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ABSTRACT

This paper presents a framework for automatically discov-
ering patterns in a polyphonic music piece. The proposed
framework is capable of handling both symbolic and au-
dio representations. Chroma features are post-processed
with heuristics stemming from musical knowledge and fed
into the pattern discovery framework. The pattern-finding
algorithm is based on Variable Markov Oracle. The Vari-
able Markov Oracle data structure is capable of locating
repeated suffixes within a time series, thus making it an ap-
propriate tool for the pattern discovery task. Evaluation of
the proposed framework is performed on the JKU Patterns
Development Dataset with state of the art performance.

1. INTRODUCTION

Automatic discovery of musical patterns (motifs, themes,
sections, etc.) is a task defined as identifying salient musi-
cal ideas that repeat at least once within a piece [3,11] with
computational algorithms. In contrast to “segments” found
in the music segmentation task [14], the patterns found
here may overlap with each other and may not cover the
entire piece. In addition, the occurrences of these patterns
could be inexact in terms of harmonization, rhythmic pat-
tern, melodic contours, etc. Lastly, hierarchical relations
between motifs, themes and sections are also desired out-
puts of the pattern discovery task.

Two major approaches for symbolic representations are
the string-based and the geometric methods. A string-based
method treats a symbolic music sequence as a string of to-
kens and applies string pattern discovery algorithms on the
sequence [2, 18]. A geometric method views musical pat-
terns as shapes appearing on a score and enables inexact
pattern matching as similar shapes imply different occur-
rences of one pattern [4, 16]. For a comprehensive review
of pattern discovery with symbolic representations, readers
are directed to [11]. For audio representations, geometric
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methods for symbolic representations have been extended
to handle audio signals by multi F0-estimation with beat
tracking techniques [5]. Approaches adopted from mu-
sic segmentation tasks using self-similarity matrices and
greedy search algorithms are proposed in [19, 20]. Most
of the research involving audio representations has been
focused on “deadpan audio” rendered from MIDI. In [5],
the pattern discovery task is extended to live performance
audio recordings with a single recording for each music
piece. In the current study, instead of directly applying the
proposed framework on performance recordings, multiple
recordings are gathered for each musical piece to aid the
pattern discovery on deadpan audio.

In this paper, the work presented in [25] focusing on
pattern discovery on deadpan audio is extended to handle
symbolic representations. The framework proposed in this
paper can be seen as a string-based method in which input
features are symbolized. The framework consists of two
blocks: 1) feature extraction with post-processing routines
and 2) the pattern finding algorithm. For both symbolic
and audio representations, chroma features are extracted
and post-processed based on musical heuristics, such as
modulation, beat-aggregation, etc. The core of the pattern
finding algorithm is a Variable Markov Oracle (VMO). A
VMO is a data structure capable of symbolizing a signal by
clustering the observations in a signal, and is derived from
the Factor Oracle (FO) [13] and Audio Oracle (AO) [9]
structures. The FO structure is a variant of a suffix tree
data structure and is devised for retrieving patterns from
a symbolic sequence [13]. An AO is the signal extension
of a FO, and is capable of indexing repeated sub-clips of
a signal sampled at discrete times. AOs have been applied
to audio query [6] and audio structure discovery [8]. The
VMO data structure was first proposed in [24] as an effi-
cient audio query-matching algorithm. This paper shows
the capability of using a VMO to find repeated sub-clips in
a signal in an unsupervised manner.

This paper is structured as follows: section 2 introduces
the VMO data structure and the accompanying pattern find-
ing algorithm. Section 3 documents the experiments on
symbolic and audio representations as well as the dataset,
feature extraction, and task setup. Section 4 provides an
evaluation of the experiment. Last, future work, observa-
tions and insights are discussed in section 5.
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Figure 1. (Top) A VMO structure with symbolized sig-
nal {a, b, b, c, a, b, c, d, a, b, c}, upper (solid) arrows repre-
sent forward links with symbols for each frame and lower
(dashed) are suffix links. Values outside of each circle are
the lrs value for each state. (Bottom) A visualization of
how patterns {a, b, c} and {b, c} are related to lrs and sfx.

