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ABSTRACT

Recent approaches in meter tracking have successfully ap-
plied Bayesian models. While the proposed models can
be adapted to different musical styles, the applicability of
these flexible methods so far is limited because the appli-
cation of exact inference is computationally demanding.
More efficient approximate inference algorithms using par-
ticle filters (PF) can be developed to overcome this limita-
tion. In this paper, we assume that the type of meter of a
piece is known, and use this knowledge to simplify an exist-
ing Bayesian model with the goal of incorporating a more
diverse observation model. We then propose Particle Fil-
ter based inference schemes for both the original model and
the simplification. We compare the results obtained from
exact and approximate inference in terms of meter track-
ing accuracy as well as in terms of computational demands.
Evaluations are performed using corpora of Carnatic music
from India and a collection of Ballroom dances. We docu-
ment that the approximate methods perform similar to exact
inference, at a lower computational cost. Furthermore, we
show that the inference schemes remain accurate for long
and full length recordings in Carnatic music.

1. INTRODUCTION

Rhythm analysis of musical audio signals plays an impor-
tant role in Music Information Retrieval (MIR) research.
Many of the works in MIR related to thythm attempt to
establish a relation between the audio signal and the un-
derlying musical meter. For instance, in the task of beat
tracking, the goal is to obtain an alignment of the metri-
cal level referred to as the tactus [15] to an audio signal,
see [8] for a list of references to recent beat tracking algo-
rithms. Tracking meter at a higher metrical level is a task
pursued under the title of downbeat detection. Approaches
were presented that either attempt to identify the downbeat
separately from the tactus [7], or that pursue beat tracking
and downbeat detection as a combined task [11, 17]. The
combined task of beat and downbeat detection is what we
refer to as meter tracking, since it aims at aligning several
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levels of a known meter to an audio recording of a music
performance.

Many applications can profit from accurate meter or beat
tracking. Some synchronization tasks, such as the one pre-
sented in [6], tracking the beat is sufficient. However, other
applications, such as musical structure analysis [16] can
profit from a more detailed understanding of the temporal
structure of a performance. Approaches that can achieve
such an analysis for a wider variety of music usually incor-
porate machine learning strategies to adapt to new styles.
For instance, Bock et al. [1] presented a method for beat
tracking in various styles that achieves high accuracy using
recurrent neural networks that were adapted to the individ-
ual styles. The task of downbeat tracking was addressed
in [4] using a set of deep belief networks trained on various
features, and the regularity of the outputs was enforced by
incorporating a simple hidden Markov model (HMM). The
task of meter tracking was combined with the determina-
tion of the type of meter in [9], using a Dynamic Bayesian
Network (DBN) similar to the one applied in [1].

A significant shortcoming of the mentioned tracking ap-
proaches is that their flexibility in terms of musical style
comes at an increased computational cost, either in terms of
time spent for the training of networks [1,4], or in terms of
long inference times [9]. In the present paper, we approach
faster inference in a DBN in two ways. Firstly, we propose
a change to the model structure as presented in [9, 14] that
enables faster inference by simplifying the independence
assumptions between the variables of the model. The pro-
posed simplification also addresses one of the main limit-
ing factors in most of the approaches so far: a simplistic
observation model that cannot effectively handle diversity
in rhythmic patterns. Secondly, one reason for long infer-
ence times of the model proposed in [9] is the utilization of
exact inference in an HMM, which discretizes the hidden
variables of the state space to compute the most likely path
in the exact posterior distribution using the Viterbi algo-
rithm. Here, we avoid the discretization of the state space
by approximating the posterior using particle filter meth-
ods [3]. The biggest challenge in applying such approx-
imate methods to meter tracking is the multi-modality of
the underlying posterior distribution [22] due to the ambi-
guity inherent to musical meter. Recently, methods were
proposed that overcome these challenges [14]. We outline
the existing [9, 14] and the proposed simplified model, and
compare the performance of exact and approximate infer-
ence schemes for both the models, in terms of meter track-
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Figure 1: The DBNs used in this paper: circles and
squares denote continuous and discrete variables, respec-
tively. Gray nodes and white nodes represent observed and
latent variables, respectively. Model-A is from [14] and
model-B is the proposed simplification.

ing accuracy and computational demands.

