CHORD DETECTION USING DEEP LEARNING

Xinquan Zhou
Center for Music Technology
Georgia Institute of Technology

royzxg@gmail.com

ABSTRACT

In this paper, we utilize deep learning to learn high-level
features for audio chord detection. The learned features,
obtained by a deep network in bottleneck architecture, give
promising results and outperform state-of-the-art systems.
We present and evaluate the results for various methods and
configurations, including input pre-processing, a bottleneck
architecture, and SVMs vs. HMMs for chord classification.

1. INTRODUCTION

The goal of automatic chord detection is the automatic
recognition of the chord progression in a music recording.
It is an important task in the analysis of western music
and music transcription in general, and it can contribute
to applications such as key detection, structural segmenta-
tion, music similarity measures, and other semantic anal-
ysis tasks. Despite early successes in chord detection by
using pitch chroma features [6] and Hidden Markov Models
(HMMs) [26], recent attempts at further increasing the de-
tection accuracy are only met with moderate success [4,28].

In recent years, deep learning approaches have gained
significant interest in the machine learning community as
a way of building hierarchical representations from large
amounts of data. Deep learning has been applied success-
fully in various fields; for instance, a system for speech
recognition utilizing deep learning was able to outperform
state-of-the-art systems not using deep learning [10]. Sev-
eral studies indicate that deep learning methods can be
very successful when applied to Music Information Re-
trieval (MIR) tasks, especially when used for feature learn-
ing [1,9,13,16]. Deep learning, with its potential to untangle
complicated patterns in a large amount of data, should be
well suited for the task of chord detection.

In this work, we investigate Deep Networks (DNs) for
learning high-level and more representative features in the
context of chord detection, effectively replacing the widely
used pitch chroma intermediate representation. We present
individual results for different pre-processing options such
as time splicing and filtering (see Sect. 3.2), architectures
(see Sect. 3.4), and output classifiers (see Sect. 4).

(© Xinquan Zhou, Alexander Lerch.

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Xinquan Zhou, Alexander Lerch. “Chord
Detection Using Deep Learning”, 16th International Society for Music
Information Retrieval Conference, 2015.

52

Alexander Lerch
Center for Music Technology
Georgia Institute of Technology

alexander.lerch@gatech.edu

2. RELATED WORK

During the past decade, deep learning has been considered
by the machine learning community to be one of the most
interesting and intriguing research topics. Deep architec-
tures promise to remove the necessity of custom-designed
and manually selected features as neural networks should
be more powerful in disentangling interacting factors and
thus be able to create meaningful high-level representa-
tions of the input data. Generally speaking, deep learning
combines deep neural networks with an unsupervised learn-
ing model. Two major learning models are widely used
for unsupervised learning: Restricted Boltzmann Machines
(RBMs) [11] and Sparse Auto Encoders [24]. A deep archi-
tecture comprises multiple stacked layers based on one of
these two models. These layers can be trained one by one,
a process that is referred to as “pre-training” the network.
In this work, we employ RBMs to pre-train the deep archi-
tecture in an unsupervised fashion; this is called a Deep
Belief Network (DBN) [11]. DBNs, composed of a stack
of RBMs, essentially share the same topology with general
neural networks: DBNs are generative probabilistic models
with one visible layer and several hidden layers.

Since Hinton et al. proposed a fast learning algorithm
for DBNs [11], it has been widely used for initializing
deep neural networks. In deep structures, each layer learns
relationships between units in lower layers. The complexity
of the system increases with an increasing number of RBM
layers, making the structure —in theory— more powerful.
An extra softmax output layer can be added to the top of
the network (see Eqn (6)) [18]; its output can be interpreted
as the likelihood of each class.

LeCun and Bengio introduced the idea of applying Con-
volutional Neural Networks (CNNs) to images, speech, and
other time-series signals [15]. This approach allows to deal
with the variability in time and space to a certain degree,
as CNNs can be seen as a special type of neural network
in which the weights are shared across the input within a
certain spatial or temporal area. The weights thus act as a
kernel filter applied to the input. CNNs have been particu-
larly successful in image analysis. For example, Norouzi
et al. used Convolutional RBMs to learn shift-invariant fea-
tures [22].