2. VARIABLE MARKOV ORACLE

A VMO symbolizes a time series O, sampled at time t,
into a symbolic sequence Q = q1, q2, . . . , qt, . . . , qT , with
T states and with frame O[t] labeled by a symbol qt. The
symbols are formed by tracking suffix links along the states
in an oracle structure. An oracle structure (either FO, AO
or VMO) carries three kinds of links: forward link, suffix
link and reverse suffix link. A suffix link is a backward
pointer that links state t to k with t > k, without a label,
and is denoted by sfx[t] = k.

sfx[t] = k () the longest repeated suffix of
{q1, q2, . . . , qt} is recognized in k.

Suffix links are used to find repeated suffixes in Q. In order
to track the longest repeated suffix at each time index t, the
length of the longest repeated suffix at each state t (denoted
as lrs[t]) is computed by the algorithm described in [13].
A reverse suffix link, rsfx[k] = t, is the suffix link in
the reverse direction. sfx, lrs and rsfx allow for the
proposed pattern discovery algorithm described in section
2.2.

Forward links are links with labels and are used to re-
trieve any of the factors from Q. Since forward links are
not used in the proposed algorithm, readers are referred
to [13] for details.

The last piece for the construction of a VMO is a thresh-
old value, ✓. ✓ is used to determine if the incoming O[t] is
similar to one of the frames following the suffix link be-
ginning at t � 1. Two frames, O[i] and O[j], are assigned
the same symbol if |O[i] � O[j]|  ✓. In extreme cases,
a VMO may assign different symbols to every frame in O
(✓ excessively low), or a VMO may assign the same sym-
bol to every frame in O (✓ excessively high). In these two
cases, the VMO structure is incapable of capturing any pat-
terns (repeated suffixes) in the signal. The optimal ✓ can be
found by calculating the Information Rate (IR), a music in-
formation dynamics measure, and this process is described
in section 2.1. An example of an oracle structure with ex-
treme ✓ values is shown in Fig. 2.

The on-line construction algorithms of VMO are intro-

Figure 2. Two oracle structures with extreme values of
✓. The characters near each forward link represent the as-
signed labels. (Top) The oracle structure with ✓ = 0 or
extremely low ✓ value. (Bottom) The oracle structure with
a very high ✓ value. In both cases the oracles are not able
to capture any structure in the time series.

duced in [24] and not repeated here. Fig. 1 shows an ex-
ample of a constructed VMO and how lrs and sfx are
related to pattern discovery. The symbols formed by gath-
ering states connected by suffix links share the following
properties : 1) the pairwise distance between states con-
nected by suffix links is less than ✓, 2) the symbolized
signal formed by the oracle can be interpreted as a sam-
ple from a variable-order Markov model because the states
connected by suffix links share common suffixes with vari-
able length, 3) each state is labeled by a single symbol be-
cause each state has a single suffix link, 4) the alphabet
size of the assigned symbols is unknown before the con-
struction and is determined by ✓.

2.1 Model Selection via Information Rate

The same input signal may be associated with multiple
VMOs with different suffix structures and different sym-
bolized sequences if different ✓ values are used to construct
the VMOs. To select the one symbolized sequence with
the most informative patterns, IR is used as the criterion in
model selection between different structures generated by
different ✓ values. IR is an information theoretic measure
capable of measuring the information content of a time se-
ries [7] in terms of the predictability of its source process
on the present observation given past ones. In the context
of pattern discovery with a VMO, a VMO with higher IR
value captures more of the repeating sub-clips (ex. pat-
terns, motives, themes, gestures, etc) than the ones with
lower IR values.

