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ABSTRACT

Recent approaches in meter tracking have successfully ap-
plied Bayesian models. While the proposed models can
be adapted to different musical styles, the applicability of
these flexible methods so far is limited because the appli-
cation of exact inference is computationally demanding.
More efficient approximate inference algorithms using par-
ticle filters (PF) can be developed to overcome this limita-
tion. In this paper, we assume that the type of meter of a
piece is known, and use this knowledge to simplify an exist-
ing Bayesian model with the goal of incorporating a more
diverse observation model. We then propose Particle Fil-
ter based inference schemes for both the original model and
the simplification. We compare the results obtained from
exact and approximate inference in terms of meter track-
ing accuracy as well as in terms of computational demands.
Evaluations are performed using corpora of Carnatic music
from India and a collection of Ballroom dances. We docu-
ment that the approximatemethods perform similar to exact
inference, at a lower computational cost. Furthermore, we
show that the inference schemes remain accurate for long
and full length recordings in Carnatic music.

1. INTRODUCTION

Rhythm analysis of musical audio signals plays an impor-
tant role in Music Information Retrieval (MIR) research.
Many of the works in MIR related to rhythm attempt to
establish a relation between the audio signal and the un-
derlying musical meter. For instance, in the task of beat
tracking, the goal is to obtain an alignment of the metri-
cal level referred to as the tactus [15] to an audio signal,
see [8] for a list of references to recent beat tracking algo-
rithms. Tracking meter at a higher metrical level is a task
pursued under the title of downbeat detection. Approaches
were presented that either attempt to identify the downbeat
separately from the tactus [7], or that pursue beat tracking
and downbeat detection as a combined task [11, 17]. The
combined task of beat and downbeat detection is what we
refer to as meter tracking, since it aims at aligning several
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levels of a known meter to an audio recording of a music
performance.

Many applications can profit from accuratemeter or beat
tracking. Some synchronization tasks, such as the one pre-
sented in [6], tracking the beat is sufficient. However, other
applications, such as musical structure analysis [16] can
profit from a more detailed understanding of the temporal
structure of a performance. Approaches that can achieve
such an analysis for a wider variety of music usually incor-
porate machine learning strategies to adapt to new styles.
For instance, Böck et al. [1] presented a method for beat
tracking in various styles that achieves high accuracy using
recurrent neural networks that were adapted to the individ-
ual styles. The task of downbeat tracking was addressed
in [4] using a set of deep belief networks trained on various
features, and the regularity of the outputs was enforced by
incorporating a simple hidden Markov model (HMM). The
task of meter tracking was combined with the determina-
tion of the type of meter in [9], using a Dynamic Bayesian
Network (DBN) similar to the one applied in [1].

A significant shortcoming of the mentioned tracking ap-
proaches is that their flexibility in terms of musical style
comes at an increased computational cost, either in terms of
time spent for the training of networks [1,4], or in terms of
long inference times [9]. In the present paper, we approach
faster inference in a DBN in two ways. Firstly, we propose
a change to the model structure as presented in [9, 14] that
enables faster inference by simplifying the independence
assumptions between the variables of the model. The pro-
posed simplification also addresses one of the main limit-
ing factors in most of the approaches so far: a simplistic
observation model that cannot effectively handle diversity
in rhythmic patterns. Secondly, one reason for long infer-
ence times of the model proposed in [9] is the utilization of
exact inference in an HMM, which discretizes the hidden
variables of the state space to compute the most likely path
in the exact posterior distribution using the Viterbi algo-
rithm. Here, we avoid the discretization of the state space
by approximating the posterior using particle filter meth-
ods [3]. The biggest challenge in applying such approx-
imate methods to meter tracking is the multi-modality of
the underlying posterior distribution [22] due to the ambi-
guity inherent to musical meter. Recently, methods were
proposed that overcome these challenges [14]. We outline
the existing [9,14] and the proposed simplified model, and
compare the performance of exact and approximate infer-
ence schemes for both the models, in terms of meter track-
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(a) model-A (b) model-B

Figure 1: The DBNs used in this paper: circles and
squares denote continuous and discrete variables, respec-
tively. Gray nodes and white nodes represent observed and
latent variables, respectively. Model-A is from [14] and
model-B is the proposed simplification.

ing accuracy and computational demands.
Carnatic music, the art music tradition from South India

is a representative case to study in this context. Meter in
Carnatic music is defined by the tālạ, which are time cycles
with three metrical levels: the sama (downbeat, the first
pulse of the cycle), beat, and the subdivision level (a com-
prehensive account on Carnatic music is provided in [19]).
In performances of Carnatic music, however, large degrees
of freedom are taken by the musicians to conceal the under-
lying meter and to add metrical ambiguity, for instance by
changing the beat structure during a metrical cycle. This
playful rhythmic character of Carnatic music leads to our
hypothesis that meter tracking should be able to profit from
a diverse observation model. Most of the rhythmic struc-
tures, melodic phrases, and strutural elements are tightly
associated with the cycles of the tālạ [20] and hence track-
ing the sama (downbeat) is an important MIR task in Car-
natic music, which is the main focus of this paper. We will
also evaluate if meter tracking in Carnatic music can profit
from including a richer observation model that can incor-
porate information from multiple patterns.