Carnatic music, the art music tradition from South India
is a representative case to study in this context. Meter in
Carnatic music is defined by the t@la, which are time cycles
with three metrical levels: the sama (downbeat, the first
pulse of the cycle), beat, and the subdivision level (a com-
prehensive account on Carnatic music is provided in [19]).
In performances of Carnatic music, however, large degrees
of freedom are taken by the musicians to conceal the under-
lying meter and to add metrical ambiguity, for instance by
changing the beat structure during a metrical cycle. This
playful rhythmic character of Carnatic music leads to our
hypothesis that meter tracking should be able to profit from
a diverse observation model. Most of the rhythmic struc-
tures, melodic phrases, and strutural elements are tightly
associated with the cycles of the tala [20] and hence track-
ing the sama (downbeat) is an important MIR task in Car-
natic music, which is the main focus of this paper. We will
also evaluate if meter tracking in Carnatic music can profit
from including a richer observation model that can incor-
porate information from multiple patterns.

In order to further illustrate the ability of the approach to
generalize, it will be additionally evaluated on a corpus of
Ballroom dances [5]. Furthermore, reproducibility will be
ensured by providing free access for research purposes to
all code repositories and datasets ' . We begin by describ-
ing the models and inference schemes that we use for meter
tracking.

2. MODEL STRUCTURE

We compare two different Bayesian models for the task
of meter tracking. The first model (model-A), depicted in
Figure 1a, is identical to the model used in [9, 14] and was
initially proposed in [24]. We propose and discuss a sim-
plification to model-A for the task of meter tracking, shown
as model-B in Figure 1b. Model-B uses a diverse observa-
tion model and can be applied if the type of meter is known
in advance. It is to be noted that model-A can also be used
for inferring the type of meter, though we apply it in this
paper only for meter tracking.

! Please see the companion webpage for more details: http://
compmusic.upf.edu/ismir-2015-pf

Ina DBN, an observed sequence of features derived from
an audio signal y1.x = {y1,..., ¥k } is generated by a se-
quence of hidden (unknown) variables x1. x = {X1, ..., Xk },
where K is the length of the sequence (number of audio
frames in an audio excerpt). The joint probability distribu-
tion of hidden and observed variables factorizes as,

P(yur, Xo:x) = P(x0) - [ [ P(xk[xe—1) P(yx[xr) (1)

k=1

where, P(xq) is the initial state distribution, P(xy|xx_1)
is the transition model, and P(yy|x;) is the observation
model.

2.1 Hidden Variables

At each audio frame k, the hidden variables describe the
state of a hypothetical bar pointer X, = [¢r dr 7x], repre-
senting the bar position, instantaneous tempo and a rhyth-
mic pattern indicator, respectively (see Figure 1 of [23] for
an illustration).

* Bar position: The bar position ¢ € [0, M), where M is
the length of the bar (cycle). The maximum value of M
depends on the longest bar (cycle) that is tracked. We
set the length of a full note to 1600, and scale other bar
(cycle) lengths accordingly.

* Rhythmic pattern: The rhythmic pattern variable r €
{1,..., R} is an indicator variable to select one of the
R observation models corresponding to each bar (cycle)
length rhythmic pattern learned from data. Each pattern
has a bar length M and a number of beats B, which are
assumed to be known in advance, i.e. the goal is the
tracking of a known metrical structure.

« Instantaneous tempo: Instantaneous tempo ¢ is the rate
at which the bar position variable progresses through the
cycle at each time frame, measured in bar positions per
time frame. The range of the variable ¢ € [Pmin, Pmax)
depends on the length of the cycle M and the hop size
(A = 0.02s used in this paper), and can be preset or
learned from data. A tempo value of ¢y corresponds to
a bar (cycle) length of (A - M /¢y) seconds and (60 -
B-¢x/(M-4)) beats per minute.

The conditional dependence relations between the variables
for both the models are shown in Figure 1.

2.2 Initial state distribution

We can use P(xq) to incorporate prior information about
the metrical structure of the music into the model. In this
paper, we assume uniform priors on all variables, within
the allowed ranges of tempo.

2.3 Model-A: Transition and Observation model

Due to the conditional dependence relations in Figure 1a,
the transition model factorizes as,

P(xg[x5—1) = P(¢r|dr—1, r—1,75-1)P(dk|dr—1)
X P(rglrp—1, ¢k, dr-1) (2

Each of the terms in Eqn (2) are defined in Eqns (3)—(5).

