT 

Evaluation has always been fundamental to the Music 

Information Retrieval (MIR) community, as evidenced by 

the popularity of the Music Information Retrieval Evalua-

tion eXchange (MIREX). However, prior MIREX tasks 

have primarily focused on testing specialized MIR algo-

rithms that sit on the back end of systems. Not until the 

Grand Challenge 2014 User Experience (GC14UX) task 

had the users’ overall interaction and experience with 

complete systems been formally evaluated. Three systems 

were evaluated based on five criteria. This paper reports 

the results of GC14UX, with a special focus on the quali-

tative analysis of 99 free text responses collected from 

evaluators. The analysis revealed additional user opin-

ions, not fully captured by score ratings on the given cri-

teria, and demonstrated the challenge of evaluating a va-

riety of systems with different user goals. We conclude 

with a discussion on the implications of findings and rec-

ommendations for future UX evaluation tasks, including 

adding new criteria: Aesthetics, Performance, and Utility. 

1. INTRODUCTION 

Since 2005, the Music Information Retrieval (MIR) 

community has benefited from the Music Information Re-

trieval Evaluation eXchange (MIREX), an annual evalua-

tion event led by researchers at University of Illinois [7]. 

MIREX has had a significant contribution to the field as 

it allows system developers to test and improve their MIR 

algorithms. However, as the field matures, the current 

state of the art is increasingly deemed sufficient to sup-

port an acceptable degree of efficiency and effectiveness 

in various conventional MIREX tasks, resulting in the 

glass ceiling effect [1,2,11]. A number of researchers 

have also pointed out the limitations of MIREX, includ-

ing the dominance of a system-centered approach and the 

lack of consideration for real users [11,12,14,19].  

In response to the feedback received from the MIR 

community, the MIREX grand challenge was held in 2014. 

This was substantially different from any of the past 

evaluation tasks in two respects: 1) the focus of evalua-

tion shifted to include the front end of the system (i.e., 

how users interact with the system), and 2) the submis-

sions were complete MIR systems that can employ vari-

ous MIR techniques rather than individual algorithms. 

This marks a shift of the evaluation paradigm, since all 

the MIREX evaluation tasks have been focused on the 

back end, with the front end being largely ignored [11,15]. 

Three different MIR systems participated in the Grand 

Challenge 2014 User Experience (GC14UX). In this pa-

per, we present the findings from analyzing the results of 

GC14UX, focusing on the free-text user responses. The 

goal of the paper is twofold: 1) understanding how users 

reacted to which aspects of the systems in their responses, 

and 2) using that knowledge to improve the design of fu-

ture MIR UX evaluation tasks. In particular, we seek to 

answer the following research questions: 

Q1. Which aspects of MIR systems were most im-

portant to users, as evidenced by the responses?   

Q2. Based on users’ responses, are there any evalua-

tion criteria we should consider revising or adding for fu-

ture iterations of MIR evaluation of user experience?  

2. BACKGROUND 

2.1 User-centered Evaluation in MIR 

As pioneers in user-centered evaluation in MIR, Pauws et 

al. [17,18,20] conducted a series of user evaluation tasks 

to examine an interactive playlist generation system. Sev-

eral user-centered measures were considered, including 

time on tasks, number of actions, preference, ease of use, 

and usefulness. Although the evaluation was confined to 

one specific MIR system, it is noteworthy that they con-

sidered the front-end interface and the user’s interaction 

in the earlier days of MIR system evaluation. Hoashi et 

al. [9] also conducted a user evaluation of visualization 

interfaces for MIR systems based on subjective measures 

such as perceived accuracy and enjoyability. 

Despite such efforts, most MIR evaluation research is 

still based on a system-centered approach without involv-

ing users. While this makes sense for some of the micro-

level tasks, ultimately many algorithms that are being 

evaluated will be implemented as features in complete 

MIR systems. Therefore it is important to consider how 

users determine the usefulness and value of the systems. 

Hu and Kando [10] also emphasized the need for user-

centered evaluation in MIR based on their finding that 

only a weak correlation existed between user-centered 

measures and system-centered measures in their evalua-

tion experiment of MIR systems.  

Leaving aside the shortage of user-centered evaluation 

in our field, the evaluation in the few aforementioned 

studies has been mostly limited to specific algorithms or 
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Figure 1. Screenshots of Thank You for the Music, Moody, and Tonic. 
 

functions such as playlist generation algorithms and rec-

ommender systems [14]. This has been attributed to the 

lack of complete MIR systems ready for evaluation with-

in the MIREX framework [11,15]. Consequently, at-

tempts to conduct a holistic user-centered evaluation of 

MIR systems had to be done with existing commercial 

music services. For example, Lee and Price [15] exam-

ined how Nielsen’s usability heuristics [16] can be ap-

plied to evaluate multiple aspects of user experience for 

services like Pandora, Spotify, etc. As the MIR field is 

maturing, there is also a growing recognition that we are 

ready to evaluate complete and full-featured systems in-

corporating various sub-components with helpful inter-

faces [6,11]. Therefore, GC14UX was held, aiming to in-

spire the development of complete MIR systems and a 

holistic evaluation of user experience with those systems.  

2.2 GC14UX Evaluation Framework and Process
1
 

The dataset used in GC14UX was a sample of 10,000 

tracks with the CC-BY (Creative Commons Attribution) 

license from the Jamendo collection
2
, for the purpose of 

avoiding any potential copyright issues. All tracks had 

song and album titles, artist name, and at least two genre 

tags. To guide the evaluators, a user task was created 

based on several criteria: 1) a common and realistic MIR 

task, 2) a task specific enough to help evaluators judge 

how successful the results are, 3) a task not tied to a par-

ticular MIR technique, and 4) a task that can be reasona-

bly accomplished with the given dataset. The final task 

was determined as follows: “You are creating a short vid-

eo about a memorable occasion that happened to you re-

cently, and you need to find some (copyright-free) songs 

to use as background music.” 

An online evaluation platform was set up so that eval-

uators could easily access the MIR systems through a 

web browser. The invitations were circulated through 

mailing lists within the MIR community. Evaluators were 

asked to interact with the systems and rate their scores on 

a seven-point Likert scale for the following criteria: 

 Overall Satisfaction: How would you rate your 

overall satisfaction with the system? 

 Learnability: How easy was it to figure out how to 

use the system? 

 Robustness: How good is the system’s ability to 

warn you when you are about to make a mistake, al-

low you to recover, or retrace your steps? 

                                                           
1 For more detailed information on the framework, see [11]. 
2 https://www.jamendo.com/en/welcome 

 Affordance: How well does the system allow you to 

perform what you want to do? 

 Feedback: How well does the system communicate 

what is going on? 

Evaluators were also given an opportunity to provide 

their comments in an open text field.  

2.3 Participating Systems and Quantitative Ratings 

There were a total of three systems that participated in 

GC14UX: Thank You for the Music (hereinafter, Thank 

You), Moody, and Tonic (Figure 1)
3
. The design and func-

tionality of the three MIR systems varied to some extent. 

Thank You provides users with access to a music collec-

tion through a more traditional music digital library inter-

face, offering music search by title, album, genre, and art-

ist. Moody is a recommender system in which a music 

collection can be browsed based on mood and genre. 

Tonic is a tag-based discovery system with a highly inter-

active interface utilizing pre-defined tags to find songs. 

The three systems received mean scores between 4.15 

and 5.37 across all criteria [11]. Tonic received the best 

score in Affordance (4.71), Feedback (4.79), and Overall 

Satisfaction (OS) (5.11). Thank You scored the highest in 

Learnability (5.37) with an OS of 4.15. Moody led in Ro-

bustness (4.53) with an OS of 4.63. However, the results 

of the Kruskal-Wallis test [5] showed that only the OS 

category had significant differences across systems [11]. 

3. ANALYSIS OF USER FEEDBACK 

3.1 Codebook and Coding Process 

We employed content analysis, a widely used qualitative 

data analysis method as described in [13], to uncover and 

code common themes in the 99 user responses. On aver-

age, there were 69 words in a response (median=51, 

max=259, min=2). The codebook was developed through 

an iterative process involving test-coding a subset of data 

and revising the codes for clarity. Table 1 presents de-

tailed information on all the codes that emerged from the 

user responses. Each user response contained an average 

of 3.17 excerpts, each representing a particular code. The 

codes were organized into seven higher-level categories 

based on topical similarity. The count of excerpts for 

each code and the percentage calculated over the total 

number of excerpts (314) are also reported in the table.  

                                                           
3 Accessible at: http://bit.ly/1zqz1m0 (Thank You), 

http://bit.ly/1R3rNdr (Moody), http://bit.ly/1GU7GLO (Tonic) 
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 Categories Codes Definition  # % 

E
v

alu
atio

n
 C

riteria 

Aesthetics attractiveness The user specifically talks about the visual appeal of the interface.  27 8.6 

Affordance  access  The user specifically comments on an ability to access original music files 

within the system.  

7 2.2 

play function The user specifically talks about the music play function in the system, in-

cluding various aspects of the player such as the interface and features.   

25 8.0 

save function The user specifically talks about some kind of save function like a book-

mark function allowing users to revisit the page, ability to save the selected 

songs, or preservation of specific system settings set by the user. 

12 3.8 

search/ 

browse 

The user specifically mentions topics related to searching or browsing mu-

sic based on metadata (e.g., artist name, song/album title, genre, mood la-

bels), including advanced search, auto-complete, and finding similar items.  

91 29.0 

Feedback clarity The user specifically talks about the clarity of functions or labels provided. 39 12.4 

Learnability  ease of use The user talks about how easy, intuitive, and user-friendly it is to use the 

system and complete their desired task. 

40 12.7 

help The user comments on help provided in the system such as guidelines, tuto-

rials, or instructions.  

9 2.9 

Performance bugs/ 

glitches  

The user specifically talks about bugs/glitches in the system that cause it to 

produce incorrect or unexpected results, or behave in unintended ways.   

5 1.6 

response time The user specifically talks about the response time (i.e., the length of time 

taken for a system to react to a given event). 

8 2.5 

search  

results 

The user specifically talks about the quality of search results and how they 

are presented to the user. 

32 10.2 

Utility usefulness The user talks about the overall usefulness of the system, as well as its use-

fulness for the given evaluation task. 

13 4.1 

A
d

d
itio

n
al 

asp
ects 

External  

factor 

dataset The user specifically notes the effects and/or limitations of using a particu-

lar dataset for the evaluation task.  

6 1.9 

Sentiment positive The user expresses positive feelings in terms of a particular code. 107 34.1 

negative The user expresses negative feelings or desires for specific func-

tions/features in terms of a particular code. 

198 63.1 

Table 1. Summary of codebook. 
 

The first six categories correspond to particular eval-

uation criteria. We can observe that three of these catego-

ries were used as evaluation criteria in GC14UX (in 

bold). Codes matching the criterion Robustness did not 

emerge from coding user responses. The External factor 

category contains the code dataset that was used to mark 

the responses noting limitations of the experience due to 

variables that were not controllable by system developers. 

We also had an “Other” code used for uncommon but rel-

evant part of responses that did not fit into existing codes 

(e.g., comments on scalability issues, mobile device com-

patibility, etc.). Codes in the Sentiment category (i.e., 

positive and negative) were used in conjunction with an-

other code to note users’ feelings regarding that code. 

3.2 Inter-coder Reliability 

To ensure consistent application of codes, two coders 

were recruited. The coders independently coded a subset 

of user excerpts (42% of all excerpts) and Cohen’s kappa 

coefficient [4] was calculated to measure their agreement. 

Table 2 shows that all the kappa coefficients for each 

code fall in the range of good (.60-.74) or excellent 

agreement (.75-1.0) [3,8]. The Pooled Kappa statistic 

summarizing the overall results across all the codes [21] 

was .884, suggesting an excellent agreement.  

Code Kappa value Agreement level 

save function 1.00 excellent 

bugs/glitches 1.00 excellent 

negative 0.98 excellent 

positive 0.97 excellent 

play function 0.95 excellent 

response time 0.92 excellent 

help 0.91 excellent 

dataset 0.88 excellent 

attractiveness 0.87 excellent 

clarity 0.86 excellent 

usefulness 0.85 excellent 

ease of use 0.82 excellent 

search/browse/metadata 0.80 excellent 

search results 0.80 excellent 

access  0.66 good 

Table 2. Kappa coefficients for each code. 

3.3 Tabulation of Codes 

Table 3 shows the counts of positive excerpts for each 

system, sorted by the sum of all counts for each code. We 

can observe that participants liked Thank You for more 

functional reasons (e.g., search/browse, access to music 

files, search results) whereas they liked Tonic for aesthet-

ics and usability aspects (e.g., attractiveness, ease of use, 

usefulness) in addition to functional reasons (e.g., play 

function, save function). Moody’s scores were fair across 

most of the codes except save function, access to music 

files, and search results. Overall, Tonic had the highest 

number of positive excerpts, with Thank You and Moody 

having approximately the same numbers.  
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Thank 

You 
Moody Tonic Sum 

search/browse 14 10 4 28 

ease of use  8 9 10 27 

attractiveness  0 7 11 18 

usefulness  1 1 6 8 

play function  1 2 3 6 

save function  0 0 6 6 

access to music files  4 0 0 4 

clarity  1 1 1 3 

help  0 1 2 3 

response time  1 1 1 3 

search results 1 0 0 1 

Total 31 32 44 107 

Table 3. Tabulation of positive codes. 

We also tallied up the counts of negative excerpts for 

each system (Table 4). Negative excerpts also include de-

sires for additional features/functions, so a high count 

does not necessarily mean that participants disliked the 

system. Moody had the highest number of negative ex-

cerpts, mostly for search/browse, which was also the 

most commonly mentioned aspect across all three sys-

tems. Evaluators had strong opinions about the search 

function in Moody, also evidenced by the highest number 

of counts in search results. For Tonic, improving the clar-

ity and help was important, in addition to play function.    

 

Thank 

You 
Moody Tonic Sum 

search/browse 19 34 10 63 

clarity  5 10 20 35 

search results  3 11 9 23 

play function  3 7 9 19 

ease of use  4 2 7 13 

attractiveness  4 4 1 9 

save function 2 4 0 6 

dataset 2 3 1 6 

help  0 1 5 6 

bugs/glitches  2 1 2 5 

response time  3 1 1 5 

usefulness 2 3 0 5 

access to music files 0 1 2 3 

Total 49 82 67 198 

Table 4. Tabulation of negative codes. 

When we tabulate the counts based on the top-level 

categories and compare the counts for positive and nega-

tive excerpts for each category, we can observe with 

which aspects evaluators were most satisfied and dissatis-

fied (Table 5). Across all three systems, Affordance, Per-

formance, and Feedback had more negative excerpts, 

suggesting these aspects need to be improved upon. 

Learnability, Aesthetics, and Utility had more positive 

excerpts overall, although notably Thank You had no pos-

itive excerpt for Aesthetics. 

Top level 

Thank 

You 
Moody Tonic Sum 

Affordance + 19 12 13 44 

Affordance - 24 46 21 91 

Learnability + 8 10 12 30 

Learnability - 4 3 12 19 

Feedback + 1 1 1 3 

Feedback - 5 10 20 35 

Performance + 2 1 1 4 

Performance - 8 13 12 33 

Aesthetics + 0 7 11 18 

Aesthetics - 4 4 1 9 

Utility + 1 1 6 8 

Utility - 2 3 0 5 

Table 5. Tabulation of codes at the top level categories. 

4. DISCUSSION OF CATEGORIES AND CODES 

4.1 Aesthetics 

Aesthetics consists of a single code regarding the overall 

attractiveness of the system. While this aspect was not 

included in the GC14UX evaluation criteria, it may be 

appropriate to consider adopting it for future iterations. 

Most excerpts coded with attractiveness were about how 

appealing the visual interface was, with a few comments 

about the use of white space, clean interface, use of ani-

mation, and background color. The importance of this 

aspect is well-captured in the following response: 

“What's funny is that while [Thank You] allows me to 

search and browse, I really liked the graphic nature of 

the previous two interfaces. I don't necessarily think this 

interface performs any less well than the others--” 

4.2 Affordance 

Affordance consists of four codes related to particular 

features or functions of the system. For access, most of 

the excerpts mentioned that Thank You was the only sys-

tem where users could download the songs. To some par-

ticipants, that meant that the system was “complete,” and 

gave them “real results.”  

Excerpts coded with play function tended to be more 

negative, mentioning evaluators’ desires to have more 

control in which part of the song they are playing. Some 

evaluators did appreciate that Tonic plays the selected 

songs starting in the middle (e.g., “I like the fact that the 

selected pieces start playing from the middle, giving an 

immediate sense of the general mood and texture of the 

piece”), but more evaluators wanted to be able to select 

from multiple options themselves: 

“I would like to have an [sic] checkable option, “start 

playing from beginning”/”start playing from the middle" 

(or 25%, 30%, 40%), because sometimes [what] is im-

portant [is] the beginning, and sometimes (mostly) the 

mood of whole song.”  

Evaluators also commented negatively on the fact that 

they had to go through another step for playing the music 

in Thank You and Moody (e.g., “I’d expected to start 

playing a track whenever I clicked on its cover, instead of 

having to wait for the pop-up and click ‘play.’ ”). The 

lack of visibility of the play button/slider was also noted 

for Moody and Tonic (e.g., “The ‘play’-slider is a bit 

small”; “difficult to find play button for the next song”).  
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With regard to the save function, Tonic had multiple 

positive excerpts on the usefulness of the bookmark func-

tion, which was missing in other systems:  

“there is a function at the top left corner for users to save 

their favorite results, it is convenient for user to compare 

the music later and choose the best result…” [Tonic] 

“i wish there were a way for me to create[,] like a list, 

collection, playlist, or save or favorite multiple songs for 

comparison or reconsideration.” [Moody] 

The system remembering user settings was also im-

portant; evaluators noted that in Thank You, the player 

does not keep the selected volume level when a new song 

is loaded, and in Moody, switching between the mood and 

genre tab discards the selected search parameters. The 

save function code is somewhat related to the Robustness 

criterion in GC14UX; users want features that will help 

them trace back and return to previous results, although 

no excerpts were related to recovering from an error.   

Overall, the search/browse code was applied most of-

ten, excluding the sentiment codes. Thank You had the 

highest number of positive excerpts due to the fact that 

multiple search options were provided (i.e., text search, 

form search, and advanced search) and users had the most 

control over how the search could be conducted (e.g., “Its 

searching technique is very comprehensive and fully de-

veloped, which is excellent for users to carry out detailed 

and accurate search”). The auto-complete features in 

Moody and Tonic were also appreciated by multiple eval-

uators. However, there was still a lot to be desired from 

the search/browse functions in all three systems. For 

Thank You, the lack of a browsing mechanism and inabil-

ity to get recommendations were noted. Evaluators also 

commented on the limitation of genre categorization:  

“...about 255 songs are identified as unknown, it may 

cause inconvenience to the users as they do not know the 

type of song, they must spend time to listen [to] it first.” 

For Moody, nine excerpts specifically asked for an 

ability to combine both mood and genre for search. Some 

wanted more labels for mood and genre, and others noted 

the lack of a free-text search option. For Tonic, a few 

evaluators commented on the inaccuracy of certain labels 

and a lack of vocabulary control: 

“…the connection from tags to audio content does not 

always seem to be ‘correct’…Especially if more than two 

tags are combined, there seem to be some problems.” 

“Moreover, maybe due to the vocabulary control, when I 

type ‘cheerful,’ no result is found, I have to type ‘happy’ 

instead, so the system is not flexible enough.” 

4.3 Feedback 

This category consists of a code “clarity” that is about 

how intuitive and clear the functions and labels were. 

Tonic had 20 negative excerpts that were primarily about 

evaluators having trouble understanding what information 

the different design constructs are trying to convey (e.g., 

meaning of the histogram, size of the bubble) or what the 

result of a particular user action was: 

“For instance, I noticed some bars on the left side, each 

corresponding to one of the search terms, that varied in 

height along with the bubble, which also resized. What is 

that? What does it mean when I move bubbles around?” 

Similar concern was also raised for Moody (e.g., 

“what does the size of the image mean?”). In addition, a 

couple of evaluators pointed out that they had a hard time 

figuring out what the “discover music similar to” function 

was supposed to do. For Thank You, several evaluators 

commented on misunderstanding genre ID as the count of 

items under a particular category. 

4.4 Learnability 

This category contained two codes: ease of use and help. 

Overall, there were a lot more positive than negative ex-

cerpts regarding the ease of use across all three systems. 

Simple, intuitive, and user-friendly interface design was 

appreciated for Moody and Tonic. In general, evaluators 

also found the basic search interface in Thank You easy to 

use. Negative excerpts were on issues like the page layout 

or too much text (Thank You) or opinions based on a 

comparison with other systems (e.g., “Tonic is not that 

easy to use when comparing with Moody”). 

For the help code, evaluators commented positively on 

the usefulness of a short introduction on how to use the 

system for Tonic but still desired more explanation on the 

meaning of design elements. For Thank You and Moody, 

clear searching guidelines and limitations (e.g., “Maybe it 

should say somewhere that the similarity search only 

works for artists in the database”) were desired. 

4.5 Performance 

Of the three codes belonging to the Performance category 

(i.e., bugs/glitches, response time, search results), search 

results was most commonly used, and primarily with 

negative sentiment. For Thank You, the ability to sort the 

results was appreciated but different sorting criteria were 

desired. The lack of a sorting mechanism was also men-

tioned for Moody. In addition, three evaluators stated that 

they wanted to know how many results there are for a 

particular search, as well as an option to switch between 

AND and OR connectors. For Moody and Tonic, several 

evaluators commented that they did not agree with or 

could not understand the results:   

“The returned music doesn't really fit the moods, espe-

cially ‘romantic.’ ” [Moody] 

 “I wrote: ‘piano’ and ‘jazzy,’ and just in the middle be-

tween these two main bubbles I found the song ‘Salmacis 

– Arkangel,’ which is not piano nor jazzy at all.” [Tonic] 

The evaluators’ reactions to response time tended to 

vary, even for the same system, possibly due to varying 

Internet connection speeds and different levels of expec-

tation. Bugs and glitches in scrolling, music playback, 

and entering data were also mentioned a few times, but 

they could also depend on the resolution setting or other 

configurations of the evaluators’ machines and browsers. 

Therefore, it is important to note that what we are seeing 
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is simply users’ interpretation of how well the system 

performed rather than the objective performance level.  

