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ABSTRACT 

Musics, like languages and genes, evolve through a pro-
cess of transmission, variation, and selection. Evolution 
of musical tune families has been studied qualitatively for 
over a century, but quantitative analysis has been ham-
pered by an inability to objectively distinguish between 
musical similarities that are due to chance and those that 
are due to descent from a common ancestor. Here we 
propose an automated method to identify tune families by 
adapting genetic sequence alignment algorithms designed 
for automatic identification and alignment of protein fam-
ilies. We tested the effectiveness of our method against a 
high-quality ground-truth dataset of 26 folk tunes from 
four diverse tune families (two English, two Japanese) 
that had previously been identified and aligned manually 
by expert musicologists. We tested different combina-
tions of parameters related to sequence alignment and to 
modeling of pitch, rhythm, and text to find the combina-
tion that best matched the ground-truth classifications. 
The best-performing automated model correctly grouped 
100% (26/26) of the tunes in terms of overall similarity to 
other tunes, identifying 85% (22/26) of these tunes as 
forming distinct tune families. The success of our ap-
proach on a diverse, cross-cultural ground-truth dataset 
suggests promise for future automated reconstruction of 
musical evolution on a wide scale.  

1. INTRODUCTION 

Darwin’s theory of evolution is a broad one that applies 
not only to biology but also to cultural forms such as lan-
guage and music [21], [27]. Musicologists have long been 
interested in understanding how and why music evolves, 
particularly the three key mechanisms of 1) transmission 
between generations, 2) generation of musical variation, 
and 3) selection of certain variants over others [10], [21]. 
In some cases, historical notations, audio recordings, or 
other musical “fossils” allow us to document music’s cul-
tural evolution through the accumulation of minute varia-
tions over time [5], [14], [28]. More often, the process of 
oral transmission results in contemporaneous groups of 
related melodies known as “tune families” [2], careful 

comparison of which can be used to partially reconstruct 
the process of musical evolution [4]. This situation is 
analogous to the evolution of language families and bio-
logical species [1].  

Traditionally, analysis of tune family evolution has 
been done by manually identifying and aligning small 
groups of related melodies (see Fig. 1a) and then qualita-
tively comparing the similarities and differences. This led 
to two major challenges that limited the scale of tune 
family research: 1) the need for an automated method of 
comparing large numbers of melodies; and 2) the need for 
an objective means of determining tune family member-
ship.  

Thanks to the rise of music information retrieval 
(MIR), the first challenge has been largely overcome by 
automated sequence alignment algorithms for identifying 
melodic similarity [9], [16], [23], some of which have 
been specifically designed for studying tune families [24-
26]. However, the second challenge remains unsolved, 
with tune family identification considered “currently too 
ambitious to perform automatically” [24].  

Here we propose a novel method of tune family iden-
tification inspired by molecular genetics [8]. In particular, 
the problem of protein family identification shares many 
analogies with tune family identification. Proteins are bi-
ological molecules that are constructed by joining se-
quences of amino acids into 3-dimensional structures that 
function to catalyze biochemical reactions. Meanwhile, 
tunes are constructed by joining sequences of notes into 
multidimensional melodies that function to carry song 
lyrics, accompany dance, etc. When attempting to identi-
fy both protein families and tune families, a major chal-
lenge is to determine whether any observed similarities 
are due to chance or common ancestry. 

We sought to develop automated methods for identi-
fying and aligning tune families that could be used in fu-
ture large-scale studies of musical evolution throughout 
the world. To do this, we adapted methods designed for 
identifying and aligning protein families and tested their 
effectiveness on a cross-cultural ground-truth set of well-
established tune families that had already been manually 
identified and aligned by expert musicologists. We then 
tested out different model parameters to determine which 
parameters are most effective at capturing the known 
ground-truth patterns. 

