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ABSTRACT

Visualizations of music databases are a popular form of
interface allowing intuitive exploration of music catalogs.
They are often based on lower dimensional projections of
high dimensional music similarity spaces. Such similarity
spaces have already been shown to be negatively impacted
by so-called hubs and anti-hubs. These are points that ap-
pear very close or very far to many other data points due
to a problem of measuring distances in high-dimensional
spaces. We present an empirical study on how this phe-
nomenon impacts three popular approaches to compute two-
dimensional visualizations of music databases. We also
show how the negative impact of hubs and anti-hubs can
be reduced by re-scaling the high dimensional spaces be-
fore low dimensional projection.

1. INTRODUCTION

Visualization via low dimensional projections is one way
to produce interfaces that allow navigation and access to
music data sets. A very popular and influential approach is
the islands-of-music metaphor [14], where representations
of similar music form islands on a two-dimensional dis-
play. Numerous variations of this approach have been pub-
lished within the music information retrieval (MIR) com-
munity (see e.g. [5, 9, 16, 24]). A recent trend towards
more holistic MIR approaches [18, 23] including human
computer interaction aspects is likely to increase interest
in visualization in the near future. State-of-the-art visu-
alization algorithms are said to be able to visualize high-
dimensional data [28]. Precisely for such high-dimensional
data a new aspect of the curse of dimensionality, the so
called hubness, has been discovered and described within
the MIR community [1, 8]. This paper investigates the im-
pact of hubness on visualization of high-dimensional mu-
sic similarity spaces. In an empirical evaluation of three
methods for dimensionality reduction the negative impact
of hubness is explored and it is shown how re-scaling of
the similarity spaces as a preprocessing step can greatly
improve the visualizations.
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2. RELATED WORK

Hubness is a general problem of learning in high-dimensional
space which has been discovered in MIR [1], but then gained
attention in a general machine learning context where it has
been discussed as a new aspect of the curse of dimension-
ality [15,20]. Hub objects appear very close to many other
data objects and anti-hubs very far from most other data
objects. The effect is related to the phenomenon of concen-
tration of distances and has been shown to have a negative
impact on many tasks including classification [15], near-
est neighbor based recommendation [3] and retrieval [21],
outlier detection [15] and clustering [19, 26].

Visualization of music similarity spaces via low dimen-
sional projections has a long tradition within MIR. Starting
from the influential islands-of-music approach [14,16], nu-
merous extensions and variations have been developed (see
e.g. [5, 9, 24]). Although different methods for dimension-
ality reduction have been explored, the most popular ap-
proach seems to be self-organizing maps [10]. Despite the
popularity of these interfaces based on lower dimensional
projections, it has not yet been clarified how hubness in-
fluences these visualizations. To the best of our knowl-
edge, there is only a single publication concerned with
the impact of hubness on visualization [6]. In an anal-
ysis of dimensionality reduction of three audio databases
to two dimensions using multidimensional scaling, the au-
thors show that projected data tends to be concentrated in
a single large cluster centered around the largest hub.

It is important to note that simple dimensionality reduc-
tion does not reduce hubness. On the contrary it has been
shown that only projections to very few dimensions, well
below the intrinsic dimensionality of a data set, are able
to reduce hubness, but at the cost of a loss of distance in-
formation [15]. On the other hand, results on re-scaling
methods to reduce hubness [20] show that it is possible
to decrease hubness without changing the intrinsic dimen-
sionality and therefore the information content of the data.
Thus a good approach to visualization of high dimensional
data might be to first re-scale to reduce hubness without
changing the intrinsic dimensionality, and then to apply di-
mensionality reduction to the re-scaled data.

3. DATA

For our experiments we used two standard music databases:
the “GTZAN” collection consisting of N = 1000 audio
tracks (each 30 s length) evenly spread over ten music gen-
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res [27]; the “ISMIR2004” 1 collection containing N =
1458 tracks of six genres, with full-length audio being avail-
able and exhibiting a highly imbalanced genre distribution
with classical music comprising almost half of the tracks.

