IMPROVING MIDI GUITAR’S ACCURACY WITH NMF AND NEURAL NET

Masaki Otsuka and Tetsuro Kitahara
Graduate School of Integrated Basic Sciences, Nihon University
{masaki, kitahara}@kthrlab. jp

ABSTRACT

In this paper, we propose a method for improving the accu-
racy of MIDI guitars. MIDI guitars are useful tools for var-
ious purposes from inputting MIDI data to enjoying a jam
session system, but existing MIDI guitars do not have suf-
ficient accuracy in converting the performance to an MIDI
form. In this paper, we make an attempt on improving
the accuracy of a MIDI guitar by integrating it with an
audio transcription method based on non-negative matrix
factorization (NMF). First, we investigate an NMF-based
algorithm for transcribing guitar performances. Although
the NMF is a promising method, an effective post-process
(i.e., converting the NMF’s output to an MIDI form) is a
non-trivial problem. We propose use of a neural network
for this conversion. Next, we investigate a method for inte-
grating the outputs of the MIDI guitar and NMF. Because
they have different tendencies in wrong outputs, we take
an policy of outputting only common parts in the two out-
puts. Experimental results showed that the F-score of our
method was 0.626 whereas those of the MIDI-guitar-only
and NMF-and-neural-network-only methods were 0.347
and 0.526, respectively.

1. INTRODUCTION

A MIDI guitar, which outputs the user’s performance data
into the MIDI format in real time, is useful for guitarists to
engage in various music activities such as inputting MIDI
data into a computer and enjoying the use of a jam session
system. However, the accuracy of MIDI guitars is not as
high as a MIDI keyboard because the MIDI guitar detects
the strings’ vibration by analyzing the temporal changes in
the magnetic field around the strings.

There have been many attempts made to transcribe gui-
tar performances [1-3,5,8-10, 12]. Arimoto et al. remade
the PreFEst method, originally developed by Goto [4],
for a guitar based on physical constraints on fingering
forms [1]. Yazawa et al. also focused on latent harmonic
allocation for a guitar based on physical constraints in fin-
gering form [12]. Barbancho et al. furthermore investi-

(© Masaki Otsuka and Tetsuro Kitahara.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Masaki Otsuka and Tetsuro Kita-
hara. “Improving MIDI Guitar’s Accuracy with NMF and Neural Net”,
16th International Society for Music Information Retrieval Conference,
2015.

gated these physical constraints [2]. Fiss et al. constructed
a system that transcribes a guitar performance as a tabla-
ture [3]. This system estimates not only the notes that are
played, but it also estimates how the notes are played (i.e.,
string number and fret number) through audio signal pro-
cessing. O’Grady et al. considered both the use of non-
negative matrix factorization (NMF) [7] and a hardware
improvement of a MIDI guitar for accurate guitar perfor-
mance transcription [8]. Harquist also proposed a real-time
guitar transcription method using NMF [5]. In addition,
there have been attempts to improve guitar performance
transcription by integrating audio signal processing with
computer vision [9, 10].

In this paper, we focus on improving the accuracy of
MIDI guitars by integrating them with audio signal pro-
cessing technologies (especially NMF). Almost all MIDI
guitars have an audio output jack for connecting to a guitar
amplifier as well as a MIDI output. By connecting this au-
dio output jack to a PC’s audio input jack, the guitar’s au-
dio signal can be analyzed. By inputting the guitar’s MIDI
output to that PC, the audio result and the guitar’s MIDI
output can be integrated. Thus, introducing audio signal
processing to a MIDI guitar does not require any special
equipment or hardware improvements. O’Grady et al. fo-
cused on a similar technique as we employ here but their
method involved hardware improvements [8]; our method-
ology requires no hardware improvement. Using computer
vision [9, 10] is an interesting approach, but it requires in-
stalling a camera and it may restrict the player’s motions.
Using physical constraints in fingering forms [1, 2, 12] is
a common and promising approach, but we dare to adopt
the approach of exploring how much we can improve the
accuracy without using physical constraints. Physical con-
straints can be applied to our method for further improve-
ments in the future.