P(¢|r—1, Pp—1,T5—1) = 1y (3)
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where 1 is an indicator function that takes a value of one
if o, = (Pp—1 + ék_l) mod(M (ry)) and zero otherwise
(in our case, M(ry) = M), meaning that the bar position
advances at the rate of the instantaneous tempo variable,
and folds back when it crosses the maximum value that is
defined by the length M of the metrical cycle.

P(¢k|r—1) o N(dp-1,03) x 1 “
where 1 é is an indicator function that equals one if (j)k S

[d)min, émax] and zero otherwise. N (i, o) denotes a normal
distribution with mean y and standard deviation o.

P(rylre—1, ¢, ¢pr—1) = {A(Tk_l’rk) I @ < -1

1, else

(%
where, A(i, j) is the time-homogeneous transition proba-
bility from r; to 7;, and 1, is an indicator function that
equals one when 7, = r;_; and zero otherwise. Since the
rhythmic patterns are one bar (cycle) in length, pattern tran-
sitions are allowed only at the end of the bar (cycle). The
pattern transition probabilities are learned from data.

The observation model is identical to the one used in
[14], and depends only on the bar position and rhythmic
pattern variables. We use a two dimensional spectral flux
feature in two frequency bands (Low: < 250 Hz, High:
> 250 Hz). Using beat and downbeat annotated training
data, a k-means clustering algorithm clusters and assigns
each bar of the dataset (represented by a point in a 128-
dimensional space) to one of the R rhythmic patterns. We
then discretize the bar into 64™ note cells (corresponding to
25 bar positions with M,x = 1600), collect all the features
within the cell for each pattern, and compute the maximum
likelihood estimates of the parameters of a two component
Gaussian Mixture Model (GMM). The observation proba-
bility hence is computed as,

2
P(y[x) = P16 1) =3 w6.0s N8 g s Bers) (6)
i=1
where, N (y; p, X) denotes a normal distribution and for
the mixture component ¢, wg r i, B i and X ,; are the
component weight, mean (2-dimensional) and the covari-
ance matrix (2 x 2), respectively.

2.4 Model-B: Transition and Observation model

We propose a simpler model-B (Figure 1b) that uses a di-
verse mixture observation model incorporating observations
from multiple rhythmic patterns. Since all the rhythmic
patterns belong to the same type of meter (tala), we can
simplify model-A to track only the ¢ and ¢ variables while
using an observation model that computes the likelihood of
an observation by marginalizing over all the patterns. The
motivation for this simplification is two-fold: the inference
is simplified, and we can increase the influence of diverse
patterns that occur throughout a metrical cycle in the infer-
ence.

For model-B, we first define x;, = [a, 7'%], Where oy, =
[Pk, ¢k] Based on the conditional dependence relations in
Figure 1b, the transition model now is,

P(xk|xk-1) = P(ak|an—1) = P(¢n|dr—1, dr—1)P(dr|dr—1)
@)

Eqns. (3) and (4) remain identical apart from the removal
of the dependence on r;_; in Eqn (3). The observation
model is a pre-computed mixture observation model com-
puted from Eqn (6) by marginalizing over the patterns, as-

suming equal priors. R

P(yla) x S P(yl,r = j) ®)
j=1

3. INFERENCE METHODS

The goal of inference is to find a hidden variable sequence
that maximizes the posterior probability of the hidden states
given an observed sequence of features: a maximum a pos-
teriori (MAP) sequence X7, ;- that maximizes P(X1.x |y1.x)-
The inferred hidden variable sequence xj.; can then be
translated into a sequence downbeat (sama) instants (¢}, =
0), beat instants (¢; = i - M/B, i = 1,...,B), and the
local instantaneous tempo (d)Z). We describe two different
inference schemes, an exact inference using an HMM in a
discretized state space, and an approximate inference using
particle filters using the continuous values of ¢ and ¢.

3.1 Hidden Markov model (HMM)

By discretizing the continuous variables bar position and
tempo, we can perform an exact inference using HMM.
We use the discretization proposed in [14], by replacing
the continuous variables ¢ and ¢ by their discretized coun-
terparts, m € {1,2,...,[M]} and n € {nmin, "min + 1,

-, max }» With the discrete tempo limits as nmin = Lr,f')minj
and N = npax = Wmaxl where [-] and |-] denote the ceil
and floor operations, respectively. Eqns (2), (3) and (5)
remain valid. We define the tempo transition probability
within the allowed tempo range as,

1 —Pn if N = Nk—1
P(nglng—1) = { & if np=np1£1 (9
0 otherwise

where p,, is the probability of tempo change. We use Viterbi
algorithm [18] to obtain a MAP sequence of states with the
HMM. We refer to the HMM s for inference from model-A
and model-B as HMM, and HMM,, respectively.

