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ABSTRACT

In this paper, we present an audio to score alignment
framework based on spectral factorization and online Dy-
namic Time Warping (DTW). The proposed framework
has two separated stages: preprocessing and alignment.
In the first stage, we use Non-negative Matrix Factoriza-
tion (NMF) to learn spectral patterns (i.e. basis functions)
associated to each combination of concurrent notes in the
score. In the second stage, a low latency signal decomposi-
tion method with fixed spectral patterns per combination of
notes is used over the magnitude spectrogram of the input
signal resulting in a divergence matrix that can be inter-
preted as the cost of the matching for each combination
of notes at each frame. Finally, a Dynamic Time Warping
(DTW) approach has been used to find the path with the
minimum cost and then determine the relation between the
performance and the musical score times. Our framework
have been evaluated using a dataset of baroque-era pieces
and compared to other systems, yielding solid results and
performance.

1. INTRODUCTION

In this work, we address the problem of audio-to-score
alignment (or score matching), which is the task of syn-
chronizing an audio recording of a musical piece with the
corresponding symbolic score. There are two approaches
to this problem, often called “offline” and “online” align-
ment. In offline alignment, the whole performance is ac-
cessible for the alignment process, i.e. it allows us to “look
into the future” while establishing the matching. This is
interesting for applications that do not require the real-
time property such as Query-by-Humming, intelligent au-
dio editors and as a front-end for many music information
retrieval (MIR) systems. Online alignment, also known
as score following, processes the data in realtime as the
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signal is acquired. This tracking is very useful for appli-
cations such as automatic page turning, automated com-
puter accompaniment of a live soloist, synchronization of
live sound processing algorithms for instrumental electroa-
coustic composition or the control of visual effects syn-
chronized with the music (e.g. stage lights or opera super-
titles).

Audio-to-score alignment is traditionally performed in
two steps: feature extraction and alignment. On the one
hand, the features extracted from the audio signal charac-
terize some specific information about the musical content.
Different representations of the audio frame have been
used such as the output of a short-time Fourier transform
(STFT) [1], auditory filter bank responses [2], chroma or
”chroma-like” vectors [3, 4], multi-pitch analysis infor-
mation [5–8]. On the other hand, the alignment is per-
formed by finding the best match between the feature se-
quence and the score. In fact, most systems rely on cost
measures between events in the score and in the perfor-
mance. Two methods well known in speech recognition
have been extensively used in the literature: statistical ap-
proaches (e.g. HMMs) [6–11], and dynamic time warping
(DTW) [3, 12, 13].

In this paper we propose an audio to score framework
based on two stages: preprocessing and alignment. On
the first stage, we analyze the provided MIDI score to de-
fine the set of combinations of concurrent notes and the
transitions between them (i.e. the different states of the
provided MIDI). Then the score is converted into a ref-
erence audio signal using a synthesizer software and we
use a method based on Non-Negative Matrix Factorization
(NMF) with Beta-divergence to learn spectral patterns (i.e.
basis functions) for each combination of notes. A simi-
lar approach was used by Fritsch and Plumbey in [14], but
they use one component per instrument and note plus some
extra-components to model the residual sounds. NMF was
also used by Cont [8] as a multi-pitch estimator which de-
fines the observation model. Joder et al. [10] also defined a
set of template vectors for each combination of concurrent
notes but directly from the score (i.e. without using audio
synthesis). The combination templates are obtained as a
linear mapping of individual notes trained patterns using
several representations. On the second stage, alignment
is performed in two steps. First, the matching measure be-
tween events in the score and in the performance is defined.
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Concretely, a divergence (i.e. cost) matrix is estimated us-
ing a low latency signal decomposition method previously
developed by the authors in [15] that uses the spectral pat-
terns fixed from the previous stage. Finally a DTW strat-
egy has been used to find the path with the minimum cost
and then determine the relation between the performance
and the musical score times. Both, offline and online DTW
approaches are implemented as in [23] and [13], respec-
tively.

The structure of the rest of the paper is as follows. In
Section 2, we briefly review the DTW principles. In Sec-
tions 3 the proposed audio to score framework is explained.
In Section 4, the evaluation set-up is presented and, in Sec-
tion 5 the proposed method has been tested and compared
with other reference systems. Finally, we summarize the
work and discuss future perspectives in Section 6.