4.6 Utility 

“Usefulness” was the only code in this category, noting 

the general usefulness of the system as well as its appro-

priateness for the specified user task. Tonic had all posi-

tive excerpts as evaluators deemed that the tag-based 

browsing interface worked well for unknown music. The 

negative excerpts on Thank You and Moody mostly 

showed that evaluators wanted more features and func-

tions. For Thank You, one evaluator noted that the search 

interface is limiting for the given evaluation task, which 

is about finding music for editing a personal video, since 

there are no content-based features. 

4.7 External Factor 

Comments on the limitation of the dataset were captured 

using the code dataset in this category. Six excerpts 

marked with this code were all negative, mostly stating 

that evaluators’ unfamiliarity with the songs hindered 

their ability to effectively use the systems. This was espe-

cially true for Thank You, as evaluators could not issue 

searches using metadata such as artist name or song title. 

One evaluator also noted the difficulty in ascertaining the 

cause of unsuccessful results:  

“…maybe the Jamendo collection is not very good for 

the task because of its variability: do we really not have 

good results or are systems unable to find them?” 

5. IMPLICATIONS ON UX EVALUATION IN MIR 

Based on the user responses and the experience of run-

ning GC14UX, we discuss three main implications for 

future UX evaluation tasks in MIR:  

1) Adjustment of evaluation criteria 

We recommend considering new criteria, Aesthetics, 

Performance, and Utility, in future UX evaluation tasks. 

The quantitative ratings showed that the difference of the 

scores in the “Overall Satisfaction” was statistically sig-

nificant, but the differences in the other four criteria were 

not. This suggests that perhaps there are additional evalu-

ation criteria affecting users’ overall satisfaction. Based 

on the responses, the visual aesthetics of the system seem 

especially important; it is noteworthy that a large propor-

tion of positive excerpts for Tonic, the most highly rated 

system, were based on “Aesthetics”. “Aesthetics” might 

be the missing piece that can explain the differences ob-

served in the “Overall Satisfaction”. We also recommend 

rethinking the criterion “Robustness”; this may be diffi-

cult to evaluate given the limited time evaluators have to 

interact with the systems in the MIREX framework.  

2) A better dataset and more user tasks  

As some users pointed out, lack of familiarity with the 

songs in the dataset hindered their search/browse experi-

ence. In addition, a single user task for evaluation seems 

limiting, as MIR systems can serve a wide variety of use 

cases and scenarios. This was in fact the case in GC14UX 

as the three evaluated systems were designed to serve dif-

ferent goals (e.g., Thank You for known-item searches, 

Moody for mood and genre-based search/browsing, and 

Tonic for exploring new music based on tags). For future 

UX evaluation, it might be worthwhile to consider estab-

lishing multiple user tasks, and perhaps something more 

common (e.g., playlist generation, recommendation) ra-

ther than trying to creating a task suitable for the dataset.    

3) Focus on evaluation rather than competition  

In addition to a common user task for evaluation, it 

may be fruitful to consider asking system developers to 

define a user task for which they want their system to be 

evaluated, as a secondary task. This makes sense consid-

ering that many commercial MIR systems are often tar-

geted to support specific MIR tasks (e.g., Pandora for 

online radio function, Shazam for music identification), 

which was also the case for the three evaluated systems 

from GC14UX. We do acknowledge that this means we 

will not be able to directly compare the evaluation results 

of multiple systems. However, we strongly believe that 

the community should move away from considering this 

evaluation as a competition where ranking the systems is 

the primary goal. If we treat this as an opportunity to 

evaluate the systems in order to improve the design of all 

participating systems rather than being able to claim one 

system is better than the other, this issue will naturally 

dissolve. In case of GC14UX, the differences in scores 

for the three systems were not substantial; even for the 

single category where there was a statistically significant 

difference among the scores (i.e., Overall Satisfaction), 

the difference between the best- and the worst-performing 

systems is less than one point in a seven-point Likert 

scale (5.11 vs. 4.15). What would truly benefit our com-

munity as a whole is learning from the feedback about 

what users need and want, which will inform us on how 

to improve the design of MIR systems in general.        

6. CONCLUSION AND FUTURE WORK 

GC14UX was the very first attempt in conducting a holis-

tic evaluation of user experience for complete MIR sys-

tems in the history of MIREX. Therefore, reflecting on 

our experience and deliberating on how to improve future 

UX evaluation is critical. Our findings indicate which as-

pects of the systems most concerned users, and how we 

can use that knowledge to improve the design of and cri-

teria for future UX evaluation. We discussed three key 

implications for future UX evaluation: 1) consider three 

new criteria in future UX evaluation tasks, 2) seek a bet-

ter dataset to improve evaluators’ ability to effectively 

use the features and judge the quality of the results, and 

select more user tasks to reflect the diversity of the sys-

tems, and 3) focus on evaluation for the improvement of 

systems rather than competition. We hope to continue UX 

evaluation as a regular task within MIREX, and redesign 

the task with new use scenarios and datasets in the future. 

We also plan to widen our pool of evaluators so that we 

can do a comparative analysis of how MIR experts and 

general users evaluate their experiences. 
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ABSTRACT

We introduce the AcousticBrainz project, an open plat-
form for gathering music information. At its core, Acous-
ticBrainz is a database of music descriptors computed from
audio recordings using a number of state-of-the-art Mu-
sic Information Retrieval algorithms. Users run a supplied
feature extractor on audio files and upload the analysis re-
sults to the AcousticBrainz server. All submissions include
a MusicBrainz identifier allowing them to be linked to var-
ious sources of editorial information. The feature extractor
is based on the open source Essentia audio analysis library.
From the data submitted by the community, we run classi-
fiers aimed at adding musically relevant semantic informa-
tion. These classifiers can be developed by the community
using tools available on the AcousticBrainz website. All
data in AcousticBrainz is freely available and can be ac-
cessed through the website or API. For AcousticBrainz to
be successful we need to have an active community that
contributes to and uses this platform, and it is this commu-
nity that will define the actual uses and applications of its
data.

1. INTRODUCTION

One of the biggest bottlenecks in many Music Information
Retrieval (MIR) tasks is the access to large amounts of
music data, in particular to audio features extracted from
commercial music recordings. Most approaches to tasks
such as music classification, auto-tagging, music similar-
ity and music recommendation, are based on using audio
features obtained from well-established audio signal pro-
cessing algorithms. This is a time consuming process that
is beyond the possibilities of any individual researcher. It
may not be possible for researchers to gather this much
information, annotate it according to their needs, or com-
pute the required features at the scale required for the task.

c© Alastair Porter, Dmitry Bogdanov, Robert Kaye, Roman
Tsukanov, Xavier Serra.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Alastair Porter, Dmitry Bogdanov,
Robert Kaye, Roman Tsukanov, Xavier Serra. “AcousticBrainz: a com-
munity platform for gathering music information obtained from audio”,
16th International Society for Music Information Retrieval Conference,
2015.

For example, existing datasets for genre classification are
of insufficient size with respect to both the number of in-
stances per class and the ability of these instances to ac-
curately represent the entire musical genre space [4]. A
list of datasets commonly used in MIR is provided in [1].
Half of them have fewer than 10,000 instances, although
in recent years there have been attempts to create larger
datasets. Building such datasets would allow research at
the scale of the requirements of commercial applications.

In general however, the creation of datasets may be dif-
ficult for researchers due to a number of reasons:

• Gathering and sharing datasets require legal considera-
tions with regard to the distribution of copyrighted ma-
terial [7].

• Collections which are hand-created may be biased in
their contents and annotations, especially if they are
created by only one person, or if they are created for
the evaluation of a specific task or algorithm (such as
the GZTAN dataset, commonly used to evaluate audio
feature-based genre classification algorithms [10]).

One project in recent years to address some of these is-
sues is the Million Song Dataset (MSD) [1]. At the time
of its release, this was the largest dataset of music descrip-
tors in the MIR community and has gained a lot of atten-
tion for its size and breadth of music content, as well as
the simplicity of accessing its data. The MSD relies on
the EchoNest API 1 to compute its descriptors, a commer-
cial product which is closed to academic inspection. Some
downsides of this approach include:

• Implementation details of the algorithms used to com-
pute the descriptors are unknown and it is impossible to
review the quality of their implementation.

• The dataset is fixed in time, and does not appear to have
been updated with new features, or music released since
it was created.

The MSD has been further expanded with features com-
puted using open source algorithms, on audio samples
from 7digital.com [9]. As this dataset reflects the MSD,
it is also fixed in time, and features do not represent the
whole recording, but only the sample.

1 http://developer.echonest.com
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Based on these considerations, we believe that there is
still space for a large dynamic dataset consisting of music
features calculated with open algorithms.

2. ACOUSTICBRAINZ

We are introducing a new platform, AcousticBrainz, 2 to
assist with the gathering of musical data from the mu-
sic enthusiast and research community, and to provide re-
searchers with large datasets of recordings to work with.
All of the source code in AcousticBrainz is open, 3 en-
couraging sharing of algorithms between contributors and
providing the ability for people to improve on the work of
others. All submitted and generated data is freely available
under a Creative Commons CC-0 license (public domain).

The platform is split into three categories: feature ex-
traction, data storage, and the creation of musical semantic
information. A feature extractor, based on algorithms in
the Essentia audio analysis library [2], can be downloaded
by anyone who wishes to contribute data to the project.
They run this extractor on their personal computer, giv-
ing audio files as input. The output of this extractor is a
JSON file for each audio track containing descriptors (see
Section 2.3.3). A submission tool provided with the ex-
tractor automatically uploads the JSON files to the Acous-
ticBrainz server.

A database stores submissions and makes the data avail-
able via an API. AcousticBrainz only stores descriptors
of audio, and never the actual audio itself. Submissions
are identified by the MusicBrainz identifier (MBID) of the
input audio file. These stable identifiers let us uniquely
and unambiguously refer to a music recording, and can
also let us obtain additional editorial information from
MusicBrainz and from other services that also understand
MBIDs.

To encourage experimentation with the data, the Acous-
ticBrainz website lets anybody create, annotate, and share
their own datasets consisting of recordings present in the
database. A search interface lets users query for recordings
based on editorial data from MusicBrainz or extracted fea-
tures and add the results to the dataset. From these datasets
users can build classifier models which can be used to es-
timate characteristics of any recording present in Acous-
ticBrainz.

2.1 MusicBrainz

MusicBrainz 4 is a community-maintained open encyclo-
pedia of music information. It contains editorial metadata
for many musical concepts, including Artists (individuals,
groups, and other people associated with musical events),
Releases, Recordings, and Works. It also contains relation-
ships between items, and to other external databases. Data
is entered manually by a large community of volunteers
(editors), who also vote on changes made by other editors
to ensure its quality. It is used by a number of commercial

2 http://acousticbrainz.org
3 https://github.com/metabrainz/

acousticbrainz-server
4 https://musicbrainz.org

companies. 5 Every item in the database is uniquely iden-
tified by an MBID and many companies and organizations
rely on these IDs as identifiers for music-related concepts.
MBIDs can be used to retrieve data from external services
which understand them (e.g., Last.fm, WikiData), and are
also a part of the Music Ontology.

2.2 Current submission statistics
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Figure 1: Release years of submissions from file metadata.

Format Count

mp3 1,784,778
flac 777,826
vorbis 83,867
aac 64,733
alac 29,481
wmav2 4,019
other 1,320

Table 1: Number of submissions per audio codec.

At this time, 6 the AcousticBrainz database has audio
features submitted for 1,671,701 unique recording MBIDs.
We keep duplicate submissions from different sources, re-
sulting in a total of 2,747,094 submissions. For these
submissions we also have metadata information available
from MusicBrainz, including 99,159 artists and 165,394
releases. The duplicates consist of analyzed features of
various source audio files, with differing codecs, encoders,
and bit rates. These duplicates let us see real-world ex-
amples of the effect of different codecs and encoding pa-
rameters on our descriptors. We have collected submission
for 538,614 unique MBIDs (807,307 including duplicates)
for audio files encoded using a lossless codec (FLAC and
ALAC), which is in itself is a large database. The most
common audio format for submitted files is MP3, with
more submissions than for all other formats combined (Ta-
ble 1). 94% of submitted files contain year metadata. We
show a histogram of the year that submissions were re-
leased in Figure 1. The majority of tracks are from the

5 https://metabrainz.org/customers
6 July 7 2015
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1990s and first decade of the 2000s. As tracks submit-
ted to AcousticBrainz require a MBID this distribution
may also be reflective of the content in the MusicBrainz
database. The current size of the database (containing all
JSON file submissions) is approximately 118GB, split be-
tween 102GB of low-level data (average file size 40kB),
and 12GB of high-level (file size 4kB).

Tag Count

Rock 195,837
Pop 103,486
Classical 90,231
Jazz 88,702
Soundtrack 79,056
Electronic 71,758
Metal 44,961
Other 42,706
Country 40,078
Alternative 35,900
Alternative Rock 35,525
Folk 32,108
Unknown 29,413
Punk 27,977
Hip-Hop 24,083
Blues 23,276
Indie 21,709
Classic Rock 18,417
Ambient 18,074
Industrial 17,816

(a) Genre as reported in file
metadata.

Genre %

Rock 41.15
Electronic 19.65
Pop 7.73
Jazz 6.80
Country 4.42
Folk 3.83
Rhythm 3.61

& blues
Blues 2.86
Hip Hop 2.23
Classical 1.81
Asian 1.69
Caribbean 1.63

& Latin
Ska 0.89
Avant-Garde 0.47
Easy Listening 0.45
Comedy 0.44
African 0.28
Other 0.09

(b) Percentages of broad
genre categories.

Table 2: Genre statistics.

We find genre metadata present for 1,908,251 submis-
sions. The top 20 genre annotations account for 52.9% of
the tags used in this subset. We show the list of these gen-
res and their counts in Table 2 (a). We also compute per-
centages over 691,431 recordings (41.4% of total record-
ings in AcousticBrainz) annotated by genre using Last.fm
tags and shown in Table 2 (b). To find these broad genre
labels we look up a recording by its MBID and if this fails,
by the artist and track title. Last.fm tags are ranked by the
most commonly applied tag. We match highly ranking tags
to popular music genres found in beets, a tool for identify-
ing, tagging, and renaming audio files, 7 . If a match occurs
as a more specific subgenre, we report it as this subgenre’s
parent genre. While this process is lossy (we don’t match
tags which are misspelled) and subjective (not everyone
agrees on genres or subgenres), we believe it nonetheless
gives a good overview of the contents of the database.

2.3 Architecture

The architecture of AcousticBrainz is presented in Fig-
ure 2. The community uses the feature extractor and sub-
mission tools to send music features extracted from audio
to the server. The server stores this data (which we call
“low-level” data) in a database and makes it available to
the rest of the community. The community can also pro-
vide classifier models (designed using the tools we pro-
vide), for inferring information from this data (which we

7 https://github.com/sampsyo/beets/blob/0c7823/
beetsplug/lastgenre/genres-tree.yaml

call “high-level” data). The high-level data is computed
on the server without needing to access audio files. The
community can moderate the models and the good ones
are used to compute high-level data for all AcousticBrainz
submissions.

2.3.1 Feature extractor and submission tool

We have created a music feature extractor using the Essen-
tia library. 8 We use this library for computing features be-
cause it has been successfully used in a number of similar
audio analysis applications, such as Freesound, and other
commercial systems. We describe the features computed
by the extractor in more detail in Section 2.3.3. We dis-
tribute this extractor, written in C++, through our website 9

as a static binary for Windows, OSX, and Linux. We use a
static binary because it lets us include the same version of
all of our dependencies across all platforms.

The feature extractor runs at about 20× real time, that
is, a file with length 3 minutes takes 9–10 seconds to run
(on an Intel i5 3.30GHz machine).

We have two clients to help the community compute
features on their audio files and submit them to the Acous-
ticBrainz server—A command-line tool written in Python,
and a graphical interface written in C++ with QT. These
clients automatically search for all audio files in a direc-
tory, compute their features, and send JSON files contain-
ing the features to the server using its API.

The submission tool only submits data which have been
previously tagged with MBIDs. Software exists to match
audio files on disk to Releases on MusicBrainz based on
track lengths, file names, existing tags, and audio finger-
printing. It is possible that audio files will be tagged in-
correctly, either due to user error or incorrect fingerprint
matching, however we believe this to account for only a
small amount of data submitted.

Each JSON file contains metadata identifying the ver-
sion of the feature extractor used, including information
about the exact version the source code (git commit hash)
and also an increasing version number which we will
change as we make incompatible changes to features in the
future.

2.3.2 Server

The features of submitted tracks are stored as JSON in a
PostgreSQL database. The server interface is written in
Python using the Flask web application framework. An
API accepts requests from clients, filters exact duplicates
(where the feature extractor outputs exactly the same con-
tent for two concurrent runs on the same file), and stores
the results in the database. For privacy reasons, the server
stores no identifying information about submitters.

Every 30 seconds the server starts a process to search
for recent submissions. For these documents the server
runs a feature extractor to obtain high-level descriptors for
these files (Section 2.3.4). Once the high level computa-

8 http://essentia.upf.edu
9 http://acousticbrainz.org/download
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Figure 2: AcousticBrainz architecture.

tion process is complete, all of the data about the submitted
track is made available to the community.

Once extracted features are made available we store all
of the computed data and metadata collected from Mu-
sicBrainz in an ElasticSearch search server. This search
system lets users perform queries such as finding all
recordings with a particular attribute or attribute range
(e.g., with a BPM between 110 and 120, or an estimated
genre of jazz), or by filtering by some known metadata
(such as all recordings by a particular artist).

All of the submitted and computed information is made
available via the AcousticBrainz website and API. The
website has a page for each submitted recording, outlin-
ing metadata, providing an overview of the low-level and
high-level data, and linking to external sources, including
a player to listen to the song if it is available on a public
streaming service. The API gives access to the JSON doc-
uments that make up the low-level and high-level data, and
access to the search interface. Documents are identified by
their MBID. Groups of documents, for example all record-
ings in an album, can be downloaded by first getting the
list of MBIDs from MusicBrainz.

2.3.3 Low-level music data

Our feature extractor computes spectral, time-domain,
rhythm, and tonal descriptors. They include features char-
acterizing overall loudness, dynamics, and spectral shape
of the signal, rhythm descriptors (including beat positions
and BPM value), and tonal information (including chroma
features, keys and scales). All descriptors are analyzed
on a signal resampled to 44.1kHz sampling rate, summed
to mono and normalized using replay gain. Many of the
descriptors are computed across frames and are therefore
summarized by their statistical distribution (we currently
do not provide per-frame information). More detailed in-
formation about the low-level data, including references to

the employed MIR and audio analysis algorithms, is pro-
vided in the official documentation for Essentia, 10 or by
reviewing the code. 11 An example of the output of the fea-
ture extractor can be seen on AcousticBrainz website. 12

We provide a list of music descriptors computed by the
feature extractor and currently present in AcousticBrainz
in Table 3.

2.3.4 High-level music data

Low-level data submitted by the users opens possibili-
ties to apply data mining and machine learning techniques
across the whole AcousticBrainz collection, or subsets,
without needing access to audio files. In particular these
techniques may allow us to infer semantic annotation of
music in terms of concepts used by people when describing
music (e.g., genres, styles, moods, uses of music, instru-
mentation, etc.) Currently, AcousticBrainz provides tools
for creating datasets to represent these types of concepts
and train classifier models (see Section 3). The training
process is done automatically using SVM classifiers (C-
SVC with polynomial or RBF kernels). A training script
finds optimal data preprocessing and SVM parameteriza-
tion given a ground-truth dataset of low-level data in a
grid search using 5-fold cross-validation. The details on
the considered parameters can be found in the classifica-
tion project template in the source code. 13 After modera-
tion the resulting high-level data can be computed from the
low-level data in the AcousticBrainz database.

Our current high-level data includes estimations done
by classifiers pre-trained using a number of annotated col-

10 http://essentia.upf.edu/documentation/
streaming_extractor_music.html

11 https://github.com/MTG/essentia/tree/master/
src/examples

12 http://acousticbrainz.org/data
13 https://github.com/MTG/gaia/tree/master/src/

bindings/pygaia/scripts/classification
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low-level.* rhythm.* tonal.*

average loudness, dynamic complexity,
silence rate 20dB / 30dB / 60dB,
spectral centroid / kurtosis / spread / skewness / rolloff / decrease,
hfc, spectral strongpeak, zerocrossingrate,
spectral rms, spectral flux, spectral energy,
spectral energyband low / middle low / middle high / high,
barkbands, melbands, erbbands, mfcc, gfcc,
barkbands crest / flatness db / kurtosis / skewness / spread,
melbands crest / flatness db / kurtosis / skewness / spread,
erbbands crest / flatness db / kurtosis / skewness / spread,
dissonance, spectral entropy, pitch salience, spectral complexity,
spectral contrast coeffs / valleys

beats position, beats count,
bpm,
bpm histogram first peak bpm /
spread / weight,
bpm histogram second peak bpm /
spread / weight,
beats loudness,
beats loudness band ratio,
onset rate,
danceability

tuning frequency,
hpcp, thpcp,
hpcp entropy,
key key, key scale, key strength,
chords strength,
chords histogram,
chords changes rate, chords number
rate,
chords key, chords scale,
tuning diatonic strength,
tuning equal tempered deviation,
tuning nontempered energy ratio

Table 3: Descriptors extracted by Essentia’s music extractor v1.0 currently present in AcousticBrainz. The descriptors are
grouped according to the namespaces within the music extractor’s output.

Name Source Type Size

genre dortmund Music Audio Benchmark Data Set [5] Genre 1886 track excerpts, 46-490 per genre
genre rosamerica In-house [4] Genre 400 tracks, 50 per genre
genre tzanetakis GTZAN Genre Collection [11] Genre 1000 track excerpts, 100 per genre
genre electronic In-house Electronic music subgenres 250 track excerpts, 50 per genre
mood acoustic In-house [8] Sound (acoustic, non-acoustic) 321 full tracks + excerpts, 193/128 per class
mood electronic In-house [8] Sound (electronic, non-electronic) 332 full tracks + excerpts, 164/168 per class
timbre In-house Timbre colour (dark, bright) 3000 track excerpts, 1500 per class
tonal atonal In-house Tonality (tonal/atonal) 345 track excerpts, 200/145
danceability In-house Danceability 306 full tracks, 124/182 per class
ismir04 rhythm ISMIR2004 Rhythm Classification Dataset [3] Ballroom music dance styles 683 track excerpts, 60-110 per class
voice instrumental In-house Voice/instrumental music 1000 track excerpts, 500 per class
gender In-house Gender in vocal music (male/female) 3311 full tracks, 1508/1803 per class
mood happy In-house [8] Mood (happy, non-happy) 302 full tracks + excerpts, 139/163 per class
mood sad In-house [8] Mood (sad, non-sad) 230 full tracks + excerpts, 96/134 per class
mood aggressive In-house [8] Mood (aggressive, non-aggressive) 280 full tracks + excerpts, 133/147 per class
mood relaxed In-house [8] Mood (relaxed, non-relaxed) 446 full tracks + excerpts, 145/301 per class
mood party In-house [8] Mood (party, non-party) 349 full tracks + excerpts, 198/151 per class
moods mirex MIREX Audio Mood Classification Dataset [6] Mood (5 clusters) 269 track excerpts, 60-110 per class

Table 4: Music collections used for training high-level classifier models currently included in AcousticBrainz.

lections, some of which are commonly used in MIR (Ta-
ble 4). These datasets pre-date the AcousticBrainz plat-
form and so some of them are not yet open to inspection.
We anticipate that the community can help to build bet-
ter classifiers using the low-level data already submitted to
AcousticBrainz.