The results of a network depend largely on the network
architecture. For example, Grezl et al. used a so-called
bottleneck architecture neural network to obtain features
for speech recognition and showed that these features im-
prove the accuracy of the task [8]. The principle behind

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

53

Bottleneck Layer

Input layer

Fully connected but not drawn

Figure 1. Visualization of a bottleneck architecture

the bottleneck-shaped architecture is that the number of
neurons in the middle layer is lower than in the other lay-
ers as shown in Fig. 1. A network with bottleneck can
be structured in two sections: (i) Section 1 from the first
layer to the bottleneck layer, with a gradual decrease of the
number of neurons per layer, functions as an encoding or
compression process which compacts relevant information
and discards redundant information, and (ii) Section 2 from
the bottleneck layer to the last layer with a gradual increase
in the number of neurons per layer. The function of this
part can be interpreted as a decoding process. An additional
benefit of bottleneck architectures is that they can reduce
overfitting by decreasing the system complexity.

Recently, more researchers investigated deep learning in
the context of MIR. Lee et al. pioneered the application of
convolutional deep learning for audio feature learning [16].
Hamel et al. used the features learned from music with a
DBN for both music genre classification and music auto-
tagging [9]; their system was successful in MIREX 2011
with top-ranked results. Battenberg employed a conditional
DBN to analyze drum patterns [1]. The use of deep archi-
tectures for chord detections, however, has not yet been
explored, although modern neural networks have been em-
ployed in this field. For instance, Boulanger et al. inves-
tigated recurrent neural networks [2] and Humphrey has
explored CNNs [12, 14]. While they also used the concept
of pre-training, their architectures have only two or 3 layers
and thus cannot be called “deep”.

The basic buildings blocks of most modern approaches
to chord detection can be traced back to two seminal pub-
lications: Fujishima introduced pitch chroma vectors ex-
tracted from the audio as input feature for chord detec-
tion [6] and Sheh et al. proposed to use HMMs for repre-
senting chords as hidden states and to model the transition
probability of chords [26]. Since then, there have been a
lot of studies using chroma features and HMMs for chord
detection [5,23]. Examples for recent systems are Ni et al.,
using a genre-independent chord estimation method based
on HMM and chroma features [21] and Cho and Bello,
who used multi-band features and a multi-stream HMM for
chord recognition [4]. Training HMMs with pitch chroma
features arguably is the standard approach for this task and
the progress is less marked by major innovations but by

Audio
CQT+PCA
%ﬁ % Time Splicing
Pre-processing
‘l’ Filter Splicing
Pre-train
J, ——=> Deep Learning
Fine-tune
e
*!‘]‘ / SVMs
Post-processing
HMMs

Figure 2. The overview of our system

optimizing and tuning specific components.

3. SYSTEM OVERVIEW

Figure 2 gives an overview of all components and process-
ing steps of the presented system. The following section
will discuss all of these steps in detail.

3.1 Input Representation

The input audio is converted to a sample rate of 11.025 kHz.
Then, a Constant Q transform (CQT) is applied. The
CQT [3] is a perceptually inspired time-frequency transfor-
mation for audio. The resulting frequency bins are equally
spaced on a logarithmic (“pitch”) scale. It has the advan-
tage of providing a more musically and perceptually mean-
ingful spectral representation than the DFT. We used an
implementation of the CQT as a filterbank of Gabor filters,
spaced at 36 bins per octave, i.e., 3 bins per semitone, yield-
ing 180 bins representing a frequency range spanning from
110Hz to 3.520kHz. Finally, we used Principal Compo-
nent Analysis (PCA) for decorrelation, and applied Z-Score
normalization [27].

3.2 Pre-processing

Neighboring frames of the input representation can be ex-
pected to contain similar content, as chords will not change
on a frame-by-frame basis. In order to take into account
the relationship between the current frame and previous
and future frames, we investigate the application of several
pre-processing approaches.

3.2.1 Time Splicing

Time splicing is a simple way to extend the current frame
with the data of neighboring frames by concatenating the
frames into one larger superframe. In first order time splic-
ing, we concatenate the current frame, the previous frame,

o4

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

and the following frame. Thus, each superframe consists
of three neighboring frames. Since the same operation will
be applied to all frames, there will be overlap introduced
between neighboring superframes.

