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ABSTRACT 

We apply machine learning to a database of recorded en-
semble performances to build an artificial performer that 
can perform music expressively in concert with human 
musicians. We consider the piano duet scenario and focus 
on the interaction of expressive timing and dynamics. We 
model different performers’ musical expression as co-
evolving time series and learn their interactive relation-
ship from multiple rehearsals. In particular, we use a 
spectral method, which is able to learn the correspond-
ence not only between different performers but also be-
tween the performance past and future by reduced-rank 
partial regressions. We describe our model that captures 
the intrinsic interactive relationship between different 
performers, present the spectral learning procedure, and 
show that the spectral learning algorithm is able to gener-
ate a more human-like interaction. 

1. INTRODUCTION 

Ensemble musicians achieve shared musical interpreta-
tions when performing together. Each musician performs 
expressively, deviating from a mechanical rendition of 
the music notation along the dimensions of pitch, dura-
tion, tempo, onset times, and others. While creating this 
musical interpretation, musicians in an ensemble must 
listen to other interpretations and work to achieve an or-
ganic, coordinated whole. For example, expressive timing 
deviations by each member of the ensemble are con-
strained by the overall necessity of ensemble synchroni-
zation. In practice, it is almost impossible to achieve sat-
isfactory interpretations on the first performance. There-
fore, musicians spend time in rehearsal to become famil-
iar with the interpretation of each other while setting the 
“communication protocols” of musical expression. For 
example, when should each musician play rubato, and 
when should each keep a steady beat? What is the desired 
trend and balance of dynamics? It is important to notice 
that these protocols are usually complex and implicit in 
the sense that they are hard to express via explicit rules. 
(Musicians in a large ensemble even need a conductor to 
help set the protocols.) However, musicians are able to 
learn these protocols very effectively. After a few re-

hearsals, they are prepared to handle new situations that 
do not even occur in rehearsals, which indicates that the 
learning procedure goes beyond mere memorization. 

Although many studies have been done on musical ex-
pression in solo pieces, the analysis of interactive ensem-
ble music performance is relatively new and has mainly 
focused on mechanisms used for synchronization, includ-
ing gesture. Ensemble human-computer interaction is still 
out of the scope of most expressive performance studies, 
and the interaction between synchronization and individ-
ual expressivity is poorly understood. From the synthesis 
perspective, though score following and automatic ac-
companiment have been practiced for decades, many re-
searchers still refer to this as the “score following” prob-
lem, as if all timing and performance information derives 
from the (human) soloist and there is no performance 
problem. Even the term “automatic accompaniment” di-
minishes the complex collaborative role of performers 
playing together by suggesting that the (human) soloist is 
primary and the (computer) accompanist is secondary. In 
professional settings, even piano accompaniment is usual-
ly referred to as “collaborative piano” to highlight its im-
portance. To successfully synthesize interactive music 
performance, all performers should be equal with respect 
to musical expression, including the artificial performers. 

Thus, there is a large gap between music practice and 
computer music research on the topic of expressive inter-
active ensemble music performance. We aim to address 
this gap by mimicking human rehearsals, i.e., learn the 
communication protocols of musical expression from re-
hearsal data. For this paper, we consider the piano duet 
scenario and focus on the interaction of expressive timing 
and dynamics. In other words, our goal is to build an arti-
ficial pianist that can interact with a human pianist ex-
pressively, and is capable of responding to the musical 
nuance of the human pianist. 

To build the artificial pianist, we first model different 
performers’ musical expression as co-evolving time se-
ries and design a function approximation to reveal the in-
teractive relationship between the two pianists. In particu-
lar, we assume musical expression is related to hidden 
mental states and characterize the piano duet performance 
as a linear dynamic system (LDS). Second, we learn the 
parameters of the LDS from multiple rehearsals using a 
spectral method. Third, given the learned parameters, the 
artificial pianist can generate an expressive performance 
by interacting with a human pianist. Finally, we conduct 
evaluation by comparing the computer-generated perfor-
mances with human performances. At the same time, we 
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inspect how training set size and the performer’s style 
affect the results.  

The next section presents related work. Section 3 de-
scribes the model. Section 4 describes a spectral learning 
procedure. Section 5 shows the experimental results. 