2. DATA 

Our ground-truth dataset consisted of 26 melodies from 
four contrasting tune families that had previously been  
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Figure 1. A sample portion of a manually aligned tune 
family. a) The opening phrase of three tunes manually 
aligned by Bayard [3] and identified as part of the tune 
family he labeled “Brave Donnelly”. b) The same infor-
mation encoded as aligned pitch-class sequences using 
our proposed method (see Methods and Fig. 2). Note 
that keys are transposed so that the tonic (originally F) is 
always represented as C. 

identified and aligned manually by expert musicologists1. 
Two of these tune families were British-American tune 
families that had been chosen by Samuel Bayard (who 
coined the term “tune family”) in order to capture "...all 
the problems attending a comparative tune study, and all 
the important features of traditional development that we 
constantly encounter when we try to elucidate the really 
extensive families of tunes." [3]. The other two were Jap-
anese tune families chosen for similar reasons by the Jap-
anese folksong scholars MACHIDA Kashō and 
TAKEUCHI Tsutomu [12]. We chose this dataset be-
cause we needed a known baseline against which to com-
pare the effectiveness of our methods, and because we 
wanted our method to have cross-cultural validity that is 
not limited to idiosyncracies of the types of European-
American folk tunes that have traditionally been studied. 
In addition, the first author has first-hand experience 
singing English and Japanese folksongs, and this dataset 
is also comparable to similar but larger collections of 
British-American and Japanese folk songs (approximately 
5,000 each in [5], [18]) to which we aim to eventually 
apply these automated methods. 

Music is much more than notes transcribed in a score. 
However, in order to understand tune family evolution, 
we need a standardized method of comparing tunes 
across time and space. To allow for analysis of tunes  

                                                             
1 Full metadata and aligned sequences are available at 
http://dx.doi.org/10.6084/m9.figshare.1468015 

 

Figure 2. The most widely used “alphabet” for describ-
ing musical pitches divides an octave into 12 equally 
spaced semitones. Here these are visualized using the 
standard piano keyboard representation, with C repre-
senting the tonic. 

documented before the advent of audio recording tech-
nology, this requires the use of transcriptions, although 
this comes at the cost of losing details about performance 
style (e.g., timbre, ornamentation, microtuning, microtim-
ing). Furthermore, to allow evolutionary analysis using 
state-of-the-art methods from evolutionary biology, we 
need to further reduce the information in the score into 
aligned sequences. This approach was already implicit in 
the melodic alignment approach developed by tune fami-
ly scholars, in which tunes were transposed into a com-
mon key and time signatures, phrases, and rhythms were 
stretched and compressed as necessary to align notes 
sharing similar pitches (see Fig. 1a).  

Just as DNA can be modeled as a sequence construct-
ed from an “alphabet” of 4 nucleic acids (C, G, A, or T) 
or a protein can be modeled as a sequence constructed 
from an alphabet of 20 amino acids, a melody can be 
modeled as a sequence constructed from an alphabet of 
12 pitch classes representing the 12 notes of the chro-
matic scale (Fig. 2). By aligning sequences known to 
share common ancestry (as done manually in [3] and 
[12]), we can identify points on the alignment that are 
conserved, where a different pitch has been substituted, 
or where a pitch has been inserted/deleted (“indel”, repre-
sented using dashes). Fig. 1b shows how this method is 
used to encode the manual alignment shown in Fig. 1a. 
This information can then be analyzed quantitatively to 
reconstruct a phylogenetic tree, network, or other repre-
sentation of the evolutionary history of the tune family. 

The intuition of early tune family scholars to empha-
size alignment of pitches, rather than rhythms or global 
stylistic features, is supported by recent research that has 
demonstrated quantitatively that pitch is greatly superior 
to rhythm and to global stylistic features both for the pur-
poses of tune family identification in particular and for 
melodic similarity in general [23], [25]. However, judi-
cious use of rhythm and other non-pitch features may im-
prove tune family identification [25], and we explore this 
using several modeling techniques. 

3. METHODS 

3.1 Sequence alignment parameters 
 

14 MIDWEST FOLKLORE, IV : I 

and American tradition; the Brave Donnelly, so far as I know, 
only in British. In the tune tables given below, all airs have been 
put into the same register, to facilitate comparison. Original keys 
or signatures are given in the notes, however, and of course the 
modes, melodic intervals and note values have been preserved. 
Having taken into account all the versions and related airs known 
to me, I believe that these tables represent the tunes adequately. 
Table I illustrates the Brave Donnelly tune.' 
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This Brave Donnelly tune shows a not unusual case of the 
preservation of a melody in several rather close variants among 
the Irish, Welsh and English. The rhythmic differences between 
variants (D, F in 4/4 time, the others in 6/8; one bar of F cor- 
responding to two in the other sets) are features of common re- 
currence in our tune families. Comparing B with A (or any set) 
we may see that often the melodic lines go momentarily in precisely 
opposite directions, without obscuring the cognateness of the sets. 
This occurs, e.g., in B, bars 1, 9, 11, 14, 15. Such features remind us 