2. DTW BACKGROUND

DTW is a technique for aligning two time series or se-
quences. The series are represented by 2 vectors of fea-
tures U = u1, ..., ui, ...uI and V = v1, ..., vj , ..., vJ where
i and j are the point indices in the time series. I and J
represent the length of time series U and V , respectively.
As a dynamic programming technique, it divides the prob-
lem into several sub-problems, each of which contribute in
calculating the distance (or cost function) cumulatively.

The first stage in the DTW algorithm is to fill a local
distance matrix (a.k.a cost matrix) D as follows:

D(i, j) =  (ui, vj) (1)

where matrix D has IxJ elements which represent the
match cost between every two points in the time series.
The cost function  could be any cost function that returns
cost 0 for a perfect match, and a positive value otherwise
(e.g. euclidean distance).

In the second stage (forward step), a warping matrix C
is filled recursively as:

C(i, j) = min
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where ci and cj are step size at each dimension and range
from 1 to ↵i and 1 to ↵j , respectively. ↵i and ↵j are
the maximum step size at each dimension. Parameter �
controls the bias toward diagonal steps. C(i, j) is the
cost of the minimum cost path from (1, 1) to (i, j), and
C(1, 1) = D(1, 1).

Finally, in the last stage (traceback step), the minimum
cost path w = w1, ..., wk, ..., wK is obtained by tracing the
recursion backwards from C(I, J). Each wk is an ordered
pair (ik, jk) such that (i, j) 2 w means that the points ui

and vj are aligned. Moreover, the path has to satisfy the
following three conditions: i) w is bounded by the ends of
both sequences, ii) w is monotonic and iii) w is continu-
ous.

Figure 1: Block diagram of the proposed system

3. SYSTEM OVERVIEW

The proposed framework for audio-to-score alignment is
presented in Figure 1. As can be seen, the framework has
two stages. First, the preprocessing stage must be com-
puted beforehand and only the MIDI score is required.
Then, once the parameters are learned, alignment can be
computed in realtime.

3.1 Preprocessing Stage

In this stage, the parameters for the alignment are learned
from the score, which must be provided beforehand using
MIDI representation. This stage is performed in two suc-
cessive steps: states definition and spectral patterns learn-
ing, as detailed below.

3.1.1 States Definition

The aim of this step is to adequately organize the informa-
tion given by the score to be used for alignment purposes.

First of all, the binary ground-truth transcription ma-
trix GT(n, ⌧) (see Figure 2(a)) is inferred from the MIDI
score, where ⌧ is the time in frames referenced to the score
(MIDI time) and n are the notes in MIDI scale. In Fig-
ure 2(a) the MIDI score involves just one instrument (a
piano) but more instruments can be defined in a score. For
those cases the n index refers to each note of the different
instruments. Consequently, the number of total notes for
a composition, N , is obtained as the sum of the number
of different notes per instrument. The score can be inter-
preted as a consecutive sequence of M states. Each state
m is defined by its combination of concurrent notes in the
score (for all instruments). Also, the score informs about
the time changes from one state to the next state. In fact,
a score follower must determine the time (referenced to
the input signal) of all transitions between states. There
are only K unique combination of notes in a score where
K  M because some states represent the same combina-
tion of notes.

From the ground-truth transcription matrix GT(n, ⌧),

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 743



we obtain the following decomposition of binary matrixes

GT(n, ⌧) = Q(n, k)R(k, ⌧) (3)

where Q(n, k) is the notes-to-combination matrix, k the
index of each unique combination of notes and R(k, ⌧)
represents the activation of each combination in MIDI
time. In Figure 2(b), the note-to-combination matrix
Q(n, k) is represented. This matrix contains the notes
belonging to each combination but no information about
MIDI time. Conversely, R(k, ⌧) matrix retains the MIDI
time activation per combination but no information about
the notes active per combination, as can be seen in Figure
2(d).

In order to obtain the information for states required
to perform the alignment, the notes-to-combination matrix
Q(n, k) is further decomposed as

Q(n, k) = S(n, m)H(m, k) (4)

where S(n, m) is the notes-to-state matrix, m the index
for the states, M the number of states and H(m, k) rep-
resents the unique combination k of notes active at each
state m. In Figure 2(c), the notes-to-state matrix S(n, m)
is represented, this matrix contains the notes belonging to
each state, while H(m, k) matrix informs about the com-
binations active at each state, as can be seen in Figure 2(e).

The matrixes here defined will be used in the next stages
to perform the alignment and are computed from the MIDI
score.