The VMO structure uses the same approach as the AO
structure [8] to calculate IR. Let xN

1 = {x1, x2, . . . , xN}
denote time series x with N observations, H(x) the en-
tropy of x, the definition of IR is

IR(xn�1
1 , xn) = H(xn) � H(xn|xn�1

1 ). (1)

IR is the mutual information between the present and past
observations and is maximized when there is a balance
between variations and repetitions in the symbolized sig-
nal. The value of IR can be approximated by replacing the
entropy terms in (1) with complexity measures associated
with a compression algorithm. These complexity measures
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Figure 3. IR values are shown on the vertical axis while
✓ are on the horizontal axis. The solid blue curve shows
the relationship between IR and ✓, and the dashed black
line indicates the chosen ✓ by locating the maximum IR
value. Empirically, IR curves exhibit quasi-concave func-
tion shapes, thus a global maximum can be located.

Algorithm 1 Pattern Discovery using VMO
Require: VMO, V, of length T and minimum pattern length L.
Ensure: sfx,rsfx,lrs 2 V
1: Initialize Pttr and PttrLen as empty lists.
2: Initialize prevSfx = �1,K = 0

3: for i = T : L do
4: pttrFound = False
5: if i� lrs[i] + 1 > sfx[i] ^ sfx[i] 6= 0 ^ lrs[i] � L then
6: if 9k 2 {1, . . . ,K},sfx[i] 2 Pttr[k] then
7: Append i to Pttr[k]
8: PttrLen[k] min(lrs[i], P ttrLen[k])
9: pttrFound = True

10: end if
11: if prevSfx� sfx[i] 6= 1 ^ pttrFound == False then
12: Append {sfx[i], i,rsfx[i]} to Pttr
13: Append min{lrs[{sfx[i], i,rsfx[i]}]} to PttrLen
14: K  K + 1

15: end if
16: prevSfx sfx[i]
17: else
18: prevSfx �1
19: end if
20: end for
21: return Pttr, P ttrLen,K

are the number of bits used to compress xn independently
and compress xn using the past observations xn�1

1 . The
formulation of combining the lossless compression algo-
rithm, Compror [12], with AO and IR is provided in [8]. A
visualization of the sum of IR values versus different ✓s on
one of the music pieces tested in this paper is depicted in
Fig. 3.

2.2 Pattern Discovery

Algorithm 1 shows the VMO-based algorithm for the auto-
matic pattern discovery task. The idea behind Algorithm
1 is to track patterns by following sfx and lrs. sfx
provides the locations of patterns, and lrs indicates the
length of these patterns. In line 5 of Algorithm 1, checks
are made so that redundant patterns are avoided, and the
lengths of patterns are larger than a user-defined minimum
L. From line 6 to 10, the algorithm recognizes occurrences
of established patterns, and from line 11 to 15 it detects
new patterns and stores them into Pttr and PttrLen.

Algorithm 1 returns Pttr, P ttrLen and K. Pttr is a
list of lists with each Pttr[k], k 2 {1, 2, . . . , K}, a list
containing the ending indices of different occurrences of
the kth pattern found. K is the total number of patterns
found. PttrLen has K values representing the length of
the kth pattern in Pttr.

3. EXPERIMENTS

The dataset chosen for the music pattern discovery is the
JKU Pattern Development Dataset (JKU-PDD) [3]. This
dataset consists of five polyphonic classical music pieces
or movements in both symbolic and audio representations.
The ground truth of repeated patterns (motifs, themes, sec-
tions) for each piece is annotated by musicologists. The
details of the experimental setup are provided in the fol-
lowing sections.

3.1 Feature Extraction

For the automatic musical pattern discovery task, the chro-
magram is the input feature to Algorithm 1 for both the
symbolic and audio representations. The chromagram is a
feature that characterizes harmonic content and is a com-
monly used in musical structure discovery [1].

3.1.1 Symbolic Representation

For the experiments described in this paper, the symbolic
representation chosen is MIDI, but other symbolic repre-
sentations may be used instead. The chromagram derived
from the symbolic representation is referred to as the “MIDI
chromagram”.