1 Tune Table I: A is "Well done, cries she, brave Donnelly," in C. V. 
Stanford ed., The Complete Petrie Collection of Ancient Irish Music (Lon- 
don: Boosey & Co., 1902-hereinafter called "Petrie" ), No. 316. Tune 
given in the original key. Evidently the air had a persistent association in 
Ireland with the prize-ring ballad "Donnelly and Cooper"; see a close variant, 
to that piece, in Colm 0 Lochlainn, Irish Street Ballads (Dublin & Lon- 
don: Constable & Co., 1939), p. 52. A third close variant of the air is in 
Sabine Baring-Gould, Sonas of the West (revised ed., London: Methuen 
& Co., 1905), p. 38, to "The Seasons of the Year." 

B is "Y' Deryn Du Pigfelyn" (The Golden-beaked blackbird), Maria 
Jane Williams, Ancient National Airs of Gwent and Morganwg (Llandovery, 
1844), pp. 12, 13. In original key. Note, p. 78, begins "Very commonly 
sung in South Wales." 

This content downloaded from 106.168.234.226 on Sat, 30 Aug 2014 01:27:51 AM
All use subject to JSTOR Terms and Conditions

D: CCCCGC-GAb-bGGA
E: FEECCCCGAbCbAGF
F: GCCCCCCGAb-GAGF
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b)#
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Automated sequence alignment requires a number of pa-
rameters to be defined. The choice of values for these pa-
rameters depends on the nature of the data and the goals 
of classification. Because automated tune family identifi-
cation remains largely unexplored, we don’t yet know 
which values are most appropriate for this goal. There-
fore, we tested several values for each parameter to allow 
for empirical comparison of which parameter values per-
formed best. When possible, we tested values that have 
worked well in similar work on protein family identifica-
tion and automated melodic similarity algorithms.  

3.1.1 Gap penalties 
The functional mechanisms of protein structure result in 
substitutions being much more common than indels (in-
sertions/deletions). Thus, most amino acid alignment al-
gorithms set a gap opening penalty (GOP) parameter to 
be quite high to penalize the creation of gaps in a se-
quence. However, when indels do occur, they often en-
compass not only one amino acid residue, but rather can 
include fairly long sections. Thus gap extension penalties 
(GEP) are usually set to be substantially smaller than gap 
opening penalties (the default values for the popular 
ClustalW algorithm are for GOP and GEP values of 15 
and 6.66, respectively [22]). 

The mechanisms of musical sequence evolution are 
less well known, but previous tune family research sug-
gests that insertion/deletion (e.g., of ornamentation) is 
quite common and may even be more common than sub-
stitution of different pitches. Thus, it seemed desirable to 
examine the effect of using a range of GOP and GEP val-
ues, ranging from the combination of GOP=0.8, GEP=0.2 
used to align tunes in [25], to the amino acid alignment 
values given above. To do this, we chose GOP values of 
.8, 4, 8, 12, and 16, for each of which we tested 
GOP:GEP ratios of both 2 and 4. Thus, the gap penalty 
parameters ranged from minimums of GOP=0.8, 
GEP=0.2 (GOP:GEP ratio=4) to maximums of GOP=16, 
GEP=8 (GOP:GEP ratio =2). For all gap penalty parame-
ters we followed previous tune family research [25] in 
using the Needleman-Wunsch alignment algorithm [17], 
as implemented in the Biostrings package in R V3.1.1 
[19]. 

3.1.2 Pitch 
There are various possibilities for weighting pitches to 
accommodate different degrees of similarity beyond sim-
ple match and mismatch. Previous weighting schemes 
using interval consonance or interval size have shown 
minimal improvement over a simple match/mismatch 
model [25]. Here we instead explore a novel weighting 
scheme based on qualitative tune family research that has 
found that tunes will sometimes change mode (i.e., some 
or all scale degrees may become flattened or sharped to 
shift from major to minor or vice-versa [3]). To do this, 
we simply treated an alignment of major and minor ver-
sions of each scale degree as a match (i.e., treating lower-
case letters in Fig. 2 as capitals). 