2. RELATED WORK 

The related work comes from three different research 
fields: Expressive Performance, where we see the same 
focus of musical expression; Automatic Accompaniment, 
where we see the same application of human-computer 
interactive performance; and Music Psychology, where 
we see musicology insights and use them to help design 
better computational models. For detailed historical re-
views of expressive performance and automatic accom-
paniment, we point the readers to [14] and [27], respec-
tively. Here, we only review recent work that has strong 
connections to probabilistic modeling.  

2.1 Expressive Performance 

Expressive performance studies how to automatically 
render a musical performance based on a static score. To 
achieve this goal, probabilistic approaches learn the con-
ditional distribution of the performance given the score, 
and then generate new performances by sampling from 
the learned models. Grindlay and Helmbold [9] use hid-
den Markov models (HMM) and learn the parameters by 
a modified version of the Expectation-Maximization al-
gorithm. Kim et al. [13] use a conditional random field 
(CRF) and learn the parameters by stochastic gradient 
descent. Most recently, Flossmann et al. [7] use a very 
straightforward linear Gaussian model to generate the 
musical expression of every note independently, and then 
use a modification of the Viterbi algorithm to achieve a 
smoother global performance. 

All these studies successfully incorporate musical ex-
pression with time-series models, which serve as good 
bases for our work. Notice that our work considers not 
only the relationship between score and performance but 
also the interaction between different performers. From 
an optimization point of view, these works aim to opti-
mize a performance given a score, while our work aims to 
solve this optimization problem under the constraints cre-
ated by the performance of other musicians. Also, we are 
dealing with a real-time scenario that does not allow any 
backward smoothing.  

2.2 Automatic Accompaniment 

Given a pre-defined score, automatic accompaniment sys-
tems follow human performance in real time and output 
the accompaniment by strictly following human’s tempo. 
Among them, Raphael’s Music Plus One [19] and 
IRCAM’s AnteScofo system [5] are very relevant to our 
work in the sense that they both use computational mod-
els to characterize the expressive timing of human musi-
cians. However, the goal is still limited to temporal syn-

chronization; the computer’s musical expression in inter-
active performance is not yet considered. 

2.3 Music Psychology 

Most related work in Music Psychology, referred to as 
sensorimotor synchronization (SMS) and entrainment, 
studies adaptive timing behavior. Generally, these works 
try to discover common performance patterns and high-
level descriptive models that could be connected with un-
derlying brain mechanisms. (See Keller’s book chapter 
[11] for a comprehensive overview.) Though the discov-
ered statistics and models are not “generative” and hence 
cannot be directly adopted to synthesize artificial perfor-
mances, we can gain much musicology insight from their 
discoveries to design our computational models.  

SMS studies how musicians tap or play the piano by 
following machine generated beats [15-18, 21, 25]. In 
most cases, the tempo curve of the machine is pre-defined 
and the focus is on how humans keep track of different 
tempo changes. Among them, Repp, Keller [21] and Ma-
tes [18] argue that adaptive timing requires error correc-
tion processes and use a “phase/period correction” model 
to fit the timing error. The experiments show that the er-
ror correction process can be decoupled into period cor-
rection (larger scale tempo change) and phase correction 
(local timing adjustment). This discovery suggests that it 
is possible to predict timing errors based on timing fea-
tures on different scales. 

Compared to SMS, entrainment studies consider more 
realistic and difficult two-way interactive rhythmic pro-
cesses [1, 8, 10-11, 20, 22, 26]. Among them, Goebl [8] 
investigated the influences of audio feedback in a piano 
duet setting and claims that there exist bidirectional ad-
justments during full feedback despite the leader/follower 
instruction. Repp  [20] does further analysis and discov-
ers that the timing errors are auto-correlated and that how 
much musicians adapt to each other depends on the music 
context, such as melody and rhythm. Keller [11] claims 
that entrainment not only results in coordination of 
sounds and movements, but also of mental states. These 
arguments suggest that it is possible to predict the timing 
errors (and other musical expressions) by regressions 
based on different music contexts, and that hidden varia-
bles can be introduced to represent mental states. 