The rest of this paper is organized as follows: In Sec-
tion 2 we propose a method for transcribing guitar perfor-
mance using NMF. In Section 3 we describe a method for
integrating NMF-based transcription outputs and the MIDI
guitar’s outputs. In Section 4 we report our experimental
results. Finally, we conclude the paper in Section 5.

2. AUDIO-TO-MIDI CONVERSION WITH NMF

NMF is a technique for decomposing a matrix V' into the
product of two matrices W and H, thatis, V = WH,
where W is a basis matrix and H is a gain matrix. A typical

413

414

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

usage of NMF in automatic music transcription is to apply
NMF to a spectrogram. Then, the basis matrix W is an
array of N column vectors w,, that represent the spectrum
of each note n; the gain matrix is an array of NV row vectors
h,, that represent a temporal sequence of the gain for the
basis vector w,,. Because the gain vector h,, represents an
approximation of a temporal sequence of the amplitude for
the note n, the onset and offset times for a note n can be
identified by thresholding h,,; steep rises in the time series
{hn.+ }+ represent onsets and steep drops represent offsets.

However, there are two problems with this technique.
The first one is that standard NMF is applicable only af-
ter the entire spectrogram is obtained. This fact means
that standard NMF cannot be used for real-time process-
ing. The second problem is that it is difficult to determine a
universally appropriate threshold because the actual gains
vary according to playing style, strings, and other factors.
Thus, the issues to be resolved here can be summarized as
follows:

Issue 1 How to apply NMF to real-time processing

Issue 2 How to determine an appropriate threshold de-
pending on the playing style, strings, etc.

In this paper, we resolve these issues as follows:

Solution 1 We ask the user to play a chromatic scale (from
the lowest note to the highest note) for each string in
advance and apply NMF to this preliminary perfor-
mance. We assume that the spectrum of each note
is similar enough between the preliminary and tar-
get performances’ if the same person plays the same
instrument in the same way. Under this assumption,
the basis matrix calculated from the preliminary per-
formance is then used to obtain the gain vectors for
the target performance.

Solution 2 We introduce one more preliminary perfor-
mance and adaptively determine the threshold. This
preliminary performance has a similar musical fea-
ture to the target performance, and we ask the user
to play the phrase specified by the system accurately
(thus, the system knows the ground truth). Adap-
tation of the threshold using these data is approxi-
mately equivalent to learning a neural network. We
therefore learn how high the gain is and how steeply
the gain rises at onsets with a neural network and use
this neural network for detecting onsets.

In the rest of this section, we first describe a method in
which only Solution 1 is introduced (we call this method
the baseline method). Next, we introduce Solution 2 to this
baseline method.

! The target performance refers to the performance to be converted to
the MIDI format.

2.1 Baseline method — Introducing Solution 1 only

Stage 1: Estimating basis matrix from preliminary
performance

After the user plays all chromatic notes successively for
each string k (called the Ist preliminary performance), the
spectrogram V}, is calculated using the short-term Fourier
transform with a 4096-point Hamming window shifted by
10 ms (we suppose 44.1-kHz sampling). Then, the spectro-
gram V}, is decomposed into the basis matrix W}, and the
gain matrix Hj using NMF. To avoid that spectral peaks
for different notes are mixed into a single basis vector, we
prepare 35 basis vectors for each string even though each
string has 23 notes. We then obtain 23 basis vectors by
merging pairs of basis vectors that have a high cosine sim-
ilarity.

Stage 2-1: Estimating gain vectors for target
performance

The user plays the target performance (i.e., the perfor-
mance to be converted to the MIDI format). As the user
plays, the power spectrum v; (where ¢ is time) is obtained
via the Fourier transform, and then the gain vector h, ;, for
each string k is calculated. The gain vector h, j, is defined
as hyp = W,;lv,,, where W}, is the basis matrix for the
string k, obtained in Stage 1. Because W}, is not a square
matrix in general, its inverse matrix cannot be calculated.
We therefore use a pseudo-inverse matrix [6] instead.