3.1.3 Rhythm/text 
Previous tune family research has suggested that some 
notes are likely to be more evolutionarily stable than oth-
ers. In particular, notes that are rhythmically accented [6] 
or that carry text [11] are proposed to be more reliable in 
identifying tune families than rhythmically unaccented or 
non-text-carrying notes, respectively. To examine these 
possibilities, we contrasted the results using the full se-
quences with those using shorter sequences created by 
excluding rhythmically unaccented notes (i.e., notes not 
falling on the first beat of a measure) or non-text-carrying 
notes (e.g., notes where the vowel is held over from a 
previous note) from the full sequences. 

3.1.4 Summary 
In sum, we tested all possible combinations of the follow-
ing parameters: 

1) Gap opening penalty: i) .8, ii) 4, iii) 8, iv) 12 or 
v) 16 

2) Gap opening penalty : Gap extension penalty 
(GOP:GEP) ratio: i) 2 or ii) 4 

3) Pitch: i) including or ii) ignoring mode 
4) Rhythm: i) including or ii) ignoring rhythmically 

unaccented notes 
5) Text: i) including or ii) ignoring non-text-

carrying notes 
This gave a total of 5x2x2x2x2=80 parameter combina-
tions to explore, the average values of which are reported 
in Table 1. 

3.2 Evaluation 
In order to achieve our goal of automated identification 
and alignment for the purpose of reconstructing tune fam-
ily evolution, we need a method of quantifying how well 
a given alignment captures the manual judgments of ex-
perts. The goal is to maximize both the degree of match 
in the alignment within tune families and the degree of 
accuracy in separating between tune families.  

3.2.1 Sequence alignment 
To evaluate alignment within tune families, we need a 
measure of the degree to which the similarities between 
sequences captured by the automated alignment matched 
similarities captured by the manual alignments. For this, 
we adopted the Mantel distance matrix correlation test 
[13]. The Mantel r-value is identical to a standard Pear-
son correlation r-value, but the Mantel significance test 
controls for the fact that pairwise distance values in a dis-
tance matrix are not independent of one another. 

We adopted the simplest method for comparing pairs 
of sequences, which is by calculating their percent identi-
ty (PID).  This is calculated based on the number of 
aligned pitches that are identical (ID) divided by the se-
quence length (L) according to the following equation:  

PID =100 ID
L1 + L2
2

!

"

#
#
#

$

%

&
&
&

                                   (1) 
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This equation uses the average length of both sequences 
as the denominator, as this appears to be the most con-
sistent measure of percent identity when dealing with 
cases where the sequences have unequal lengths due to 
the insertion/deletion of large segments [15] (as occurs in 
our dataset).   

3.2.2 Tune family identification 
To evaluate separation between tune families, we need a 
measure of the degree to which our automated clustering 
into tune families matches the manual tune family classi-
fications. This needs to take into account both true posi-
tives (tunes correctly grouped into a given tune family) 
and false positives (tunes incorrectly grouped into a given 
tune family).  

A method used previously by van Kranenburg et al. 
[25], used the true positive rate (tpr) and false positive 
rate (fpr) to calculate a score J as follows:  

J = tpr
1+ fpr

                                   (2) 

Because van Kranenburg et al. did not have a method for 
automatically identifying boundaries between tune fami-
lies, they used a “nearest neighbor” criterion to define 
true positives. Thus, J represents the proportion of tunes 
whose nearest neighbor (tune with highest automatically 
measured similarity) is also in the same (manually identi-
fied) tune family. Here we calculate this J score, as well 
as a second J score that more directly tests our goal of 
identifying boundaries between tune families.  