3.1.2 Spectral Patterns Learning

When a signal frame is given to a score follower, the first
step should be the computation of a similarity measure be-
tween the current frame and the different combinations of
notes defined by the score. Our approach is to compute a
distance (or divergence) between the frequency transform
of the input and just one spectral pattern per combination
of notes. A spectral pattern is here defined as a fixed spec-
trum which is learned from a signal with certain charac-
teristics. The use of only one spectral pattern per com-
bination allows us to compute the divergence with a low
complexity signal decomposition method. This means that
our method must learn in advance the spectral pattern as-
sociated to each unique combination of notes for the score.
To this end, a state-of-the-art supervised method based
on Non-Negative Matrix Factorizacion (NMF) with Beta-
divergence and Multiplicative Update (MU) rules [15] is
used, but in this work, we propose to apply it on synthetic
signal generated from the MIDI score 1 instead of the real
audio performance.

First of all, let us define the signal model as

Y(f, ⌧) ⇡ Ŷ(f, ⌧) = B(f, k)G(k, ⌧) (5)

where Y(f, ⌧) is the magnitude spectrogram of the
synthetic signal, Ŷ(f, ⌧) is the estimated spectrogram,
G(k, ⌧) matrix represents the gain of the spectral pattern

1 MIDI synthetic signals are generated using Timidity++ with the Flu-
idR3 GM soundfont on Mac OS

for combination k at frame ⌧ , and B(f, k) matrix, for
k = 1, ..., K, represents the spectral patterns for all the
combinations of notes defined in the score.

When the parameters are restricted to be non-negative,
as it is the case of magnitude spectra, a common way to
compute the factorization is to minimize the reconstruction
error between the observed spectrogram and the modeled
one.

The most popular cost functions are the Euclidean
(EUC) distance, the generalized Kullback-Leibler (KL)
and the Itakura-Saito (IS) divergences.

Besides, the Beta-divergence (see eq. 6) is another com-
monly used cost function that includes in its definition the
three previously mentioned EUC (� = 2), KL (� = 1) and
IS (� = 0) cost functions.

D
�

(x|x̂) =

8
><

>:

x log

x

x̂

� x+ x̂ � = 1

x

x̂

+ log

x

x̂

� 1 � = 0

1

�(��1)

�
x�

+ (� � 1)x̂�

� �xx̂��1

�
otherwise,

(6)
In order to obtain the model parameters that minimize

the cost function, Lee et al. [18] proposes an iterative algo-
rithm based on MU rules. Under these rules, D�(Y(f, ⌧)|
Ŷ(f, ⌧)) is shown to be non-increasing at each iteration
while ensuring non-negativity of the bases and the gains.
Details are omitted to keep the presentation compact, for
further information please read [18, 19]. For the model of
eq. (5), multiplicative updates which minimize the Beta-
divergence are defined as
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B(f, k)
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Ŷ��1

(f, ⌧)
⌘ (8)

where operator � indicates Hadamard product (or
element-wise multiplication), division and power are also
element-wise operators and (·)T denotes matrix transposi-
tion.

Finally, the method to learn the spectral patterns for
each state is described in Algorithm 1.

Algorithm 1 Method for learning spectral patterns combina-
tions

1 Initialize G(k, ⌧) as the combinations activation matrix
R(k, ⌧) and B(f, k) with random positive values.

2 Update the bases using eq. (7).
3 Update the gains using eq. (8).
4 Normalize each spectral pattern of B(f, k) to the unit �-

norm.
5 Repeat step 2 until the algorithm converges (or maximum

number of iterations is reached).

As explained in Section 3.1.1, R(k, ⌧) is a binary com-
bination/time matrix that represents the activation of com-
bination k at frame ⌧ of the training data. Therefore, at
each frame, the active combination k is set to one and the
rest are zero. Gains initialized to zero will remain zero,
and therefore the frame becomes represented with the cor-
rect combination.
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Figure 2: Music signal from the test database in Section 4 (“01-AchGottundHerr”). (a) MIDI Ground-Truth Transcription GT(n, ⌧).
(b) Notes-to-combination matrix Q(n, k). (c) Notes-to-state matrix S(n, m). (d) Combinations activation matrix R(k, ⌧). (e) States-
to-combination matrix H(m, k).

3.2 Alignment Stage

In this stage, the alignment between the score and the au-
dio performance is accomplished in realtime using the in-
formation from the preprocessing stage.