The drawback of this approach is that the discretization
has to be on a very fine grid in order to guarantee good per-
formance, which leads to a prohibitively large state space
and, as a consequence, to a computationally demanding in-
ference. The size of the state space is S = M - N - R and
needs an S x S sized transition matrix. As an example, di-
viding a bar into M = 1600 position states, with N = 15
tempo states and R = 4 patterns, the size of the state space
is S = 96000 states. The computational complexity of
the Viterbi algorithm is O(K -|S|?). Even though the state
transition matrix is sparse due to lesser number of allowed
transitions leading to a complexity of O(K-M-R), the infer-
ence with HMM can become computationally prohibitive
and does not scale well with increasing number of states.
This problem can be overcome, for instance, by using ap-
proximate inference methods such as particle filters.

3.2 Particle Filter (PF)

Particle filters (or Sequential Monte Carlo methods) are a
class of approximate inference algorithms to estimate the
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posterior density of a state space. They overcome two main
problems of the HMM: discretization of the state space and
the quadratic scaling up of the size of state space with more
number of variables. In addition, they can incorporate long
term relationships between hidden variables.

The exact computation of the posterior P(x1.x|y1.x) 18
often intractable, but it can be evaluated pointwise. In par-
ticle filters, the posterior is approximated using a weighted
set of points (known as particles) in the state space as,

NP
P(x1.xly1.K) = Zw%)é(xlzl( )
i=1

Here, {xgl)K
weights {wﬁ?}, i =1,...,Np, and x1.x is the set of all
state trajectories until frame K, while §(x) is the Dirac
delta function, 6(z) = 1 if z = 0 and 0 otherwise. N,
is the number of particles.

To approximate the posterior pointwise, we need a suit-

able method to draw samples x,(f) and compute appropriate

weights wl(j) recursively at each time step. A simple ap-
proach is Sequential Importance Sampling (SIS) [3], where
we sample from a proposal distribution Q(x1.x|y1.x ) that
has the same support and is as similar to the true (target)
distribution P(x1.x|y1.x) as possible. To account for the
fact that we sampled from a proposal and not the target,
we attach an importance weight wﬁ? to each particle, com-
puted as,

is a set of points (particles) with associated

@ _ P(xuklyix) (11)
K Q(x1:x|y1:x)

With a suitable proposal density, these weights can be com-
puted recursively as,

(i) (i) P(Yk|X§cl))P(X§;)\X§Q1)
Wi O W1 OIN0)
Qxy X" 1, ¥k)
Following [14], we choose to sample from the transition

probability Q(x\V x| yp) = P(x{?x{"), which re-
duces Eqn (12) to

(12)

w” o w'? | Py |x() (13)

The SIS algorithm derives samples by first sampling from
proposal, in this case the transition probability and then
computes weights according to Eqn (13). Once we deter-
mine the particle trajectories {ng)K}’ we then select the tra-

jectory nglg with the highest weight wg) as the MAP state
sequence.

Many extensions have been proposed to the basic SIS
filter (see [3] for a comprehensive overview) to address
several problems with it. We briefly mention some of the
relevant extensions, emphasizing their key aspects. A more
detailed description of the algorithms has been presented
in [14]. The most challenging problem in particle filter-
ing is the degeneracy problem, where within a short time,
most of the particles have a weight close to zero, represent-
ing unlikely regions of state space. This is contrary to the
ideal case when we want the proposal to match well with
the target distribution leading to a uniform weight distri-
bution with low variance. To reduce the variance of the
particle weights, resampling steps are necessary, which re-
places low weight particles with higher weight particles by

selecting particles with a probability proportional to their
weights. Several resampling methods have been proposed,
but we use systematic resampling in this paper as recom-
mended in [3]. With resampling as the essential difference,
the SIS filter with resampling is called as Sequential Impor-
tance Sampling/Resampling (SISR) filter.