The evaluation metrics obtained from training our cur-
rent models 14 show promising results. However, the accu-
racy and reliability of our current high-level data is under
doubt, as little research on the portability of such mod-
els to the large scale has been done within MIR. We see
the design of new classifier models using AcousticBrainz
data as an attractive challenge for MIR researchers and we
anticipate AcousticBrainz to become a platform for build-
ing classifiers on larger collections created and annotated
by the community using the tools we provide (see Sec-
tion 3). The high-level data within AcousticBrainz will
be constantly updated using the improved classifier mod-
els proposed by the community.

3. BUILDING ANNOTATED DATASETS

We have developed an interface which lets users create
datasets, comprised of a name, a list of classes, and a list

14 http://acousticbrainz.org/data

of instances for each class. These instances refer to record-
ings in the AcousticBrainz database, and so are referred
to by MBID. MBIDs can be chosen manually, or added
as the result of a search query for all recordings matching
given criteria. To assist in the inspection of datasets, meta-
data of these recordings from MusicBrainz is also shown.
Users can create these datasets individually or collaborate
together to suggest classes, class boundaries, and content.
We currently limit our interest to classification problems,
though we see future value in allowing users to create other
kinds of annotated datasets such as collections of singular
types of data (e.g., music from a specific culture), user-
defined lists of recordings, or sets of recordings with a
freeform annotations including tags.

Once a dataset has been created, a user can choose to
generate a model representing the dataset. This model is
trained using the same training script used to generate our
existing models (Section 2.3.4). We report to the user the
accuracy of the model, giving them the chance to share the
results with the wider community, or continue improving
the model (Figure 3).

Once a model has been created and approved by the
community we can choose to process all existing low-level
data with this model in order to make these new estima-
tions available for the community. We are able to compute
high-level data at a rate of about 1000/minute using a sin-
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Figure 3: Results of a classification. The user can choose to continue working on improving the classifier accuracy, or
submit it to the community.

gle core, and so anticipate that recomputing the dataset at
its current size will only take a few days. As the dataset
grows the task can be parallelized over many machines.

4. CHALLENGES AND FUTURE WORK

To keep our low-level data at the level of the state of the art
in MIR, we will continue to release updates to the feature
extractor, and we also encourage participation in this pro-
cess. Because we rely on the good will of the community to
run this extractor on their audio collections we face a trade-
off between the frequency of updates and their willingness
to run the extractor. We anticipate that we could release
an update once or twice a year, increasing the number and
quality of the features. Our high-level data will also be un-
der constant improvement. We hope that the system that
we have developed will foster collaboration to build better
annotations of musically useful concepts.

Other datasets, such as the MSD contain more detailed
features than those which we compute for our low-level
data. The continual testing and improvement and integra-
tion of new algorithms will allow us to close this gap of
feature content. Since we rely on contributions by the com-
munity, we may be missing some popular music. Continu-
ing to solicit requests will ensure we have as broad a cover-
age as possible. While soliciting audio features we have to
ensure that incorrect submissions are not made, either ma-
liciously or due to incorrect metadata. We are developing
a technique to determine if two submissions are identical
based on their features.

Updating the feature extractor and classifier models im-
plies compatibility problems with our data. As our submit-
ted data includes information about the version of the ex-

tractor used to compute it, we can determine if two pieces
of data computed by different versions of the feature ex-
tractor are compatible. We are compiling a dedicated audio
collection to perform tests with different extractor versions
and estimate the differences in feature values. These tests
can also help us to assess the robustness of music features
present in low-level data, the identification of which is a
challenging task [12]. To take advantage of as much data
as possible, we will not discard old submissions from our
database when a new extractors are released. High-level
data will be updated with respect to low-level data when
possible. Improvements to the collection creation interface
on the AcousticBrainz website will let us build datasets to
use with other machine learning techniques.

We expect that the data provided by AcousticBrainz will
be useful to both the MIR community and others inter-
ested in this type of data. In exchange we need the Acous-
ticBrainz community to help in expanding the dataset and
improving its quality. The interest in our platform became
apparent directly after its launch when we were able to ob-
tain features for 500,000 files in less than 3 weeks, building
up to over 2.7 million submissions. The continued support
of providing features and collaborating on data collection
projects will ensure the success of this project.
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ABSTRACT

Numerous studies have demonstrated that mood can af-
fect emotional processing. The goal of this study was to
explore which components of the decision process are af-
fected when exposed to music; we do so within the context
of a stochastic sequential model of simple decisions, the
drift-diffusion model (DDM). In our experiment, partici-
pants decided whether words were emotionally positive or
negative while listening to music that was chosen to in-
duce positive or negative mood. The behavioral results
show that the music manipulation was effective, as par-
ticipants were biased to label words positive in the positive
music condition. The DDM shows that this bias was driven
by a change in the starting point of evidence accumula-
tion, which indicates an a priori response bias. In contrast,
there was no evidence that music affected how participants
evaluated the emotional content of the stimuli. To better
understand the correspondence between auditory features
and decision-making, we proceeded to study how individ-
ual aspects of music affect response patterns. Our results
have implications for future studies of the connection be-
tween music and mood.

1. INTRODUCTION

There is robust evidence that one’s mood can affect how
one processes emotional information. This phenomenon
is often referred to as mood-congruent processing or bias,
reflecting the finding that positive mood induces a relative
preference for positive emotional content (and vice versa).
The goal of the present study was to use a popular model
of simple decisions, the drift-diffusion model (DDM; [9]),
to explore how music-induced mood affects the different
components of the decision process that could drive mood-
congruent bias. The model, described below, can differen-
tiate two types of bias: a) Bias due to an a priori preference
for one response over the other; and b) Bias due to a shift
in how the stimuli are evaluated for decision making. This
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class of models has been successfully employed to differ-
entiate these biases in perceptual and memory tasks, but to
our knowledge has never been used to investigate effects of
music on emotional classification. We consider the follow-
ing to be our key contributions: a) We provide meaningful
evidence that decision making is indeed affected by music
stimuli, and analyze the observed effects; b) we study evi-
dence of how specific auditory features are correlated with
aspects of decision making.

Studies that induce mood, either through listening to
happy/sad music or having participants write passages or
see pictures based on a particular emotion, have shown
mood-congruent bias across a range of tasks. Behen et
al. [4] showed participants happy and sad faces while
they listened to positively- or negatively valenced music
and underwent fMRI. Participants rated the happy faces
as more happy while listening to positive music, and the
fMRI results showed that activation of the superior tempo-
ral gyrus was greater when the face and music were con-
gruent with each other. In a study of mood and recall,
De l’Etoile [3] found that participants could recall signifi-
cantly more words when mood was induced (through mu-
sic) at both encoding and retrieval. Similarly, Kuhbandner
and Pekrun [6] had participants study emotional words that
were printed in either black, red, green, or blue, with the
hypothesis that congruent words (e.g., negative words in
red, positive words in green) would show enhanced mem-
ory at test. Their findings supported the hypothesis, as
memory was better for negative words shown in red and
positive words shown in green.

Previous work at the intersection of musicology and
cognitive science has also studied the connection between
music and emotion. As Krumhansel points out [5], emo-
tion is a fundamental part of music understanding and ex-
perience, underlying the process of building tension and
expectations. There is neurophysical evidence of music
being strongly linked to brain regions linked with emotion
and reward [1], and different musical patterns have been
shown to have meaningful associations to emotional affec-
tations [8]. Similarly, studies have indicated that mood also
affects the perception of music [12]. Not only is emotion
a core part of music cognitive processing, it can also have
a resounding impact on people’s mental state, and aid in
recovery, as shown for instance by Zumbansen et al. [15]
in the case of people suffering from Brocas aphasia. Peo-
ple regularly use music to alter their moods, and evidence
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has been presented that music can alter the strength of
emotional negativity bias [2]. All this evidence indicates
a deep and profound two-way connection between music
and emotional perception.

The structure of the paper is as follows. In Section 2
we outline the characteristics of the drift-diffusion model,
which we use in this study. In Section 3 we discuss our
experimental design and how data was collected from par-
ticipants. In Section 4 we present and analyze the results of
our behavioral study. In Section 5 we further analyze how
individual auditory components correlate with the behav-
ioral patterns observed in our human study. In Section 6
we recap our results and discuss them in a broader context.

2. THE DRIFT-DIFFUSION MODEL

This study employs the DDM of simple decisions to re-
late observed decision behavior to the underlying decision
components. The DDM, shown in Figure 1, belongs to a
broader class of evidence accumulation models that posit
simple decisions involve the gradual sequential accumu-
lation of noisy evidence until a criterial level is reached.
In the model, the decision process starts between the two
boundaries that correspond to the response alternatives.
Evidence is accumulated over time to drive the process to-
ward one of the boundaries. Once a boundary is reached,
it signals a commitment to that response. The time taken
to reach the boundary denotes the decision time, and the
overall response time is given by the decision time plus the
time required for processes outside the decision process
like encoding and motor execution. The model includes a
parameter for this nondecision time (Ter), to account for
the duration of these processes.

The primary components of the decision process in the
DDM are the boundary separation, the starting point, and
the drift rate. Boundary separation provides an index of
responses caution or speed/accuracy settings; wide bound-
aries indicate a cautious response style where more evi-
dence needs to be accumulated before the choice is made.
The need for more evidence makes the decision process
slower, but also more accurate as it is less likely to hit the
wrong boundary by mistake. The starting point of the dif-
fusion process (z), indicates whether there is a response
bias. If z is closer to the top boundary, it means less evi-
dence is required to reach that boundary, so “positive” re-
sponses will be faster and more probable than “negative”
responses. Finally, the drift rate (v) provides an index of
the evidence from the stimulus that drives the accumu-
lation process. Positive values indicate evidence for the
top boundary, and negative values for the bottom bound-
ary. Further, the absolute value of the drift rate indexes
the strength of the stimulus evidence, with larger values
indicating strong evidence and leading to fast and accurate
responses.

In the framework of the DDM, there are two mecha-
nisms that can drive behavioral bias. Changes in the start-
ing point (z) reflect a response expectancy bias, whereby
there is a preference for one response even before the stim-
ulus is shown [7,14]. Experimentally, response expectancy

Figure 1. An Illustration of the Drift-Diffusion Model.

bias is observed when participants have an expectation that
one response is more likely to be correct and/or rewarded
than the other. In contrast, changes in the drift rate (v) re-
flect a stimulus evaluation bias, whereby there is a shift
in how the stimulus is evaluated to extract the decision
evidence. Experimentally, stimulus evaluation bias is ob-
served when there is a shift in the stimulus strength and/or
the criterion value used to classify the stimuli. Thus re-
sponses expectancy bias, reflected by the starting point in
the DDM, indicates a shift in how much evidence is re-
quired for one response relative to the other, whereas stim-
ulus evaluation bias, reflected by a shift in the drift rates in
the DDM, indicates a shift in what evidence is extracted by
the stimulus under consideration. Importantly, both mech-
anisms can produce behavioral bias (faster and more prob-
able responses for one choice), but they differentially af-
fect the distribution of response times. In brief, response
expectancy bias only affects fast responses, whereas stim-
ulus evaluation bias affects both fast and slow responses
(see [14]). It is this differential effect on the RT distribu-
tions that allow the DDM to be fitted to behavioral data
to estimate which of the two components, starting point
or drift rates, is driving the bias observed in the RTs and
choice probabilities. The DDM has been shown to suc-
cessfully differentiate these two bias mechanisms from be-
havioral data in both perceptual and recognition memory
tasks [14].

This study used the DDM approach described above to
investigate how music-induced mood affects the different
decision components when classifying emotional informa-
tion. Participants listened to happy or sad music while de-
ciding if words were emotionally positive or negative. The
DDM was then fitted to each participant’s behavioral data
to determine whether the mood induction affected response
expectancy bias, stimulus evaluation bias, or both.

3. METHODS

Participants were shown words on the computer screen and
asked to classify them as emotionally positive or negative
while listening to music. The words were emotionally pos-
itive, negative, or neutral. After a fixation cue was shown
for 500 ms, each word was presented in the center of the

794 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



screen and remained on screen until a response was given.
If no response was given after 3 seconds, the trial ended
as a “no response” trial. Responses were indicated with
the “z” and “/” keys, and mapping between the key and re-
sponse was counterbalanced across participants. The task
consisted of 4 blocks of 60 trials with 20 stimuli from each
word condition (positive, negative, neutral). A different
song was played during each block, alternating from posi-
tive to negative music across blocks. The order of the songs
was counterbalanced across subjects. The entire experi-
ment lasted less than 30 minutes. To ensure that the results
were not specific to the particular choice of songs, the en-
tire experiment was replicated with a new set of music.

The stimuli consisted of emotionally positive (e.g., suc-
cess, happy), negative (e.g., worried, sad), and neutral
words (e.g., planet, sipped) taken from a previous study
[13]. There were 96 words for each stimulus condition,
which were matched for word frequency and letter length.
From each wordpool, 80 items were randomly chosen for
each participant to use in the task. Words were randomly
assigned to appear in the positive or negative music blocks
with the constraint that 20 of each word type appeared in
every block of trials.

Publicly available music was surveyed to isolate two
clear types - music that is characterized by slow tempo,
minor keys and somber tones, typical to traditionally “sad”
music, and music that has upbeat tempo, major scales and
colorful tones, which are traditionally considered to be typ-
ical to “happy” music. Our principal concern in selecting
the musical stimuli, rather than their semantic categoriza-
tion as either happy or sad, was to curate two separate
“pools” of music sequences that were broadly character-
ized by a similar temperament (described above), and show
they produced consistent response patterns.

To ensure that the selected music was effective for in-
ducing the appropriate mood, a separate set of participants
rated each piece of music on a 7-point Likert scale, with 1
indicating negative mood and 7 indicating positive mood.
There were 21 participants that rated the songs for Exper-
iment 1, and 19 participants for Experiment 2. This mood
assessment was done outside of the main experiment to
eliminate the possibility that the rating procedure would
influence the participants’ classification behavior in the
primary task. The ratings showed that the music choices
were appropriate. The positive songs in Experiment 1 led
to more positive ratings than the negative songs. Simi-
lar results were found for the songs in Experiment two,
with higher ratings for the positive songs than the negative
songs. The differences between the positive and negative
song ratings were highly significant for both experiments
(p-values < .001 using a paired t-test, with t(20) > 7.3).
The means and standard deviations of the scores for the
songs in the two experiments are presented in table 1.

The DDM was fitted to each participant’s data, sepa-
rately for positive and negative music blocks, to estimate
the values of the decision components. The data entered
into the fitting routine were the choice probabilities and
response time (RT) distributions (summarized by the .1,

—Experiment 1— —Experiment 2—
song average SD average SD
happy 1 5.14 1.24 5.15 1.29
happy 2 5.00 1.22 5.42 1.17
sad 1 2.24 1.00 2.26 1.24
sad 2 2.33 0.97 2.11 0.99

Table 1. Aggregated Likert scale results for the 8 songs
used in the two experiments.

.3, .5, .7, and .9 quantiles) for each response option and
stimulus condition. The parameters of the DDM were ad-
justed in the fitting routine to minimize the χ2 value, which
is based on the misfit between the model predictions and
the observed data (see [10]). For each participant’s data
set, the model estimated a value of boundary separation,
nondecision time, starting point, and a separate drift rate
for each stimulus condition. Because of the relatively low
number of observations used in the fitting routine, the vari-
ability parameters of the full DDM were not estimated
(see [9]). This resulted in two sets of DDM parameters
for each participant, one for the positive music blocks and
one for the negative music blocks.

4. RESULTS

The RTs and choice probabilities in Figure 2 show that
the mood-induction successfully affected emotional bias.
The left column shows the response probabilities, and the
right column shows an RT-based measure of bias, which
is taken as the median RT for negative responses minus
the median RT for positive responses for each condition.
Thus RT values above 0 indicate faster positive than neg-
ative responses for that condition, and vice-versa. In Ex-
periment 1 (top row), happy music led to more “positive”
responses overall. This difference was significant for neu-
tral words and positive words, but not for negative words.
For RTs, positive responses were generally faster than neg-
ative responses in the happy compared to sad music condi-
tions, though the difference was only significant for posi-
tive words . The results from Experiment 2 largely mirror
those from Experiment 1. Participants were more likely to
respond “positive” in the happy music condition. This dif-
ference was significant for the negative and neutral words,
but not the positive words (though there is a trend in that
direction). Likewise, positive responses were relatively
faster than negative responses in the happy compared to
sad music conditions, though the difference was only sig-
nificant for neutral and positive words.

Overall, the behavioral data show that the mood induc-
tion was effective in influencing participants’ emotional
classification: positive responses were more likely and
faster in the happy compared to sad music condition. These
behavioral data are next decomposed with the DDM.

Figure 3 shows the DDM parameters for each exper-
iment. Although the two bias-related measures (starting
point and drift rates) are of primary interest, all of the
DDM parameters were compared across music conditions.
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Figure 2. Response patterns for the two experiments. 1st column shows proportions of classification for the three word
types. 2nd column shows normalized response time difference between positive and negative classifications for the three
word types. X marks the sad music condition, O marks the happy music condition.

Figure 3. DDM fitted parameters - boundary separation, nondecision time, response bias and stimulus bias. X marks
the sad music condition, O marks the happy music condition. Response bias indicates a statistically significant difference
between the sad and happy music conditions.
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It is possible that the different music conditions could af-
fect response caution and nondecision time. For example,
the slower tempo of the sad songs could lead participants
to become more cautious and have slower motor execution
time. Thus all parameters were investigated. As the left
columns of Figure 3 shows, the music conditions did not
differentially affect response caution or encoding/motor
time, as neither boundary separation nor nondecision time
differed between happy and sad music blocks. Of primary
interest were the starting point and drift rate parameters,
which provide indices of response expectancy and stimu-
lus evaluation bias, respectively. For starting point, there
was a significant shift in response bias for both experi-
ments, with participants favoring the “positive” response
more heavily in the happy compared to sad music. This
indicates that the music induced an a priori bias for one
response over the other. In contrast, the music conditions
had no reliable effect on the drift rates for positive, neg-
ative, or neutral words. Thus music did not influence the
stimulus evaluation of the items. The DDM results show
that the music-based manipulation of mood had a targeted
effect on the starting point measure, which reflects an a
priori response expectancy bias. There were no effects of
music on response caution, nondecision time, or drift rates
(stimulus evaluation bias). Thus the results show that the
mood-congruent bias was driven by a change in partici-
pants’ expectancy about the appropriate response, rather
than a change in how the emotional content of the words
was evaluated.

5. CORRELATING RESPONSES AND MUSICAL
FEATURES

The partition between “positive” and “negative” mood-
inducing songs is intuitively understandable, and is indeed
sufficient in order to observe the effects discussed in the
previous section. This partition, however, is still some-
what arbitrary. It is of interest then to identify, on a more
fundamental auditory level, how specific aspects of mu-
sic affect response patterns. To this end, we considered
the 8 musical segments used in this experiment, extracted
key auditory features which we assume are relevant to the
mood partitioning, and examined how they correlate with
the participant responses we observed.

5.1 Extracting Raw Auditory Features

We focused on three major auditory features: a) overall
tempo; b) overall “major” vs. “minor” harmonic character;
c) average amplitude. Features (a) and (c) were computed
using the Librosa library [11]. To compute feature (b), we
implemented the following procedure. For each snippet of
20 beats an overall spectrum was computed and individual
pitches were extracted. Then, for that snippet, according
to the amplitude intensity of each extracted pitch, we iden-
tify whether the dominant harmonic was major or minor.
The major/minor score was defined to be the proportion of
major snippets out of the overall song sequence. We can
easily confirm that these three features were indeed asso-

ciated with our identification as “positive” vs. “negative”.
Having labeled “positive” and “negative” as 1 and 0 re-
spectively, we observed a Pearson correlation of 0.7− 0.8
with p-values ≤ 0.05 between these features and the la-
bel. Significance was further confirmed when we applied
an unpaired t-test for each feature for positive vs. negative
songs (p-values < .05, |t(3)| > 3).

5.2 Processing Participant Responses

For each observed song we first aggregated all relevant
subject responses. We focused on three measurements -
time delay for classifying positive words as positive, time
delay for classifying negative words as negative, and likeli-
hood of classifying neutral words as positive. Time delays
were normalized to a z-score per user. This alternative per-
spective helps verify the robustness of the effects observed
in the previous section. Following this analysis step, we
proceeded to fit the DDM parameter decomposition as we
did in sections 3 and 4, but rather than for each song con-
dition (“sad”/“happy”), to each song separately.

5.3 Observed Correlations

In this section we consider the effects observed when
analyzing response patterns with respect to each of the
three auditory features discussed in the previous subsec-
tions. Only statistically significant correlations are re-
ported, though it’s worth noting that with a relatively small
sample size in terms of songs, potentially meaningful ef-
fects might be missed due to outliers.

5.3.1 Correlation with Response Times and Bias

When we consider how the three auditory features corre-
spond with the normalized delays when classifying posi-
tive or negative words as such, we see an interesting pat-
tern. For all three features, there was a statistically sig-
nificant negative correlation (p-value ≤ 0.05) between the
average normalized response time and the feature values.
Intuitively speaking, the faster the song was, the louder it
was, or the more it was major in mode overall, the faster
people classified positive words as positive (see Figures 4a-
4c). However, no such clear correlation was observed for
negative songs. This observation supports our key find-
ing when using the drift-diffusion model, that participants
were biased to label words positive in the positive music
condition. When we analyzed the likelihood of associating
neutral words as positive with respect to each auditory fea-
ture, the only effect that is borderline significant (p-value
≤ 0.1) is the correspondence between major mode domi-
nance and the likelihood of associating a neutral word as
positive (the more major-mode oriented the song is, the
more likely people are to associate neutral words as posi-
tive) - see Figure 4d.