3.2.1 Observation Model

As explained in Section 3.1.2, the spectral patterns B(f, k)
for the K different combinations of notes are learned in ad-
vance using a MIDI synthesizer and kept fixed. Each spec-
tral pattern models the spectrum of a unique combination.

Now, the aim is to compute the gain matrix G(k, t) and
the cost matrix D(⌧, t) that measures the suitability of each
combination of notes belonging to each MIDI time ⌧ to
be active at each frame t (referenced to the signal input)
by analyzing the similarity between the spectral patterns
B(f, k) and the input signal spectrogram 2 . From the cost
matrix D(⌧, t), a classical DTW approach can be applied
to compute the alignment path.

In this work, we propose to perform the factorization us-
ing the realtime single-pitch constrained method proposed
in [15]. Although this method was designed to address mu-
sic transcription of monophonic signals, it can be adapted
for audio to score alignment of polyphonic signals because
only one combination will be active at a time. In this tran-
scription method, the optimum combination kopt is cho-
sen to minimize the Beta-divergence function at frame t
under the assumption that only one gain is non-zero at
each frame. Taking the combinations as the index of gains
G(k, t), this assumption is fair because only a unique com-
bination k of notes is active at each time (at least when
producing the audio signal).

Thus, the signal model with the single-combination
constraint for the signal input vector at time t, xt(f), is
defined as follows.

xt(f) ⇡ x̂kopt,t(f) = gkopt,tbkopt
(f) (9)

2 Note that we are using X and t instead of Y and ⌧ to represent the
signal magnitude spectrogram and the time frames to distinguish between
real world and synthetic signals.

where x̂kopt,t(f) is the modeled signal for the optimum
combination kopt at frame t.

kopt(t) = arg min
k=1,...,K

D� (xt(f)|gk,tbk(f)) (10)

The signal model in eq. (9) assumes that when combi-
nation k is active all other combinations are inactive and,
therefore, the gain gk,t is just a scalar and represents the
gain of the k combination. The model of eq. (10) al-
lows the gains to be directly computed from the input data
X(f, t) and the trained spectral patterns B(f, k) without
the need of an iterative algorithm and thus, reducing the
computational requirements. To obtain the optimum com-
bination at each frame, we must first compute the diver-
gence obtained by the projection of each combination at
each frame and then select the combination that achieves
the minimum divergence as the optimum combination at
each frame.

In the case of Beta-divergence, the cost function for
combination k and frame t can be formulated as
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The value of the gain for combination k and frame t
is then computed by minimizing eq. (11). Conveniently,
this minimization has a unique non-zero solution due to
the scalar nature of the gain for combination k and frame t
(see more details in [15]).

g
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Finally, the divergence matrix for each combination at
each frame is defined as:

�(k, t) = D�(xt(f)|gk,tbk(f)) (13)

where � can take values in the range 2 [0, 2].
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As can be inferred, the divergence matrix �(k, t) pro-
vides us information about the similitude of each combina-
tion k spectral pattern with the real signal spectrum at each
frame t. Using this information, we can directly compute
the cost matrix between the MIDI time ⌧ and the time of
the input signal t as

D(⌧, t) = RT (⌧, k)�(k, t) (14)

where R(k, ⌧) is the combinations activation matrix de-
fined in Section 3.1.1 and superscript “T” stands for matrix
transposition. The process is detailed in Algorithm 2.

Algorithm 2 Divergence matrix computation method

1 Initialize B(f, k) with the values learned in Section 3.1.2.
2 for t=1 to T do
3 for k=1 to K do
4 Compute the gains g

k,t

using eq. (12).
5 Compute the current value the divergence matrix

�(k, t) using eq. (13).
6 end for
7 end for
8 Compute the cost matrix D(⌧, t) between MIDI time and in-

put signal time using (14).

To resume, we propose the use the divergence matrix
D(⌧, t) as the input of the DTW algorithm in order to per-
form the alignment.