3. MODEL SPECIFICATION 

3.1 Linear Dynamic System (LDS) 

We use a linear dynamic system (LDS), as shown in Fig-
ure 1, to characterize the interactive relationship between 
the two performers in the expressive piano duet. Here, 
! = !!!, !!,… , !!  denotes the 2nd piano’s musical ex-
pression, ! = !!!, !!,… , !!  denotes a combination of 
the 1st piano’s musical expression and score information, 
and ! = !!, !!,… , !!  denotes the hidden mental states 
of the 2nd pianist that influence the performance. The key 
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idea is to reveal that the 2nd piano’s musical expression is 
not static. It is not only influenced by the 1st piano’s per-
formance but also keeps its own character and continuity 
over time. 

 

Figure 1. The graphical representation of the LDS, in 
which grey nodes represent hidden variables. 

Formally, the evolution of the LDS is described by the 
following linear equations: 

 !! = !!!!! + !!! + !!!!!!!~!(0,!)!!!!!!!!! (1) 
 !! = !!! + !!! + !!!!!!!!!!!!~!(0,!)!!!!!!!!!! (2) 

Here, !! ∈ ℝ! and its two dimensions correspond to 
expressive timing and dynamics, respectively, !! ∈ ℝ! , 
which is a much higher dimensional vector (we describe 
the design of !! in detail in Section 3.3), and !! ∈ ℝ!, 
which is a relatively lower dimensional vector. A, B, C, 
and D are the main parameters of the LDS. Once they are 
learned, we can predict the performance of the 2nd piano 
based on the performance of the 1st piano. 

3.2 Performance Sampling   

Notice that the LDS is indexed by the discrete variable t. 
One question arises: should t represent note index or 
score time? Inspired by Todd’s work [23], we assume 
that musical expression evolves with score time rather 
than note indices, and therefore define t as score time. 
Since music notes have different durations, we “sample” 
the performed notes (of both the 1st piano and the 2nd pi-
ano) at the resolution of a half beat, as shown in Figure 2. 

 
Figure 2. An illustration of performance sampling. 

To be more specific, if a note’s starting time aligns 
with a half beat and its inter-onset-interval (IOI) is equal 
to or greater than one beat, we replace the note by a series 
of eighth notes, each having the same pitch, dynamic, and 
duration-to-IOI ratio as the original note. Note that we 
still play the notes as originally written; the sampled rep-
resentation is only for learning and prediction. 

3.3 Input Features Design 

To show the design of !!, we introduce an auxiliary nota-
tion ! = !!!, !!,… , !!  to denote the raw score infor-
mation and musical expression of the 1st piano and de-
scribe the mapping from ! to each component of !! in 
rest of this section. Note that !!  is based on sampled 
score and performance. 

3.3.1 Score Features 

High Pitch Contour:  For the chords within a certain 
time window up to and including t, extract the highest-
pitch notes and fit the pitches by a quadratic curve. Then, 
high pitch contour for t is defined as the coefficients of 
the curve. Formally: 

!!
!!"! ≝ !argmin

!
!!!!!!!!"!!"#$! − !"#$! ! − ! + !

!
!

!!!
 

where p is a context length parameter and !"#$! is the 
quadratic function parameterized by !.  

Low Pitch Contour: Similar to high pitch contour, we 
compute !!

!"#
 for low pitch contour. 

Beat Phase: The relative location of t within a measure. 
Formally: 
BeatPhase! ≝ (!!!"#!MeasureLen)/MeasureLen 

3.3.2 The 1st Piano Performance Features 

Tempo Context: Tempi of the p closest notes directly 
before t. This is a timing feature on a relatively large time 
scale. Formally: 

TempoContext! ≝ !!!!!"#$%, !!!!!!!"#$%,⋯ , !!!!!"#$% !
 

Here, the tempo of a note is defined as the slope of the 
least-squares linear regression between the performance 
onsets and the score onsets of q preceding notes.  

Onsets Deviation Context: A description of how much 
the p closest notes’ onsets deviate from their tempo 
curves. Compared to the tempo context, this is a timing 
feature on a relatively small scale. Formally: 
OnsetsDeviationContext!
≝ !!!!!"#$%#&$'()%(*", !!!!!!!"#$%#&$'()%(*",⋯ , !!!!!"#$%#&$'()%(*" !