5.3.2 Correlation with DDM Decomposition

We analyzed the correlation between the extracted audi-
tory features and the DDM parameters fitted for each song
separately: nondecision time, response caution, response
bias, and stimulus evidence (drift rate) for each word type.
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Figure 4. Scatter plots reflecting the correlation between
musical features and response patterns: (a) average tempo
(BPM) vs the normalized average delay in classifying pos-
itive words; (b) average amplitude vs. normalized average
delay in classifying positive words; (c) % of major-mode
harmonies vs. normalized average delay in classifying pos-
itive words. (d) % of major-mode harmonies vs. the likeli-
hood of associating neutral words as positive.

We found a statistically significant correlation (r = 0.7 −
0.8, p < 0.05) between the major dominance feature and
the bias and positive drift rate parameters (see Figures 5a,
5b). A borderline correlation (r = 0.62, p < 0.1) was ob-
served between major dominance and the neutral drift rate.
These findings support the previous observations in the pa-
per. Interestingly, we’ve also observed a borderline signif-
icant negative correlation (r = −0.67; p < 0.1) between
mean amplitude and response caution, implying people are
less cautious the louder the music gets (see Figure 5c).

6. DISCUSSION

There is great interest in understanding how music affects
emotional processing. This study advances our under-
standing of this relationship through the use of the drift-
diffusion model, which was used to decompose the behav-
ioral data into meaningful psychological constructs. Par-
ticipants classified words as emotionally positive or nega-

Figure 5. (a) Scatter plot of the correlation between the
percentage of major-mode harmonies (major dominance)
in a song and the bias component of the DDM. (b) Scatter
plot of the correlation between the percentage of major-
mode harmonies (major dominance) in a song and the stim-
ulus evidence component (drift rate) for positive words in
the DDM. (c) Scatter plot of the correlation between the
average amplitude of a song and the response caution com-
ponent of the DDM.

tive while listening to music that induced a happy or sad
mood. The behavioral data showed small, but reliable ef-
fects of mood congruent emotional bias based on the mu-
sic conditions. The DDM analysis of those data showed
that music-induced mood had a targeted effect on the de-
cision components, affecting response expectancy bias but
not stimulus evaluation bias, response caution, or encod-
ing/motor time. Further analysis of how specific musical
traits correspond with response patterns confirmed these
findings and led to interesting additional observations.

These results suggest that music-induced mood does not
significantly affect how participants evaluate the emotional
content of the stimuli, but rather it affects how they favor
one response option independent of the actual stimulus un-
der consideration. In other words, a negative word is just
as negative while listening to sad compared to happy mu-
sic, even though the classification behavior differs. Thus
the mood-congruent bias appears to be driven more by the
selection of the response, rather than the emotional pro-
cessing of the stimulus. The distinction between these two
processes is only identifiable through the DDM analysis,
as it can capitalize on the RT distributions to dissociate the
two decision components.
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ABSTRACT 

As the importance of real-life use cases in the music in-

formation retrieval (MIR) field is increasing, so does the 

importance of understanding user needs. The develop-

ment of innovative real-life applications that draw on 

MIR technology requires a user-centered design and de-

velopment approach that assesses user needs and aligns 

them with technological and academic ambitions in the 

MIR domain. In this paper we present such an approach, 

and apply it to the development of technological applica-

tions to enrich classical symphonic concerts. A user-

driven approach is particularly important in this area, as 

orchestras need to innovate the concert experience to 

meet the needs and expectations of younger generations 

without alienating the current audience. We illustrate this 

approach with the results of five focus groups for three 

audience segments, which allow us to formulate informed 

user requirements for classical concert applications.   

1. INTRODUCTION 

While the Music Information Retrieval (MIR) field his-

torically has mostly been algorithmically oriented, in re-

cent years the community increasingly gained interest in 

the use and consequences of MIR technology for real-life 

applications rooted in user needs. Cases for a ‘mentality 

shift’ into this direction have been made in [22], [4], [20], 

[6], [15], and the ISMIR community includes a limited 

amount of active work on real-world user requirements 

(e.g. [3], [10], [12], [13]). However, it still seems hard to 

connect real-world user needs and requirements to con-

crete technological system and algorithmic advances [14]. 

When the needs and characteristics of the users are left 

unaddressed in technological applications, the end user 

remains an abstract entity, which becomes manifest in the 

absence of a requirements analysis and untargeted partic-

ipant recruitment for formative or summative evaluations 

of systems involving MIR technology.  

In this paper, we focus on technological application 

opportunities targeted at (Western) classical symphonic 

concert attendance. Orchestras are increasingly worried 

about audience sustainability. A Flemish study confirmed 

the common belief that concert attendees are typically 

highly educated and over the age of 45 [19]. Concerns 

about an aging audience motivate orchestras to find crea-

tive ways to involve new audiences [11], not only with 

new attractive concert formats, but also with technologi-

cal innovations that allow users interested in classical 

music to become engaged in an easy way. Examples in-

clude online concert broadcasting (e.g. Digital Concert 

Hall 1 ), smartphone-supported live program notes (e.g.  

LiveNote2), and enriched tablet e-magazines with second 

screen content (e.g. RCO Editions3). As argued in [9], 

MIR technology has the potential of enriching the cus-

tomer experience for the users of these applications. Once 

users become more engaged, they are more likely to buy 

concert tickets, which ultimately would lead to a more 

diverse classical concert audience. 

However, there is a trade-off between the need for in-

novations that attract new audiences and the risk of 

avoiding the alienation of the traditional audience. Since 

technology is not naturally associated with the classical 

concert experience and the allegedly conservative audi-

ence might be reluctant towards the use of technology in 

and around the concert hall, the importance of user ac-

ceptance cannot be underestimated. Therefore, an innova-

tion approach is needed that combines a technology push 

from the MIR community with a strong technology pull 

from user audiences. User-centered design is an im-

portant pillar of this approach, addressing user needs 

from existing and new audiences, and evaluating solu-

tions with end-users in every stage of the design process.  

In this paper, we therefore demonstrate how a user-

centered design approach can be used to identify oppor-

tunities for the use of (MIR) technology in classical con-

cert applications that are grounded in the needs of differ-

ent audience segments. More specifically, our study seeks 

to answer the following research questions: 

1. What are the motivators and obstacles for different 

audience segments to (not) attend classical concerts? 

2. How can the needs of the audience segments be 

translated into opportunities for the enrichment of the 

classical concert experience by means of technology?  

Consistent with [9], we argue that the classical concert 

experience not only involves the concert itself, but also 

                                                           
1 https://www.digitalconcerthall.com/en/home 
2 https://www.philorch. org/introducing-livenote%E2%84%A2-

nights#/ 
3 www. concertgebouworkest.nl/en/rco-editions 
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the preparation beforehand, and reflection and re-

experience afterwards. The envisioned applications are 

intended to appeal to new audiences by yielding a strong-

er hedonic response on four sources of stimulation (emo-

tions, senses, imagination, and intellect) [18], for both 

current and new audiences. 

After discussing related work on the needs of different 

classical music audience segments, we outline the user-

centered design approach that was taken. Subsequently, 

we present the results with respect to the first steps in our 

approach: the user requirements elicitation process that 

was preceded by the construction of user stories [16].  

User requirements are derived from focus groups that ad-

dress motivators and obstacles for classical concert at-

tendance and that collect feedback on a set of user stories, 

containing ideas for the use of (MIR) technology to en-

rich the classical concert experience before, during and 

after the concert.  

2. AUDIENCE SEGMENTS 

While the classical concert audience sometimes perceives 

itself as homogeneous, in fact this is not the case [17]. To 

develop applications that support the needs of the classi-

cal concert audience, it is therefore important to distin-

guish different audience segments. Roose [19] suggests a 

tripartite audience segmentation. First, passers-by are in-

cidental – typically younger - visitors that are not moti-

vated by the concert performance itself, but rather by ex-

trinsic motivations such as an evening out with friends. 

Participants comprise the core of the audience, consisting 

of well-informed, well-interested people that generally 

are not formally trained in music. In contrast, the inner 

circle consists of audience members that are professional-

ly involved in the arts who frequently attend concerts and 

form a peer group for the performers. A large-scale sur-

vey conducted by [19] demonstrated that the average age 

for all participants was between almost 55 and 57. The 

educational level for all segments is higher than for the 

general population (above bachelor level or higher). Inner 

circle members are better educated than participants, who 

in turn are better educated than passers-by. This tripartite 

segmentation is used as the basis for the audience seg-

mentation that will be used in this paper as the basis for 

application development.   

3. MOTIVATORS AND OBSTACLES 

The development of concert experience enrichment ap-

plications requires a solid understanding of why people 

enjoy classical concerts (motivators) and what obstacles 

they experience towards concert attendance. This section 

discusses existing literature on these, with focus on 

North-American and European audiences.1 

In a Flemish study, Roose [19] distinguishes between 

extrinsic and intrinsic motivations for concert attendance 

                                                           
1 To the best of our knowledge, no cross-cultural comparisons 

involving audiences with other cultural backgrounds have been 

made; however, also in this paper, we will focus on Western 

audience. 

and five classes of aesthetic dispositions. Even though the 

definitions of and relationships between motivations and 

dispositions are not precisely defined, they can shed light 

on why classical concerts appeal to different audiences. 

Intrinsic and extrinsic motivators. Intrinsic motiva-

tions include the performers (e.g. a soloist or an orches-

tra), the programming, or a concert being part of a sea-

sonal ticket. Extrinsic motivators are social motivators 

(advice from others, invitation from others, or spending 

time with friends), or attention in the media. Radbourne 

et al. [18] further elaborate on the social part of the expe-

rience, referred to as ‘collective engagement’. They argue 

that this an important determinant of the audience experi-

ence. Collective engagement can take three forms: be-

tween the audience and the performers, among audience 

members, and between attendees and non-attendees. So-

cial interactions stimulate discussion about the music 

[18], which would facilitate learning. This in turn would 

improve the audience experience. 

Aesthetic dispositions. [19] distinguishes five aesthetic 

dispositions that influence one’s inclination to attend 

classical concerts: emotional, escapist (e.g. change of set-

ting to escape everyday concerns), familiarity (e.g. music 

one is familiar with), normative (e.g criticize society), 

and innovative (e.g. experiments with the tonal system, 

complex rhythmic patterns, etc., with the purpose of en-

couraging the listener to discover new meanings in the 

music). The innovative disposition primarily is particular-

ly present in well-educated, experienced audiences.  

In comparison to motivators for classical concert at-

tendance, relatively little is known about the obstacles 

preventing people from attending classical concerts. [11] 

and [4] invited participants to attend a classical concert 

for the first time. Responses of first-time classical concert 

attendees can shed light on the preconceptions with 

which they enter the concert hall, and the difficulties they 

face. From these studies three classes of obstacles can be 

derived: limited sense of belonging, knowledge about 

classical music, and richness of the experience.  

Limited sense of belonging. Classical concert novices 

might feel overwhelmed when they enter a concert hall 

for the first time due to the social conventions, the eti-

quette, and the social interactions that occur. [4] and [11] 

have shown that first-time attendees have trouble with 

adjusting to these. [4] reported a lack of a sense of be-

longing as a result of age differences and differences in 

clothing. The limited sense of belonging because of social 

distance and the unknown social conventions is amplified 

by a limited understanding of the music. Additionally, 

[11] found that the lack of interaction between audience 

members and between the audience and performers nega-

tively impacted the experience of first-time concert at-

tendees, corroborating the importance of collective en-

gagement that was suggested by [18].  

Knowledge about classical music. Respondents in [4] 

and [11] articulated the importance of acquiring a certain 

level of knowledge to enjoy the concerts more. 

Knowledge about classical music is also related to emo-

tions. While the emotional response is an important de-

terminant of the audience experience [18], these emotions 

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 801



  

 

are more likely to be evoked when the attendee has a cer-

tain level of knowledge. Currently available information 

sources prove to be ill-adjusted to non-regular audiences, 

imposing an obstacle to the learning process. Respond-

ents in [4] complained about the program notes, which 

were ill-adjusted to first-time attendees in terms of vo-

cabulary and required general background knowledge. 

Richness of the experience. Classical concerts are ra-

ther different for first-time attendees compared to popular 

music concerts. Kolb [11] indicated that their respondents 

were able to pay attention during about 10 minutes per 

piece. They also felt that there were little opportunities 

for interaction between the audience and the performers, 

while the setting did not allow for interaction between 

audience members. Participants in [11] indicated that the 

lack of visual stimuli on the stage caused the time to go 

slow. Participants in both [11] and [4] reported a lack of 

visual stimuli, caused by both the stage set up, and the 

way the performers dress (referred to as ‘funeral attire’). 

To the best of our knowledge, no prior academic stud-

ies exist which comprehensively address both motivators 

and obstacles on classical concert attendance for multiple 

audience segments. In the following sections, we will de-

scribe how we investigated this, with the ultimate goal of 

developing innovative classical concert applications.  

4. DESIGN APPROACH  

The development of applications that are well-aligned 

with the needs and preferences of the users requires a 

multi-stakeholder approach. Orchestras characterize their 

target audiences through marketing research. New appli-

cations need to be aligned with their business model and 

their marketing strategy. Existing and new audience 

members need to provide input on their needs and expec-

tations. Throughout the development cycle, they provide 

feedback on prototypes of increasing fidelity. Technology 

providers (businesses and research institutes) develop the 

actual applications, based on academic or business ambi-

tions, balancing technology-push with technology-pull. 

In Figure 1, a high-level user-centered design and de-

velopment process for classical concert applications is 

displayed, involving the aforementioned stakeholders.  
 

 

Figure 1 User-centered development process  

Audience segmentation. In the work described in this pa-

per, applications need to be tested for all parts of the con-

cert experience: before, during, and after a concert. Based 

on (unpublished) marketing research from a Dutch or-

chestra, three audience segments were targeted: outsiders, 

casual consumers, and heavy consumers. In comparison 

to [19], outsiders (OS) are comparable to the passers-by 

or the ‘culturally-aware non-attenders’. The casual con-

sumers (CC) are in between the participants and the pass-

ers-by. While they have serious interest in attending clas-

sical music, compared to participants, their concert at-

tendance frequency is lower, as is their average age, mu-

sical knowledge level, and less natural engagement with 

classical music. Heavy consumers (HC) comprise both 

the inner circle and the participants.  

User stories. User stories describe specific functionali-

ties, written from the perspective of an end-user. They 

function as data collection probes [1] – artefacts “contain-

ing open-ended, provocative and oblique tasks to support 

early participant engagement responses with the design 

process” (p. 1077). In our work, eight user stories were 

constructed that each describe a set of features for 

smartphone or tablet applications, expected to enrich the 

concert experience before, during and after event attend-

ance. The user stories – described in [16] – address the 

needs of all three relevant target audiences (OS, CC, HC), 

while at the same time, they build on opportunities from 

the technological and MIR domain. 

The insights gained from feedback on the user stories 

shape the user requirements in a way we will describe in 

the remainder of this paper. In their turn, the requirements 

form the basis for the iterative development and evalua-

tion of these apps.  

5. USER REQUIREMENTS  

ELICITATION METHODOLOGY 

5.1 General approach 

For user requirements elicitation, five focus groups were 

held: two in the Netherlands (one for HC consumers, one 

for CC consumers) and three in Austria (targeting HC, 

CC and OS consumes, respectively). After signing in-

formed consent forms a project introduction was given. 

Participants then introduced themselves, focusing on their 

music preferences. Subsequently, motivators and obsta-

cles for attending classical concerts were discussed, in-

troduced by the questions “What makes a classical con-

cert such a unique experience for you?” and “What pre-

vents you from going to classical concerts more often”?, 

respectively. Afterwards, participants received a booklet 

with the user stories, which the participants read, annotat-

ed on sticky notes, and discussed. The focus group was 

concluded with a questionnaire, addressing technology 

use, music and concert behavior, and demographics.  

5.2 Participants 

In the Netherlands, participants were recruited via a mail-

ing of the Royal Dutch Concertgebouw Orchestra’s cus-

tomer association, whose members fitted our CC and HC 

criteria. In Austria, a recruitment e-mail was sent to all 

students of a university. A sign-up form with questions 

about classical music involvement was used to divide 

participants over the three audience segments. Table 1 

reports participant characteristics for all focus groups.  

5.3 Data analysis 

After transcription, the data were analyzed using thematic 

analysis, a form of pattern recognition within the data, 

where emerging themes become analysis categories [8]. 

Data were analyzed with the purpose of identifying moti-
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vators and obstacles for concert attendance. Feedback on 

the user stories was analyzed with the purpose of deriving 

opportunities for applications to enrich the classical con-

cert experience. Note that even though the differences 

between the Netherlands and Austria are of interest to the 

goal of our study, other differences between the samples 

(e.g. age, occupational status, income, experience) pre-

vent us from doing a valid cross-cultural comparison.  

 
Measure The Netherlands 

CC HC 

N 6 13 

Age 27.7 (.8) 54.7 (15.2) 

Concert attendance 

  > once/ month 

  once/month 

  once/quarter 

  once/year   

 

1 

 

4 

1 

 

5 

 

8 

 
Measure Austria 

 OS CC HC 

N 7 10 4 

Age 29.4 

(8.2) 

27.8 

(11.3) 

27.5 

(3.8) 

Concert attendance 

  > once/month 

  once a month 

  once/quarter 

  once every year   

 

 

 

3 

4 

 

1 

 

3 

6 

 

 

1 

2 

1 

Table 1. Focus group participant characteristics 

6. MOTIVATORS AND OBSTACLES 

In this section, we present the results of devising general 

motivators and obstacles from the user requirements elici-

tation process. Transcription, analysis, and coding of the 

results has led to the definition of 17 motivators and 16 

obstacles, of which we will discuss the most important 

ones, backed with statements from the discussions. 

Statement quotes use the following abbreviations: 

#n=participant ID; OS=outsiders, CC=casual consumers, 

HC=heavy consumers; NL=the Netherlands, AT=Austria. 

Statements from sticky notes do not have a participant 

ID, as they were collected all at once on a flip-over sheet. 

6.1 Intrinsic motivators 

Concert experience and musical quality. Across target 

groups, participants appreciate the uniqueness of the con-

cert as a one-time event during which high-quality music 

is played. Participants clearly see the added value of a 

live concert in comparison to a recording. They felt that 

this was not only applicable to classical music, but also to 

concerts in other genres (CC-NL, OS/CC/HC-AT). 

The discussions revealed that in classical concerts, at-

tendees are motivated by the interaction between the con-

ductor and the orchestra, between the audience and the 

performers, and by the orchestra members themselves. 

Tension and suspense fascinated the participants: “You 

can see tension with musicians, feeling is transmitted 

through the way they look and move. You can also see 

this from the conductor. (…) you can feel the emotion, 

not just audio. You don’t get this in a recording.” (#9-

CC-AT). From the OS-AT group it became apparent that 

this fascination not only applies to classical concerts, but 

also to other genres.  

Escapism. For casual consumers and heavy consumers 

in both AT and NL, escapism – an aesthetic disposition 

mentioned by [19] – is an important motivator for classi-

cal concert attendance. Participants indicated that sub-

merging themselves in an environment in which they 

cannot do anything else but focus on the music allows 

them to disconnect from their daily concerns (“At a clas-

sical concert I forget all my problems, I am not stressed, 

#6-CC-AT). In that sense, a classical concert was com-

pared to a church service: “A moment to be quiet” (#2-

CC-NL). Another participant emphasized the difference 

to listening to classical music at home: “It’s an obligation 

to listen to a concert in peace and quiet. I don’t succeed in 

doing that at home” (#5-CC-NL).  

Need for cognition. People differ in the extent to which 

they desire to engage in cognitively effortful activities 

[2]. In the CC-NL and HC-NL groups, opportunities for 

cognitive engagement and learning motivated several par-

ticipants to attend classical concerts. Curiosity about the 

musicians, the piece, and the performers was expressed 

(referred to as ‘hunger for information’; #5-CC-NL). 

However, this need for cognition and learning was not 

expressed by participants in the outsider group. 

One participant in the CC-AT group connected the es-

capist motivator and the resulting focus on the music to 

an increased level of processing: “You start thinking 

about things. You discover new pieces”. Another partici-

pant noticed a difference in attitude with respect to learn-

ing: “Awareness and qualitative enjoyment of a piece is 

more important than entering the hall snobbishly, pre-

tending that you know everything” (#5-CC-NL).   

6.2 Extrinsic motivators 

Social influences. Participants reported that having peers 

or family members with the same interests, helps to get 

motivated for classical concerts. One participant com-

mented: “I notice that it works well when you know a 

couple of people in the orchestra. It makes things more 

personal. And lowers the barrier to join in” (#6-CC-NL).  

Furthermore, in particular the younger CC-NL group pre-

ferred a concert experience to encompass more than just 

the performance itself (e.g. appreciating “A drink at a bar 

with young people afterwards”; #5-CC-NL). 

6.3 Intrinsic obstacles 

Importance of classical music. The discussions revealed 

substantial differences between audience segments con-

cerning the role classical music plays in people’s lives. 

Consistent with findings from [19] and [11], we found 

that participants are not exclusively focused on classical 

music, but are ‘culturally mobile’ [7]. One participant ex-

plained: “You just don’t visit 10 classical concerts. There 

is more than classical music. It’s interesting if something 

comes up. And that’s what our generation likes” (#3-CC-

NL). Participants also mentioned that their interest in 

classical concerts is mood-dependent.  

Preparation and risk. Substantial differences were 

found with respect to the effort audience segments were 
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willing to invest in concert preparations. While the CC-

NL group requested easily consumable information, the 

HC-NL group was motivated to invest more time (“I can 

spend hours on YouTube watching videos about what a 

singer has done before”; HC-NL), and considered prepa-

ration as part of the pre-concert anticipation. The discus-

sion in the OS-AT group revealed that the risk of buying 

an expensive ticket can be too high (“It’s expensive for 

just something you don’t know”, #4-HC-AT). To reduce 

this risk, participants felt they needed to invest time in 

finding information about the performers and the piece. 

This factor was more important in AT than NL, probably 

because due to the AT participants being students.  

Concert setting and conventions. Consistent with [11] 

participants in the younger groups (OS/CC-AT; CC-NL) 

felt disconnected from other concert attendees, primarily 

as a function of the age difference “What stops me? That 

there are very, very, very many seniors in the hall. Some-

times that disturbs me” (#2/3/5, CC, NL). Participants 

also mentioned the complexity of concert conventions for 

novices (“a classical concert can be intimidating. Un-

known. They don’t know the rules”, #4+6-CC-NL).  