3.2.2 Path Computation

We here propose to use a DTW based method to per-
form the alignment using the cost matrix D(⌧, t) obtained
in eq. (14). This cost matrix is computed from the in-
put signal X(f, t) and the “synthetic” spectral patterns per
combination B(f, k) explained in Section 3.1.2. The term
“synthetic” comes from the fact that the spectral patterns
B(f, k) are computed from the score using a MIDI syn-
thesizer.

a) Offline approach: This approach represents the clas-
sical offline alignment using DTW. To this end, we have
used the code from [23]. The forward step is computed as
in the classical DTW (see eq. (2)). In this experiment, ci

and cj range from 1 to 4 in order to allow 4 times faster
speed of interpretation. Finally the optimum path is ob-
tained by tracing the recursion backwards from C(I, J) as
in the original formulation of DTW (see Section 2).

b) Online approach: The online algorithm differs from
an standard (i.e. offline) DTW algorithm in some points.
Firstly, the signal is partially unknown (or the future of
the signal is not known when making the alignment de-
cisions), so the global path constraints cannot be directly
implemented, in other words, the recursion backwards can
not be traced from the last frame T of the signal. Secondly,
if some latency (i.e. delay in the decision) is permitted,
the recursion backwards can be traced in equally spaced
frames of the input signal making the latency equal to the
difference in time of the frame when the backtracking is
done and the input signal frame. Finally, in order to run

in realtime, the complete algorithm should not increase the
complexity with the length of the signal.

In this work, we used the online scheme proposed by
Dixon in [13]. In fact, Dixon’s algorithm calculates an
“adaptive diagonal” through the cost matrix by seeking the
best path considering a searching band with a fixed width.
Here, we propose an online algorithm with a fixed latency
of just one frame. In order to obtain this low latency, no
backtracking is allowed, taking the decision directly from
the forward information at each frame t. As a consequence
of the low latency of online algorithms (apart from the
complexity reduction), the obtained results are degraded
from their offline counterparts. In fact, for those situations
in which a higher latency can be supported, delaying the
decision in time using a limited traceback can improve the
obtained results of the online algorithms.

4. EXPERIMENTAL SETUP

a) Time-Frequency representation: In this paper we use a
low-level spectral representation of the audio data which
is generated from a windowed FFT of the signal. A Han-
ning window with the size of 128 ms, and a hop size of
10 ms is used (for both synthetic and real-world signals).
Here, we use the resolution of a single semitone as in [21].
In particular, we implement the time-frequency represen-
tation by integrating the STFT bins corresponding to the
same semitone.

b) Evaluation metrics: We have used the same evaluation
metrics as in the MIREX Score Following task. Detailed
information can be found in [22]. For each piece, aligned
rate (AR) or precision is defined as the proportion of cor-
rectly aligned notes in the score and ranges from 0 to 1. A
note is said to be correctly aligned if its onset does not de-
viate more than a threshold (a.k.a tolerance window) from
the reference alignment. Missed notes are events that are
present in the reference but not reported. Recognized notes
whose onsets are far from the given threshold are consid-
ered misaligned notes.

c) Dataset: The dataset used to evaluate our method is
comprised of excerpts from 10 human played J.S. Bach
four-part chorales. The audio files are sampled from real
music performances recorded at 44.1 kHz that are 30 sec-
onds in length per file. Each piece is performed by a quartet
of instruments: violin, clarinet, tenor saxophone and bas-
soon. Each musician’s part was recorded in isolation. In-
dividual lines were then mixed to create 10 performances
with four-part polyphony. Ground-truth alignment is pro-
vided for both, individual sources and mixture, the latter
assuming constant tempo between annotated beats and a
perfect synchronization between the musicians. More in-
formation about this dataset can be found in [6].

5. RESULTS

To analyze the performance of the proposed (offline and
online) methods in Section 3. Evaluation has been per-

746 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Threshold (ms - Log scale)
50 200 1000 2000

P
re

ci
si

o
n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed Offline
Ellis Offline DTW
Proposed Online
Dixon Online DTW
Soundprism
Oracle
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formed using the metrics detailed in Section 4. The pro-
posed systems are compared with four reference methods
that are detailed below: a) Ellis’ Offline DTW [23] [24], b)
Dixon’s Online DTW [13], c) Soundprism [6] and d) Ora-
cle. Note that the latter is not a score following system but
the provided aligned MIDI score assuming constant tempo
between annotated beats and perfect synchronization be-
tween musicians as explained in Section 4. The evalua-
tion of this oracle information is very interesting to ana-
lyze the deviation of the different instrument performances
between themselves and also to measure the best perfor-
mance that can be obtained by score followers that are only
capable of aligning on a global level (i.e., cannot detect the
onset positions of individual notes). Note that there are
several works that attempt to refine the alignment by syn-
chronizing the onsets/offsets individually for each note in
a post-processing stage [25–27].