In meter tracking, due to metrical ambiguities, the poste-
rior distribution P(Xx|y1.x) is highly multimodal. Resam-
pling tends to lead to a concentration of particles in one
mode of the posterior, while the remaining modes are not
covered. One way to alleviate this problem is to compress
the weights w;, = wl(j), t = 1,..., N, by a monotoni-
cally increasing function to increase the weights of parti-
cles in low probability regions so that they can survive re-
sampling. After resampling, the weights have to be uncom-
pressed to give a valid probability distribution. This can be
formulated as an Auxiliary Particle Filter (APF) [10]. Fur-
ther, a system that is capable of handling metrical ambigu-
ities must maintain this multimodality and be able to track
several hypotheses together, which SISR and APF cannot
do explicitly. A system called the Mixture Particle Filter
(MPF) was proposed to track multiple hypotheses in [22],
and was adapted to meter inference in [14].

In an MPF, each particle is assigned to a cluster that
(ideally) represents a mode of the posterior. During re-
sampling, the particles of a cluster interact only with parti-
cles of the same cluster. Resampling is done independently
in each cluster, while maintaining the probability distribu-
tion intact. This way, all the modes of the posterior can
be tracked through the whole audio piece, and the best hy-
pothesis can be chosen at the end. We use an identical clus-
tering scheme using a cyclic distance measure as described
in [14] to track several different possible metrical positions
at a given time. In the MPF, after an initial cluster assign-
ment, we perform a re-clustering before every resampling
step, merging or splitting clusters based on the average dis-
tance between cluster centroids. The clustering, merging
and splitting of clusters is necessary to control the number
of clusters, which ideally represents the number of modes
in the posterior. The mixture particle filter can be com-
bined with the Auxiliary resampling to give the Auxiliary
Mixture Particle Filter (AMPF). As recommended in [14],
we resample at a fixed interval T5. It was shown in [14]
that AMPF can be effectively used for the task of meter
inference and tracking.

With model-A, we setup an AMPF (AMPF,) to com-
pute the pointwise estimates of the posterior of x;.x, rep-

resented by {wff}(, xgl)K,z =1, ,Np}, where N, is the

number of particles and w,(:}( are the weights correspond-
ing to the particle trajectories ng)K The weights are up-
dated as in Eqn (13), using the observation model in Eqn (6).
This particle filter is identical to the AMPF described in
[14], however, in this paper it is evaluated for the first time
assuming several patterns with transitions allowed.

For the simplified model-B, we setup AMPFy, similarly
for a;.x, represented by {wg?K, ag?K,i =1,--- ,Np},
where wg) x are the weights corresponding to the particle

trajectories agl)K Similar to Eqn (13), the weight updates
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Algorithm 1 Outline of the AMPF,, algorithm Tala M | B | #Excerpts | #Pieces
I: fori=1to N, do _ CMD | CMDy
2 S I 0y . p P(d tw® —1 ) Adi (8/8) 1600 | 8 | 30 (60) 50 (252.8)
ampre EC)' o)~ P(90)P(do), setwap =/ b Rupaka (3/4) [ 1200 3 |30 (60) |50 (267.4)
: Cluster {¢,”} and obtain cluster assignments {c;" } Misra chapu (7/8) | 1400 | 7 | 30 (60) 48 (342.1)
Khanda chapu (5/8) | 1000 | 5 | 28 (56) | 28 (134.6)

fori:1todio

3

4: fork=1to K do
5

6 Sample qﬁ“)

6D, Set o = o

7 ol =wl) xZP(yk\qsk . =7)
=1

8: fori=1to N, do
B,

> Normalize weights

() _
9: wa’k = W
10: if mod (k,Ts) = 0 then
11: Recluster and Resample {atg, Wa i} and obtain
{&, We i}, update {c )}
12: fori=1to N, do
13: Seta()*aé),wak—wak

14:  Sample (,/),j) ~ P(gb,j)|¢k71)

for AMPF,, are,

uly ol Plyidal®) (1)
where P(yy \a ) ) is computed as in Eqn (8) by marginal-
izing P(yk|x k )) over r( ). The AMPF, enables therefore
to incorporate the full expressivity of the observed patterns
into the inference. An outline of AMPF,, is provided in Al-
gorithm 1.