For this second J score, the criterion used to define 
true positives is of significant sequence similarity for 
each pair of tunes. Significance is assessed by a random 
permutation test, in which the PID value for a given pair 
of sequence is compared against the distribution of 100 
random PID values given the same sequence lengths and 
compositions, as calculated by randomly reordering one 
of the sequences [8]. Thus, when calculating this second J 
score, bold values within the boxes in Table 2 (i.e., sig-
nificant sequence similarity between pairs of tunes manu-
ally identified as belonging to the same tune family) are 
counted as true positives, while bold values outside of the 
boxes (i.e., significant sequence similarity between pairs 
of tunes not manually identified as belonging to the same 
tune family) are counted as false positives.  

4. RESULTS 

The average scores under the different alignment parame-
ters are shown in Table 1, with the best-performing pa-
rameter values highlighted in bold. 

4.1 Sequence alignment (within-family) 
The degree to which similarities within tune families cap-
tured by the automated alignment match those captured 
by the manual alignments of experts are indexed by the 
Mantel correlation r-values, reported in Table 1. On aver-
age, all of the alignment parameter combinations gave 
similarly strong correlations ranging from r=.82-.85. 
 

  
Within-
family Between-family 

Automated 
alignment 
parameter 

Parameter 
value r 

J 
(nearest 

neighbor) 

J 
(signif-
icance) 

GOP 

.8 0.850 0.875 0.408 
4 0.843 0.870 0.421 
8 0.823 0.849 0.479 
12 0.833 0.877 0.497 
16 0.829 0.844 0.474 

GOP:GEP 
ratio 

2 0.834 0.862 0.462 
4 0.837 0.864 0.450 

Mode 
Included 0.839 0.841 0.445 
Ignored 0.832 0.885 0.467 

Rhythmically 
unaccented 
notes 

Included 0.841 0.964 0.587 

Ignored 0.830 0.762 0.325 
Non-text 
notes 

Included 0.838 0.873 0.460 
Ignored 0.833 0.853 0.452 

Table 1. Mean values comparing different automated 
alignment parameters against manual ground-truth align-
ments. Best-performing values are highlighted in bold. 
See Methods for details.  

4.2 Tune family identification (between-family) 
The degree to which the automated algorithms were able 
to separate between tune families is indexed by the J 
scores, reported in the right-hand columns of Table 1. Us-
ing gap opening penalties of 12, ignoring mode, including 
non-text notes, and especially including rhythmically un-
accented notes all improved tune-family identification. 
GOP:GEP ratios of 4 gave slightly higher J scores using 
the nearest neighbor criterion, but a ratio of 2 gave higher 
J scores using the more crucial criterion of significant 
pairwise sequence similarity. The specific parameter 
combination combining the best-performing parameter 
values - GOP=12, GOP:GEP ratio=2, ignoring mode, in-
cluding rhythmically unaccented notes and including 
non-text notes - resulted in a Mantel correlation of r=.83 
and J scores of J=1 and J=.64 for the nearest neighbor 
and significance criteria, respectively.   

It was not possible to directly compare all parameters 
using the approach presented in [25], in part because the 
approach in [25] is based on sequences of pairwise me-
lodic intervals, whereas the manual alignments that 
formed our ground-truth dataset were based on sequences 
of individual notes in relation to the tonic (i.e., tonic in-
tervals). However, it was possible to directly compare 
between-family identification J scores using the best-
performing parameter combination listed above, but using 
sequences of melodic intervals rather than tonic intervals. 
This melodic interval approach resulted in J scores of 
J=.88 and J=.33 for the nearest neighbor and significance 
criteria, respectively. These values were somewhat lower 
than the respective values using our tonic interval ap-
proach (J=1 and J=.64). However, further analyses are 
required to determine the degree to which incorporating  
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Table 2. Pairwise percent identity scores among the 26 
tunes. Tunes are labeled based on manual classifications 
by musicologists [3], [12]. Numbers correspond to the 
four tune families (1=”Brave Donnelly”, 2=”Job of Jour-
neywork”, 3=”Oiwake”, 4= “Okesa”), letters correspond 
to the different variant tunes within each family. The val-
ues in the lower triangle are based on automated align-
ments using the best-performing parameters (GOP=12, 
GOP:GEP ratio=2, ignoring mode, including rhythmically 
unaccented notes and including non-text notes). The val-
ues in the upper triangle are based on manual alignments. 
Inter-tune family manual values are not shown because 
manual alignments were only done within tune families. 
Solid borders indicate automatically identified tune fami-
lies in which at least three tunes are all significantly simi-
lar to one another. When these did not capture all tunes in 
a manually identified tune family, the manually identified 
boundaries are shown using dashed borders. Bold values 
indicates pairs whose similarities are significant at P<.05.  

more fine-grained weighting of intervals, rhythmic in-
formation, etc. of the type used in [25] affects tune family 
identification using both melodic interval and tonic inter-
val approaches.     