In a first experiment, we have evaluated the precision of
the analyzed methods as a function of the onset deviation
threshold. To this end, the threshold value was varied from
50 to 2000 ms in 50 ms steps. Obtained results are plotted
in Figure 3. As can be seen, the Oracle method, which can
be considered as the upper bound for score followers per-
forming global alignment, requires around 200 ms thresh-
old to obtain a perfect alignment. This value comes from
the difference between the ground-truth alignment for each
instrument played in isolation and the global ground-truth
of the whole mixture, obtained by interpolating the anno-
tated beat times of each audio.

In general, our offline approach obtain the best results
in terms of precision. In fact, our offline approach clearly
outperforms Ellis’ offline approach, mainly due to the fac-
torization based feature extraction stage. Regarding the on-
line methods, our online approach and Soundprism obtain
similar results on average than the Ellis’ offline approach
and clearly outperform Dixon’s online approach. Sound-
prism seems to perform better when using lower threshold
values while our online approach allows convergence to
the optimum alignment as the threshold is increased.

In a second experiment (see Table 1), we evaluate the
performance of the proposed methods as a function of the
polyphony. A fixed threshold (a.k.a tolerance window) of
200ms is used because, as illustrated in Figure 3, this value
represents the difference between isolated instruments and

Poly Precision Miss Missalign Av offset Av |offset| Std Offset
2 94,59 0,00 5,41 -11,27 33,43 44,38

Prop. Offline 3 94,75 0,00 5,25 -11,78 34,25 44,89
4 94,50 0,00 5,50 -11,09 35,16 46,51
2 90,57 0,00 9,42 66,90 71,28 47,30

Ellis Offline 3 90,39 0,00 9,60 65,67 71,53 50,24
4 89,80 0,00 10,19 66,97 72,62 49,93
2 88,44 0,00 11,56 -41,18 57,78 56,40

Prop. Online 3 90,13 0,00 9,86 -42,96 60,56 57,65
4 90,70 0,00 9,30 -44,15 62,97 58,58
2 81,69 0,00 18,31 53,93 70,51 67,02

Dixon Online 3 83,17 0,00 16,83 53,88 70,65 67,02
4 83,94 0,00 16,06 51,29 71,64 70,26
2 83,01 0,00 16,99 -25,90 48,08 55,36

Soundprism 3 88,81 0,00 11,19 -21,23 43,73 51,54
4 93,50 0,00 6,50 -22,05 42,91 49,13
2 100,00 0,00 0,00 6,15 32,79 42,47

Oracle 3 100,00 0,00 0,00 6,09 32,67 43,08
4 100,00 0,00 0,00 6,07 32,58 43,38

Table 1: Audio-to-score results as a function of polyphony in
terms of piecewise precision (%). Offset values in ms. The bold
percentage shows the best result for each measure.

mixture ground-truth alignment.
As explained in the previous section, offline methods

perform better in general than the online ones. The pro-
posed offline method obtains the best results among the
compared methods and has demonstrated to be robust
against polyphony in the analyzed dataset (polyphony 2 to
4). Regarding the online methods, our online approach and
Soundprism obtain similar results on average and clearly
outperforms Dixon’s online approach, although the former
seems to be more robust against the polyphony.

In relation to the offset, the oracle solution exhibits the
minimum possible std offset due to the differences in start-
ing times for the same states between musicians. More-
over, our offline approach and the online Soundprism have
the lower average offset values which means that both
methods are more responsive and thus provide better re-
sults when dealing with lower thresholds.

6. CONCLUSIONS

In this paper we present a score following framework based
on spectral factorization and DTW. Spectral factorization
is used to learn spectral patterns for each combination of
concurrent notes in the MIDI score. Then, a cost matrix
is computed using the divergence matrix obtained using a
non-iterative signal decomposition method previously de-
veloped by the authors in [15] that has been tuned to per-
form the projection of each combination of notes. Finally,
a DTW strategy is performed in an offline and online man-
ner. The proposed offline and online approaches have been
tested using a dataset with different polyphony levels (from
2 to 4) and compared them with other reference methods.
On average, our approaches (offline and online) obtain the
best results in terms of precision within the compared of-
fline and online approaches, respectively, and has demon-
strated to be robust agains the analyzed polyphony.

In the future we plan to track the tempo changes in or-
der to enforce a certain degree of continuity in the online
decisions. Besides, we will extend the evaluation of our
method using a lager dataset of a varied range of instru-
ments, dynamics and different styles.
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