In order to further illustrate the ability of the approach to
generalize, it will be additionally evaluated on a corpus of
Ballroom dances [5]. Furthermore, reproducibility will be
ensured by providing free access for research purposes to
all code repositories and datasets 1 . We begin by describ-
ing the models and inference schemes that we use for meter
tracking.

2. MODEL STRUCTURE

We compare two different Bayesian models for the task
of meter tracking. The first model (model-A), depicted in
Figure 1a, is identical to the model used in [9, 14] and was
initially proposed in [24]. We propose and discuss a sim-
plification tomodel-A for the task of meter tracking, shown
as model-B in Figure 1b. Model-B uses a diverse observa-
tion model and can be applied if the type of meter is known
in advance. It is to be noted that model-A can also be used
for inferring the type of meter, though we apply it in this
paper only for meter tracking.

1 Please see the companion webpage for more details:

In aDBN, an observed sequence of features derived from
an audio signal y1:K = {y1, . . . , yK} is generated by a se-
quence of hidden (unknown) variables x1:K ={x1, . . . , xK},
where K is the length of the sequence (number of audio
frames in an audio excerpt). The joint probability distribu-
tion of hidden and observed variables factorizes as,
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where, P (x0) is the initial state distribution, P (xk|xk�1)
is the transition model, and P (yk|xk) is the observation
model.

2.1 Hidden Variables

At each audio frame k, the hidden variables describe the
state of a hypothetical bar pointer xk = [�k �̇k rk], repre-
senting the bar position, instantaneous tempo and a rhyth-
mic pattern indicator, respectively (see Figure 1 of [23] for
an illustration).
• Bar position: The bar position � 2 [0, M), where M is
the length of the bar (cycle). The maximum value of M
depends on the longest bar (cycle) that is tracked. We
set the length of a full note to 1600, and scale other bar
(cycle) lengths accordingly.

• Rhythmic pattern: The rhythmic pattern variable r 2
{1, . . . , R} is an indicator variable to select one of the
R observation models corresponding to each bar (cycle)
length rhythmic pattern learned from data. Each pattern
has a bar length M and a number of beats B, which are
assumed to be known in advance, i.e. the goal is the
tracking of a known metrical structure.

• Instantaneous tempo: Instantaneous tempo �̇ is the rate
at which the bar position variable progresses through the
cycle at each time frame, measured in bar positions per
time frame. The range of the variable �̇k 2 [�̇min, �̇max]
depends on the length of the cycle M and the hop size
(� = 0.02s used in this paper), and can be preset or
learned from data. A tempo value of �̇k corresponds to
a bar (cycle) length of (� · M/�̇k) seconds and (60 ·
B·�̇k/(M ·�)) beats per minute.

The conditional dependence relations between the variables
for both the models are shown in Figure 1.

2.2 Initial state distribution

We can use P (x0) to incorporate prior information about
the metrical structure of the music into the model. In this
paper, we assume uniform priors on all variables, within
the allowed ranges of tempo.

2.3 Model-A: Transition and Observation model

Due to the conditional dependence relations in Figure 1a,
the transition model factorizes as,

P (xk|xk�1) = P (�k|�k�1, �̇k�1, rk�1)P (�̇k|�̇k�1)

⇥ P (rk|rk�1, �k, �k�1) (2)

Each of the terms in Eqn (2) are defined in Eqns (3)–(5).

P (�k|�k�1, �̇k�1, rk�1) = � (3)
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where � is an indicator function that takes a value of one
if �k = (�k�1 + �̇k�1)mod(M(rk)) and zero otherwise
(in our case, M(rk) = M ), meaning that the bar position
advances at the rate of the instantaneous tempo variable,
and folds back when it crosses the maximum value that is
defined by the length M of the metrical cycle.

P (�̇k|�̇k�1) / N (�̇k�1, �
2
�̇
) ⇥ �̇ (4)

where �̇ is an indicator function that equals one if �̇k 2
[�̇min, �̇max] and zero otherwise. N (µ, �) denotes a normal
distribution with mean µ and standard deviation �.

P (rk|rk�1, �k, �k�1) =

!
A(rk�1, rk) if �k < �k�1

r else
(5)

where, A(i, j) is the time-homogeneous transition proba-
bility from ri to rj , and r is an indicator function that
equals one when rk = rk�1 and zero otherwise. Since the
rhythmic patterns are one bar (cycle) in length, pattern tran-
sitions are allowed only at the end of the bar (cycle). The
pattern transition probabilities are learned from data.