4.3 Overall reconstruction of tune family evolution 
The results of the top-performing parameter combination 
listed above are compared against manual classifications  

 
in Table 2 and Fig. 3. The lower triangle in Table 2 gives 
the raw pairwise sequence identity values, using bold text 
to indicate pairs of sequences whose similarities were sta-
tistically significant, while the upper diagonal gives with-
in-family sequence identity values for the manual align-
ments. The mean percent identity values were somewhat 
higher for the automated alignments than the manual 
alignments within each family (45.7% vs. 33.7%, respec-
tively). This presumably reflects the automated alignment 
identifying more false links, although in some cases it 
may also be identifying better alignments than the manual 
ones. Comparison with manual alignments conducted by 
different musicologists may help to clarify this issue in 
the future. 

Fig. 3 summarizes the information in Table 2 visually 
using a NeighborNet diagram. NeighborNet is a type of 
phylogenetic network that is similar to a neighbor-joining 
tree, but allows visualization of conflicting non-tree like 
structure (“reticulation”). 100% of the tunes (26/26) were 
correctly grouped such that their nearest neighbor was a 
member of the same tune family, and the sub-grouping of 
tune family 2 also corresponded to Bayard’s sub-
grouping into a “long” and “short” version. However, on-
ly 85% (22/26) of these tunes were automatically grouped 
into a tune family using the criterion that all pairs within 
a family must be significantly similar to one another. Us-
ing this criterion also mis-identified the “long” and 
“short” versions of tune family 2 as two distinct tune 

 1A 1B 1C 1D 1E 1F 2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K 3A 3B 3C 3D 4A 4B 4C 4D 4E 
1A  33 45 42 52 38                     
1B 51  29 37 31 28                     
1C 59 47  34 28 38                     
1D 47 47 48  40 32                     
1E 62 54 43 45  48                     
1F 53 43 50 48 61                      
2A 41 36 34 37 34 36  49 32 23 27 19 19 18 13 15 16          
2B 35 38 44 37 45 38 54  51 50 31 25 23 26 20 18 21          
2C 40 49 41 39 40 41 47 57  44 41 23 34 28 28 21 16          
2D 33 41 42 34 33 35 45 54 61  29 19 19 26 22 18 12          
2E 31 34 43 39 36 42 45 48 57 44  32 27 21 22 21 23          
2F 43 37 41 36 46 34 39 48 41 45 35  28 16 22 22 29          
2G 38 34 41 34 39 31 34 36 42 40 41 55  34 33 43 29          
2H 31 33 30 31 38 30 37 45 41 43 33 36 47  36 62 37          
2I 44 35 34 34 45 36 28 28 42 35 39 30 35 46  44 24          
2J 40 38 28 29 38 35 26 35 39 34 31 39 55 62 49  41          
2K 36 34 35 30 28 31 31 41 46 45 34 43 45 48 30 39           
3A 32 51 36 37 29 33 31 40 42 34 35 35 42 38 31 38 43  64 44 47      
3B 40 40 35 36 32 30 36 43 46 40 38 39 40 36 33 41 32 61  57 55      
3C 42 42 38 35 40 45 30 38 34 33 38 41 39 25 29 35 39 51 62  73      
3D 38 45 37 44 37 38 25 36 30 43 37 44 29 28 23 36 31 56 60 67       
4A 40 40 28 31 39 40 26 29 34 27 31 28 27 31 40 32 27 27 29 29 23  32 39 35 33 
4B 32 29 33 38 39 36 27 29 35 28 39 30 27 24 30 30 22 35 32 28 38 40  43 45 44 
4C 31 23 36 33 31 40 26 31 28 27 38 34 18 24 21 19 25 23 29 31 30 37 52  67 61 
4D 35 26 27 30 33 36 28 26 36 28 35 31 26 25 27 22 21 26 30 21 24 41 55 65  78 
4E 32 32 35 28 39 32 27 30 40 32 41 33 26 27 32 29 23 31 33 36 28 42 62 56 62  
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Figure 3. A NeighborNet visualization of the phyloge-
netic relationships among the 26 tunes automatically 
identified by the best-performing alignment algorithm. 
See Table 2 for explanation of tune labels 1A-4E and  
solid/dashed lines.  

families. Joining families into “superfamilies” when only 
one or a few members have significant similarities to 
members of other families [8] would join the “long” and 
“short” versions into a superfamily, but would also join 
all the tune families into this superfamily.  