Richness of the experience. Results suggested that the 

perceived richness of the experience was dependent on 

both the age group and the level of engagement with clas-

sical music. Younger groups (CC-NL, OS-AT, HC-AT) 

noted that “The experience is richer in other genres, for 

classical it’s more about the music itself” (#3-HC-AT). 

One participant (#3) in the OS-AT group commented on 

the lack of surprises, knowing already what the playlist is. 

Interestingly, the HC-NL group considered the surprise 

element to be a motivator (“At every performance you 

become surprised by something…you hear things you 

won’t hear elsewhere”, #10-HC-NL). Outsiders (OS-AT) 

and casual consumers (CC-NL, CC-AT) commented on 

the lack of opportunities for physical expression. “I miss 

standing up. Being engrossed in music you also experi-

ence physically.” (#2-CC-NL). This radically differs from 

their experience with non-classical concerts.  

6.4 Extrinsic obstacles 

Social influences. Younger participants – most present in 

the OS and CC groups – indicated that their peers were 

less interested in classical music, causing a lack of com-

pany. This prevents the respondents from going more of-

ten, both in Austria and in the Netherlands. (#3-CC-NL, 

“You have to know people that also like classical music”; 

#9-CC-AT, “It’s easier to find friends who want to join 

me to a rock concert”. Other extrinsic obstacles included 

ticket costs, and the long time attendees needed to plan 

ahead when they want to attend a concert.  

7. APPLICATION AND MIR OPPORTUNITIES 

In this section, we aggregate user story feedback under 

several clustered themes. We discuss relevant feedback 

per theme, formulate exemplary requirements for tech-

nology-supported concert applications, and discuss inte-

gration opportunities for MIR technology. 

7.1 Support with preparation 

The discussion on motivators and obstacles has high-

lighted the importance of concert preparation across ex-

pertise levels. User stories facilitating concert preparation 

were well-received. The CC groups appreciated the con-

venience of having information in one place (“We are 

part of a generation that is used to large amounts of in-

formation, but also to get it presented in an easy way”; 

#2-CC-NL). Both the HC-NL and the CC-NL group ap-

preciated the added value of the information, particularly 

historic context, for preparation before the concert, but 

also for better understanding during and after the concert. 

When working towards concrete applications, this 

leads to the requirement that the applications should offer 

information about the composer, the musicians, the piece, 

and its historical context. MIR technology can support 

this by developing cross-modal and cross-performance 

synchronization methods, and techniques for analyzing 

and combining hybrid music information resources. 

7.2 Need for support to understand the music. 

While participants wanted to avoid overemphasizing 

cognitive aspects, across groups a need was expressed for 

understanding the music, learning about what parts one 

should pay attention to, and discovering unexpected new 

elements. Participants recognized the difficulty for novice 

listeners to understand and then enjoy the music “because 

music is hard to grasp/decipher” (CC-NL). They ex-

pressed interest in the structure of the music, the compo-

ser’s intention, the conductor’s interpretation, and the 

discovery of style differences in comparison to recor-

dings. User stories that provide this support were as-

sessed positively, in terms of their educational potential 

and the potential to lower the barriers for outsiders to 

start attending classical concerts. 

In terms of application requirements, two main re-

quirements can be extracted: the applications should offer 

representations of the musical structure and the user's 

attention should be attracted to parts of the music which 

wouldn't have been noticed otherwise. These interests 

confirm the relevance of MIR work on automated music 

description, performance analysis, and visualization. 

7.3 Audience expansion by sharing relevant moments 

The user stories included application features allowing 

users to annotate particularly interesting moments, to re-

view the notes and related audiovisual content after the 

concert, and to share notes and their corresponding frag-

ments through social media. Participants felt that the 

sharing of small fragments could function as an “'opener' 

for people unacquainted with this type of music” (HC-

NL). By sharing the experience, users can motivate their 

friends to attend a classical concert (“if you share this, 

you can tag someone along”; CC-NL).  

While the opportunity to review and share particularly 

interesting moments after the concert was generally eval-

uated positively, taking notes during a concert was per-

ceived as distracting. Participants were concerned with 

the impact on the concert experience (“It’s not a lecture”; 

HC-NL). They felt that the cognitive effort of taking 

notes “destroys magic of non-repeatable live experience”. 
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A one-button marker was frequently mentioned as a light-

weight solution: (“Annotations for a specific moments, 

ok, but not with text, only with a marker. Which means: I 

want to hear this again”; CC-NL). 

This leads to several application requirements: applica-

tions should enable the user to set a marker at a particu-

lar moment during the concert by pressing a single but-

ton and enable the user to listen to marked fragments af-

ter a concert. While the concepts of marking, annotating 

and sharing are somewhat related to work on social media 

and autotagging in the MIR community, many open ques-

tions are raised regarding temporal aspects of ‘interesting 

moments’, and especially the type of information to be 

displayed and marked. 

7.4 Personalization and control 

The results revealed substantial differences between and 

within audience segments, concerning their expectations 

of the concert experience, attitude towards technology, 

and level of classical music experience. Considering 

these differences, participants expressed interest in per-

sonalized information. Here, ‘personalization’ had two 

meanings: first, participants preferred to only receive in-

formation that is relevant to them, notwithstanding their 

need for a certain level of surprise in the information of-

fered. Second, they wanted to switch on and off different 

layers of information to personalize their user experience. 

 These notions lead to two corresponding requirements 

formulations for applications: the user must be able to 

receive personalized content by filling out a limited num-

ber of questions and the user must have control over the 

layers of information that are displayed. Regarding the 

first point, an explicit questionnaire is suggested, as this 

provides both most transparency to a user, and avoids da-

ta sparsity issues. Still, it is useful to assess the potential 

of automated MIR profiling and recommendation tech-

niques, in terms of usefulness and feasibility.  

7.5 Caveat: interference with the concert experience. 

One important caveat was brought up in every focus 

group: applications should refrain from interfering with 

the live concert experience. Participants wanted to enjoy 

the music without engaging in cognitive activities. This is 

in line with the escapism disposition from [19], which 

also emerged from the focus groups as a motivator. In 

terms of [18], an overemphasis on cognitive stimulation 

potentially prevents sensory or emotional stimuli from 

contributing to the concert experience. (“How can you 

combine a tablet with emotions?” HC-NL).  

When tablets were discussed as a possible medium in 

concert halls, participants were worried about distraction 

by messages about everyday affairs (“You might receive 

a work-related e-mail that makes you tense up”, CC-NL).  

Second, tablets might also distract other audience mem-

bers due to the light emittance of tablets in an otherwise 

(semi-)dark concert hall. The strongest rejection of these 

ideas came from the participants in the HC-NL group 

who wanted to keep the concert experience as it is. 

This leads to a very clear and strong requirement that 

applications must not distract the user or other concert-

goers while listening to a live concert. In terms of MIR 

technology, this poses open challenges with respect to 

user experience design of in-concert applications. 

8. CONCLUSIONS 

In this paper we discussed a user-centered design ap-

proach to identify opportunities for technological enrich-

ment of the classical concert experience. Departing from 

a tripartite audience segmentation and common motiva-

tors and obstacles for concert attendance from literature, 

five focus groups were conducted in which these motiva-

tors and obstacles were further refined and connected to 

application and MIR technology inclusion opportunities.  

A trade-off was found between offering cognitive sup-

port to users and allowing users to enjoy the concert 

without disturbance. Light emittance, required attention 

by the user, and the impact on other concertgoers are the 

most important concerns that were voiced by the partici-

pants. In contrast, stronger support was found for ideas 

that improve the understanding of the music. Participants 

also supported ideas to relive marked interesting mo-

ments of the concert, although the marking effort during 

the concert should be limited to pressing a single button. 

The reported results support our plea for a detailed as-

sessment of end-user needs and user characteristics. Our 

results reveal differences between individual participants 

with respect to their aesthetic dispositions [19], cultural 

mobility [7], and also the type of stimulation participants 

expect from a concert [18]. Furthermore, consistent with 

[21], the results suggest that age affects user acceptance 

of technology in the concert hall – with older participant 

being more reluctant towards changes of the concert ex-

perience. In sum, the results emphasize that what is a mo-

tivator for one attendee, can be an obstacle for another.  

Classical concert applications for such a heterogeneous 

audience require a personalized user experience, with 

many opportunities to integrate advances from the MIR 

research agenda. At the same time, the success of result-

ing applications will depend on their connection to end-

user needs and expectations. The chosen presentation and 

contextualization of information is a critical factor in this, 

which is not yet thoroughly examined with true end-user 

involvement in MIR. 

Follow-up steps in our approach are to iteratively de-

sign and evaluate application wireframes for prototypical 

applications, while simultaneously developing the 

backend (MIR) technology. Results of consecutive evalu-

ations will then refine and extend the requirements and 

opportunities presented in this paper.  
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ABSTRACT

The manipulation of different interpretational factors, in-
cluding dynamics, duration, and vibrato, constitutes the
realization of different expressions in music. Therefore,
a deeper understanding of the workings of these factors is
critical for advanced expressive synthesis and computer-
aided music education. In this paper, we propose the novel
task of automatic expressive musical term classification as
a direct means to study the interpretational factors. Specif-
ically, we consider up to 10 expressive musical terms, such
as Scherzando and Tranquillo, and compile a new dataset
of solo violin excerpts featuring the realization of different
expressive terms by different musicians for the same set of
classical music pieces. Under a score-informed scheme,
we design and evaluate a number of note-level features
characterizing the interpretational aspects of music for the
classification task. Our evaluation shows that the proposed
features lead to significantly higher classification accuracy
than a baseline feature set commonly used in music infor-
mation retrieval tasks. Moreover, taking the contrast of
feature values between an expressive and its corresponding
non-expressive version (if given) of a music piece greatly
improves the accuracy in classifying the presented expres-
sive one. We also draw insights from analyzing the feature
relevance and the class-wise accuracy of the prediction.

1. INTRODUCTION

The expressive meaning of music is generally related to
two inter-dependent factors: the structure established by
the composer (e.g., mode, pitch, or dissonance) and the in-
terpretation of the performer (e.g., expression) [21]. Glenn
Gould could phrase the trills in a way different from other
pianists. Mozart’s Grazioso should be interpreted unalike
to Brahms’. Although the interplay between the structural
and interpretational factors makes it difficult to character-
ize musical expressiveness from audio signals, it has been

c© Pei-Ching Li, Li Su, Yi-Hsuan Yang, Alvin W. Y. Su. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Pei-Ching Li, Li Su, Yi-Hsuan Yang, Alvin
W. Y. Su. “ANALYSIS OF EXPRESSIVE MUSICAL TERMS IN VI-
OLIN USING SCORE-INFORMED AND EXPRESSION-BASED AU-
DIO FEATURES”, 16th International Society for Music Information Re-
trieval Conference, 2015.

pointed out that such analysis is valuable in emerging ap-
plications such as automatic music transcription, computer-
aided music education, or expressive music synthesis [2,4,
7,19]. Accordingly, computational analysis of the interpre-
tational aspects in music expression has been studied for a
while. For example, Bresin et al. analyzed the statistical
behaviors of legato and staccato played with 9 expressive
adjectives (not expressive musical terms) [3]. Grachten
et al. made both predictive and explanatory modeling on
the dynamic markings (e.g., f, p, fz, and crescendo) [10].
Ramirez et al. considered an approach of evolutionary
computing for general timing and energy expressiveness
[18]. Marchini et al. analyzed the performance of string
quartets by the following three terms: mechanical, nor-
mal and exaggerated [14]. Recently, Rodà et al. further
considered expressive constants as affective dimensions of
music [20]. Related works also include the identification
of performers, singers and instrument playing techniques
in the context of musical expression [1, 6, 12, 15].

To model specific aspects of the complicated music ex-
pression quantitatively, a machine learning based approach
is usually taken. Given an audio input, features are ex-
tracted to characterize the interpretational aspects of mu-
sic, such as the dynamics, tempo and vibrato [3,9,12,14]. 1

If the symbolic or score data such as the MIDI or Mu-
sicXML are available, one can further introduce more struc-
tural aspects including tonality, pitch, note duration and
measure, amongst others [10, 15, 16]. In [14], the syn-
chronized audio, score and even motion data are utilized
to generate 4 sets of features, including sound level, note
lengthening, vibrato extent and bow velocity, in an attempt
to reveal human behaviors while playing the instrument
or indicate the structural information of music. This way,
the features investigated have music meanings, and can be
adopted for specific applications such as the prediction and
the generation of expressive performances [10, 18].

Among all the objects of music expression, we notice
that the expressive musical terms (EMT) 2 have garnered
less attention in the literature, although they have been

1 Here we assume that any real-world interpretation of an expressive
musical term performed by a musician can be “atomized” into several
(independent) factors such as dynamics, tempo, and vibrato.

2 In this paper, the expressive musical term is defined as the Italian
musical term which describes an emotion, feeling, image or metaphor,
rather than merely an indication of tempo or dynamics. It includes, but
not limited to the emotional terms (see Table 1).
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Violin pieces Measure Expressions
W. A. Mozart - Variationen 1-24 None, Scherzando, Tranquillo, Con Brio, Maestoso, Risoluto
T. A. Vitali - Chaconne 1-9 None, Scherzando, Affettuoso, Con Brio, Agitato, Cantabile
G. Faure - Elegie 2-9 None, Scherzando, Grazioso, Agitato, Espressivo, Cantabile
P. I. Tchaikovsky - String Quartet, No. 1, Mov. II 1-16 None, Affettuoso, Tranquillo, Con Brio, Cantabile, Risoluto
M. Bruch - Violin Concerto, No. 1, Mov. I 6, 10 (solo. ad lib.) None, Affettuoso, Tranquillo, Agitato, Maestoso, Cantabile
A. Vivaldi - La primavera, Mov. I 1-13 None, Scherzando, Affettuoso, Grazioso, Con Brio, Risoluto
A. Vivaldi - La primavera, Mov. II 2-11 None, Grazioso, Agitato, Espressivo, Maestoso, Cantabile
E. Elgar - Salut d’Amour 3-17 None, Affettuoso, Grazioso, Agitato, Espressivo, Maestoso
A. Vivaldi - L’autunno, Mov. I 1-13 None, Tranquillo, Grazioso, Con Brio, Espressivo, Risoluto
A. Vivaldi - L’autunno, Mov. III 1-29 None, Scherzando, Tranquillo, Espressivo, Maestoso, Risoluto

Table 1: The proposed dataset contains 10 different classical music pieces and each with 6 distinct expressions.

widely used in specifying expressions of classical music
for hundreds of years. How the interpretational factors (dy-
namics, duration or vibrato) are taken for a musician to in-
terpret the terms is still not well understood. This might be
due to the lack of a dataset containing various interpreta-
tions for a fixed set of classical music pieces.

In this paper we address these issues, and particularly,
focus on the classification of expressive musical terms in
violin solo music. We compile a new dataset of solo vio-
lin excerpts featuring the realization of 10 expressive terms
and 1 non-expressive term (e.g., no expression) by 11 dif-
ferent musicians for 10 classical music pieces (Section 2).
After collecting the MIDI and MusicXML data for the mu-
sic pieces, we design a number of dynamic-, duration- and
vibrato-based features under a score-informed scheme (Sec-
tion 3.2). Moreover, we also consider a baseline feature
set comprising of standard audio features that can be com-
puted without score information, such as the Mel-frequency
cepstral coefficients (MFCCs), spectral flux, spectral cen-
troid, and the zero-crossing rate (Section 3.1). As such
features have been widely used in music information re-
trieval tasks like the classification of mood, genre or in-
struments [25], we want to know whether they are also use-
ful for classifying the expressive musical terms. However,
we should note that many of the baseline features do not
bear clear music meanings as the proposed features do. In
our experiments, we will evaluate the performance of these
features for expressive musical term classification, and an-
alyze the importance of such features (Section 4).

The dataset is referred to as the SCREAM-MAC-EMT
dataset. For reproducibility and for calling more attention
to this research problem, we have made the audio files of
the recordings publicly available online. 3

2. THE SCREAM-MAC-EMT DATASET

To find out how a violinist interprets the expressive mu-
sical terms, the scope of the music data, the difference
in personal interpretation, and the suitability between the
music piece and the musical term are all considered. We
started by listing 20 typical violin pieces ranging across the
Baroque, Classical, and Romantic eras, such as Vivaldi’s
The Four Seasons, Beethoven’s Spring, and Schubert’s Ave
Maria, to name a few. Then, we consulted with 3 profes-

3 https://sites.google.com/site/pclipatty/
scream-mac-emt-dataset

Figure 1: Flowchart of the proposed system.

sional violinists, who are active in classical music perfor-
mance, to select 10 pieces from the list and assign 5 suit-
able expressive musical terms for each of them. The ma-
jor criterion of selecting the music pieces, as it turns out,
requires that an excerpt has a simple melody that can be
effectively manipulated to exhibit different characteristics
when being interpreted with different expressions.

The following 10 expressive terms are considered:
Tranquillo (calm), Grazioso (graceful), Scherzando (play-
ful), Risoluto (rigid), Maestoso (majestic), Affettuoso (af-
fectionate), Espressivo (expressive), Agitato (agitated),
Con Brio (bright), and Cantabile (like singing). 4 In order
to have a balanced dataset, we require that each expressive
musical term is associated with 5 pieces. This is not easy,
because not all of the 20 pieces can be interpreted with
diverse expressions. Eventually, some compromises have
to be made. For example, we chose Maestoso instead of
Cantabile for Elgar’s Salut d’Amour, although the former
is somewhat awkward for this music piece. The resulting
selection of the music pieces and the assigned expressions
is shown in Table 1.

After selecting the music pieces, we recruited 11 profes-
sional violinists to perform them one by one in a real-world
environment. In addition to the 5 assigned terms, every
musician performed a non-expressive (denoted as None)
version for each piece. Here, None means mechanical in-
terpretation [14] by which the music is of constant dynam-
ics, constant tempo and no vibrato. The dataset therefore
contains 660 excerpts as there are 10 classical music pieces
and each piece is interpreted by 6 different versions by all
the 11 violists. We have 110 excerpts of None, and 55 ex-
cerpts for each of the 10 expressions.

3. METHOD

Figure 1 shows the proposed system diagram. At the first
stage of the system, the input audio signal is aligned with

4 For more information, see http://www.musictheory.org.
uk/res-musical-terms/italian-musical-terms.php
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Name Abbreviation Note-level aggregation Song-level aggregation
Dynamics D M, Max, maxPos M, S, CM

Duration ND, 1MD, 2MD, 4MD — M, S, CM

FPD — —, CM

Vibrato rate VR M, S, M∆, S∆, Max, Min, Diff M, S, CM

Vibrato extent VE M, S, M∆, S∆, Max, Min, Diff M, S, CM

Global vibrato extent GVE — M, S, CM

Vibrato ratio vibRatio — —

Table 2: Proposed features, the note-level and song-level aggregation methods.

its corresponding MIDI file in order to find the onset and
offset positions and the pitch of each note in the audio
signal. To do this, we adopt a chromagram-based audio-
score alignment algorithm proposed in [23]. The posi-
tions of the bar lines are extracted from the MusicXML-
formatted score sheets by using an XML parser. 5 Then, to
better characterize the attributes of the basic temporal ele-
ments (note or bar) of music, frame-level features are ag-
gregated over time to generate note-level or bar-level fea-
tures according to the desired segmentation. Furthermore,
the note-level and bar-level features are aggregated again
into a song-level representation, which allows us to map
a variable-length sequence into a fixed-size feature vector
that can be fed into a classifier. Finally, in the classification
stage, we use radial-basis function (RBF) kernel Support
Vector Machine (SVM) implemented by LIBSVM [5].

For the feature aggregation process from note-level (or
bar-level) to song-level, we consider 3 different ways: (1)
taking mean value over all notes in the excerpt (M), (2)
taking standard deviation over all notes in the excerpt (S),
and (3) taking the contrast of M between the expressive
and its corresponding non-expressive version (CM): CM =
Mexpressive/MNone. CM here is designed to “calibrate” the
effect of None, which can be regarded as a baseline for the
other 10 expressive musical terms. That is, CM can some-
how tell how different the expressive feature is from its
non-expressive version. For the feature aggregation meth-
ods from frame-level to note-level, we will introduce them
separately since they are different for each feature.

We introduce below the baseline feature set and the pro-
posed feature set.

3.1 Baseline Features

The baseline features are a rich set of audio features cover-
ing dynamics, rhythm, tonal, and timbre. In particular, the
baseline features are a rich set of temporal, spectral, cep-
stral and harmonic descriptors. It contains the mean and
standard deviation of spectral centroid, brightness, spread,
skewness, kurtosis, roll-off, entropy, irregularity, flatness,
roughness, inharmonicity, flux, zero-crossing rate, low en-
ergy ratio, attack time, attack slope, dynamics and the
mean and standard deviation of first-order temporal dif-
ference for all the above features, totaling 4×17=68 fea-
tures. Besides, it involves the mean of fluctuation peak
and centroid, tempo, pulse clarity and event density, gen-
erating 5 features; the mean and standard deviation of

5 For more details about MusicXML, please refer to http://www.
musicxml.com/

mode and key clarity, resulting 4 features. Furthermore,
it includes the mean and standard deviation of the 40-D
MFCCs, ∆MFCCs (first-order temporal difference) and
∆∆MFCCs (second-order temporal difference), totaling
2×120=240 features. In sum, we have 317 features ex-
tracted by the MIRtoolbox (version 1.3.4) [13].

3.2 Proposed Features

3.2.1 Dynamic Features

The dynamics of each note is estimated from the short-
time Fourier transform (STFT). Given a segmented note
x(n) and the Hanning window function w(n), the STFT is
represented as Xw (n, k) = Mw (n, k) ejΦw(n,k), where
Mw (n, k) is the magnitude part, Φw (n, k) is the phase
part, n is the time index, and k is the frequency index. The
dynamic level function D(n) is computed by the summa-
tion of the magnitude spectrogram over the frequency bins
and is expressed in dB scale:

D(n) = 20 log10

(∑

k

M(n, k)

)
. (1)

Three note-level dynamic features are computed from
D(n). Each of them are the mean value of D(n) (D-M),
the maximal value of D(n) (D-Max) and the proportion of
the maximum position to the note length (D-maxPos):

maxPos =
arg maxnD(n)

length (D(k))
× 100% . (2)

D-maxPos therefore measures the time a note reaches
its maximal energy from its beginning, normalized to the
length of the note. All of these three note-level features are
then aggregated to song-level by M, S, and CM, totaling
9 features (see the second row of Table 2). For the D(n)
calculation, frames of 23ms (1014 samples) with an 82%
overlap (832 samples), as used in [14], are adopted.