 

Duration Context: Durations of the p closest notes di-
rectly before t. Formally: 

DurationContext!! ≝ !!!!!"#, !!!!!!!"# ,⋯ , !!!!!"# !
 

Dynamic Context: MIDI velocities of the p closest notes 
directly before t. Formally: 

DynamicContext!! ≝ !!!!!"# , !!!!!!!"# ,⋯ , !!!!!"# !
 

The input feature, !!, is a concatenation of the above 
features. We have also tried other features and mappings 
(e.g., rhythm context, phrase location, and down beat), 
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and finally picked the ones above through experimenta-
tion. 

4. SPECTRAL LEARNING PROCEDURE 

To learn the model, we use a spectral method, which is 
rooted in control theory [24] and then further developed 
in the machine learning field [2]. Spectral methods have 
proved to be both fast and effective in many applications 
[3][4]. Generally speaking, a spectral method learns hid-
den states by predicting the performance future from fea-
tures of the past, but forcing this prediction to go through 
a low-rank bottleneck. In this section, we present the 
main learning procedure with some underlying intuitions, 
using the notation of Section 3.1.  

Step 0: Construction of Hankel matrices 

We learn the model in parallel for fast computation. In 
order to describe the learning procedure more concisely, 
we need some auxiliary notations. For any time series 
! = [!!, !!,… , !!], the “history” and “future” Hankel ma-
trices are defined as follows: 

!! ≝
!! … !!!!
⋮ ⋱ ⋮
!!
!

… !!!!!!!
, !! ≝

!!
!!!

… !!!!!
⋮ ⋱ ⋮
!! … !!!!

 

Also, the “one-step-extended future” and “one-step-
shifted future” Hankel matrices are defined as follows:  

!!! ≝
!!
!!!

… !!!!!
⋮ ⋱ ⋮

!!!! … !!
, !!! ≝

!!
!!!

… !!!!!!!
⋮ ⋱ ⋮

!!!! … !!
 

Here, d is an even integer indicating the size of a sliding 
window. Note that corresponding columns of !! and !! 
are “history-future” pairs within sliding windows of size 
d; compared with !!!, !!! is just missing the first row. We 
will use the Hankel matrices of both U and Y in the fol-
lowing steps. 

Step 1: Oblique projections 

If the true model is LDS, i.e., everything is linear Gaussi-
an, the expected future observations can be expressed lin-
early by history observations, history inputs, and future 
inputs. Formally: 

!(!!|!! ,!! ,!!) = [!!! !!!! !!!!] !
!!
!!
!!

!!!!!!!!!(3) 

Here, ! = [!!! !!!! !!!!]  is the linear coefficient that 
could be solved by: 

! = !!! !!!! !!!! = !!
!!
!!
!!

!

!!!!!!!!!!!!!!!!!(4) 

where †  denotes the Moore-Penrose pseudo-inverse. 
However, since in a real-time scenario the future input, 
!!, is unknown, we can only partially explain future ob-
servations based on the history. In other words, we care 

about the best estimation of future observations but just 
based on the history observations and inputs. Formally: 

!! !≝ !!
!!
!!
0

= !!! !!!! !0
!!
!!
0

!!!!!!!!!!!!!!(5) 

where !! !is referred to as the oblique projection of !! 

“along” !! and “onto” 
!!
!! . In this step, we also use the 

same technique to compute!!!! and just throw out its first 
row to obtain !!!. 

Step 2: State estimation by singular value decomposi-
tion (SVD)  

If we knew the true parameters of the LDS, the oblique 
projections and the hidden states would have the follow-
ing relationship: 

!! = !!!! ≝ !
!
!"
⋮

!!!!!!
!!
!!!!

, !!
!!!
,… !, !!!!! !!!!!!!(6) 

!!! = !!!!! ≝
!
!"
⋮

!!!!!!
!!
!!!!