The complexity of the PF schemes scale linearly with
N, irrespective of the size of state space, leading to an ef-
ficient inference in large state spaces. Further, compared to
the HMM using Viterbi decoding that has a space complex-
ity of O(K-|S|), the PF needs to store just N, state trajec-
tories and weights, significantly reducing the memory re-
quirements. An additional advantage is that the number of
particles can be chosen based on the computational power
we can afford, and we can make the state space larger with
no or only a marginal increase in the computational re-
quirements. Since the observation likehood can be precom-
puted, inference with model-B requires much lower com-
putational resources, with only a marginal increase in cost
during inference with increase in number of patterns.

4. EXPERIMENTS

The experiments aim to compare the performance of the
particle filter and the HMM inference schemes for meter
tracking with both model-A and model-B. Further, we wish
to see if using a larger number of patterns per rhythm class
(tala) improves meter tracking performance. Meter track-
ing is done for each type of meter (tala) separately, in a two
fold cross validation experiment.

4.1 Music Corpora

The primary dataset we evaluate on is the Carnatic music
dataset (CMD) used in [9]. It includes 118 two minute long
excerpts spanning four commonly used talas as shown in
Table 1, with a total duration of 236 minutes and over 5500

Table 1: The Carnatic music datasets, showing the cycle
length M used in the paper and the number of beats B
for each tala. The analogous time signature is also shown.
CMD is a subset of CMD ¢, with two minute excerpts from
full pieces. The number of pieces/excerpts in both datasets
is also shown, the numbers in parentheses indicate the total
duration of audio in minutes.

sama instances. To test if the results extend to full pieces,
we use the super set of CMD consisting of longer and full
length pieces (called CMDy) as used in [21]. CMDy com-
prises about 16.6 hours of audio with over 22600 sama in-
stances. For comparability, we also present results on the
Ballroom dataset [5], using the annotations from [12].

4.2 Parameter Selection and Learning

The tempo ranges were manually set for Carnatic music as
¢ € [4,15] (cycle lengths between 1.33 s and 8s) and ¢ €
[6, 32] (bar lengths between 0.75 s to 5.3 s) for the Ballroom
dataset. With M, = 1600 (corresponds to adi tala with
8 beats/cycle), the length of cycle M and the number of
beats B for each tala is shown in Table 1. For Ballroom
dataset, we used M = 1600 and M = 1200 for tracking
time signatures 4/4 and 3/4, respectively. For the HMM,
we use p, = 0.02 as in [12], and for the AMPF, we use
o, = 10~* - M. We explore the performance with R =
{1, 2, 4}, with the number of particles set to IV, = 1500- R.
The other AMPF parameters are identical to the values used
in [14].

4.3 Evaluation Measures

A variety of measures for evaluating beat and downbeat
tracking performance are available (see [2] for a detailed
overview and descriptions of the metrics listed below 2).
We chose two metrics that are characterized by a set of di-
verse properties and are widely used in beat tracking eval-
uation. We describe it for beats, but the definitions extend
to downbeats/samas as well, with the same tolerances. We
use the prefix ‘s-’ and ‘b-’ to distinguish between the per-
formance measures of sama and beat tracking, respectively.

Fmeas (F-measure): The F-measure (a number between
0 and 1) is computed from correctly detected beats within
a window of £70 ms as the harmonic mean of the preci-
sion (the ratio between the number of correctly detected
beats and all detected beats) and recall (the ratio between
the number of correctly detected beats and the total anno-
tated beats).

AMLt (Allowed Metrical Levels with no continuity re-
quired): In the AMLt measure (a number between 0 and
1), beat sequences are considered as correct if the beats oc-
cur on the off-beat, or are double or half of the annotated
tempo, allowing for metrical ambiguities. The value of this

2 We used the code available athttp: //code . soundsoftware.ac.
uk/projects/beat-evaluation/ with default settings
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Sama tracking Beat tracking
Measure s-Fmeas s-AMLt b-Fmeas b-AMLLt
R 1 2 4 1 2 4 1 2 4 1 2 4
HMM, 0.733 0.736 0.713 | 0.837 0.837 0.804 || 0.85 0.847 0.850 | 0.868 0.874 0.852
AMPF, 0.708 0.697 0.704 | 0.827 0.809 0.822 || 0.846 0.833 0.843 | 0.872 0.874 0.862
HMM, 0.726 0.735 0.736 | 0.830 0.862 0.867 || 0.844 0.849 0.837 | 0.864 0.893 0.900
AMPF, 0.690 0.712 0.735 ] 0.832 0.842 0.853 || 0.833 0.838 0.846 | 0.869 0.888 0.890
Klapuri [11] 0.175 0.181 0.657 0.650

Table 2: Meter tracking performance on CMD. In addition, the performance of meter tracking with the algorithm proposed

in [11] is also shown for reference.