3.2.2 Duration Features

After score alignment and note segmentation, we take the
following values as the features: the duration of every
single note (ND), measure (1MD), two-measure segment
(2MD), four-measure segment (4MD), and the full piece
(FPD) (see the third row of Table 2). We expect that these
features can capture the interpretation of local tempo vari-
ations measured by single notes, downbeats, and phrases.
We take M and S on ND, 1MD, 2MD and 4MD to obtain
song-level features. FPD itself is already a song-level fea-
ture so no aggregation is needed. Moreover, all of these
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Figure 2: Pitch contours of the first crotchet (C5)
of Mozart’s Variationen with 6 expressions: None,
Scherzando, Tranquillo, Con Brio, Maestoso and Risoluto.

five features are processed by CM. Figure 2 shows exam-
ples where the same note (a crotchet C5) is interpreted in
different ND for distinct expressions.

There are some more implementation details about the
duration features. If a music piece has an incomplete mea-
sure in the beginning (e.g., Vivaldi’s La primavera Mov. I)
then the incomplete measure is merged into the next one
and features are computed starting from the first complete
measure. If the length of a phrase is not the multiple of
the 2 or 4 measures then the remainders are combined as
a group. Bruch’s Violin Concerto No. 1 Mov. I (the 5th

piece) is an unusual instance that has two ad libitum mea-
sures. In this case, 4MD is set at zero. In the parser pro-
cess, a special part is to eliminate rests and ties because
they do not have a unique sound. The former means an in-
terval of silence and the latter has a curved line connecting
to its previous note of the same pitch, indicating that they
should be played as a single note.

3.2.3 Vibrato Features

Vibrato is an expressive manipulation of pitch correspond-
ing to a frequency modulation of F0 (fundamental fre-
quency) [17]. Because the vibrato is characterized by the
rate and extent of the frequency modulation of F0, a precise
estimation of the instantaneous pitch contour is needed.
Since the frequency resolution in the STFT representation
may not be high enough to represent the instantaneous fre-
quency, we compute the instantaneous frequency deviation
(IFD) [11] to estimate the instantaneous frequency:

IFDw (n, k) =
∂Φw

∂t
= Im

(
XDw

(n, k)

Xw (n, k)

)
, (3)

where Dw (n) = w′ (n). Given the pitch of each note
from the score, instantaneous frequency is computed by
summing the IFD and the bin frequency of the bin which
is nearest to the pitch frequency. Figure 2 also sketches
examples of the vibrato contours. We can see large differ-
ences in both duration and vibrato among them. For the

Figure 3: Illustration of vibrato rate, vibrato extent, and
global vibrato extent in a single note.

IFD calculation, a window of 1025 samples at 44.1 kHz
sampling rate and a hop size of 64 samples are applied.

After obtaining the vibrato contour of each note, we
adopt a moving-average filter with length of one-hundredth
of the note length to reduce the spurious variation of the
pitch contour. The filter length is empirically set so as
not to avoid much distortion and to remove high-frequent
noise. Based on the smoothed pitch contour, we consider
the vibrato rate (VR) and the vibrato extent (VE). The
former means the reciprocal of the time duration of two
consecutive peaks, while the latter means the frequency
deviation between a peak and its nearby valley. Follow-
ing [8], we require that a vibrato chain contains more than
3 points and VR is between 3 and 12 Hz; otherwise, the
vibrato chain is excluded. For each note, we compute the
mean, standard variation, mean of difference (M∆), stan-
dard variation of difference (S∆), maximum (Max), mini-
mum (Min) and difference (Diff) between the maximal and
minimal values of both VR and VE over all frames within
a note [24]. These note-level features are also aggregated
to song-level features by means of M, S, and CM.

In addition, we consider a note-level feature called
global vibrato extent (GVE), meaning the difference of the
maximal peak value and the minimal valley value within a
vibrato note as shown in Figure 3. GVE is also aggregated
to song-level features through M, S, and CM. Finally, we
consider a song-level feature called vibrato ratio (vibRa-
tio), defined as:

vibRatio =
# vibrato notes

# notes in a violin piece
× 100% . (4)

When no vibrato note is detected or the ND is shorter than
125ms [14], the vibrato features are set at zero.

3.3 Feature Selection and Classification

To evaluate the importance of the adopted features in our
task, we perform feature selection on both the baseline and
the proposed feature sets. Here, the ReliefF routine of the
MATLAB statistics toolbox 6 is employed in the feature
selection process [22]. In the training process, ReliefF
sorts the features in descending order of relevance (impor-
tance). Then, the top-n′ most relevant features are taken
for SVM modeling. The optimal feature number nopt

which results in the best accuracy is obtained by brute-
force searching.

6 http://www.mathworks.com/products/
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Baseline n nopt c γ ACC
317 107 1 2−8 0.473

Proposed without CM with CM

n nopt c γ ACC n nopt c γ ACC
Dynamics 6 6 16 2−6 0.318 9 9 16 2−8 0.398
Duration 9 8 16 2−4 0.331 14 13 64 2−6 0.380
Vibrato 31 6 256 2−6 0.264 46 15 64 2−6 0.258
All 46 22 4 2−6 0.425 69 36 1 2−6 0.531
Fusion 363 148 1 2−8 0.498 386 68 1 2−6 0.589

Table 3: Performance of the baseline and the proposed fea-
ture sets. ‘All’ indicates the combination of dynamics, du-
ration and vibrato; ‘fusion’ represents the combination of
baseline and ‘all.’ n and nopt are the original and the op-
timized number of features respectively; c and γ are SVM
parameters; ACC indicates the average accuracy.

The RBF-kernel SVM is adopted for classification.
Since the dataset is recorded by 11 violinists, we simply
take 11-fold cross validation, by using the data of 10 vio-
linists as the training set and the other as the testing set.
Then the feature selection is performed in each fold of
the cross validation individually. After sending the top-
nopt most relevant features into classification, the resulting
performance is obtained from optimizing the parameters c
and γ of the SVM. In this work, the SVM parameters are
set according to the highest average classification accuracy
across the 11 folds. In the future, we will consider other
data splitting settings, for example using an independent
held-out set for parameter tuning.

In our classification experiment, we exclude the case
of None and consider a 10-class multi-class classifica-
tion problem, because the calculation of CM aggregation
method requires that the non-expressive version is known
a priori. The classification accuracy of random guess is
0.152 on average.

As we want to find out the relevant interpretational fac-
tors, we only report below the results obtained by the top-
nopt relevant features selected by ReliefF.

4. EXPERIMENT RESULTS

4.1 Overview

Table 3 lists the original feature number n, the optimal
feature number nopt, the average accuracy (the ratio of
true positives and the number of data) computed over the
11 folds, and the corresponding optimal c and γ for each
experimental setting. The upper part of the table shows
the result of the baseline feature set, where ReliefF selects
nopt = 107 out of 317 features and achieves an accuracy
of 0.473. From the lower part of the table, when CM ag-
gregation method is considered, the proposed feature set
achieves an accuracy of 0.531 when choosing nopt = 36
out of 69 features, showing a significant improvement from
the baseline feature set as validated by a one-tailed t-test
(p<0.05, d.f.=20). Finally, after fusing the baseline fea-
tures and all the proposed features, the average accuracy
comes to 0.589, using nopt = 68 out of 386 features.

# Baseline Proposed (‘all’) Fusion
1 24th MFCC-M 4MD-CM vibRatio
2 18th MFCC-S vibRatio 24th MFCC-M
3 26th MFCC-M D-Max-CM ND-M
4 31st MFCC-M D-M-CM 18th MFCC-S
5 25th MFCC-S FPD-CM VR-Min-M
6 15th MFCC-S ND-M 31st MFCC-M
7 21st MFCC-S D-maxPos-M 26th MFCC-M
8 31st MFCC-S VR-Min-M 4MD-CM

9 9th MFCC-S 1MD-CM 25th MFCC-S
10 entropy-S∆ 2MD-CM 9th MFCC-S
11 17th MFCC-S FPD FPD-CM

12 24th MFCC-S 2MD-M 24th MFCC-S
13 16th MFCC-S 1MD-M 15th MFCC-S
14 23rd MFCC-M ND-CM 23rd MFCC-M
15 22nd MFCC-S VR-M-M 31st MFCC-S
16 15th MFCC-M 4MD-S D-maxPos-M
17 30th MFCC-M 4MD-M 16th MFCC-S
18 10th MFCC-S D-maxPos-S 21st MFCC-S
19 16th MFCC-M D-maxPos-CM 10th MFCC-S
20 29th MFCC-S D-M-M entropy-S∆

Table 4: The first 20 ranked features of the feature sets.

4.2 The contrast value CM

Table 3 also shows how important using the contrast be-
tween the expressive and non-expressive version improves
the performance. Comparing the left-hand side (without
CM) and the right-hand side (with CM) of the table, using
CM constantly improves the average accuracy. Salient im-
provement can be observed for dynamic features (p<0.05)
and duration features (p'0.05), implying that the change
of dynamics, note duration, downbeat or phrase might be
important interpretation factors when comparing the ex-
pressive and non-expressive performance. The improve-
ment is not significant for vibrato (p>0.5), possibly be-
cause the ratio of strong vibrato (expressive) and “almost
no vibrato” (non-expressive) is not a stable feature. Ta-
ble 3 also shows that using CM on the proposed (‘all’) and
the fusion feature sets leads to significant improvement for
both cases (p<0.005). Taking the contrast of feature val-
ues between expressive and non-expressive performance
seems to be critical in modeling musical expression.

4.3 Feature importance analysis

Table 4 lists the top-20 relevant features for the baseline,
proposed (‘all’) and fusion feature sets. The list is gener-
ated by summing the rank of each feature over the results
of 11 folds, and by sorting the summarized rank again.

From the leftmost column, we can see that most of the
relevant features in the baseline set are MFCCs. Despite
its accuracy is inferior to the proposed features, this result
shows the generality of MFCCs in audio classification.

From the middle column, we see that the top-20 pro-
posed features include 11 duration features, 6 dynamic
ones, and 3 vibrato ones. Over half of them are duration
features. However, we note that the second feature is about
vibrato (vibRatio) and the next two are both dynamic fea-
tures (D-Max-CM and D-M-CM). It is not trivial to con-
clude that which factor is the most relevant. Dynamics,
duration and vibrato all have contribution on music inter-
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Figure 4: Average accuracy (in F-scores) of expression classification using individual feature sets.

predicted class F-
Sc Af Tr Gr Co Ag Es Ma Ca Ri score
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tu
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Scherzando 45 0 2 1 3 2 0 0 0 2 0.763
Affettuoso 1 22 3 4 3 3 4 4 8 3 0.444
Tranquillo 1 1 46 3 0 0 0 1 3 0 0.800
Grazioso 2 3 2 31 4 0 6 3 4 0 0.544
Con Brio 8 4 0 0 25 1 2 0 3 12 0.431
Agitato 0 1 0 1 2 43 4 4 0 0 0.748
Espressivo 1 0 1 9 2 5 23 6 5 3 0.451
Maestoso 0 2 3 4 1 5 4 34 1 1 0.618
Cantabile 1 9 3 5 2 1 4 1 29 0 0.532
Risoluto 4 2 0 1 19 0 0 2 1 26 0.510

Table 5: Confusion matrix of musical term classification
using the fusion feature set.

pretation in various perspective. What this list provides
is the signal-level details useful in synthesizing expressive
music, or in education software for teaching expressive
performance, something that cannot be achieved using the
baseline features such as the MFCCs.

Finally, from the rightmost column we find that the top-
20 fusion features contain a blending of the baseline and
the proposed features. This shows that the two feature sets
are indeed complementary, and it is advisable to exploit
both of them if classification accuracy is of major concern.

4.4 Class-wise performance

Table 5 illustrates the confusion matrix of the fusion fea-
ture set summarized over the 11-fold outputs. In this con-
fusion matrix, rows correspond to the actual class and colu-
mns correspond to the predicted class. The column on
the right of the confusion matrix lists the average F-score,
which is the harmonic mean of precision and recall.

We see that Scherzando, Tranquillo and Agitato at-
tain relatively high F-scores because the first two have
lighter dynamics than other expressions and the last one
has shorter duration in most cases, all are fairly easy to be
recognized. Interestingly, the low F-scores and the high
confusion between the two pairs Affettuoso/Grazioso and
Cantabile/Espressivo clearly reveal their semantic similar-
ity. The most serious confusion occurs between Risoluto
and Con Brio, perhaps due to their similar tempo and dy-
namics; the slightly difference of vibrato extent between
them is not discriminated in our system, unfortunately.

Figure 4 shows the class-wise F-scores obtained by dif-
ferent feature sets. From the first three feature sets, we can
find that using dynamic features outperforms other two for
six expressions. Using duration features attains the best
results for Agitato, Con Brio and Maestoso; the first two
tend to use relatively fast tempo and the last one is prone
to use a little slow and stable tempo. Lastly, we see that vi-

brato features perform slightly better than dynamic and du-
ration features for Espressivo, possibly because Espressivo
is similar to Cantabile in dynamic features and is similar
to Grazioso in duration features.

Comparing the baseline to the proposed (‘all’) fea-
ture sets, the baseline feature set performs better only for
Grazioso and Con Brio. The fusion set generally im-
proves F-scores for all expressions except for Con Brio.
For all settings, the four expressions, Affettuoso, Grazioso,
Espressivo and Cantabile, are not easy to be distinguished
from each other due to their similar meaning.

5. CONCLUSION AND FUTURE WORK

In this study, we have presented a method for analyzing the
interpretational factors of expressive musical terms imple-
mented on a new dataset comprising of rich expressive in-
terpretations of violin solos. The proposed features, moti-
vated from the basic understanding of dynamics, duration,
vibrato, and the information of score, give better perfor-
mance than the standard feature set in classifying expres-
sive musical terms. Particularly, the contrast of feature val-
ues between expressive and non-expressive performance is
found critical in modeling musical expression. The impor-
tance of the features is also reported. This provides insights
into the design of new expression-based features, which
may include features for the possible glissando between
two adjacent notes, or the variation of the note/measure du-
ration proportion with respect to its measure/excerpt. For
future work, we will consider to expand the dataset, to ex-
periment with other features and machine learning tech-
niques, and to devise a mechanism that does not require a
non-expressive reference to compute the contrast values.

6. ACKNOWLEDGMENTS

The authors would like to thank the following three profes-
sional violinists for consulting: Chia-Ling Lin (Doctor of
Musical Arts, City University of New York; concertmas-
ter of Counterpoint Ensemble), Liang-Chun Chou (Mas-
ter of Music, Manhattan School of Music; concertmaster
of Tainan Symphony Orchestra), and Hsin-Yi Su (Mas-
ter of Music, New England Conservatory of Music; major
violin performance of Tainan Symphony Orchestra). We
are also grateful to the 11 professional violinists for their
contribution to the development of the new dataset. The
paper is partially funded by the Ministry of Science and
Technology of Taiwan, under contracts MOST 103-2221-
E-006-140-MY3 and 102-2221-E-001-004-MY3, and the
Academia Sinica Career Development Award.

814 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



7. REFERENCES

[1] J. Abeßer, H. Lukashevich, and G. Schuller. Feature-
based extraction of plucking and expression styles of
the electric bass guitar. In ICASSP, pages 2290–2293,
2010.

[2] M. Barthet, P. Depalle, R. Kronland-Martinet, and
S. Ystad. Analysis-by-synthesis of timbre, timing, and
dynamics in expressive clarinet performance. Music
Perception, 28(3):265–278, 2011.

[3] R. Bresin and G. U. Battel. Articulation strategies in
expressive piano performance analysis of legato, stac-
cato, and repeated notes in performances of the andante
movement of mozart’s sonata in g major (k 545). Jour-
nal of New Music Research, 29(3):211–224, 2000.

[4] A. Camurri, G. Volpe, G. De Poli, and M. Le-
man. Communicating expressiveness and affect in
multimodal interactive systems. IEEE Multimedia,
12(1):43–53, 2005.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2(3):27:1–27:27, 2011.

[6] J. Charles. Playing Technique and Violin Timbre: De-
tecting Bad Playing. PhD thesis, Dublin Instititute of
Technology, 2010.

[7] R. L. De Mantaras. Playing with cases: Rendering ex-
pressive music with case-based reasoning. AI Maga-
zine, 33(4):22, 2012.

[8] A. Friberg, E. Schoonderwaldt, and P. N. Juslin.
CUEX: An algorithm for automatic extraction of ex-
pressive tone parameters in music performance from
acoustic signals. Acta acustica united with acustica,
93(3):411–420, 2007.

[9] R. Gang, G. Bocko, J. Lundberg, S. Roessner, D. Head-
lam, and M. F. Bocko. A real-time signal processing
framework of musical expressive feature extraction us-
ing MATLAB. In ISMIR, pages 115–120, 2011.

[10] M. Grachten and G. Widmer. Linear basis models for
prediction and analysis of musical expression. Journal
of New Music Research, 41(4):311–322, 2012.

[11] S. Hainsworth and M. Macleod. Time frequency re-
assignment: A review and analysis. Technical report,
Cambridge University Engineering Department, 2003.
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ABSTRACT 

We apply machine learning to a database of recorded en-
semble performances to build an artificial performer that 
can perform music expressively in concert with human 
musicians. We consider the piano duet scenario and focus 
on the interaction of expressive timing and dynamics. We 
model different performers’ musical expression as co-
evolving time series and learn their interactive relation-
ship from multiple rehearsals. In particular, we use a 
spectral method, which is able to learn the correspond-
ence not only between different performers but also be-
tween the performance past and future by reduced-rank 
partial regressions. We describe our model that captures 
the intrinsic interactive relationship between different 
performers, present the spectral learning procedure, and 
show that the spectral learning algorithm is able to gener-
ate a more human-like interaction. 

1. INTRODUCTION 

Ensemble musicians achieve shared musical interpreta-
tions when performing together. Each musician performs 
expressively, deviating from a mechanical rendition of 
the music notation along the dimensions of pitch, dura-
tion, tempo, onset times, and others. While creating this 
musical interpretation, musicians in an ensemble must 
listen to other interpretations and work to achieve an or-
ganic, coordinated whole. For example, expressive timing 
deviations by each member of the ensemble are con-
strained by the overall necessity of ensemble synchroni-
zation. In practice, it is almost impossible to achieve sat-
isfactory interpretations on the first performance. There-
fore, musicians spend time in rehearsal to become famil-
iar with the interpretation of each other while setting the 
“communication protocols” of musical expression. For 
example, when should each musician play rubato, and 
when should each keep a steady beat? What is the desired 
trend and balance of dynamics? It is important to notice 
that these protocols are usually complex and implicit in 
the sense that they are hard to express via explicit rules. 
(Musicians in a large ensemble even need a conductor to 
help set the protocols.) However, musicians are able to 
learn these protocols very effectively. After a few re-

hearsals, they are prepared to handle new situations that 
do not even occur in rehearsals, which indicates that the 
learning procedure goes beyond mere memorization. 

Although many studies have been done on musical ex-
pression in solo pieces, the analysis of interactive ensem-
ble music performance is relatively new and has mainly 
focused on mechanisms used for synchronization, includ-
ing gesture. Ensemble human-computer interaction is still 
out of the scope of most expressive performance studies, 
and the interaction between synchronization and individ-
ual expressivity is poorly understood. From the synthesis 
perspective, though score following and automatic ac-
companiment have been practiced for decades, many re-
searchers still refer to this as the “score following” prob-
lem, as if all timing and performance information derives 
from the (human) soloist and there is no performance 
problem. Even the term “automatic accompaniment” di-
minishes the complex collaborative role of performers 
playing together by suggesting that the (human) soloist is 
primary and the (computer) accompanist is secondary. In 
professional settings, even piano accompaniment is usual-
ly referred to as “collaborative piano” to highlight its im-
portance. To successfully synthesize interactive music 
performance, all performers should be equal with respect 
to musical expression, including the artificial performers. 

Thus, there is a large gap between music practice and 
computer music research on the topic of expressive inter-
active ensemble music performance. We aim to address 
this gap by mimicking human rehearsals, i.e., learn the 
communication protocols of musical expression from re-
hearsal data. For this paper, we consider the piano duet 
scenario and focus on the interaction of expressive timing 
and dynamics. In other words, our goal is to build an arti-
ficial pianist that can interact with a human pianist ex-
pressively, and is capable of responding to the musical 
nuance of the human pianist. 

To build the artificial pianist, we first model different 
performers’ musical expression as co-evolving time se-
ries and design a function approximation to reveal the in-
teractive relationship between the two pianists. In particu-
lar, we assume musical expression is related to hidden 
mental states and characterize the piano duet performance 
as a linear dynamic system (LDS). Second, we learn the 
parameters of the LDS from multiple rehearsals using a 
spectral method. Third, given the learned parameters, the 
artificial pianist can generate an expressive performance 
by interacting with a human pianist. Finally, we conduct 
evaluation by comparing the computer-generated perfor-
mances with human performances. At the same time, we 
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inspect how training set size and the performer’s style 
affect the results.  

The next section presents related work. Section 3 de-
scribes the model. Section 4 describes a spectral learning 
procedure. Section 5 shows the experimental results. 

2. RELATED WORK 

The related work comes from three different research 
fields: Expressive Performance, where we see the same 
focus of musical expression; Automatic Accompaniment, 
where we see the same application of human-computer 
interactive performance; and Music Psychology, where 
we see musicology insights and use them to help design 
better computational models. For detailed historical re-
views of expressive performance and automatic accom-
paniment, we point the readers to [14] and [27], respec-
tively. Here, we only review recent work that has strong 
connections to probabilistic modeling.  

2.1 Expressive Performance 

Expressive performance studies how to automatically 
render a musical performance based on a static score. To 
achieve this goal, probabilistic approaches learn the con-
ditional distribution of the performance given the score, 
and then generate new performances by sampling from 
the learned models. Grindlay and Helmbold [9] use hid-
den Markov models (HMM) and learn the parameters by 
a modified version of the Expectation-Maximization al-
gorithm. Kim et al. [13] use a conditional random field 
(CRF) and learn the parameters by stochastic gradient 
descent. Most recently, Flossmann et al. [7] use a very 
straightforward linear Gaussian model to generate the 
musical expression of every note independently, and then 
use a modification of the Viterbi algorithm to achieve a 
smoother global performance. 

All these studies successfully incorporate musical ex-
pression with time-series models, which serve as good 
bases for our work. Notice that our work considers not 
only the relationship between score and performance but 
also the interaction between different performers. From 
an optimization point of view, these works aim to opti-
mize a performance given a score, while our work aims to 
solve this optimization problem under the constraints cre-
ated by the performance of other musicians. Also, we are 
dealing with a real-time scenario that does not allow any 
backward smoothing.  