The MIDI chromagram is similar to the MIDI histogram
described in [23] and represents the presence of pitch classes
during each time frame. To create a MIDI chromagram
with quantization b in terms of MIDI whole note beats,
frame size M , and hop size h, the MIDI file is first parsed
into a matrix where each column is a MIDI beat quantized
by b and each row is a MIDI note number (0 � 127). For
each analysis frame, the velocities are summed over M
MIDI beats, and then folded and summed along the MIDI
notes to create a single octave of velocities. In other words,
all velocities that correspond to MIDI notes that share the
same modulo 12 are summed. The analysis frame then
hops h MIDI beats forward in time, repeats the folding
and summing, and continues on until the end of the MIDI
matrix is reached. The bottom plot in Fig. 4 is an exam-
ple of the MIDI chromagram extracted from the Beethoven
minuet in the JKU-PDD.

3.1.2 Audio Recording

The routines for extracting the chromagram from an audio
recording used in this paper is as follows. For a mono au-
dio recording sampled at 44.1 kHz, the recording is first
downsampled to 11025 Hz. Next, a spectrogram is calcu-
lated using a Hann window of length 8192 with 128 sam-
ples overlap. Then the constant-Q transform of the spec-
trogram is calculated with frequency analysis ranging be-
tween fmin = 27.5 Hz to fmax = 5512.5 Hz and 12 bins
per octave. Finally, the chromagram is obtained by folding
the constant-Q transformed spectrogram into a single oc-
tave to represent how energy is distributed among the 12
pitch classes.

To achieve the pattern discovery on a music metrical
level, the chroma frames are aggregated with a median fil-
ter according to the beat locations found by a beat tracker
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Figure 4. Features, found patterns, and ground truth
for the Beethoven minuet in the JKU-PDD. 1. Beat-
synchronous chromagram from the deadpan audio record-
ing. 2. Patterns found by Algorithm 1 using the chroma-
gram shown above. 3. Ground truth from JKU-PDD. 4.
Patterns found by Algorithm 1 using the MIDI chroma-
gram. 5. Quantized MIDI chromagram. For 2., 3. and
4., each row is a pattern place holder with dark regions
representing the occurrences on the timeline. The order
of found patterns is manually sorted to best align with the
ground truth for visualization purpose. Notice the hierar-
chical relations of patterns embedded in the ground truth
and found from the algorithms.

[10] conforming to the music metrical grid. For finer rhyth-
mic resolution, each beat identified is spliced into two sub-
beats before chroma frame aggregation. Last, the sub-beat-
synchronous chromagram is whitened with a log function.
Whitening boosts the harmonic tones implied by the mo-
tifs so that the difference between the same motif with and
without harmonization is reduced. See the top plot in Fig.
4 for an example of the the beat-synchronous chromagram
extracted from the Beethoven minuet in the JKU-PDD.

3.2 Repeated Themes Discovery

For both symbolic and audio representations, after the
chroma feature sequence O is extracted from the music
piece as described in section 3.1.1 and 3.1.2, ✓ 2 (0.0, 2.0]
is used to construct multiple VMOs with O. The L2�norm
is used to calculate the distance between incoming obser-
vations and the ones stored in a VMO. The single VMO
with the highest IR is fed into Algorithm 1 with L to find
patterns and their occurrences. Instead of setting L = 5

for all pieces as in [25], L is set according to lrs as
L = �

T

PT
t=1 lrs[t], where L is adaptive to the average

length of repeated suffixes found in the piece. � is a scaling
parameter which is set to 0.5 empirically.