Stage 2-2: Generating MIDI messages by thresholding
gain vectors

After the gain vector h, j is calculated, MIDI messages
are generated. When the n-th element of h; j has a higher
value than the threshold hg but that of h;_; j does not
(that is, ht—1,kn < ho < Pt in), a MIDI Note On mes-
sage for the note number corresponding to fret n of string
k is generated. When hi_1 5 > ho > h¢gn, a MIDI
Note Off message is generated. When hy_2 i, > hi—1 k.n
and hy—1 g < Mg on,evenif both hy_y j », and hy i ,, are
higher than hg, we can consider that a note is played again
before the previous note is decayed enough. If this is the
case, a Note Off message is generated at time £ — 1 and a
Note On message at time .

2.2 Introducing Solution 2

The method discussed above involves thresholding but the
appropriate threshold depends on various factors including
the individual instrument, the strength of picking, and the
characteristics of the player. In practice, dynamic adjust-
ment of the threshold is not straightforward. We therefore
add one more preliminary performance (called the 2nd pre-
liminary performance) and adjust the threshold using this
2nd preliminary performance under the assumption that a
correct transcription of the 2nd preliminary performance
has been given. Let h; j ,, be the gain in the 2nd prelimi-
nary performance at time ¢, string k, and fret n. Whether
t is an onset time at fret n of string £ in this peformance

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

Hidden Layer

Input Layer ’ Output Layer
hk,t,n y
1,11
"V
N "f\

v,
)V
W
2

hk,t,n - hk,t—2,n

Figure 1. Neural network that we employ

can be identified from the correct transcription, then it is
represented as follows:

s 1 (tis an onset time at fret n of string k)
bk 0 (else)

What to be solved here is to find hg such that hy j , > ho
iff s¢rn = 1. This ko can be estimated by minimizing
E(hy) = Zt,k,n{g(_ho + hi kn) — Stk)2, Where ¢(z)
is the sigmoid function, that is, ¢(z) = 1/(1 + e~ %). It
is equivalent to training a neural network. The temporal
differential of h ., is also considered important for onset
detection, so we obtain a neural network shown in Figure
1 by adding such features.

Stage 1: Estimating basis matrix from 1st preliminary
performance

In the same way as Stage 1 of the baseline method, the 1st
preliminary performance is played by the user, and then
the basis matrix W}, for each string k is calculated.

Stage 2-1: Estimating gain vectors for 2nd preliminary
performance

The user plays the 2nd preliminary performance. As he/she
plays, the power spectrum v; and the gain vector by, =
W, Ly, for each string k are calculated every 10 ms in the
same way as in Stage 2-1 of the baseline method.

Stage 2-2: Learning neural network

For each element h; j , of hyy, the following steps are
performed if Ay 1 r, is a peak:

1. Features are extracted from A, j , and are set to the
Vector &y i, . In the current implementation, the fol-
lowing feature vector is used:

T kon = (ht,lc,m ht,k,n*ht—zk,m ht,k,n*ht/.,k,n%

where ¢’ is the time of the last valley before ¢
in {h; gn}r=0,. 1 in other words, the maximum
value of 7 (< t) such that h, ., < hr_1, and
hT,k,n < hT+1,k,n~

2. The supervision s; i , is defined as described above.

3. The neural networks shown in Figure 1 are trained
using backpropagation such that the difference be-
tween the value of the output node y; 1 ,, and the su-
pervison Sy i, , is minimized. We prepare and train
different neural networks for different string, but we
use the same neural network for different frets of the
same string due to a limited number of training data.
Each neural network has a single hidden layer con-
sisting of three to ten nodes (we try all cases and
present the best result).

In the training, the number of data with supervisions of
1 and O are balanced.

Stage 3-1: Estimating gain vectors for target
performance

During the target performance, the spectrum and the gain
vector are calculated every 10 ms in the same way as in
Stage 2-1.