2.2 Automatic Accompaniment 

Given a pre-defined score, automatic accompaniment sys-
tems follow human performance in real time and output 
the accompaniment by strictly following human’s tempo. 
Among them, Raphael’s Music Plus One [19] and 
IRCAM’s AnteScofo system [5] are very relevant to our 
work in the sense that they both use computational mod-
els to characterize the expressive timing of human musi-
cians. However, the goal is still limited to temporal syn-

chronization; the computer’s musical expression in inter-
active performance is not yet considered. 

2.3 Music Psychology 

Most related work in Music Psychology, referred to as 
sensorimotor synchronization (SMS) and entrainment, 
studies adaptive timing behavior. Generally, these works 
try to discover common performance patterns and high-
level descriptive models that could be connected with un-
derlying brain mechanisms. (See Keller’s book chapter 
[11] for a comprehensive overview.) Though the discov-
ered statistics and models are not “generative” and hence 
cannot be directly adopted to synthesize artificial perfor-
mances, we can gain much musicology insight from their 
discoveries to design our computational models.  

SMS studies how musicians tap or play the piano by 
following machine generated beats [15-18, 21, 25]. In 
most cases, the tempo curve of the machine is pre-defined 
and the focus is on how humans keep track of different 
tempo changes. Among them, Repp, Keller [21] and Ma-
tes [18] argue that adaptive timing requires error correc-
tion processes and use a “phase/period correction” model 
to fit the timing error. The experiments show that the er-
ror correction process can be decoupled into period cor-
rection (larger scale tempo change) and phase correction 
(local timing adjustment). This discovery suggests that it 
is possible to predict timing errors based on timing fea-
tures on different scales. 

Compared to SMS, entrainment studies consider more 
realistic and difficult two-way interactive rhythmic pro-
cesses [1, 8, 10-11, 20, 22, 26]. Among them, Goebl [8] 
investigated the influences of audio feedback in a piano 
duet setting and claims that there exist bidirectional ad-
justments during full feedback despite the leader/follower 
instruction. Repp  [20] does further analysis and discov-
ers that the timing errors are auto-correlated and that how 
much musicians adapt to each other depends on the music 
context, such as melody and rhythm. Keller [11] claims 
that entrainment not only results in coordination of 
sounds and movements, but also of mental states. These 
arguments suggest that it is possible to predict the timing 
errors (and other musical expressions) by regressions 
based on different music contexts, and that hidden varia-
bles can be introduced to represent mental states. 

3. MODEL SPECIFICATION 

3.1 Linear Dynamic System (LDS) 

We use a linear dynamic system (LDS), as shown in Fig-
ure 1, to characterize the interactive relationship between 
the two performers in the expressive piano duet. Here, 
𝑌 = 𝑦!  , 𝑦!,… , 𝑦!  denotes the 2nd piano’s musical ex-
pression, 𝑈 = 𝑢!  , 𝑢!,… , 𝑢!  denotes a combination of 
the 1st piano’s musical expression and score information, 
and 𝑍 = 𝑧!, 𝑧!,… , 𝑧!  denotes the hidden mental states 
of the 2nd pianist that influence the performance. The key 
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idea is to reveal that the 2nd piano’s musical expression is 
not static. It is not only influenced by the 1st piano’s per-
formance but also keeps its own character and continuity 
over time. 

 

Figure 1. The graphical representation of the LDS, in 
which grey nodes represent hidden variables. 

Formally, the evolution of the LDS is described by the 
following linear equations: 

 𝑧! = 𝐴𝑧!!! + 𝐵𝑢! + 𝑤!      𝑤!~𝒩(0,𝑄)                   (1) 
 𝑦! = 𝐶𝑧! + 𝐷𝑢! + 𝑣!                𝑣!~𝒩(0,𝑅)                     (2) 

Here, 𝑦! ∈ ℝ! and its two dimensions correspond to 
expressive timing and dynamics, respectively, 𝑢! ∈ ℝ! , 
which is a much higher dimensional vector (we describe 
the design of 𝑢! in detail in Section 3.3), and 𝑧! ∈ ℝ!, 
which is a relatively lower dimensional vector. A, B, C, 
and D are the main parameters of the LDS. Once they are 
learned, we can predict the performance of the 2nd piano 
based on the performance of the 1st piano. 

3.2 Performance Sampling   

Notice that the LDS is indexed by the discrete variable t. 
One question arises: should t represent note index or 
score time? Inspired by Todd’s work [23], we assume 
that musical expression evolves with score time rather 
than note indices, and therefore define t as score time. 
Since music notes have different durations, we “sample” 
the performed notes (of both the 1st piano and the 2nd pi-
ano) at the resolution of a half beat, as shown in Figure 2. 

 
Figure 2. An illustration of performance sampling. 

To be more specific, if a note’s starting time aligns 
with a half beat and its inter-onset-interval (IOI) is equal 
to or greater than one beat, we replace the note by a series 
of eighth notes, each having the same pitch, dynamic, and 
duration-to-IOI ratio as the original note. Note that we 
still play the notes as originally written; the sampled rep-
resentation is only for learning and prediction. 

3.3 Input Features Design 

To show the design of 𝑢!, we introduce an auxiliary nota-
tion 𝑋 = 𝑥!  , 𝑥!,… , 𝑥!  to denote the raw score infor-
mation and musical expression of the 1st piano and de-
scribe the mapping from 𝑋 to each component of 𝑢! in 
rest of this section. Note that 𝑢!  is based on sampled 
score and performance. 

3.3.1 Score Features 

High Pitch Contour:  For the chords within a certain 
time window up to and including t, extract the highest-
pitch notes and fit the pitches by a quadratic curve. Then, 
high pitch contour for t is defined as the coefficients of 
the curve. Formally: 

𝛽!
!!"!

≝   argmin
!

𝑥!!!!!
!!"!!"#$! − 𝑞𝑢𝑎𝑑! 𝑡 − 𝑝 + 𝑖

!
!

!!!

 

where p is a context length parameter and 𝑞𝑢𝑎𝑑! is the 
quadratic function parameterized by 𝛽.  

Low Pitch Contour: Similar to high pitch contour, we 
compute 𝛽!

!"#
 for low pitch contour. 

Beat Phase: The relative location of t within a measure. 
Formally: 
BeatPhase! ≝ (𝑡  𝑚𝑜𝑑  MeasureLen)/MeasureLen 

3.3.2 The 1st Piano Performance Features 

Tempo Context: Tempi of the p closest notes directly 
before t. This is a timing feature on a relatively large time 
scale. Formally: 

TempoContext! ≝ 𝑥!!!
!"#$%, 𝑥!!!!!

!"#$%,⋯ , 𝑥!!!
!"#$% !

 

Here, the tempo of a note is defined as the slope of the 
least-squares linear regression between the performance 
onsets and the score onsets of q preceding notes.  

Onsets Deviation Context: A description of how much 
the p closest notes’ onsets deviate from their tempo 
curves. Compared to the tempo context, this is a timing 
feature on a relatively small scale. Formally: 
OnsetsDeviationContext!
≝ 𝑥!!!!"#$%#&$'()%(*", 𝑥!!!!!!"#$%#&$'()%(*",⋯ , 𝑥!!!!"#$%#&$'()%(*" !

 

Duration Context: Durations of the p closest notes di-
rectly before t. Formally: 

DurationContext  ! ≝ 𝑥!!!!"#, 𝑥!!!!!!"# ,⋯ , 𝑥!!!!"# !
 

Dynamic Context: MIDI velocities of the p closest notes 
directly before t. Formally: 

DynamicContext  ! ≝ 𝑥!!!!"# , 𝑥!!!!!!"# ,⋯ , 𝑥!!!!"# !
 

The input feature, 𝑢!, is a concatenation of the above 
features. We have also tried other features and mappings 
(e.g., rhythm context, phrase location, and down beat), 
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and finally picked the ones above through experimenta-
tion. 

4. SPECTRAL LEARNING PROCEDURE 

To learn the model, we use a spectral method, which is 
rooted in control theory [24] and then further developed 
in the machine learning field [2]. Spectral methods have 
proved to be both fast and effective in many applications 
[3][4]. Generally speaking, a spectral method learns hid-
den states by predicting the performance future from fea-
tures of the past, but forcing this prediction to go through 
a low-rank bottleneck. In this section, we present the 
main learning procedure with some underlying intuitions, 
using the notation of Section 3.1.  

Step 0: Construction of Hankel matrices 

We learn the model in parallel for fast computation. In 
order to describe the learning procedure more concisely, 
we need some auxiliary notations. For any time series 
𝑆 = [𝑠!, 𝑠!,… , 𝑠!], the “history” and “future” Hankel ma-
trices are defined as follows: 

𝑆! ≝

𝑠! … 𝑠!!!
⋮ ⋱ ⋮
𝑠!
!

… 𝑠
!!!!!!

, 𝑆! ≝
𝑠!
!!!

… 𝑠!!!!
⋮ ⋱ ⋮
𝑠! … 𝑠!!!

 

Also, the “one-step-extended future” and “one-step-
shifted future” Hankel matrices are defined as follows:  

𝑆!! ≝
𝑠!
!!!

… 𝑠!!!!
⋮ ⋱ ⋮

𝑠!!! … 𝑠!
, 𝑆!! ≝

𝑠!
!!!

… 𝑠!!!!!!
⋮ ⋱ ⋮

𝑠!!! … 𝑠!
 

Here, d is an even integer indicating the size of a sliding 
window. Note that corresponding columns of 𝑆! and 𝑆! 
are “history-future” pairs within sliding windows of size 
d; compared with 𝑆!!, 𝑆!! is just missing the first row. We 
will use the Hankel matrices of both U and Y in the fol-
lowing steps. 

Step 1: Oblique projections 

If the true model is LDS, i.e., everything is linear Gaussi-
an, the expected future observations can be expressed lin-
early by history observations, history inputs, and future 
inputs. Formally: 

𝔼(𝑌!|𝑌! ,𝑈! ,𝑈!) = [𝛽!!   𝛽!!   𝛽!!]   
𝑌!
𝑈!
𝑈!

                  (3) 

Here, 𝛽 = [𝛽!!   𝛽!!   𝛽!!]  is the linear coefficient that 
could be solved by: 

𝛽 = 𝛽!!   𝛽!!   𝛽!! = 𝑌!
𝑌!
𝑈!
𝑈!

!

                                  (4) 

where †  denotes the Moore-Penrose pseudo-inverse. 
However, since in a real-time scenario the future input, 
𝑈!, is unknown, we can only partially explain future ob-
servations based on the history. In other words, we care 

about the best estimation of future observations but just 
based on the history observations and inputs. Formally: 

𝑂!   ≝ 𝛽!
𝑌!
𝑈!
0

= 𝛽!!   𝛽!!   0
𝑌!
𝑈!
0

                            (5) 

where 𝑂!   is referred to as the oblique projection of 𝑌! 

“along” 𝑈! and “onto” 
𝑌!
𝑈!

. In this step, we also use the 

same technique to compute  𝑂!! and just throw out its first 
row to obtain 𝑂!!. 

Step 2: State estimation by singular value decomposi-
tion (SVD)  

If we knew the true parameters of the LDS, the oblique 
projections and the hidden states would have the follow-
ing relationship: 

𝑂! = 𝛤!𝑍! ≝   

𝐶
𝐶𝐴
⋮

𝐶𝐴
!
!!!

𝑧!
!!!  

, 𝑧!
!!!
,…   , 𝑧!!!!

              (6) 

𝑂!! = 𝛤!𝑍!! ≝

𝐶
𝐶𝐴
⋮

𝐶𝐴
!
!!!

𝑧!
!!!  

, 𝑧!
!!!
,…   , 𝑧!!!!!!

        (7) 

Intuitively, the information from the history observa-
tions and inputs “concentrate” on the nearest future hid-
den state and then spread out onto future observations. 
Therefore, if we perform SVD on the oblique projections 
and throw out small singular values, we essentially en-
force a bottleneck on the graphical model representation, 
learning compact, low-dimensional states. Formally, let 

𝑂! = 𝒰Λ𝒱!                                                                                   (8) 

and delete small numbers in Λ and corresponding col-
umns in 𝒰 and 𝒱. Since LDS is defined up to a linear 
transformation, we could estimate the hidden states by: 

𝛤! = 𝒰Λ
!
!                                                                                           9  

𝑍! = 𝛤!
!𝑂!                                                                                 (10) 

  𝑍!! = 𝛤!
!𝑂!!                                                                                (11) 

Step 3: Parameter estimation 

Once we have estimated the hidden states, the parameters 
can be estimated from the following two equations: 

   𝑍!! = 𝐴𝑍! + 𝐵𝑈!! + 𝑒!           (12) 
 𝑌! = 𝐶𝑍! + 𝐷𝑈! + 𝑒!           (13) 

Here, 𝑌!  and 𝑈!  are the 1st rows of 𝑌!  and 𝑈! , i.e., 
𝑌! = 𝑦!

!!!  
, 𝑦!

!!!
,… , 𝑦!!!!

, 𝑈! = 𝑢!
!!!  

, 𝑢!
!!!
,… , 𝑢!!!!

. 

Similarly, 𝑈!!  is the 1st row of 𝑈!! , i.e., 
𝑈!! = 𝑢!

!!!  
, 𝑢!

!!!
,… , 𝑢!!!!!!

. 

In summary, the spectral method does three regres-
sions. The first two estimate the hidden states by oblique 
projections and SVD. The third one estimates the parame-
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ters. The oblique projections can be seen as de-noising 
the latent states by using past observations, while the 
SVD adds low-rank constraints. As opposed to maximum 
likelihood estimation (MLE), the spectral method is a 
method-of-moments estimator that does not need any 
random initialization or iterations. Also note that we are 
making a number of arbitrary choices here (e.g., using 
equal window sizes for history and future), not attempt-
ing to give a full description of how to use spectral meth-
ods. (See Van Overschee & De Moor’s book [24] for the 
details and variations of the learning methods.) 

5. EXPERIMENTS 

5.1 Dataset 

We created a dataset [27] that contains three piano duets: 
Danny Boy, Serenade (by Schubert), and Ashokan Fare-
well. All pieces are in MIDI format and contain two parts: 
a monophonic 1st piano part and a polyphonic 2nd piano 
part. Each piece is performed 35 to 42 times in different 
musical interpretations by 5 to 6 pairs of musicians. 
(Each pair performs each piece of music 7 times.) 

5.2 Methods for Comparison  

We use three methods for comparison: linear regression, 
neural network, and the timing estimation often used in 
automatic accompaniment systems [6]. The first two 
methods use the same set of features as in the spectral 
methods, while the 3rd method does not contain any learn-
ing procedure and is considered as the baseline. 

Linear regression: Referring to the notation in Section 
3, the linear regression method simply solves the follow-
ing equation: 

𝑌 = 𝛽𝑈                                                                         14  

Like the LDS, this method uses the performance of 1st 
piano to estimate that of the 2nd piano, but it does not use 
any hidden states or attempt to enforce self-consistency in 
the musical expression of the 2nd pianist’s performance. 

Neural network: We use a simple neural network with a 
single hidden layer. The hidden layer consists of 10 neu-
rons and uses rectified linear units (ReLUs) to produce 
non-linearity; the single output neuron is linear. Denoting 
the activation of the hidden units by Z, the neural network 
represents the following relationship between U and Y: 

 𝑍 = 𝑓 𝑊!𝑈 + 𝑏!    15  
 𝑌 = 𝑊!𝑍 + 𝑏!               (16) 

where 

𝑓 𝑥 = 0, 𝑥 < 0
𝑥, 𝑥 ≥ 0                                                        17  

The neural network is trained by the minibatch stochastic 
gradient descent (SGD) algorithm, using the mean abso-
lute error as the cost function. The parameters of the neu-
ral network (W1, b1, W2, b2) are initialized randomly, after 

which they are tuned with 30 epochs of SGD. Each mini-
batch consists of one rehearsal. The learning rate decays 
from 0.1 to 0.05 in an exponential fashion during the 
training. We report the average absolute and relative er-
rors across five runs with different random initializations 
on the test set.  

This method can be seen as an attempt to improve the 
linear regression method using non-linear function ap-
proximation, but it also doesn’t consider the self-
consistency in the musical expression of the 2nd pianist’s 
performance. 

Baseline: The baseline method assumes that local tempo 
and dynamics are stable. For timing, it estimates a linear 
mapping between real time and score time by fitting a 
straight line to 4 recently performed note onsets of the 1st 
piano. This mapping is then used to estimate the timing 
of the next note of the 2nd piano. For dynamics, it uses the 
dynamics of the last performed note of the 1st piano as the 
estimator. 

Figure 3. A local view of the absolute timing residuals of the 
LDS approach. 

 
Figure 4. A local view of the absolute dynamics residu-

als of the LDS approach. 

5.3 A Local View of the LDS Method 

Figure 3 and Figure 4 show a local view of the expressive 
timing and dynamics cross-validation result, respectively, 
for Danny Boy. (To have a clear view, we just compare 
LDS with the baseline here. We show the results of all 
the methods on all the pieces later.) For both figures, the 
x-axis represents score time and the y-axis represents ab-
solute residual between the prediction and human per-
formance. Therefore, small numbers mean better results. 
The curve with circle markers represents the baseline ap-
proach, while the curve with “x” markers represents the 
LDS approach trained with only 4 randomly selected re-
hearsals of the same piece performed by other perform-
ers. We can see that the LDS approach performs much 
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better than the baseline approach with only 4 training re-
hearsals, which indicates that the algorithm is both accu-
rate and robust. 

5.4 A Global View of All Methods 

The curves in the previous two figures are a measurement 
over different performances. If we average the absolute 
residual across an entire piece of music, we get a single 
number that describes a method’s performance for that 
piece. I.e., how much on average is the prediction of a 
method different from the human performance for each 
note? Figure 5 and Figure 6 show this average absolute 
residual for timing and dynamics, respectively, for all the 
methods and pieces combinations with different training 
set sizes. 

 
Figure 5. A global view of absolute timing residuals for 

all pieces and methods. (Smaller is better.)  

 

Figure 6. A global view of absolute dynamics residuals 
for all pieces and methods. (Smaller is better.) 

In both figures, the x-axis represents different methods 
with different training set sizes, the y-axis represents the 
average absolute residual, and different colors represent 
different pieces. For example, the grey bar above the la-
bel “NN-4” in Figure 5 is the average absolute timing re-
sidual for Serenade by using the neural network approach 
with 4 training rehearsals.  

We see that for expressive timing, both neural network 
and LDS outperform simple linear regression, and the 
LDS performs the best regardless of the music piece or 
training set size. This indicates that the constraint of pre-
ceding notes (self-consistency) captured by LDS is play-
ing an important role in timing prediction. For expressive 
dynamics, the difference between different methods is 
less significant. We see no benefit by using a neural net-
work. But when the training set size is small, LDS still 

outperforms linear regression. (Which is quite interesting 
because LDS learns more parameters than linear regres-
sion.) 

5.5 Performer’s Effect 

Finally, we inspect whether there is any gain by training a 
performer-specific model. In other words, we only learn 
from the rehearsals performed by the same pair of musi-
cians. Since each pair of musicians only performs 7 times 
for each piece, we randomly choose 4 from the 7 perfor-
mances to make a fair comparison against the results in 
Figure 5 and Figure 6. 

 
Figure 7. A global view of the performer-specific model. 

Figure 7 shows a comparison between performer-specific 
model and different-performer model. In both sub-graphs, 
the bars above “LDS-4same” are the results for perform-
er-specific model, while the bars above “LDS-4” are the 
same as in Figure 5 and Figure 6. Note that they are both 
cross-validation results and the only difference is the 
training set. We see that the performer-specific model 
achieves better results, especially when the different-
performer model is not doing a good job. 

6. CONCLUSIONS AND FUTURE WORK 

In conclusion, we have applied a spectral method to learn 
the interactive relationship in expressive piano duet per-
formances from multiple rehearsals. Compared to other 
methods, we have made better predictions based on only 
4 rehearsals, and we have been able to further improve 
the results using a performer-specific model. Our best 
model is able to shrink the timing residual by nearly 60 
milliseconds and shrink the dynamic residual by about 8 
MIDI velocity units compared to the baseline algorithm, 
especially when the baseline algorithm behaves poorly. 

In the future, we would like to incorporate some non-
linear function approximations with the current graphical 
representation of the model. An ideal case would be to 
combine the dynamical system with a neural network, 
which calls for new spectral learning algorithms. Also, 
we would like to be more thorough in the evaluations. 
Rather than just inspecting the absolute difference be-
tween computer-generated performance and human per-
formances, we plan to also compare computed-generated 
results with typical variation in human performances and 
use subjective evaluation. 
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ABSTRACT

The paper presents new approaches for analyzing the char-
acteristics of intonation and pitch modulation of woodwind
and brass solos in jazz recordings. To this end, we use
score-informed analysis techniques for source separation
and fundamental frequency tracking. After splitting the
audio into a solo and a backing track, a reference tuning
frequency is estimated from the backing track. Next, we
compute the fundamental frequency contour for each tone
in the solo and a set of features describing its temporal
shape. Based on this data, we first investigate, whether
the tuning frequencies of jazz recordings changed over the
decades of the last century. Second, we analyze whether
the intonation is artist-specific. Finally, we examine how
the modulation frequency of vibrato tones depends on con-
textual parameters such as pitch, duration, and tempo as
well as the performing artist.

1. INTRODUCTION

The personal styles of improvising jazz musicians can be
described from various musical perspectives. There are
several structural or syntactical aspects of the improvised
melodic lines, which could be idiosyncratic for a certain
musician, e.g., preferred pitches, intervals, scales, melodic
contours, rhythms or typical patterns, licks, and formu-
las. These dimensions can be best explored using a sym-
bolic representation, e.g., Western staff notation or MIDI.
However, there are other important aspects, which define
personal style and make it recognizable: timbre (sound
characteristics such as roughness or breathiness), micro-
timing (systematic deviations from the underlying metric
structure), dynamics (the changes in intensity of tones or
phrases), intonation (the pitch accuracy with respect to a
given tone system), articulation (e.g., legato or staccato
playing) and pitch modulation (the variation of the funda-
mental frequency within the duration of a tone). Symbolic

c© Jakob Abeßer, Estefanía Cano, Klaus Frieler, Martin
Pfleiderer, Wolf-Georg Zaddach. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Jakob
Abeßer, Estefanía Cano, Klaus Frieler, Martin Pfleiderer, Wolf-Georg
Zaddach. “Score-informed Analysis of Intonation and Pitch Modulation
in Jazz Solos”, 16th International Society for Music Information Retrieval
Conference, 2015.

representation does not reveal information about timbre,
intonation, and pitch modulation. Therefore, audio-level
analysis of recorded improvisations is necessary to charac-
terize those non-syntactical, expressive dimensions in or-
der to get a comprehensive and exhaustive description of a
personal style.