The observation model is identical to the one used in
[14], and depends only on the bar position and rhythmic
pattern variables. We use a two dimensional spectral flux
feature in two frequency bands (Low:  250 Hz, High:
> 250 Hz). Using beat and downbeat annotated training
data, a k-means clustering algorithm clusters and assigns
each bar of the dataset (represented by a point in a 128-
dimensional space) to one of the R rhythmic patterns. We
then discretize the bar into 64th note cells (corresponding to
25 bar positions withMmax = 1600), collect all the features
within the cell for each pattern, and compute the maximum
likelihood estimates of the parameters of a two component
Gaussian Mixture Model (GMM). The observation proba-
bility hence is computed as,

P (y|x) = P (y|�, r) =
2"

i=1

w�,r,i N (y; µ�,r,i, ! �,r,i) (6)

where, N (y; µ, ! ) denotes a normal distribution and for
the mixture component i, w�,r,i, µ�,r,i and ! �,r,i are the
component weight, mean (2-dimensional) and the covari-
ance matrix (2 ⇥ 2), respectively.

2.4 Model-B: Transition and Observation model

We propose a simpler model-B (Figure 1b) that uses a di-
versemixture observationmodel incorporating observations
from multiple rhythmic patterns. Since all the rhythmic
patterns belong to the same type of meter (tālạ), we can
simplify model-A to track only the � and �̇ variables while
using an observation model that computes the likelihood of
an observation by marginalizing over all the patterns. The
motivation for this simplification is two-fold: the inference
is simplified, and we can increase the influence of diverse
patterns that occur throughout a metrical cycle in the infer-
ence.

Formodel-B, we first define xk = [�k, rk], where�k =
[�k, �̇k]. Based on the conditional dependence relations in
Figure 1b, the transition model now is,
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Eqns. (3) and (4) remain identical apart from the removal
of the dependence on rk�1 in Eqn (3). The observation
model is a pre-computed mixture observation model com-
puted from Eqn (6) by marginalizing over the patterns, as-
suming equal priors.

P (y|�) /
R"

j=1

P (y|�, r = j) (8)

3. INFERENCE METHODS

The goal of inference is to find a hidden variable sequence
thatmaximizes the posterior probability of the hidden states
given an observed sequence of features: a maximum a pos-
teriori (MAP) sequence x⇤

1:K thatmaximizesP (x1:K |y1:K).
The inferred hidden variable sequence x⇤

1:K can then be
translated into a sequence downbeat (sama) instants (�⇤

k =
0), beat instants (�⇤

k = i · M/B, i = 1, . . . , B), and the
local instantaneous tempo (�̇⇤

k). We describe two different
inference schemes, an exact inference using an HMM in a
discretized state space, and an approximate inference using
particle filters using the continuous values of � and �̇.

3.1 Hidden Markov model (HMM)

By discretizing the continuous variables bar position and
tempo, we can perform an exact inference using HMM.
We use the discretization proposed in [14], by replacing
the continuous variables � and �̇ by their discretized coun-
terparts, m 2 {1, 2, . . . , dMe} and n 2 {nmin, nmin + 1,
· · · , nmax}, with the discrete tempo limits as nmin =b�̇minc
and N = nmax = d�̇maxe, where d·e and b·c denote the ceil
and floor operations, respectively. Eqns (2), (3) and (5)
remain valid. We define the tempo transition probability
within the allowed tempo range as,

P (nk|nk�1) =

#
$%

$&

1 � pn if nk = nk�1
pn

2 if nk = nk�1 ± 1

0 otherwise
(9)

where pn is the probability of tempo change. We useViterbi
algorithm [18] to obtain a MAP sequence of states with the
HMM. We refer to the HMMs for inference from model-A
and model-B as HMMa and HMMb, respectively.

The drawback of this approach is that the discretization
has to be on a very fine grid in order to guarantee good per-
formance, which leads to a prohibitively large state space
and, as a consequence, to a computationally demanding in-
ference. The size of the state space is S = M ·N ·R and
needs an S⇥S sized transition matrix. As an example, di-
viding a bar into M = 1600 position states, with N = 15
tempo states and R = 4 patterns, the size of the state space
is S = 96000 states. The computational complexity of
the Viterbi algorithm is O(K ·|S|2). Even though the state
transition matrix is sparse due to lesser number of allowed
transitions leading to a complexity ofO(K·M·R), the infer-
ence with HMM can become computationally prohibitive
and does not scale well with increasing number of states.
This problem can be overcome, for instance, by using ap-
proximate inference methods such as particle filters.

3.2 Particle Filter (PF)

Particle filters (or Sequential Monte Carlo methods) are a
class of approximate inference algorithms to estimate the
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