Stage 3-2: Generating MIDI messages based on neural
network

The feature vector x; 1 ,, is calculated in the same way as
in Stage 2-2. Then, the value of the output node y; 1, in
the trained neural network is calculated for each time, each
string, and each fret. When this value is higher than 0.5, a
MIDI Note On message for the corresponding note number
is generated.

Theoretically, offsets can also be learned and estimated
with a neural network. However, for simplicity, offsets are
detected in the same way as in the baseline method.

3. INTEGRATION OF MIDI GUITAR AND NMF

In this section, we describe a method for integrating the
outputs of a MIDI guitar and the method discussed in Sec-
tion 2.2. When we discuss how to integrate two differ-
ent outputs, we should consider a tradeoff between recall
rates and precision rates. We believe that precision is more
important in our task because false positives (MIDI mes-
sages generated but actually not played) directly result in
dissonant sound; false negatives (MIDI messages not gen-
erated but actually played) do not. We therefore adopt an
approach of outputting the common part of the two out-
puts.

Stages 1 to 3-2

We perform the same process as in Section 2.2 is per-
formed until Stage 3-2. Although in the method in Section
2.2 the value of the output node ¥, 1. ,, is thresholded, it is
not thresholded here because y; 1 ., is used in Stage 4.

Stage 4: Integration with MIDI guitar outputs

From the output of the MIDI guitar, we obatin the follow-
ing value:

415

416

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

1 — a (the note corresponding to fret
Mt ke = n of string k is being played.)
o (else)

“(A note is) being played” means the state in which the
MIDI guitar had output a MIDI Note On message for this
note number but has not yet output a MIDI Note Off mes-
sage. Note that it represents the MIDI guitar’s estima-
tion, so it may not agree with whether that note is actually
played. In the equation above, « is a parameter and is set
to 0.3 in the current implementation.

Then, 2z k. n = Mtk nYt kn is calculated. The guitar
can play only one note at each string at the same time. As
a result,

Mg, = Argmax 2¢ g n
n

is calculated and the fret 7, ;, of string k is considered to
be played at time ¢. Then, a MIDI Note On message is
generated for the corresponding note number. However, no
fret is considered to be played on string k at time ¢ when
every element of {z; 1, , }», is lower than a certain threshold
(0.3 in the current implementation).

4. EXPERIMENTS
4.1 Experiment 1 — Use of neural network
Experimental conditions

To confirm the effect of the use of the neural network de-
scribed in Section 2.2, we conducted an experiment about
converting guitar performances to the MIDI format. We
used a Roland GK-3 installed into a Stratocaster as a MIDI
guitar with a guitar synthesizer (Roland GR-55). The first
author of this paper played 79 four-measure funk rhythmic
phrases taken from a guitar phrase book [11]. Of these 79
phrases, those shown in Figures 2 and 3 were used for the
2nd preliminary performance. The remaining phrases were
used for test data. We attempted the following three cases:

Case 1 Using only Figure 2,
Case 2 Using only Figure 3, and
Case 3 Using both Figures 2 and 3

for the 2nd preliminary performance. We used neural net-
works that had three to ten nodes in the hidden layer and
will present only the best result.

Experimental results

The results are listed in Table 1. The number of hidden
nodes was three. For brevity, we list the accuracy for each
chapter instead of each phrase in [11]. In [11], phrases are
divided into 16 chapters according to their playing styles,
and each chapter includes several phrases. Whereas the
F-score for the baseline method was 0.516 on average, the
F-score for the proposed method was 0.526 in Case 3. This
difference is not very large but one must consider that the
proposed method acquired the best threshold because the

—

—

—

| | o

= =m m = =m m

— A = L [==aliea

— =n m =

ri | = m | o oo
=] == om g = = om g
== -

—

== =m m —— =m m ———

|

—

—

—

3 12 0]

bbb

Figure 3. Phrase 2 for the 2nd preliminary performance

listed result for the baseline method was the best one in
given various thresholds.