3.2.2 Convolution

CNN s are extensively used in tasks with highly correlated
inputs (e.g., the recognition of hand-written digits). Many
time series show similar properties so that CNNs seem
to be an appropriate choice in the context of audio, too.
Essentially, CNNs have one or more convolutional layers
between the input and lower layers of the neural network.
The function of a convolutional layer can be interpreted as
the application of a linear filter plus a non-linear transfor-
mation, sometimes also combined with a pooling operation:

Y = pool(sigm(K x X + B)), (1)

in which Y is the output of a convolutional layer, K is the
linear kernel filter (i.e., the impulse response), X is the
input, B is the bias, sigm() is a non-linear transform, and
pool() is a down-sampling operation. The uniqueness of
convolutional networks stems from the convolution opera-
tion applied to the input X. Since, unfortunately, we had no
access to a deep learning toolbox with support for the con-
volution operation in the time domain, we opted to employ
an optional pre-processing step inspired by CNNs, namely
by applying filters to the input of the network. However,
instead of learning the filters, we evaluate several manu-
ally designed filters: a single-pole low pass filter and two
FIR low pass filters with exponentially shaped impulse re-
sponses. The single pole low pass filter produces the output
y for an input «, given the parameter o

Yn = (1 - a)yn—l + axy, (2)

We apply anti-causal filtering and filter the signal in both
directions so that the resulting overall filter has a zero-phase
response.

The other two low pass filters have exponential decay
shaped impulse response. The difference equations are
given in Eqn (3) and Eqn (4).

N

yi(n) = Za_k+1m(n — N +k) 3)
k=1
N

ya(n) = Zaikﬂm(n + N —k) 4
k=1

The filter length is NV and a is the exponential base. These
two filters are not centered around the current frame any-
more but shifted by /N frames. Their impulse responses are
symmetric to each other. One could interpret these filters
as focusing on past and future frames, respectively. The
presented filters will be referred to as “extension filters”.

The ideas of splicing and convolution can be combined,
as exemplified in Fig. 3.

Furthermore, similar to the process in CNNs, a maxi-
mum pooling operation on the output of the spliced filters
is optionally applied. The operation takes the maximum
value among different filters per “bin”.

Filter 1 }—)‘ Output 1

_‘%

Filter N Output N

Figure 3. Splicing output of different filters

3.3 Training

It is impractical to train DNNs directly with back propaga-
tion using gradient decent due to their deep structure and
the limited amount of training samples. Therefore, the net-
work is usually initialized by an unsupervised pre-training
step. As our network consists of RBMs, Gibbs sampling
can be used for training [11]. The objective is to retain as
much information as possible between input and output.
The computation for layer [can be represented as:

Y, = sigm(Wi.X, + By), 5)

which is identical to many traditional neural networks. Thus,
a standard back propagation can be applied after pre-training
to fine-tune the network in a supervised manner. The loss
criterion we use in this work is cross-entropy.

3.4 Architecture

We investigate a deep network with 6 layers in two different
architectures. The common architecture features the same
amount of neurons in every layer, in our case 1024. The
bottleneck architecture has 256 neurons in the middle layer
and 512 neurons in the layers neighboring the middle layer.
The remaining layers consist 1024 neurons each (compare
[8]). A softmax output layer is stacked on top of both
architectures as described by Eqn (6).

exp(Y})
chvzl exp(Yx)

The network is implemented using the Kaldi package devel-
oped by John Hopkins University [25].

softmax(Y;) = (6)

4. CLASSIFICATION

The output of the softmax layer can be interpreted as the
likelihood of each chord class; simply taking the maximum
will provide a class decision (this method will be referred
to as Argmax). Alternatively, the output can be treated as
intermediate feature vector that can be used as an input to
other classifiers for computing the final decision.

4.1 Support Vector Machine

Support Vector Machines (SVMs) are, as widely used classi-
fiers with generally good performance. The SVM is trained
using the output of the network as features, and the classifi-
cation is carried out frame by frame. The classification is
followed by a simple prediction smoothing.