To consider transposition (moving patterns up or down
by a constant pitch interval), the distance function used
for VMO structures is a cost function with transposition
invariance. For a transposition invariant cost function, a
cyclic permutation with offset k on an n-dimensional vec-
tor x = (x0, x1, . . . , xn�1) is defined as

cpk(x) := {xi ! x(i+k mod n), 8i 2 (0, 1, . . . , n � 1)},

and the transposition invariant dissimilarity d between two
vectors x and y is defined as, d = mink{kx � cpk(y)k2}.
n = 12 for the chroma vector, and the cost function is used
during the VMO construction.

In addition to the basic chromagram, a stacked chroma-
gram using time-delay embedding with M steps of history
as in [22] is also used. Experiments reveal that choices
for b, M , and h for both the MIDI chromagram and the
stacked MIDI chromagram can greatly alter the accuracy
of patterns discovered. The values used in the experiments
were quantization sizes b = [ 18 , 1

16 , 1
32 ], frame size M =

[1, 8, 16, 32], and hop lengths h = [1, 2, 4] where M and
h are described in terms of MIDI beats of size b. It was
found that the stacked MIDI chromagram with b = 1

32 ,
M = 16, and h = 2 resulted in the best pattern discov-
ery. For the audio representation, there is no significant
difference in terms of the patterns found or the evaluation
metrics between regular and stacked chromagrams.

Fig. 4 shows the chromagram found from audio and
MIDI for the Beethoven minuet in the JKU-PDD along
with the patterns found by the VMO structure and the
ground truth patterns. The patterns found by the audio and
symbolic representations share similarities and visually re-
semble the ground truth patterns. In section 4, quantitative
measures for evaluating the patterns found by the VMO are
explained and reported.

3.3 Performance Recordings to Aid Pattern Discovery

Five performance recordings for each of the pieces included
in the JKU-PDD are collected in order to further explore
the discovery of repeated themes. The motivation behind
this experiment is to explore the notion that music perfor-
mances contain information about how performers inter-
pret the musical structure embedded in the score [21] and
to examine whether or not the patterns found on deadpan
audio could be improved with the addition of such infor-
mation.

For each of the performance recordings, the chroma-
gram is extracted and aggregated along the beats as de-
scribed in section 3.1.2. Dynamic Time Warping [17] is
used to align the beat-synchronous chromagram from the
performance audio with the beat-synchronous chromagram
of the deadpan audio. Since motif annotations on these
performance recordings do not exist yet, the alignment be-
tween the deadpan audio and performance recordings are
necessary so that the patterns found from the performance
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Figure 5. 1. Ground truth from JKU-PDD. 2. Patterns
found from deadpan audio with the VMO. 3 � 7. Patterns
found from the five performances. 8. Patterns from dead-
pan and performance audio.

recordings can be compared to the ground truth or added
to the found patterns from the deadpan audio. The draw-
back of the alignment is that timing variations contain-
ing the performer’s structural interpretation are lost. Al-
though timing variations are lost in this experiment, ve-
locity variations applied across time and different voices
are retained. The aligned performance audio chromagram
is then whitened, normalized and fed into the VMO pat-
tern finding algorithm. For patterns found across multiple
performances of one piece, the intersection of patterns for
any two performances of one piece that are longer than L
are kept and added to the found patterns from the deadpan
audio. Fig. 5 is an example of how incorporating perfor-
mance recordings can change the discovered patterns from
deadpan audio.

4. EVALUATION

The evaluation follows the metrics proposed in the Mu-
sic Information Retrieval Evaluation eXchange (MIREX)
[3]. Three metrics are considered for inexact pattern dis-
covery. For each metric, standard F1 score, defined as
F1 = 2PR

(P+R) , precision P and recall R are calculated. The
first metric is the establishment score (est) which measures
how each ground truth pattern is identified and covered by
the algorithm. The establishment score takes inexactness
into account and does not consider occurrences. The sec-
ond metric is the occurrence score (o(c)) with a thresh-
old c. The occurrence score measures how well the al-
gorithm performs in finding occurrences of each pattern.
The threshold c determines whether or not an occurrence
should be counted. The higher the value for c, the lower
the tolerance. c = {0.5, 0.75} are used in standard MIREX

evaluation. The last metric is the three-layer score that con-
siders both the establishment and occurrence score. The re-
sults of the proposed framework are listed in Table 1 along
with a comparison to previous work.