Figure 4 shows an example of the experimental results.
While the baseline method generated many false positives,
especially in the first measure, most of these false positives
were eliminated by the proposed method. Thus, the preci-
sion rate was improved from 0.659 to 0.692. However,
some positives were eliminated so the recall rate decreased
slightly (from 0.562 to 0.556).

Figure 5 shows another example. Whereas the base-
line method generated many false negatives from the be-
ginning to the end, such false negatives were eliminated
by the proposed method. The precision rate was improved
from 0.465 to 0.661.

4.2 Experiment 2 — Integration
Experimental conditions

To confirm the effect of the integration described in Sec-
tion 3, we conducted on audio-to-MIDI conversion of gui-
tar performances using the MIDI guitar only (MGT), the
NMF and neural network only (NMF+NN; Section 2.2),
and their integration (INT; Section 3). We used the same
data as Experiment 1. For the 2nd preliminary perfor-
mance, we used both Figures 2 and 3 (Case 3). Also in
this experiment, we used neural networks that had three to
ten nodes in the hidden layer, and will present only the best
result for each condition.

Experimental results

The results are listed in Table 2. The numbers of hidden
nodes were three for NMF+NN and nine for INT. Whereas
the precision rates for MGT and NMF+NN were 0.258 and
0.513, respectively, the precision rate improved to 0.660

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015 417
Table 1. Result of Experiment 1 (R: recall rates, P: precision rates, F': F-score)
Baeline method Proposed method
(Simple thresholding) Case 1 Case 2 Case 3
Chapters | R P F R P F R P F R P F

1 0.640 0.509 0.552 | 0.636 0.422 0.503 | 0.642 0376 0473 | 0.611 0.458 0.521

2 0.647 0.489 0.555 | 0.624 0.483 0.538 | 0.661 0.490 0.563 | 0.635 0.574 0.595

3 0.579 0.496 0.531 | 0.468 0.483 0.472 | 0.603 0.502 0.541 | 0.525 0.560 0.539

4 0.536 0.510 0.519 | 0.554 0.509 0.529 | 0.576 0.479 0.521 | 0.562 0.524 0.541

5 0.731 0.557 0.585 | 0.759 0.399 0.503 | 0.809 0.431 0.550 | 0.838 0.437 0.561

6 0.538 0.410 0.465 | 0.531 0459 0491 | 0.581 0427 0491 | 0.539 0.460 0.496

7 0.580 0.601 0.564 | 0.562 0.624 0.569 | 0.640 0.569 0.590 | 0.636 0.668 0.635

8 0.528 0.577 0.540 | 0.499 0.481 0.488 | 0.544 0.520 0.528 | 0.518 0.536 0.525

9 0401 0.489 0.431 | 0415 0418 0413 | 0425 0423 0422 | 0416 0451 0.430

10 0464 0.403 0429 | 0476 0.346 0.397 | 0472 0.326 0.376 | 0.442 0350 0.382

11 0432 0.621 0.505 | 0.445 0.621 0.510 | 0.466 0.589 0.516 | 0.470 0.643 0.535

12 0.313 0.600 0.411 | 0.343 0.502 0.407 | 0.373 0429 0.399 | 0.399 0.567 0.468

13 0.621 0.527 0.541 | 0.568 0.505 0.504 | 0.652 0.522 0.559 | 0.611 0.541 0.543

14 0412 0442 0422 | 0395 0425 0407 | 0456 0425 0436 | 0441 0473 0451

15 0.576 0.407 0.474 | 0.460 0.362 0.384 | 0.558 0.521 0.463 | 0.520 0.554 0.418
Final 0475 0413 0422 | 0480 0400 0424 | 0485 0377 0415 | 0484 0416 0.437
Average | 0.530 0.503 0.516 | 0.513 0.465 0.488 | 0.559 0.463 0.506 | 0.540 0.513 0.526

; o e
e e
o o, ™ ==

Figure 4. Example of Experiment 1 (Track 47-2)

via the integration. This fact arises because many false
positives were eliminated in INT. The recall rate for INT
was 0.595; that for MGT was 0.528. The recall rate im-
proved because sequential short notes were fused in MGT,
as will be illustrated below, but such errors rarely appeared
in INT. Accordingly, the F-score for INT was 0.626; the
F-scores for MGT and NMF+NN were 0.347 and 0.526,
respectively.