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

55

4.2 Hidden Markov Model

HMMs are, as pointed out above, the standard classifier
for automatic chord detection because the characteristics
of the task fit the HMM approach well: Chords are hid-
den states that can be estimated from observations (feature
vectors extracted from the audio signal), and the likelihood
of chord transitions can be modeled with transition prob-
abilities. Modified HMMs such as ergodic HMMs and
key-independent HMMs have been also explored for this
task [17,23]. In this work we are mostly interested in the
performance comparison between high-level features, so
a simple first-order HMM is used. Given the probabilistic
characteristic of the softmax output layer, it can be directly
as emission probabilities for the HMM. Therefore, there is
no need to train the HMM using, e.g., the commonly used
Baum-Welch algorithm. Instead, the histogram of each
class in our training is used as initial probabilities, and the
bigram of chord transitions is used to compute the transi-
tion probabilities. Finally, we employ the Viterbi decoding
algorithm to find the globally optimal chord sequence.

5. EVALUATION PROCEDURE
5.1 Dataset

Our dataset is a combination of several different datasets,
yielding a 317-piece collection. The data is composed of

e 180 songs from the Beatles dataset [19],

e 100 songs from the RWC Pop dataset [7],

e 18 songs from the Zweieck dataset [19], and

e 19 songs from Queen dataset [19].
The pre-processing as described in Sect. 3.2 ensures identi-
cal input audio formats.

5.2 Methodology

The dataset is divided randomly into two parts: 80% for the
training set and 20% for the test set. On the training scale,
we use a frame-based strategy, which means we divide each
song into frames, and treat each frame as an independent
training sample. On average each song is divided into
about 1200 frames resulting in approximately 300k training
samples and approximately 76k test samples.

Within the training set, 10% of the data is used as a vali-
dation set. For the post-processing, all data in the training
set will be used to train the post-classifier.

Time constraints and the workload requirements for train-
ing deep networks made a cross validation for evaluation
impractical.

The chosen ground truth for classification are major and
minor triads for every root note, resulting in a dictionary
of 24 4 1 chord labels. Ground truth time-aligned chord
symbols are mapped to this major/minor dictionary:

Chordmajmin C {N}U{S x maj, min} @)

with S representing the 12 pitch classes (root notes) and
N being the label for unknown chords. In the calculation
of the detection accuracy, the following chord types are
mapped to the corresponding major/minor in the dictionary:

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
counts

Figure 4. Chords histogram

triad major/minor and seventh major/minor. Other chord
types are treated as unknown chords. For instance, G:maj
and G:maj7 are mapped to ‘G:maj’; G:dim and G:6 are all
mapped to ‘N’. The histogram of chords in our dataset after
such mapping is shown in Fig. 4.

5.3 Evaluation Metric

The used evaluation metric is the same as proposed in the
audio chord detection task for MIREX 2013: the Weighted
Chord Symbol Recall (WCSR). WCSR is defined as the
total duration of segments with correct prediction as formu-
lated in Eqn (8):

1 n
WCSR = ; Ch, ®)

in which n is the number of test samples (songs), NN is
the total number of frames in all test samples, and C}, is
the number of frames that are correctly detected in the kth
sample.

6. EXPERIMENTS
6.1 Post-classifiers

In this experiment, the network is initialized with pre-
training, followed by fine tuning using back propagation.
This configuration will be referred to as DNppn_pNN-
No pre-processing is applied to the data; the input is sim-
ply the input representation (CQT followed by PCA) as
described in Sect. 3.1. The chosen architecture is the bottle-
neck architecture. Three different classifiers are compared:
the maximum of the softmax output (Argmax), an SVM,
and an HMM.

The results listed in Table 1 are unambiguous and un-
surprising: the HMM with Viterbi decoding outperforms
the SVM; using HMMs with a model for transition prob-
abilities is an appropriate approach to chord detection as
it models the dynamic properties of chord progressions,
which cannot be done with non-dynamic classifiers such
as SVMs. One noteworthy result is that the SVM does not

o6

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

Training Scenario Classifier WCSR
DNDBN—DNN Argmax() 0.648
DNDBN—DNN SVM 0.645
DNDBN—DNN HMM 0.755

Table 1. Chord detection performance using different post-
classifiers

«@ Pre-processing WCSR
0.25 Filtering 0.758
0.25 Spliced Filters 0.912
0.5 Filtering 0.787
0.5 Spliced Filters 0.857
0.75 Filtering 0.798
0.75 Spliced Filters 0.919

Table 2. Chord detection performance using different filter
parameters

improve the WCSR compared to the direct (Argmax) output
of the network. Apparently, the SVM is not able to improve
separability of the learned output features.