We decided to compute timbre information from the au-
dio, since this is an integral part of many MIR systems and
at the same time has already been shown to be suscepti-
ble to hubness [3]. Every track is divided into overlapping
frames for which 20 MFCCs are being computed which
are modeled via a single Gaussian with full covariance
matrix. To compute a distance value between two Gaus-
sians the symmetrized Kullback-Leibler (SKL) divergence
is used [11]. This results in N ⇥ N distance matrices DI

and DG for the ISMIR and GTZAN data sets. Please note
that SKL is symmetric and non-negative, but does not ful-
fill the triangle inequality and therefore is not a full metric.

4. METHODS

In what follows we present three methods for dimension-
ality reduction (TSNE, SAMMON, SOM) and two meth-
ods to re-scale distance matrices in order to reduce hub-
ness (MP, SNN). In Section 5 we will use MP and SNN
as a preprocessing step before dimensionality reduction.
This gives nine different combination of methods to com-
pare: TSNE, MP TSNE, SNN TSNE, SOM, MP SOM,
SNN SOM, SAMMON, MP SAMMON, SNN SAMMON.
But first we present evaluation indices that will be used
to measure the performance achieved in original and re-
scaled data spaces.

4.1 Evaluation measures

Hubness (Sn): To characterize the strength of the hubness
phenomenon in a data set we use the so called hubness
measure [15]. This is based on the n-occurrences of points
x, which is the number of times x occurs in the n-nearest
neighbor lists of all other objects in the collection. Hub-
ness is then defined as the skewness of the distribution of
n-occurrences On:

Sn =
E

⇥

(On � µOn)3
⇤

�3
On

. (1)

A data set having high hubness produces few hub ob-
jects with very high n-occurrence and many anti-hubs with
n-occurrence of zero. This makes the distribution of n-
occurrences skewed with positive skewness indicating high
hubness. Previous results [22] show that values above 1.4
are problematic.
Nearest neighbor overlap (Lk): To quantify the degree to
which neighborhood relations are preserved we compute
the overlap between nearest neighbor lists in the high di-
mensional input space (NN(x)) and the low-dimensional
output space (NN(x̂)):

Lk =
1

N

X

i=1...N

|NN(x) \ NN(x̂)|/k. (2)

1 http://ismir2004.ismir.net/genre_contest/
index.htm

Nearest neighbor classification accuracy (Ck): We re-
port the k-nearest neighbor (kNN) classification accuracy
Ck using leave-one-out cross-validation, where classifica-
tion is performed via a majority vote among the k nearest
neighbors, with the class of the nearest neighbor used for
breaking ties.

4.2 Dimensionality reduction

Dimensionality reduction algorithms try to map high di-
mensional input data to lower dimensional output spaces
while preserving information of the topology of the input
space, i.e. preserving similarities or similarity orderings.
All three methods used in this study are based on optimiza-
tion algorithms that are initiated randomly and therefore
can give different solutions for different initializations. All
results reported in Section 5 are based on single runs since
repeated runs have shown that all three methods give com-
parable solutions even for different initializations. Please
note that the original and re-scaled distance matrices DI

and DG are normalized to have a smallest value of 0 and a
largest value of 1 and, if necessary, changed to similarities
before dimensionality reduction.
t-Stochastic Neighbor Embedding (TSNE): A particu-
larly successful algorithm for dimensionality reduction is
t-SNE [28]. It first converts similarities of high dimen-
sional points xi and xj into conditional probabilities pj|i
that xi and xj are neighbors given a Gaussian probability
density estimate centered at xi. It computes a similar prob-
ability qj|i for the low dimensional counterparts yi and yj

based on a Student-t density estimate. The mapping to the
lower dimension is then achieved by minimizing the sum
of the Kullback-Leibler divergences over all data points us-
ing gradient descent:

C =
X

i

KL(Pi||Qi) =
X

i

X

j

pj|i log
pj|i

qj|i
(3)

We used the implementation by Laurens van der Maaten 2

that accepts similarity matrices as input (function “tsne p”)
using standard settings as provided by the software and
1000 iterations for all experiments.
Sammon mapping (SAMMON): Sammon mapping [17]
does dimensionality reduction by minimizing the follow-
ing via steepest descent:

1
PN�1

i=0

P

j<i d(xi, xj)

N�1
X

i=0

X

j<i

(d(xi, xj) � d̂(x̂i, x̂j))2

d(xi, xj)

(4)
where d̂(x̂i, x̂j) is the distance in the output space that

corresponds to the distance d(xi, xj) in the input space and
N is the number of points to be mapped. We used the im-
plementation from the SOM Toolbox 3 for all experiments
with standard settings and 100 iterations.
Self Organizing Map (SOM): The SOM [10] is an unsu-
pervised neural network that visualizes high dimensional

2 http://lvdmaaten.github.io/tsne/
3 http://www.cis.hut.fi/projects/somtoolbox/
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data by mapping it to a two dimensional map grid. Data
points that are similar in the original high dimensional space
are mapped onto locations close to each other on the grid.
In essence the SOM consists of an ordered set of so called
map units ri, each of which is assigned a reference vector
(or model vector) mi in the high dimensional input space.
In an iterative learning procedure the model vectors mi are
adapted to the input data, very much like cluster centers
in a k-means clustering procedure. The main difference is
that model vectors corresponding to neighboring map units
ri are adapted together, based on a neighborhood weight-
ing function. This yields a topological organization of the
model vectors mi in the two dimensional output space.

For all our experiments we use SOMs with 40 ⇥ 40
output maps, thereby ensuring that we always have more
model vectors than input vectors which is advantageous
for using SOM for visualization (see [2] for more on the
usage of SOMs for clustering and visualization). We use
the NETLAB [12] SOM implementation with standard set-
tings for the learning parameters (initial neighborhood size
of 8 shrunk to 1 during an ordering phase lasting 50 itera-
tions, followed by 400 iterations of a convergence phase).
Since SOMs need data vectors and not distance matrices
as input data, we use the full rows of the distance matri-
ces as inputs (see e.g. [9, 13] for more detail or [22] for a
criticism of this rather crude but standard approach).

4.3 Reducing hubness

We introduce the two methods we will apply to reduce hub-
ness by using each method on the whole distance matrix
and computing re-scaled distances. Both methods aim at
repairing asymmetric nearest neighbor relations which are
a consequence of the presence of hubs. A hub y is the near-
est neighbor of x, but the nearest neighbor of the hub y is
another point a (a 6= x). This is because hubs are by defi-
nition nearest neighbors to very many data points but only
one data point can be the nearest neighbor to a hub.
Mutual Proximity (MP): MP reinterprets the original dis-
tance space so that two objects sharing similar nearest neigh-
bors are more closely tied to each other, while two ob-
jects with dissimilar neighborhoods are repelled from each
other. This is done by transforming the distance of two ob-
jects into a mutual proximity in terms of their distribution
of distances. It was shown that by using this mutual reinter-
pretation of distances hubness is decisively reduced, while
the intrinsic dimensionality of the data stays the same [20].
To compute MP, we assume that the distances Dx,i=1..N

from an object x to all other objects in our data set follow
a certain probability distribution, thus any distance Dx,y

can be reinterpreted as the probability of y being the near-
est neighbor of x, given their distance Dx,y and the proba-
bility distribution P (X). In this work we assume that the
distances Dx,i=1..N follow a Gaussian distribution. MP
is defined as the probability that y is the nearest neighbor
of x given P (X) and x is the nearest neighbor of y given
P (Y ):

MP (Dx,y) = P (X > Dx,y \ Y > Dy,x). (5)

GAUSSIAN TSNE GAUSSIAN SNN TSNE

Figure 1. Maps obtained for Gaussian artificial data via
TSNE (left) and SNN TSNE (right). Hubs are shown as
green circles and anti-hubs as red diamonds.

Shared Nearest Neighbors (SNN): SNN [7] uses the neigh-
borhood information to help enforce pairwise stability. SNN
is computed as a set intersection of the k-nearest neighbor
lists NN of two objects x, y:

SNN(x, y) = |NN(x) \ NN(y)|/k. (6)

This way SNN strictly strengthens symmetric nearest
neighbor relations which in turn should also manifest it-
self in a reduction of hubness. We use SNN with k = 50
because this already yields hubness values S5 (see Sec-
tion 4.1 ) below 1 for both ISMIR and GTZAN.