From the evaluations for both symbolic and audio rep-
resentations, the establishment scores are generally lower
than the occurrence scores, meaning that the proposed al-
gorithm is better at finding occurrences of established pat-
terns than finding all possible patterns. With the symbolic
representation, the standard Fest, Fo(.75), and F3 scores
are better than previously published results. The estab-
lishment, occurrence, and three-layer precision scores are
also as good as or better than previous algorithms [5, 15].
The recall scores reveal that this is a part of the algorithm
that could be improved as previous algorithms all scored
higher on recall than the proposed algorithm. Similar to the
symbolic results, the proposed audio algorithm achieves
high F1 and precision scores for the establishment, oc-
currence, and three-layer scores. The recall of the audio
algorithm is higher than previously reported results [5, 19,
20]. The recall rates of the proposed framework are infe-
rior when compared to the precision scores and previous
work in symbolic representation. This may occur because
chroma features were used and the folding of the constant-
Q spectrogram discards information contained in different
voices.

The inclusion of performance recordings is the effort
made in this work to improve both the coverage and accu-
racy of the pattern discovery framework for audio repre-
sentations. Due to space limitations, the detailed metrics
for each piece in the JKU-PDD is not shown here. The
effects of including performance recordings are described
here. The establishment recall rate and occurrence pre-
cision rate with threshold 0.5 are improved when perfor-
mance recordings are included, but in general the pattern
discovery task is not improved because the decrease in es-
tablishment precision rate is larger than the improvement
on recall rates. This result indicates that more patterns and
their occurrences could be discovered if different versions
of the same piece are used in the pattern discovery task, but
more false positive patterns will be found.

The proposed pattern finding algorithm completed in
less time than previously reported algorithms on both sym-
bolic and audio representations. Although the VMO data
structure is used for both the proposed symbolic and au-
dio algorithms, there is a discrepancy in the time that it
takes to find the patterns for all five songs. The audio al-
gorithm takes much less time because the analysis frames
are larger than the frames used in the symbolic representa-
tion (32th note versus 8th note relatively). Thus, there are
less frames to analyze with the audio representation and
building a VMO takes less time.

Fig. 6 is a summary of the three-layer F1 scores for
each of the 5 pieces in the JKU-PDD for the proposed au-
dio and symbolic frameworks along with the current state
of the art results. The small quantization value for the
MIDI representation leads to a higher score in the case
of the Beethoven and Chopin pieces. The proposed audio
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Algorithm Fest Pest Rest F
o(.5)

P
o(.5)

R
o(.5)

F
o(.75)

P
o(.75)

R
o(.75)

F
3

P
3

R
3

Time (s)
VMO symbolic 60.79 74.57 56.94 71.92 79.54 68.78 75.98 75.98 75.99 56.68 68.98 53.56 4333

[5] 33.7 21.5 78.0 76.5 78.3 74.7 � � � � � � �

[15] 50.20 43.60 63.80 63.20 57.00 71.60 68.40 65.40 76.40 44.20 40.40 54.40 7297

VMO deadpan 56.15 66.8 57.83 67.78 72.93 64.3 70.58 72.81 68.66 50.6 61.36 52.25 96
deadpan + real 52.76 53.2 58.25 67.35 74.42 63.31 70.51 72.73 68.58 48.25 50.2 52.84 �

[20] 49.8 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454
[5] 23.94 14.9 60.9 56.87 62.9 51.9 � � � � � � �

[19] 41.43 40.83 46.43 23.18 26.6 20.94 24.87 32.08 21.24 28.23 30.43 31.92 196

Table 1. Results from various algorithms on the JKU-PDD for both symbolic (upper three) and audio (bottom four)
representations. Scores are averaged across pieces. Missing values were not reported in their original publications.