Dataset CMD; Ballroom
Measure | s-Fmeas b-Fmeas | s-Fmeas b-Fmeas
HMM, 0.727 0.834 0.806 0.929
AMPF, 0.728 0.834 0.793 0.930

Table 3: F-measure for meter tracking on CMD¢ and the
Ballroom dataset, with R = 4. Values in each column are
not statistically significantly different.

measure is then the ratio between the number of correctly
estimated beats divided by the number of annotated beats.

4.4 Results and Discussion

We report the average Fmeas and AMLt values for all ex-
cerpts over all the talas for the HMM and AMPF schemes
in Table 2. The results for AMPF are the mean values over
three experiments. We conducted evaluations using sev-
eral other measures as well without any qualitative change
in results. Therefore, experimental results are documented
using these two measures. We use a three-way ANOVA
with tala, inference scheme, and R as factors to assess sta-
tistically significant differences (at 5% significance levels).

In general, we see that the beat tracking performance
is similar across all the inference schemes and values of
R, with the b-Fmeas and b-AMLt values being compara-
ble. This shows that adding a diverse observation model
and additional patterns does not add a significant change,
showing that handling pattern diversity is not needed for
beat tracking.

For sama tracking, we see that the AMPFs show sta-
tistically equivalent performance to the HMMs. The sim-
pler AMPF,, performs as good or better than AMPF,, with
a lower computational complexity. Higher number of pat-
terns (R > 1) do not show significant improvement in
tracking performance, despite a richer observation model.
This observation needs further exploration to verify if in-
corporating more patterns with the currently used features
helps to improve sama tracking. Further, s-AMLL is signif-
icantly larger than s-Fmeas and shows that there is a poten-
tial for improvement in tracking the correct metrical level.

Though we report only consolidated set of results aver-
aged over all the talas, the tracking performance is signif-
icantly poorer for adi tala (e.g. s-Fmeas = 0.4, b-Fmeas =
0.632 with AMPF}, and R = 4), with superior (and statisti-
cally equivalent) results with other three talas (e.g. s-Fmeas
= 0.849, b-Fmeas = 0.92 with AMPF, and R = 4). This
is attributed to the long cycle durations and a large vari-
ety of patterns in adi tala, which shows a definite scope for
improvement using higher number of patterns and better

observation models.

We extend the evaluation and report the performance
of HMM, and the proposed AMPF;, on CMD¢ and Ball-
room datasets (in an identical setting, assuming that the me-
ter type is known) in Table 3. We see that the observations
from CMD extend to these datasets too. We further see a
similar performance between CMD and CMDy, that shows
that the AMPF generalizes to longer and full length pieces.

One of the main advantages of model-B over model-A is
the lower computational cost. For meter tracking under the
conditions described, all the inference schemes have faster
than real time execution. Inference in model-B is faster
than that in model-A: model-B speeds up inference by a
factor of about 5 for HMM and 2.5 for AMPF (for R = 4
and adi tala). Even in the smaller state space with model-
B, HMM, has a higher memory requirement than AMPF,, ,
which shows the utility of PF inference schemes.

5. CONCLUSIONS

For the task of meter tracking, we presented a simplified
Bayesian model that incorporates a richer observation model.
We compared the performance of an exact inference us-
ing an HMM using a discrete approximation of the mod-
els, with an approximate inference using an AMPF on the
exact model. The simplified model leads to faster infer-
ence and a similar performance as the full model, with the
performance extending to full length pieces and generaliz-
ing to different music styles. However, the proposed way
to enrich the observation model did not lead to significant
differences in performance. This might be caused by the
simplistic audio features, and improving signal represen-
tations appears as a necessary next step. In the future, we
plan to explore approximate inference in improved models
(such as [13] using an improved state space discretization
and tempo transition model) that also use better observa-
tion models and can effectively utilize multiple rhythmic
patterns. We also plan to extend meter tracking to Hindus-
tani music, where long cycles (longer than a minute) exist
and hence present additional challenges.
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