5. RESULTS

Before we present our results using the ISMIR and GTZAN
data sets we give a first illustration based on artificial data.
We sampled 1000 data points from a 50-dimensional Gaus-
sian distribution and used Euclidean distance to compute a
distance matrix. The hubness S5 of this data set is 2.95.
Similar to other work [20], we defined anti-hubs as points
with a O5 = 0, i.e. points never appearing in any nearest
neighbor list of size 5. Hubs are points with O5 > 25, i.e.
points that appear more than five times as expected. This
definition of hubs and anti-hubs is used for all results in
this paper and hubs and anti-hubs are always computed in
the high-dimensional spaces. Figure 1 plots two dimen-
sional results obtained using TSNE alone (left plot) and
SNN plus TSNE (right plot). As can be seen, TSNE maps
all hubs (green circles) to the center of the points and maps
all anti-hubs (red diamonds) to the edges. The right plot
shows that SNN TSNE is able to map hubs and anti-hubs
much more evenly across the whole set of mapped points.
The hubness S5 of the re-scaled distance space after appli-
cation of SNN is 0.81.

Next we present the visualization results obtained for
the ISMIR data set using different combinations of TSNE,
SOM, SAMMON and MP and SNN in Figure 2. The
hubness S5 of the ISMIR data set is 3.94. Re-scaling re-
duces this value to 1.25 for MP and 0.89 for SNN. Hubs
are again shown as green circles and anti-hubs as red dia-
monds. When using TSNE (top row), we again see that the
hub points are mapped to the center of the visualization and
anti-hubs appearing all over the plot but also at the edges
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TSNE MP TSNE SNN TSNE

SOM MP SOM SNN SOM

SAMMON MP SAMMON SNN SAMMON

Figure 2. Visualization of ISMIR data set using different combinations of TSNE, SOM, SAMMON and MP and SNN.
Hubs are shown as green circles and anti-hubs as red diamonds.

where no other data points are mapped to. When using
the combination MP TSNE, this situation shows only little
improvement with some anti-hubs still being mapped to ar-
eas where no other points can be found. Hub points are still
mapped to the center of the plot. When using the combi-
nation SNN TSNE the result seems to be much improved,
the plot showing much more structure and the hubs and
anti-hubs no longer confined to the center or edges. Look-
ing at the results obtained for SOM (middle row), we can
again see that the hub points are mapped to the center of
the plot whereas the anti-hubs are confined to the left and
bottom edge areas. When using MP SOM or even better
SNN SOM, hubs and anti-hubs are much more scattered
across the whole plots. When using SAMMON (bottom
row), we can see that the visualization is heavily distorted
with a few data points being mapped far away from the
rest of the data. When using MP SAMMON, this distor-
tion is no longer visible but both hubs and anti-hubs are
mapped to the more central parts of the plots. Only SNN
SAMMON seems to be able to map anti-hubs more or less
evenly across the plot, with hubs being mapped closer to
the edges. Overall the combination SNN TSNE seems to
yield the best visualization results. Results are similar for
GTZAN, but are not depicted for lack of space.

To quantify the success in visualization, we compute
the nearest neighbor overlap Lk between high- and low-
dimensional spaces for TSNE, SOM and SAMMON which
is shown in Figure 3 for both ISMIR (top row) and GTZAN

(bottom row) data sets. In all six plots solid lines show
results when using dimensionality reduction only (TSNE,
SOM or SAMMON), dash-dotted lines give results when
MP is used for preprocessing, dashed lines when SNN is
used for preprocessing. The overlap Lk is computed for
a range of k = 5 . . . 500 plotted on the x-axis to quantify
preservation of local and more global neighborhoods. We
can see that for all three dimensionality reduction meth-
ods and over the full range of k, preprocessing via MP
and SNN is able to increase the overlap Lk. The only
exception is SAMMON when applied to ISMIR, where
SNN gives worse results than using no preprocessing for
k > 200. Preprocessing with SNN is superior to using
MP in combination with TSNE and SOM. In combination
with SAMMON, MP works a little better than SNN. Over-
all TSNE performs better than SOM, which is again better
than SAMMON. Again the combination SNN TSNE gives
the best results of all.