, !!
!!!
,… !, !!!!!!! !!!!(7) 

Intuitively, the information from the history observa-
tions and inputs “concentrate” on the nearest future hid-
den state and then spread out onto future observations. 
Therefore, if we perform SVD on the oblique projections 
and throw out small singular values, we essentially en-
force a bottleneck on the graphical model representation, 
learning compact, low-dimensional states. Formally, let 

!! = !Λ!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(8) 
and delete small numbers in Λ and corresponding col-
umns in ! and !. Since LDS is defined up to a linear 
transformation, we could estimate the hidden states by: 

!! = !Λ
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 9  

!! = !!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(10) 
!!!! = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(11) 

Step 3: Parameter estimation 

Once we have estimated the hidden states, the parameters 
can be estimated from the following two equations: 

 !!!! = !!! + !!!! + !!!!!!! (12) 
 !! = !!! + !!! + !!!!!!! (13) 

Here, !!  and !!  are the 1st rows of !!  and !! , i.e., 
!! = !!

!!!!
, !!

!!!
,… , !!!!! , !! = !!

!!!!
, !!

!!!
,… , !!!!! . 

Similarly, !!!  is the 1st row of !!! , i.e., 
!!! = !!

!!!!
, !!

!!!
,… , !!!!!!! . 

In summary, the spectral method does three regres-
sions. The first two estimate the hidden states by oblique 
projections and SVD. The third one estimates the parame-

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 819



  
 

ters. The oblique projections can be seen as de-noising 
the latent states by using past observations, while the 
SVD adds low-rank constraints. As opposed to maximum 
likelihood estimation (MLE), the spectral method is a 
method-of-moments estimator that does not need any 
random initialization or iterations. Also note that we are 
making a number of arbitrary choices here (e.g., using 
equal window sizes for history and future), not attempt-
ing to give a full description of how to use spectral meth-
ods. (See Van Overschee & De Moor’s book [24] for the 
details and variations of the learning methods.) 

5. EXPERIMENTS 

5.1 Dataset 

We created a dataset [27] that contains three piano duets: 
Danny Boy, Serenade (by Schubert), and Ashokan Fare-
well. All pieces are in MIDI format and contain two parts: 
a monophonic 1st piano part and a polyphonic 2nd piano 
part. Each piece is performed 35 to 42 times in different 
musical interpretations by 5 to 6 pairs of musicians. 
(Each pair performs each piece of music 7 times.) 

5.2 Methods for Comparison  

We use three methods for comparison: linear regression, 
neural network, and the timing estimation often used in 
automatic accompaniment systems [6]. The first two 
methods use the same set of features as in the spectral 
methods, while the 3rd method does not contain any learn-
ing procedure and is considered as the baseline. 

Linear regression: Referring to the notation in Section 
3, the linear regression method simply solves the follow-
ing equation: 

! = !"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 14  

Like the LDS, this method uses the performance of 1st 
piano to estimate that of the 2nd piano, but it does not use 
any hidden states or attempt to enforce self-consistency in 
the musical expression of the 2nd pianist’s performance. 

Neural network: We use a simple neural network with a 
single hidden layer. The hidden layer consists of 10 neu-
rons and uses rectified linear units (ReLUs) to produce 
non-linearity; the single output neuron is linear. Denoting 
the activation of the hidden units by Z, the neural network 
represents the following relationship between U and Y: 

 ! = ! !!! + !! ! 15  
 ! = !!! + !!!!!!!!! (16) 

where 

! ! = 0, ! < 0
!, ! ≥ 0 !!!!!!!!!!!!!!!!!!!!!!!!!!! 17  

The neural network is trained by the minibatch stochastic 
gradient descent (SGD) algorithm, using the mean abso-
lute error as the cost function. The parameters of the neu-
ral network (W1, b1, W2, b2) are initialized randomly, after 

which they are tuned with 30 epochs of SGD. Each mini-
batch consists of one rehearsal. The learning rate decays 
from 0.1 to 0.05 in an exponential fashion during the 
training. We report the average absolute and relative er-
rors across five runs with different random initializations 
on the test set.  

This method can be seen as an attempt to improve the 
linear regression method using non-linear function ap-
proximation, but it also doesn’t consider the self-
consistency in the musical expression of the 2nd pianist’s 
performance. 

Baseline: The baseline method assumes that local tempo 
and dynamics are stable. For timing, it estimates a linear 
mapping between real time and score time by fitting a 
straight line to 4 recently performed note onsets of the 1st 
piano. This mapping is then used to estimate the timing 
of the next note of the 2nd piano. For dynamics, it uses the 
dynamics of the last performed note of the 1st piano as the 
estimator. 