Focusing on the results for each chapter, we can see that
the recall rates for 11 chapters (Chapters 1, 2, 3,4, 6, 7, 8,
10, 12, 13, and final) was improved compared with MGT.
However, for other chapters (Chapters 5, 9, 11, 14, and
15) the recall rates decreased. Chapter 5 in [11] features
monophonic phrases but the 2nd preliminary performance
did not include monophonic phrases. This mismatch is
why the recall rate decreased in Chapter 5. The phrases
in Chapters 9, 14, and 15 also included monophonic notes.

On the other hand, the precision rate improved for every
chapter compared with MGT. In particular, the precision
rate improved by more than 0.5 for Chapters 5, 11, and 13.

Fusion of sequential short notes

R

o =
o= = =

Figure 5. Example of Experiment 1 (Track 09-1)

Figure 6 shows an example of the results. While MGT
generated false positives in the whole phrase, such false
positives were eliminated in INT as described above. Thus,
the precision rate significantly improved from 0.48 (MGT)
to 0.83 (INT). At the same time, however, some true pos-
itives were also eliminated. On the other hand, MGT
caused errors in the fusion of sequential short notes; INT
reduced such errors. Eventually, the recall rate increased
from 0.60 (MGT) to 0.67 (INT).

Figure 7 shows another example. Similar to the data
shown in Figure 6, MGT resulted in errors due to the fu-
sion of sequential short notes at the first beat of every mea-
sure. In INT, such errors were corrected. Thus, the recall
rate was improved from 0.61 (MGT) to 0.80 (INT). In ad-
dition, MGT generated false positives from the second half
of the first measure to the last measure; these false positives
were eliminated in INT. Thus, the precision rate improved
from 0.25 (MGT) to 0.78 (INT). Accordingly, the F-score
improved from 0.36 (MGT) to 0.79 (INT).

418 Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

Table 2. Result of Experiment 2 (R: recall rates, P: precision rates, F': F-score)

MIDI guitar (MGT) NMF+NN Integration (INT)

Chapters | R P F R P F R P F
1 0.668 0.445 0.513 | 0.611 0.458 0.521 | 0.758 0.589 0.660
2 0.630 0.230 0.338 | 0.635 0.574 0.595 | 0.717 0.648 0.679
3 0.380 0.310 0.327 | 0.525 0.560 0.539 | 0.763 0.613 0.679
4 0.505 0.233 0.313 | 0.562 0.524 0.541 | 0.508 0.670 0.575
5 0.805 0.110 0.195 | 0.838 0.437 0.561 | 0.731 0.643 0.675
6 0.583 0.187 0.287 | 0.539 0.460 0.496 | 0.649 0.660 0.641
7 0.493 0.205 0.278 | 0.636 0.668 0.635 | 0.597 0.660 0.606
8 0.503 0.215 0.295 | 0.518 0.536 0.525 | 0.593 0.644 0.602
9 0.533 0.345 0408 | 0.416 0.451 0.430 | 0.398 0.603 0.469
10 0.463 0.190 0.267 | 0.442 0.350 0.382 | 0.732 0.545 0.623
11 0.425 0.345 0.375 | 0470 0.643 0.535 | 0.378 0.825 0.493
12 0.310 0.260 0.285 | 0.399 0.567 0.468 | 0.488 0.708 0.574
13 0.438 0.183 0.250 | 0.611 0.541 0.543 | 0.640 0.674 0.644
14 0.555 0.280 0.360 | 0.441 0473 0451 | 0475 0.776 0.550
15 0.652 0.354 0.434 | 0.520 0.554 0418 | 0.532 0.695 0.517
Final 0.505 0.238 0.313 | 0.484 0.416 0.437 | 0.555 0.607 0.542
Average | 0.528 0.258 0.347 | 0.540 0.513 0.526 | 0.595 0.660 0.626

prp—— nmm = e —
o oD e { -

‘ F:0.79 =m =Sequential short notes e = D

False negatives

Figure 6. Example of Experiment 2 (Track 47-2)