Next we present a more detailed analysis of the near-
est neighbor overlap results by concentrating on Lk with
k = 50 since this is where the difference in performance
is largest. In Figure 4 we give separate results for “all”
data points, “hub”, “anti-hub” and “normal” (i.e. not hubs
or anti-hubs) data points as bar plots for TSNE, SOM and
SAMMON. Every bar plot shows a black bar for dimen-
sionality reduction only, a gray bar for results when MP is
used for preprocessing, a white bar when SNN is used. For
all three dimensionality reduction algorithms, L50 is high-
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Figure 3. Overlap of nearest neighbors in high and low
dimensions in percent (y-axis) vs. number of neighbors (x-
axis) for ISMIR (top) and GTZAN (bottom). Plots given
for TSNE, SOM and SAMMON with solid lines for using
dimensionality reduction only, dash-dotted lines for using
MP for preprocessing, dashed lines when SNN is used.

ISMIR GTZAN
- mp snn - mp snn

orig 71.4 78.1 76.5 61.7 67.8 61.6
tsne 62.6 63.9 70.4 39.1 41.0 52.8
som 65.2 65.0 69.2 40.4 37.7 49.7
sammon 47.0 51.3 46.3 16.1 27.3 25.3

Table 1. Genre classification accuracy in percent using
50-nearest neighbor classification for ISMIR and GTZAN
data sets different combinations of TSNE, SOM, SAM-
MON and MP and SNN as well as for the original (orig)
high dimensional data space.

est for hub points and worst for anti-hub points, with nor-
mal points somewhere in between. Applying either MP or
SNN as preprocessing generally increases L50 for all dif-
ferent kinds of points, but also makes L50 for hubs, anti-
hubs and normal points perform much more comparable.
Anti-hub points now perform almost as well as all other
points. The only exception is again SAMMON, which gen-
erally performs very poorly and where SNN is not able to
improve the overall situation.

As a further analysis of our visualization results, we
give kNN genre classification 4 accuracy results C50 when
using different combinations of TSNE, SOM, SAMMON
and MP and SNN as well as for the original high dimen-
sional data space in Table 1. As for the original input
space (row “orig”), MP and SNN increase C50 for IS-
MIR, but only MP for GTZAN. This is in line with previ-
ous comparison of MP and SNN [4]. Classification results
for low-dimensional spaces are of course lower than those
achieved on the original input spaces since any dimension-
ality reduction incurs some loss of information. But for

4 Please note that we are of course aware of the controversial role of
genre classification in MIR, especially in the context of GTZAN [25], but
that accuracy only serves as a further illustration of results in this context.
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Figure 4. Analysis of overlap of 50 nearest neighbors in
high and low dimensions in percent (y-axis) vs. type of
data points (x-axis: all, hub, anti-hub, normal) for ISMIR
(top) and GTZAN (bottom). Bar plots are given for TSNE,
SOM and SAMMON with black bars showing results for
dimensionality reduction only, gray bars for using MP for
preprocessing, white bars when SNN is used.

both TSNE and SOM on both data sets, SNN is able to in-
crease C50, which is additional indication that SNN is the
preprocessing method to prefer. Results for SAMMON are
generally very low and rather mixed.

Finally we show visualization results of the ISMIR data
set when using TSNE as well as SNN TSNE, which is the
best performing combination, in Figure 5 with different
genres given in different colors. The color coding is as fol-
lows: classical - black, jazz blues - blue, rock pop - red,
world - green, metal punk - yellow, electronic - cyan. Al-
though it is hard to verbalize the information contained in
a visualization, it seems apparent that the result for SNN
TSNE (right plot) shows much more structure than the re-
sult for TSNE only. This enables a more detailed pic-
ture of the overlap between “classical” (black) and “world”
(green) music. Also the position of genre “jazz blues”
(blue) is now clearer between “classical/world” and the
remaining three genres. Also “electronic” (cyan) music
seems to be a little more apart from “rock pop” (red) and
“metal punk” (yellow). Results for GTZAN, which con-
sists of music from ten genres, are similar in tendency but
not shown for space considerations.