Figure 3. A local view of the absolute timing residuals of the 
LDS approach. 

 
Figure 4. A local view of the absolute dynamics residu-

als of the LDS approach. 

5.3 A Local View of the LDS Method 

Figure 3 and Figure 4 show a local view of the expressive 
timing and dynamics cross-validation result, respectively, 
for Danny Boy. (To have a clear view, we just compare 
LDS with the baseline here. We show the results of all 
the methods on all the pieces later.) For both figures, the 
x-axis represents score time and the y-axis represents ab-
solute residual between the prediction and human per-
formance. Therefore, small numbers mean better results. 
The curve with circle markers represents the baseline ap-
proach, while the curve with “x” markers represents the 
LDS approach trained with only 4 randomly selected re-
hearsals of the same piece performed by other perform-
ers. We can see that the LDS approach performs much 
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better than the baseline approach with only 4 training re-
hearsals, which indicates that the algorithm is both accu-
rate and robust. 

5.4 A Global View of All Methods 

The curves in the previous two figures are a measurement 
over different performances. If we average the absolute 
residual across an entire piece of music, we get a single 
number that describes a method’s performance for that 
piece. I.e., how much on average is the prediction of a 
method different from the human performance for each 
note? Figure 5 and Figure 6 show this average absolute 
residual for timing and dynamics, respectively, for all the 
methods and pieces combinations with different training 
set sizes. 

 
Figure 5. A global view of absolute timing residuals for 

all pieces and methods. (Smaller is better.)  

 

Figure 6. A global view of absolute dynamics residuals 
for all pieces and methods. (Smaller is better.) 

In both figures, the x-axis represents different methods 
with different training set sizes, the y-axis represents the 
average absolute residual, and different colors represent 
different pieces. For example, the grey bar above the la-
bel “NN-4” in Figure 5 is the average absolute timing re-
sidual for Serenade by using the neural network approach 
with 4 training rehearsals.  

We see that for expressive timing, both neural network 
and LDS outperform simple linear regression, and the 
LDS performs the best regardless of the music piece or 
training set size. This indicates that the constraint of pre-
ceding notes (self-consistency) captured by LDS is play-
ing an important role in timing prediction. For expressive 
dynamics, the difference between different methods is 
less significant. We see no benefit by using a neural net-
work. But when the training set size is small, LDS still 

outperforms linear regression. (Which is quite interesting 
because LDS learns more parameters than linear regres-
sion.) 

5.5 Performer’s Effect 

Finally, we inspect whether there is any gain by training a 
performer-specific model. In other words, we only learn 
from the rehearsals performed by the same pair of musi-
cians. Since each pair of musicians only performs 7 times 
for each piece, we randomly choose 4 from the 7 perfor-
mances to make a fair comparison against the results in 
Figure 5 and Figure 6. 

 
Figure 7. A global view of the performer-specific model. 

Figure 7 shows a comparison between performer-specific 
model and different-performer model. In both sub-graphs, 
the bars above “LDS-4same” are the results for perform-
er-specific model, while the bars above “LDS-4” are the 
same as in Figure 5 and Figure 6. Note that they are both 
cross-validation results and the only difference is the 
training set. We see that the performer-specific model 
achieves better results, especially when the different-
performer model is not doing a good job. 

6. CONCLUSIONS AND FUTURE WORK 

In conclusion, we have applied a spectral method to learn 
the interactive relationship in expressive piano duet per-
formances from multiple rehearsals. Compared to other 
methods, we have made better predictions based on only 
4 rehearsals, and we have been able to further improve 
the results using a performer-specific model. Our best 
model is able to shrink the timing residual by nearly 60 
milliseconds and shrink the dynamic residual by about 8 
MIDI velocity units compared to the baseline algorithm, 
especially when the baseline algorithm behaves poorly. 

In the future, we would like to incorporate some non-
linear function approximations with the current graphical 
representation of the model. An ideal case would be to 
combine the dynamical system with a neural network, 
which calls for new spectral learning algorithms. Also, 
we would like to be more thorough in the evaluations. 
Rather than just inspecting the absolute difference be-
tween computer-generated performance and human per-
formances, we plan to also compare computed-generated 
results with typical variation in human performances and 
use subjective evaluation. 
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