2. GOALS

Polyphonic music recordings exhibit strong spectral and
temporal overlaps between harmonic components of dif-
ferent instrument sources. Hence, the transcription and
analysis of the individual sound sources remain one of the
most challenging tasks in Music Information Retrieval
(MIR). We approach this task by using high-quality melody
transcriptions provided by music experts as foundation for
a score-informed audio analysis. In particular, we use score
information for the source separation of the solo instru-
ment from the audio mixture and for the frame-wise track-
ing of the fundamental frequency of each tone. Our main
goal is to investigate, which intonation and modulation stra-
tegies are applied by woodwind and brass instrument play-
ers in jazz solos.

3. RELATED WORK

Various MIR publications investigate the intonation and
tuning of music recordings, ranging from historic solo harp-
sichord recordings [5], over classical music recordings [11],
to Non-Western music styles such as Carnatic and Hindus-
tani music [17]. The tuning frequency of audio record-
ings is commonly estimated based on pitch frequencies [6],
high-resolution interval histograms [17], or adjustable fil-
terbanks [11]. Just intonation and equal temperament are
generally used as reference tunings for the analysis of mu-
sic performances. Lerch [11] points out that observed tun-
ing deviations can have different reasons ranging from de-
viation of harmonic frequencies from the equal tempered
scale to deviations due to non-equal temperament.

Most automatic music transcription algorithm aim at
a symbolic representation of tone events, which are de-
scribed by distinct onset times, durations, and constant
pitches [15]. Some automatic melody extraction algorithms
such as proposed in [16] and [6] include an estimation of
the tone-wise contours of the fundamental frequency (f0)
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as well, which is an essential pre-processing step for ana-
lyzing the applied frequency modulation techniques. There
are many studies on vibrato detection in audio recordings
[14], particularly for singing voice [8,9,12]. Other publica-
tions deal with analyzing the deviation of f0 contours from
the target pitch [8] as well as with segmenting f0 contours
based on modulations such as vibrato and pitch glides [12]
or bendings [10]. To the best knowledge of the authors,
no publication so far analyzes intonation and modulation
techniques in recorded jazz solos.

4. METHOD

Figure 1 gives an overview over our analysis approach,
all processing steps are detailed in the following sections.
Section 4.1 describes the dataset of jazz solo audio excerpts
and transcriptions. Two separate score-informed analysis
techniques are involved. At first, a source separation algo-
rithm is performed (see Section 4.2), which separates the
original audio recording into a solo track containing the
improvising solo instrument and a backing track contain-
ing the accompanying band, i.e., the rhythm section (most
often piano, double bass, and drums). The backing track is
used to estimate the reference tuning frequency (see Sec-
tion 4.4). The second step is the tracking of frame-wise f0
contours for each note played by the solo instrument (see
Section 4.3). Based on the extracted f0 contours, we com-
pute several contour features (see Section 4.5) to describe
their temporal shape. In the experiments reported in Sec-
tion 5, we analyze how these features depend on contextual
parameters such as tone duration and pitch and whether
these might be specific for the personal style.

Figure 1: Proposed algorithm for score-informed analysis
of tuning and modulation in improvised jazz solos.

4.1 Dataset & Melody Annotations

The dataset used in this publication is a subset of 207 jazz
solos taken from the Weimar Jazz Database 1 . Table 1 lists

1 http://jazzomat.hfm-weimar.de (last accessed Juli 10,
2015)

all musicians in the dataset with their instrument, the num-
ber of solos NS, and the total number of tones and f0 con-
tours NN, respectively. The solos were manually anno-
tated by musicology and jazz students based on excerpts
from commercial audio recordings. The annotations in-
clude score-level melody transcription (MIDI pitch, tone
onset, and duration) as well as additional annotation layers
with respect to melody phrases, metric structure, chords,
and modulation techniques. So far, the tone-wise anno-
tations of modulation techniques are incomplete and only
represent the most clear examples within the solos. Figure
2 gives an overview over the number of annotated tones per
artist. In total, 87643 tones and f0 contours are included in
the dataset.
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Fall−off
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Figure 2: Number of tones of each artist which are anno-
tated with fall-off, slide, and vibrato.

4.2 Score-informed Source Separation

To separate the solo/lead instrument from the backing track,
the method for pitch-informed solo and accompaniment
separation proposed in [4] was used. For this study, the
automatic pitch detection stage in the separation algorithm
was bypassed, and the manual melody transcriptions were
used as prior information. The separation method is based
on an iterative modeling of the solo instrument in the spec-
tral domain. The model is constructed taking into account
characteristics of musical instruments such as common am-
plitude modulation, inharmonicity, and enforcing magni-
tude and frequency smoothness constraints in the estima-
tion. The separation method has proven to be robust in
the extraction of a great variety of solo instruments, as
well as being particularly efficient, with computation times
that allow real-time processing. The complete dataset was
processed and independent signals for the solo instruments
and the backing tracks were extracted.

4.3 Score-informed f0 tracking

The original audio recordings are processed at a sampling
rate of 22.05 kHz. In order to track the f0 contour of each
tone, the signal is analyzed between the annotated note on-
set and offset time, for which a reassigned magnitude spec-
trogramM ∈ RK×N

+ withK frequency bins andN frames
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Performer Inst. NS NN Performer Inst. NS NN Performer Inst. NS NN Performer Inst. NS NN

Art Pepper cl/as 4 2134 David Liebman ss/ts 4 3286 John Coltrane ts/ss 11 8969 Sidney Bechet ss 2 489
Ben Webster ts 4 1497 David Murray ts 4 2295 Joshua Redman ts 5 2429 Sonny Rollins ts 10 4639
Benny Carter as 3 1153 Dexter Gordon ts 4 3056 Kenny Dorham tp 6 2149 Sonny Stitt ts 4 1284
Benny Goodman cl 7 1154 Dizzy Gillespie tp 4 967 Lee Konitz as 4 1839 Stan Getz ts 6 3253
Bix Beiderbecke tp 4 519 Don Byas ts 7 2022 Lester Young ts 4 887 Steve Coleman as 3 1353
Bob Berg ts 5 3275 Eric Dolphy as 2 1109 Louis Arm-

strong
tp 4 634 Steve Lacy ss 4 1437

Cannonball
Adderley

as 5 2623 Fats Navarro tp 4 937 Michael
Brecker

ts 4 2605 Wayne Shorter ts 9 3013

Charlie Parker as 6 1688 Freddie Hub-
bard

tp 6 2266 Miles Davis tp 7 2080 Woody Shaw tp 5 1822

Chet Baker tp 6 1100 J.J. Johnson tb 2 754 Ornette Cole-
man

as 3 1782

Clifford Brown tp 4 1676 Joe Henderson ts 6 3830 Paul Desmond as 8 2142
Coleman
Hawkins

ts 6 2613 Joe Lovano ts/ts-
c

2 1787 Roy Eldridge tp 6 1744

Table 1: Overview over all artists in the dataset. For each artist, the number of solos NS, the total number of notes NN, as
well as the instrument is given (ts: tenor saxophone, ss: soprano saxophone, as: alto saxophone, cl: clarinet, tp: trumpet,
cor: cornet, tb: trombone, ts-c: C melody tenor saxophone).

is computed. We use a logarithmic frequency axis with a
high resolution of 50 bins/semitone and a frequency range
of ± 2 semitones around the annotated pitch. Based on an
initial short-time Fourier transform (STFT) with a block-
size of 1024, a hopsize of 64, and a zero-padding factor of
16, the magnitude values are mapped (reassigned) towards
the frequency bins that correspond to their instantaneous
frequency values at the original frequency bins computed
using the method proposed by Abe in [1]. Two steps are
performed for each tone to estimate its f0 contour. First,
we estimate a suitable starting frame within the tone’s du-
ration with a prominent peak close to the annotated pitch.
Second, we perform a contour tracking both forwards and
backwards in time. Further details are provided in [3].

4.4 Tuning Frequency Estimation

The oldest recordings in our dataset date back to the year
1924, two years before the American music industry rec-
ommended 440 Hz for A4 as standard tuning, and 12 years
before the American Standards Association officially
adopted it. Hence, we can not rely on the assumption of
a constant and fixed overall tuning. Moreover, the techni-
cal level of recording studios were rather low at this time,
which might result in tuning deviations by speed fluctu-
ations of recording machines as well as from instruments
tuned to another reference pitch such as studio or live venue
pianos. Hence, we estimate a reference tuning frequency
fref prior to the intonation analysis of the solo instrument
from the backing track of the rhythm section, which we ob-
tain from the source separation process explained in Sec-
tion 4.2. The reference tuning frequency corresponds to
the fundamental frequency of the pitch A4 in the backing
track.

In the Chroma Toolbox [13], a triangular filterbank is
generated based on a given tuning frequency in such way
that its center frequencies are aligned to the chromatic scale
within the full piano pitch range. For a given audio signal,
the magnitude spectrogram is averaged over the full signal
duration and processed using the filterbank. By
maximizing the filterbank output energy over different tun-

ing frequency hypotheses, a final tuning frequency esti-
mate f̂ref is derived. We modified the originally proposed
search range for f̂ref to 440 Hz±0.5 semitone (correspond-
ing MIDI pitch range: 69 ± 0.5) and the stepsize to 0.1
cents. As will be shown in Section 5.1, the influence of
source separation artifacts on the estimation accuracy of
the reference tuning frequency can be neglected.

4.5 Feature Extraction

Based on the estimated contour f0(n) of each tone, we first
perform a smoothing using a two-element moving aver-
age filter in order to compensate for local irregularities and
possible estimation errors. The extracted audio features
describe the gradient of the f0 contour as well as its tem-
poral modulation. Table 2 lists all computed audio features
and their dimensionality.

Category Feature Label Dim.

Gradient Linear slope 1
Gradient Median gradients (first half, second half, over-

all)
3

Gradient Ratio of ascending frames 1
Gradient Ratio of ascending / descending / constant

segments
3

Gradient Median gradient of longest segments 1
Gradient Relative duration of longest segments 1
Gradient Pitch progression 1
Modulation Modulation frequency [Hz] 1
Modulation Modulation dominance 1
Modulation Modulation range [cent] 1
Modulation Number of modulation periods 1
Modulation Average relative / absolute f0 deviation 2
Modulation f0 deviation inter-quartile-range 1

Table 2: Summary of audio features to descript the f0 con-
tours.

4.5.1 Gradient features

Based on the gradient ∆f0(n) = f0(n+1)−f0(n), we first
determine frames and segments of adjacent frames with as-
cending (∆f0(n) > 0), descending (∆f0(n) < 0), and
constant frequency. We use the relative duration (with re-
spect to the note duration) of each segment class as fea-
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tures. Also, we compute median gradients in the first and
second halves, over the whole note, as well as over the
longest segment. Overall pitch progression is measured by
the difference of average f0 values in the end and begin-
ning of each tone. Furthermore, we use linear regression
to estimate the linear slope of the f0 contour.

4.5.2 Modulation features

We analyze the modulation of the f0 contour by comput-
ing the autocorrelation over f0(n). Fletcher [7] reported
for woodwind instruments that a vibrato frequency range
between 5 and 8 Hz is comfortable for listeners and com-
mon for players. We add a safety margin of 2 Hz and
search for the lag position τmax of the highest local maxi-
mum within the lag range that corresponds to fundamental
frequency values of fmod ∈ [3, 10] Hz and estimate the
modulation frequency as f̂mod = 1/τmax. The difference
between the maximum and median magnitude within this
frequency band is used as dominance measure for the mod-
ulation. Other applied features are the number of modula-
tion periods and the frequency modulation range in cent.

4.6 Analysis of Intonation and Modulation
Techniques

We distinguish three modulation techniques fall-off, slide,
and vibrato. Table 3 provides a description of the charac-
teristic f0 contour shape for each technique. The number
of tones in our dataset annotated with each technique is
given in Table 3.

Technique Description Notes

Fall-off Drop of the f0 contour in the end of the tone after a
stationary part.

146

Slide Rise or drop of the f0 in the beginning of the tone
towards a stationary part.

708

Vibrato Periodic modulation of the f0 contour during the sta-
tionary part of the tone.

1380

None No discernible modulation of the f0 contour / No
modulation technique annotated.

83587

Table 3: Frequency modulation techniques considered and
number of annotated notes in the dataset for each tech-
nique.

5. RESULTS

5.1 Influence of Source Separation on the Reference
Tuning Estimation

After the application of source separation algorithms, parts
of the isolated solo instrument often remain audible in the
backing track due to artifacts or interference. We first in-
vestigated the influence of the source separation step de-
scribed in Section 4.2 on the reference tuning estimation.
A subset of 13 solos was randomly selected from the dataset,
covering various recording decades and solo instruments.
For each solo, we took a 20s segment from the original
recording, where only the rhythm section and no solo in-
strument is playing. We used the tuning estimation method
described in Section 4.4 on both this 20s segment as well

as on the backing track obtained from the source separation
of the solo part (compare Section 4.2) to get two estimates
fNoSolo
ref and fBacking

ref of the reference tuning frequency.
The results show a very high sample correlation of r =

0.97 (p < 0.001) and a small root mean squared error of
RMSE = 1.05 Hz between both estimates. These results
indicate that the influence of source separation artifacts is
negligible for the tuning estimation process. Therefore, we
will use f̂ref = fBacking

ref as an estimate of the reference
tuning frequency throughout the paper.

5.2 Relationship between the Reference Tuning and
the Recording Year / Decade

How did the tuning frequency fref of commercial jazz
recordings change during the 20th century? Figure 3 shows
the distribution of solos in the dataset over the from the
1920s to the 2000s. Moreover, the inserted boxplots illus-
trate the deviation ∆f = 1200 log2

fref
440 between the tuning

frequency fref and 440 Hz in cent.
Absolute tuning deviation |∆f | and recording year of

each solo are weakly negatively correlated (r = −0.33,
p < 0.001). Hence, the absolute deviation from the tun-
ing frequency from 440 Hz decreased over the the course
of the 20th century, reflecting the spread of the 440 Hz
standard (1955 adopted by the International Standards Or-
ganization), as well as the progress of studio technology.

−60

−40

−20

0

20

40

60

80

1
9
2

0
−

1
9

3
0

1
9
3

0
−

1
9

4
0

1
9
4

0
−

1
9

5
0

1
9
5

0
−

1
9

6
0

1
9
6

0
−

1
9

7
0

1
9
7

0
−

1
9

8
0

1
9
8

0
−

1
9

9
0

1
9
9

0
−

2
0

0
0

Recording Year Decade

∆
 f

 [
c
e

n
t]

 |
 N

u
m

b
e

r 
o

f 
s
o

lo
s

Figure 3: The box plot shows the reference tuning de-
viation from 440 Hz in cent for different recording year
decades. The bars show the number of solos in the dataset
for each decade.

5.3 Dependency of Intonation from Artist and
Instrument

The distribution of the absolute deviation of tone-wise fun-
damental frequency values from the estimated tuning fre-
quency as well as modulation range are shown for all mu-
sicians in Figure 4, and for all instruments in Figure 5.

According to Figure 4, the overall pitch intonation of
jazz musicians is astonishingly accurate. Some woodwind
and brass players tend to play a bit sharp, few a bit flat—
but throughout in a range of less than 25 cent. There are
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few exceptions: Sidney Bechet, a traditional soprano saxo-
phonist, has very high values; however, presumably this is
caused not by a sharp intonation but by the high percentage
of pitch slides played by him (almost 15 % of the tones, cf.
Figure 2).

For most players, the range of frequency modulation,
i.e., the size of vibrato, is around 25 cent. There are some
bigger modulation ranges from 35 to 50 cent, predomi-
nantly used by tenor saxophone players associated with
swing style (Ben Webster, Coleman Hawkins, Don Byas,
and Lester Young), but also by postbop tenor saxophonist
Joe Lovano, and, again, by Sidney Bechet, showing the
largest variance of modulation ranges. Therefore, there are
some slight personal and stylistic peculiarities in the use
of vibrato size. However, there are no obvious trends of
intonation according to different instruments (cf. Figure
5), since for each instrument there seem to be players who
play a bit sharp as well as players who play a bit low; note
that for trombone and c-melody sax there is only one mu-
sician (J.J. Johnson resp. Joe Lovano) in our sample. Like-
wise, there is no evidence for general trends of modulation
ranges with respect to instrument.
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Figure 4: Absolute deviation of tone-wise fundamental
frequency values from the estimated tuning frequency in
cent and modulation range in cent for all musicians (for
their full names see Table 1).
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Figure 5: Absolute deviation of note-wise fundamental
frequency values from the estimated tuning frequency in
cent and modulation range in cent for all instruments.

5.4 Context-dependency of the Modulation Frequency
of Vibrato

Does the modulation frequency of vibrato depend on pitch,
or duration of the vibrato tones, or on the tempo of the
piece? For the 1380 tones with vibrato notes (cf. Table
3), we found no significant correlations between modula-
tion frequency and pitch (r = 0.02, p = 0.42), duration
(r = 0.02, p = 0.5), nor tempo (r = 0.0, p = 0.83).
The small effect size of the correlation indicates that de-
spite the high variety of tempo values in the dataset (mean
tempo 154.52 bpm, standard deviation 68.16 bpm), the
modulation frequency only slightly increases with increas-
ing tempo.

Furthermore, we investigated, whether and how the mo-
dulation frequency of vibrato is connected to the under-
lying metrical structure of a solo. We computed the ra-
tio r = Tmod/Tsolo between the modulation tempo and
the average tempo of the solo. The modulation tempo is
computed as Tmod = 60fmod. Figure 6 shows the ratio
r against the average tempo of the solo. There is no ev-
idence in our data for a strategy to adapt the modulation
frequency of vibrato to integer multiples of the tempo of
the piece, e.g., to use a vibrato speed according to simple
subdivision of the beat (e.g. eighth notes or eighth triplets).
As Figure 6 shows, for medium and fast tempos (100 to
350 bpm) the vibrato frequency varies only between the
beat and the 16th note level. For slower tempos, the vi-
brato tempo could be up to six or seven times as fast as the
beat—but rarely much faster.
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Figure 6: Ratio between the modulation frequency of vi-
brato tones and the average tempo of a piece vs. the aver-
age tempo.

5.5 Artist-dependency of the Modulation Frequency
of Vibrato

Although there is no obvious correlation between modu-
lation frequency and pitch, duration, or tempo, there are
some peculiarities of musicians according to vibrato modu-
lation speed. In Figure 7 only those musicians are included
for which more than twenty annotated vibrato tones could
be found in our data set. All in all, there seems to be no
clear correlation between vibrato speed and jazz style or
instrument, which indicates that modulation technique is
mostly an idiosyncratic part of personal styles. Strikingly,
several trumpet players can be found there (Louis Arm-
strong, Kenny Dorham, Roy Eldridge) using vibrato to an
considerable amount and size. This is in sharp contrast to
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Figure 7: Modulation frequency in Hz in vibrato notes for
different performers. Only performers with more than 20
vibrato notes are shown.

playing standards for brass instruments in classical music,
where it is custom to play without any vibrato [7].

5.6 Automatic Classification of Frequency
Modulation Techniques

Using the set of features discussed in Section 4.5, we ex-
tracted an 18-dimensional feature vector for each tone,
which was used to automatically classify tones with re-
spect to their modulation class. To this end, we only con-
sidered tones annotated with fall-off, slide, and vibrato
since all remaining tones were not explicitly annotated. We
used a Support Vector Machine (SVM) classifier with a lin-
ear kernel function as classification algorithm and perform
a 10-fold cross-validation. Due to the imbalanced class
sizes (cf. Table 3), we repeatedly re-sampled from the ex-
isting class items such that all classes have the same num-
ber of items as the largest class from the original dataset.

The confusion matrix is shown in Table 4. The highest
accuracy of 92.25 % was achieved for vibrato tones. The
classes fall-off and slide show lower accuracy values of
48.04 % and 67.32 %, respectively. One might assume,
that the similar f0 contour shapes of fall-offs and the slide-
downs causes part of the confusions between both classes.

Correct Classified

Fall-off Slide Vibrato
Fall-off 48.04 37.46 14.49
Slide 23.55 67.32 9.13
Vibrato 4.06 3.7 92.25

Table 4: Confusion matrix for the automatic classification
of frequency modulation techniques. All values are given
in percent.

6. CONCLUSIONS

In this exploratory study, we proposed a
score-informed algorithm for the extraction of
non-syntactical features in jazz solos played with wind and
brass instruments. This method allows for an analysis of
performative and expressive aspects of jazz improvisation
which are not captured by the traditional approaches of
jazz research such as transcriptions (even though some rudi-
mentary notation for f0-modulations are used sometimes).

Combining transcriptions with state-of-art MIR algorithms
significantly enhances the methodical and analytical tool
box of jazz research (as well as other subfields of mu-
sicology and performance studies). In turn, this kind of
fine-structured analysis might be useful in guiding auto-
matic transcription algorithms by providing relevant back-
ground information on tone characteristics. Moreover, in
this study we demonstrated exemplarily that our method
can be readily applied for a range of different research
questions, from historical analysis of reference tuning in
20th century jazz recordings to more general questions such
as intonation accuracy or differences in f0 modulations
with respect to tempo, instrument class, stylistic trends, or
personal style.

As a case study, we investigated whether some these ex-
pressive aspects, i.e., intonation, slides, vibrato speed and
vibrato range, are correlated with structural features of the
solos (absolute pitch, tone duration, overall tempo, meter)
and whether those aspects are characteristic for an instru-
ment, a jazz style or the personal style of a musician. While
there is little evidence for a general correlation between in-
tonation and pitch modulation (slide, vibrato) on the one
hand, and structural features on the other hand, the issue
of how intonation and pitch modulation contributes to the
formation of a jazz style and personal style needs further
examination with more data and including listening tests
for style discrimination.

For the future, we plan to complete and refine the f0-
modulation annotations for the dataset, with the overall
goal of the design of an automated f0-modulation anno-
tation algorithm. Finally, we aim at a complete description
of personal timbre characteristics, the so-called “sound” of
a player, which is an important dimension of jazz music,
and not yet fully addressed. Dynamics [2], intonation, ar-
ticulation, and f0-modulation are part of this “sound”, but
other aspects such as breathiness, roughness and general
spectral characteristics (and their classification) are still to
be explored.
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Cano, Estefańıa 749, 823
Carabias-Orti, Julio José 448, 742
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