Figure 6. Three-layer F1 score (F3 in Table 1) for the
proposed audio and symbolic method on the 5 pieces in
the JKU-PDD plotted along with state of the art results.

and symbolic framework have the highest F1 value on the
Beethoven minuet and the lowest F1 value with the Bach
Fugue. When looking at the proposed method along with
current the state of the art results, it is evident that the Bach
Fugue and the Gibbons piece are songs where patterns are
embedded in different voices, and that the Beethoven piece
has more consistent repeated phrases. The algorithm for
symbolic data described in [15] performs better with Bach
and Gibbons in comparison to VMO and [20], most likely
because of its capability to discover patterns embedded in
different yet simultaneous voices.

In summary, our method has improved upon the F1 and
P scores as well as time to find patterns. The patterns
found using audio and symbolic representations are similar
and the evaluation scores reflect this similarity. Improving
recall and allowing for inexact occurrences should be a fo-
cus for future studies. Source codes and details about the
experiments are accessible via Github 1 .

5. DISCUSSION

In this work, a framework for automatic pattern discovery
from a polyphonic music piece based on a VMO is pro-
posed and shown to achieve state of the art performance on
the JKU-PDD dataset. With both the regular and stacked
MIDI chromagram, a smaller quantization value b results
in better pattern discovery because finer details are cap-
tured with smaller quantization. From the results, it seems
that a larger frame size M for smaller quantization b re-
sulted in better pattern finding. For hop size h, it is ob-
served that h = 2 results in a hop of a 16th note which

1 https://github.com/wangsix/VMO_repeated_
themes_discovery

is the shortest note in the JKU-PDD ground truth annota-
tions. Results from both the audio and MIDI representa-
tions show that the recall of discovered themes could be
improved. Although it is possible for a VMO to identify
inexact patterns from the input feature sequence with sym-
bolization from ✓, different occurrences of the same pattern
are sometimes not recognized because chroma features dis-
card information from various voices in the music piece.
Our framework could be improved if the feature used al-
lows for separation of voices from polyphonic MIDI and
audio. Incorporating techniques for identifying multiple
voices in polyphonic audio would improve the proposed
framework.

In addition to the proposed framework for both sym-
bolic and audio representations, using multiple perfor-
mance recordings in the repeated themes discovery task
for deadpan audio is another novelty presented in this pa-
per. The work done in this paper differs from [5] in that the
performance audio recordings are used as supplements to
deadpan audio and not analyzed as separate musical enti-
ties. The original intention behind using deadpan audio for
repeated themes discovery is to allow for the use of audio
signal processing techniques, but deadpan audio contains
the same amount of information as its symbolic counter-
part with less accessibility because of its representation.
This is evident by the similarity between the MIREX met-
rics for the MIDI and deadpan audio since similar tech-
niques are applied. Performance recordings, on the other
hand, contain expressive performance variations on phras-
ing and segmentation. In this paper, it is shown that
adding performance recordings to the proposed framework
achieved improvements on some of the standard metrics.
The next step for advancing the repeated themes discov-
ery task is to annotate the performance recordings so that
these recordings can be used as a dataset directly without
referencing back to the deadpan audio version. By observ-
ing the results from the pattern finding with performance
recordings, the patterns found for each performance show
informative cues as to how each rendition of the same piece
differs from the others visually (Fig. 5). These visualiza-
tions are interesting discoveries on their own, even with-
out a comparison to ground truth annotations, and could
be further investigated for use in expressive performance
analysis and music structural segmentation.
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d’Acoustique, 2013.

[12] Arnaud Lefebvre and Thierry Lecroq. Compror: on-
line lossless data compression with a factor oracle. In-
formation Processing Letters, 83(1):1–6, 2002.

[13] Arnaud Lefebvre, Thierry Lecroq, and Joël Alexandre.
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