- = == = =

Figure 7. Example of Experiment 2 (Track 09-2)

We will therefore investigate a reasonable tradeoff between
these time investments and the outcome. In addition, we
will assess the latency in outputting MIDI messages be-

5. CONCLUSION

A MIDI guitar is a promising tool for guitarists and there-

fore is being sold by electronic musical instrument man-
ufacturers. However, the audio-to-MIDI conversion accu-
racy of MIDI guitars is still insufficient. In particular, the
accuracy is very low for phrases including many brushing
notes like those used in our experiments. To improve this
accuracy, we attempted to integrate the output of the MIDI
guitar and the signal processing result of the guitar’s audio
output. Our experimental results showed a significant im-
provement in accuracy: the F-score was 0.626 compared
with 0.347 for the MIDI guitar only.

Although this improvement is significant, we need to
improve the accuracy even more to ensure practical use of
MIDI guitars. An idea for further improvement may be
increasing quantity of training data for the neural network
(i.e., the 2nd preliminary performance). However, increas-
ing these data will result in an increase in the user’s la-
bor and the time required for learning the neural network.

cause this latency is an important factor in the use of MIDI
guitars as musical instruments.

Acknowledgment: This work was supported by JSPS KAK-
ENHI Grant Number 26240025. Also, we thank the members of
this JSPS KAKENHI project including Prof. Shigeki Sagayama
and Prof. Gen Hori for their fruitful suggestions.

6. REFERENCES

[1] K. Arimoto, T. Fujishima, and M. Goto. A multiple FO es-
timation method using specific harmonic structure models
for guitar performances (in Japanese). In Proc. 2006 Autumn
Meeting of Acoustic Society of Japan, pages 585-586. 2006.

[2] A. M. Barbancho and A. Klapuri. Automatic transcription of
guitar chords and fingering from audio. In /EEE Transactions
on Audio, Speech, and Language Processing, volume 20,
pages 915-921. 2012.

[3] X. Fiss and A. Kwasinski. Automatic real-time electric gui-

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

419

(4]

[5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

tar audio transcription. In Proc. IEEE-ICASSP 20111, pages
373-376.2011.

M. Goto. A real-time music-scene-description system:
Predominant-FO estimation for detecting melody and bass
lines in real-world audio signals. Speech Comm., 43(4):311-
329, 2004.

J. Hartquist. Real-time musical analysis of polyphonic guitar
audio. Master’s thesis, The Faculty of California Polytechnic
State University, 2012.

A. B.Israel and T. N. E. Greville. Generalized Inverses: The-
ory and Applications. Springer, 2003.

D. D. Lee and H. S. Seung. Learning the parts of objects
with nonnegative matrix factorization. Nature, 401:788-791,
1999.

P. D. O’Grady and S. T. Rickard. Automatic hexaphonic
guitar transcription using non-negative constraints. In Proc.
IEEE-ISSC 2009. 2009.

M. Paleari, B. Huet, A. Schutz, and D. Slock. A multimodal
approach to music transcription. In Proc. IEEE-ICIP 2008,
pages 93-96, 2008.

T. Yamagami and K. Itou. A bimodal music dictation method
for composition support by using guitar performance video
(in Japanese). In Proc. of IPSJ National Convention 2014,
volume 2, pages 365-366, 2014.

K. Yamaguchi. 16 beat ga minitsuku! Funk de oboeru otona
no cutting (in Japanese). Rittor Music, 2013.

K. Yazawa, K. Itoyama, and H. G. Okuno. Automatic tran-
scription of guitar tablature from audio signals in accordance
with player’s proficiency. In Proc. IEEE-ICASSP 2014, pages
3146-3150. 2014.