6. DISCUSSION

Summing up the results presented in the previous section,
we like to state that all three visualization methods are
affected by the hubness problem. Looking at the visual-
izations, checking the amount of overlap between nearest
neighbors in high and low dimensions for hub, anti-hub
and normal points makes it clear that there is a problem for
dimensionality reduction of data with high values of hub-
ness. It is also evident that preprocessing with either MP or
SNN can help in this situation. Especially the combination
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TSNE − ISMIR SNN TSNE − ISMIR

Figure 5. Visualization of ISMIR data set using TSNE (left) and SNN TSNE (right) with color coded genres (see Section 5).

of SNN and TSNE yields very improved results. Although
this paper used only one particular approach to compute
music similarity, previous work [3] has made it clear that
many different approaches are affected by hubness. For
the dimensionality reduction algorithms, we basically used
standard settings since attempts to adjust parameters did
not really improve results. But of course a more rigorous
parameter tuning should be part of future research.

One particularity of the music similarity spaces used
in this work is the fact they are based on Gaussian mod-
els of timbre information and therefore only distances be-
tween models are available but not vector representations.
Therefore all dimensionality reduction methods need to be
able to deal with distance/similarity information as input.
Whereas this is natural for SAMMON, it already consti-
tutes a problem for SOM. We resorted to the standard but
somewhat crude approach to use the full rows of the dis-
tance matrices as input vectors (with length equal 1000 or
1485 for GTZAN and ISMIR). But there already exists a
superior approach [22] of directly using Gaussian models
as inputs to SOMs and it would be very interesting to re-
search the impact of hubness on this version of SOM. For
TSNE, we were able to use a variant (“tsne p”) that is able
to deal directly with similarity matrices. But as stated by
the authors [28], this should only be done if “these simi-
larities can be interpreted as conditional probabilities” as
explained in Section 4.2. A theoretic examination as to
what extent MP and SNN fulfill this requirement will be
part of future work. When TSNE is being used with in-
put vectors instead of a similarity matrix, the width of the
Gaussian probability densities are adapted locally accord-
ing to a so-called perplexity term. This is an important part
of the algorithm which is missing in case it is used with a
similarity matrix directly. It is an interesting research ques-
tion whether this local adaption in itself is able to counter
some of the problems due to hubness. But this can only be
studied if vectors are available as input to TSNE.

As has already been noted in Section 3, the music simi-

larity spaces are based on symmetric Kullback-Leibler di-
vergences which do not fulfill the triangle inequality and
therefore do not exhibit all aspects of a true metric. There
exists an extension of t-SNE [29] which uses multiple maps
to visualize non-metric similarities. Even more interesting,
this extension is motivated with the notion of data points
which show high centrality, i.e. points which are similar to
very many other data points. In contrast to the discussion
of hub points, such central points are in this case not seen
as problematic but as a special challenge for a visualiza-
tion algorithm. It would therefore be very interesting to
study and compare these central and hub points and to ap-
ply the t-SNE algorithm for non-metric similarities to data
sets with high hubness.

7. CONCLUSION

We presented the first substantial empirical evaluation of
the impact of hubness on visualization of high-dimensional
music similarity spaces. Analyzing three popular methods
for dimensionality reduction applied to two standard music
data sets, we were able to show that hubs and anti-hubs dis-
tort the lower dimensional representations. Generally hubs
are mapped to the central parts of plots and anti-hubs usu-
ally to the edges. We were able to show that preprocessing
with methods that have been designed to reduce hubness
can greatly improve this situation. This results in visual-
ization where hubs and anti-hubs are no longer mapped
to peculiar locations, which also gives improved preserva-
tion of neighborhood information when mapping to low
dimensions. Particularly a combination of preprocessing
via “shared nearest neighbors” followed by dimensionality
reduction via “t-SNE” proved to be most successful. This
approach could therefore be used as the core technology
for future visualization interfaces to music catalogs.
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