6.2 Pre-processing

As stated in Sect. 3.2, we are interested in the applica-
tion of different filters in the pre-processing stage. In the
first experiment (Filtering), an anti-causal single pole fil-
ter (see Eqn (2)) is evaluated with the parameter « set to
0.25, 0.5, and 0.75, respectively. The second experiment
(Spliced Filters), splices these filter outputs with the outputs
of the extension filters as introduced in Sect. 3.2. These
experiments are carried out with the D Nppn_pnn training
scenario, a bottleneck architecture, and an HMM classifier.
Table 2 lists the results of these pre-processing variants. It
can be observed that the network trained with filtered inputs
slightly outperforms the network without pre-processing;
splicing the filtered input with the extension filter outputs
increases the results drastically.

6.3 Architecture
6.3.1 Common vs. Bottleneck

The results of Grezl et al. indicate that a bottleneck architec-
ture should be more suitable to learn high-level features than
a common architecture and reduce overfitting [8]. In order
to verify these characteristics for our task, the performance
of both architectures is evaluated in comparison. The re-
sults are listed in Table 3 for three pre-processing scenarios:
no additional pre-processing (None), Spliced Filters and
spliced filters followed by a max pooling (Pooling). In or-
der to allow conclusions about overfitting, both the WCSR
of the test set and the training set are reported. All results
are computed for the D Nppn—_pnn training scenario with
HMM classifiers.

The results show that the bottleneck architecture gives
significantly better results (p = 0.023) on the test set

. . Training
Architecture Pre-processing WCSR WCSR
Common None 0.843 0.703
Bottleneck None 0.855 0.755
Common Spliced Filters 0.985 0.876
Bottleneck Spliced Filters 0.936 0.919
Common Pooling 0.965 0.875
Bottleneck Pooling 0.960 0.916

Table 3. Chord detection performance for different archi-
tectures and pre-processing steps

Learning Targets WCSR
Single-Label — 25 Chord Classes 0.919
Multi-Label — 12 Pitch Classes 0.78

Table 4. Chord detection performance for single-label vs.
multi-label learning

(WSCR). Note that this is not true for the training set (Train-
ing WSCR), for which the common architecture achieves
results in the same range or better than the bottleneck archi-
tecture. The difference between the results on the training
set and the test set are thus much larger for the common
architecture than for the bottleneck architecture. The bot-
tleneck architecture is clearly advantageous to use in this
task: it reduces complexity and thus the training workload
and increases the classification performance significantly.
Furthermore, the comparison of classifier performance be-
tween training and test set in Table 3 clearly indicates that
the common architecture tends to fit more to the training
data, and is thus more prone to overfitting.

6.3.2 Single-Label vs. Multi-Label

As mentioned above, the pitch chroma is the standard fea-
ture representation for audio chord detection. Since we
use the output of our deep network as feature, it seems an
intuitive choice to learn pitch class information (and thus, a
pitch chroma) instead of the chord classes. By doing so, the
number of outputs is reduced by a factor of two (or higher
in the case of more chords), and there would also be a closer
relation between the output and the input representation,
the CQT. Therefore, the abstraction and complexity of the
task might be decreased. It will, however, lead to another
issue: the single-label output (one chord per output) will
be changed into a multi-label output (multiple pitches per
output). Therefore, the learning has to be modified to allow
multiple simultaneous (pitch class) labels. The experiment
is carried out with both Splicing and Filtering in the pre-
processing, the D NppN_pnn training scenario, and HMM
classifiers. Table 4 lists the results.
Boulanger-Lewandowski et al. report combining chroma
features with chord labels for their recurrent neural network
and report a slightly improved result [2]. They do not, how-
ever, provide a detailed description of this combination. As
can be seen from the table, the result for multi-label train-
ing is clearly lower than the result for single-label training.