5. DISCUSSION AND FUTURE WORK 

Although previous research suggested that tune family 
identification was “too ambitious to perform automatical-
ly” [24], we have presented an automated approach that 
successfully recovers most of the key relationships within 
and between tune families identified manually by musi-
cologists. Our approach adapts sequence alignment algo-
rithms for protein family identification to successfully 
delineate the boundaries separating groups of melodies 
that share similar sequences of pitches due to descent 
from a common ancestor.  

Our approach correctly identified three out of the four 
manually identified tune families, as well as both the 
“long version” and “short version” sub-groups of the 
fourth “Job of Journeywork” tune family. However, our 
automated approach failed to unite these sub-groups into 
a single tune family, instead splitting them into two tune 
families. The “Job of Journeywork” tune family was spe-
cifically chosen by Bayard [3] to present one of the most 
complicated examples of tune family evolution, including 
several measures that were deleted from the beginning of 
the “long version” and added to the end of the “short ver-
sion”. Hence, this type of complex evolution may require 
more complex algorithms and/or the incorporation of ex-
pert knowledge beyond the basic pitch sequence infor-
mation encoded in the simplified model used here. How-
ever, the fact that our approach captured the relationships 
among the four tunes from the “Oiwake” tune family, de-
spite the fact that this family contained both internal and 

terminal insertion/deletion events of substantial length, 
suggests that our approach is still able to capture fairly 
complicated patterns of musical evolution.  

One area for improvement of our method is that the 
false positive rate is somewhat high (see Table 2). We 
believe that this may be due to the fact that our method is 
designed primarily to distinguish between chance and 
common ancestry, and does not do a very good job of dis-
tinguishing between common ancestry and convergent 
evolution. Hence, it appears likely that many of the false 
positives are due to stylistic similarities shared between 
unrelated tunes that share similar scales and motivic pat-
terns (e.g., 1A and 2A, both Irish tunes in a diatonic ma-
jor scale). Horizontal transmission and/or convergent 
evolution of such traits among phylogenetically unrelated 
groups have long been known to complicate analysis of 
tune family evolution [3], [7]. Horizontal transmission 
and convergent evolution are challenges shared with lan-
guage evolution and genetic evolution, and may benefit 
from methods developed in these fields [1].   

In the future we hope to extend our approach to larger 
datasets, and to incorporate more-sophisticated models of 
cultural evolution and sequence alignment [1], more-
nuanced weighting of musical information (e.g., beyond 
simple match/mismatch models of pitch, rhythm, and text 
[24-26]), and higher-level units of musical structure and 
meaning. In music, as in genetics, the individual notes 
that make up the sequences have little meaning in them-
selves. The phylogenetic analysis of sequences is thus 
merely the starting point from which to understand how 
and why these sequences combine to form higher-level 
functional units (e.g., motives, phrases) that co-evolve 
with their song texts and cultural contexts of music-
making as they are passed down from singer to singer 
through centuries of oral tradition. Using such infor-
mation, we hope to not only identify previously unknown 
tune family relationships on a wide scale, but also to care-
fully reconstruct the histories and mechanisms of tune 
family evolution to identify general processes governing 
the cultural evolution of music. The general nature of our 
approach means that it should be applicable not only to 
folk music, but also to art music (e.g., European classical 
music [28], Japanese gagaku [14]) and popular music 
(e.g., copyright disputes [20]). Understanding the cultural 
evolution of music should help to identify the mecha-
nisms that govern stability and creativity of aesthetic 
forms, as well as to use this knowledge to help musicians 
and musical cultures struggling to adapt their intangible 
cultural heritage to today’s globalized world. 
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