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

o7

Method WCSR
Chordino 0.625
Best Configuration 0.919
Best Configuration with Max Pooling 0.916

Table 5. Comparison of the performance of the best config-
uration with Chordino

Possible reasons for bad performance include (i) difficulties
with multi-target learning, since it increases the difficulty to
train; furthermore, our implementation of multi-label train-
ing might be sub-optimal as the same posterior is assigned
to each target without any information on the pitch class
energy, and (ii) the issue that not all pitches always sound
simultaneously in a chord (or might be missing altogether)
might have larger impact on the multi-label training than
on the single-label training.

6.4 Results & Discussion

It is challenging to compare the results to previously pub-
lished results due to varying evaluation methodologies, met-
rics, and datasets. It seems that the results of Cho and
Bello [4], who reported a performance of about 76%, were
computed with a comparable dataset. The recent MIREX re-
sults on Chord Detection generally show lower accuracy but
use a different evaluation vocabulary. In order to provide
a baseline result to put results into perspective, we present
the results of Chordino [20] with the default settings, com-
puted on our dataset. It should be pointed out that this
comparison is unfair as Chordino is able to detect as many
as 120 chords, compared to our 24. The label mapping
strategies are another significant issue for Chordino. Our
label mapping results in nearly sixth of the total label being
“N”, which might have negative impact on the Chordino
results. The Chordino results are mapped to major/minor
the same way as the ground truth annotations. The results
are shown in Table 5. In the table, the Best Configuration
is using Bottleneck architecture, spliced filters (o = 0.75)
as preprocessing, single label learning targets, and Viterbi
decoding as post-classifier. The Best Configuration with
Max Pooling is the same as the best configuration except
applying another max pooling layer after the spliced filters.
The latter configuration has a much reduced computational
workload. The presented results are clearly competitive
with existing state-of-the-art systems.

7. CONCLUSION & FUTURE WORK

In this work, we presented a system which applies deep
learning to the MIR task of automatic chord detection. Our
model is able to learn high-level probabilistic representa-
tions for chords across various configurations. We have
shown that the use of a bottleneck architecture is advanta-
geous as it reduces overfitting and increases classifier perfor-
mance, and that the choice of appropriate input filtering and
splicing can significantly increase classifier performance.
Learning a pitch class vector instead of chord likelihood

by incorporating multi-label learning proved to be less suc-
cessful. The idea has, however, a certain appeal and would
allow the number of output nodes to be independent of the
number of chords to be detected. It is also conceivable to
investigate a different option for the network output: in-
stead of training chords or pitch classes we could — under
the assumption that we are only after chords comprised
of stacked third intervals — train the output with octave-
independent third intervals in a multi-label scenario with
24 output nodes.

8. REFERENCES

[1] Eric Battenberg and David Wessel. Analyzing drum
patterns using conditional deep belief networks. In Pro-
ceedings of the International Conference on Music In-
formation Retrieval (ISMIR), pages 37-42, 2012.

[2

—

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. Audio chord recognition with recurrent
neural networks. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR),
pages 335-340, 2013.

[3

—_—

Judith C Brown. Calculation of a constant q spectral
transform. The Journal of the Acoustical Society of
America, 89(1):425-434, 1991.

[4

—_

Taemin Cho and Juan P Bello. Mirex 2013: Large vo-
cabulary chord recognition system using multi-band
features and a multi-stream HMM. Music Information
Retrieval Evaluation eXchange (MIREX), 2013.

[5] Taemin Cho, Ron J Weiss, and Juan Pablo Bello. Ex-
ploring common variations in state of the art chord
recognition systems. In Proceedings of the Sound and

Music Computing Conference (SMC), pages 1-8, 2010.

—_

[6] Takuya Fujishima. Realtime chord recognition of mu-
sical sound: A system using common lisp music. In
Proceedings of the International Computer Music Con-
ference (ICMC), volume 1999, pages 464—467, 1999.

[7] Masataka Goto, Hiroki Hashiguchi, Takuichi
Nishimura, and Ryuichi Oka. Rwc music database:
Popular, classical and jazz music databases. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), volume 2, pages
287-288, 2002.

[8

—

Frantisek Grezl, Martin Karafiat, Stanislav Kontar, and
J Cernocky. Probabilistic and bottle-neck features for
Ivesr of meetings. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 4, pages IV=757. IEEE, 2007.

[9

—

Philippe Hamel and Douglas Eck. Learning features
from music audio with deep belief networks. In Pro-
ceedings of the International Conference on Music In-
Sformation Retrieval (ISMIR), pages 339-344. Utrecht,
The Netherlands, 2010.

o8

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups. Signal Processing Magazine, IEEE,
29(6):82-97, 2012.

Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh.
A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527-1554, 2006.

Eric J Humphrey and Juan Pablo Bello. Rethinking
automatic chord recognition with convolutional neural
networks. In Proceedings of the International Confer-
ence on Machine Learning and Applications (ICMLA),
volume 2, pages 357-362. IEEE, 2012.

Eric J Humphrey, Juan Pablo Bello, and Yann LeCun.
Moving beyond feature design: Deep architectures and
automatic feature learning in music informatics. In Pro-
ceedings of the International Conference on Music In-
Sformation Retrieval (ISMIR), pages 403—408, 2012.

Eric J Humphrey, Taemin Cho, and Juan Pablo Bello.
Learning a robust tonnetz-space transform for automatic
chord recognition. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 453-456. IEEE, 2012.

Yann LeCun and Yoshua Bengio. Convolutional net-
works for images, speech, and time series. The hand-
book of brain theory and neural networks, 3361:310,
1995.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Y
Ng. Unsupervised feature learning for audio classifica-
tion using convolutional deep belief networks. In Ad-
vances in neural information processing systems, 2009.

Kyogu Lee and Malcolm Slaney. Acoustic chord tran-
scription and key extraction from audio using key-
dependent HMMs trained on synthesized audio. Audio,
Speech, and Language Processing, IEEE Transactions
on, 16(2):291-301, 2008.

Thomas M Martinetz, Stanislav G Berkovich, and
Klaus J Schulten. Neural-gas’ network for vector quan-
tization and its application to time-series prediction.
Neural Networks, IEEE Transactions on, 4(4):558-569,
1993.

Matthias Mauch, Chris Cannam, Matthew Davies, Si-
mon Dixon, Christopher Harte, Sefki Kolozali, Dan
Tidhar, and Mark Sandler. Omras2 metadata project
2009. In Proceedings of the International Conference
on Music Information Retrieval (ISMIR), 20009.

Matthias Mauch and Simon Dixon. Approximate note
transcription for the improved identification of difficult
chords. In Proceedings of the International Conference
on Music Information Retrieval (ISMIR), pages 135—
140, 2010.

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Yizhao Ni, Matt McVicar, Raul Santos-Rodriguez, and
Tijl De Bie. Using hyper-genre training to explore genre
information for automatic chord estimation. In Proceed-
ings of the International Conference on Music Informa-
tion Retrieval (ISMIR), pages 109-114, 2012.

Mohammad Norouzi, Mani Ranjbar, and Greg Mori.
Stacks of convolutional restricted boltzmann machines
for shift-invariant feature learning. In Proceedings of
the Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2735-2742. 1EEE, 2009.

Hélene Papadopoulos and Geoffroy Peeters. Large-scale
study of chord estimation algorithms based on chroma
representation and hmm. In Proceedings of the Interna-
tional Workshop on Content-Based Multimedia Index-
ing (CBMI), pages 53—60. IEEE, 2007.

Christopher Poultney, Sumit Chopra, Yann L Cun, et al.
Efficient learning of sparse representations with an
energy-based model. In Advances in neural informa-
tion processing systems, pages 1137-1144, 2006.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. The
kaldi speech recognition toolkit. In Proceedings of the
Workshop on Automatic Speech Recognition and Under-
standing. IEEE Signal Processing Society, December
2011. IEEE Catalog No.: CFP11SRW-USB.

Alexander Sheh and Daniel PW Ellis. Chord segmenta-
tion and recognition using em-trained hidden markov
models. Proceedings of the International Conference on
Music Information Retrieval (ISMIR), pages 185-191,
2003.

J Sola and J Sevilla. Importance of input data normaliza-
tion for the application of neural networks to complex
industrial problems. Nuclear Science, IEEE Transac-
tions on, 44(3):1464-1468, 1997.

Yushi Ueda, Yuuki Uchiyama, Takuya Nishimoto,
Nobutaka Ono, and Shigeki Sagayama. Hmm-based
approach for automatic chord detection using refined
acoustic features. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5518-5521. IEEE, 2010.

