
TRAINING PHONEME MODELS FOR SINGING WITH “SONGIFIED”
SPEECH DATA

Anna M. Kruspe
Fraunhofer IDMT, Ilmenau, Germany
kpe@idmt.fraunhofer.de

ABSTRACT

Speech recognition in singing is a task that has not been
widely researched so far. Singing possesses several charac-
teristics that differentiate it from speech. Therefore, algo-
rithms and models that were developed for speech usually
perform worse on singing.
One of the bottlenecks in many algorithms is the recogni-
tion of phonemes in singing. We noticed that this reco-
gnition step can be improved when using singing data in
model training, but to our knowledge, there are no large
datasets of singing data annotated with phonemes. Howe-
ver, such data does exist for speech.
We therefore propose to make phoneme recognition mo-
dels more robust for singing by training them on speech
data that has artificially been made more “song-like”. We
test two main modifications on speech data: Time stret-
ching and pitch shifting. Artificial vibrato is also tested.
We then evaluate models trained on different combinations
of these modified speech recordings. The utilized mode-
ling algorithms are Neural Networks and Deep Belief Net-
works.

1. INTRODUCTION

Automatic speech recognition has been a field of research
for more than 30 years now and encompasses a large va-
riety of research topics. However, speech recognition al-
gorithms have so far only rarely been adapted to singing.
One of the reasons for this seems to be that most of these
tasks get harder when using singing because singing data
has different characteristics, which are also often more va-
ried than in pure speech [13]. For example, the typical
fundamental frequency for women in speech is between
165 and 200Hz, while in singing it can reach more than
1000Hz. Other differences include harmonics, durations,
pronunciation, and vibrato.
Speech recognition in singing has many interesting prac-
tical applications, such as automatic lyrics-to-music ali-
gnment, keyword spotting in songs, language identification
of musical pieces or even full lyrics transcription.
A first step in many of these tasks is the recognition of

c
� Anna M. Kruspe.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Anna M. Kruspe. “Training phoneme
models for singing with “songified” speech data”, 16th International So-
ciety for Music Information Retrieval Conference, 2015.

phonemes in the audio recording. We showed in [12]
that phoneme recognition tends to act as a bottleneck in
tasks such as language identification and keyword spot-
ting in singing. Other publications also demonstrate that
phoneme recognition on singing is more difficult than on
speech [15] [6] [13]. This is further compounded by the
models which have usually been trained on pure speech
data.
As shown on a small scale in [6] and [12], recognition gets
better when singing is used as part of the training data. The
big problem with this is the lack of phoneme-annotated sin-
ging data sets.
When there is a scarcity of suitable training data, attempts
are often made to generate such data artificially. For exam-
ple, this is often done when models for noisy speech are
required [11] [7]. In this paper, we therefore propose to
make existing speech data sets more “song-like” and use
these modified datasets to train models for phoneme reco-
gnition in singing. We test this procedure with the com-
monly used TIMIT speech dataset [10] and train Neural
Networks (NNs) and Deep Belief Networks (DBNs) on
modified versions of it. We then test the models’ perfor-
mances on an unaccompanied singing dataset and on the
test section of TIMIT.
This paper is structured as follows: We first give an intro-
duction to the state of the art in section 2 and describe the
datasets in section 3. We then present our new approach
in section 4. Section 5 contains our experiments and their
results. Finally, we give a conclusion in section 6 and sug-
gest future work in section 7.

2. STATE OF THE ART

As described in [13] and in [12], there are significant diffe-
rences between speech and singing data, such as pitch and
harmonics, vibrato, phoneme durations and pronunciation.
This makes phoneme recognition on singing harder than
on speech.
Several approaches to this task have been published. In [5],
Gruhne et al. describe a classical approach that employs
feature extraction and various machine learning algorithms
to classify singing into 15 phoneme classes. It also inclu-
des a step that removes non-harmonic components from
the signal. The best result of 58% correctly classified fra-
mes is achieved with Support Vector Machine (SVM) clas-
sifiers. The approach is expanded upon in [17].
Fujihara et al. describe an approach using Probabilistic
Spectral Templates to model phonemes in [4]. The pho-

336



neme models are gender-specific and only model five vo-
wels, but also work for singing with instrumental accompa-
niment. The best result is 65% correctly classified frames.
Mesaros presented a complex approach that is based
on Hidden Markov Models which are trained on Mel-
Frequency Cepstral Coefficients (MFCCs) and then adap-
ted to singing using three phoneme classes separately [15]
[14]. The approach also employs language modeling and
has options for vocal separation and gender and voice ad-
aptation. The achieved phoneme recognition rate (accu-
racy) on unaccompanied singing is �6.4% without adap-
tation and 20% with singing adaptation using 40 phonemes
(the negative value is equivalent to a Levenshtein distance
of 1.064, which means that there were more insertion, de-
letion, or substitution errors than phoneme instances). The
results also improve when using gender-specific adaptation
(to an average of 18.75%) and even more when language
modeling is included (to 33.4%).
Finally, Hansen presents a system in [6] which combi-
nes the results of two Multilayer Perceptrons (MLPs), one
using MFCC features and one using TRAP (Temporal Pat-
tern) features. Training is done with a small amount of
singing data. Viterbi decoding is then performed on these
posterior probabilities. On a set of 27 phonemes, this ap-
proach achieves a recall of up to 48%.
It should be obvious from this overview that comparing
these approaches is not easily possible. Each one uses
a different dataset, a different phoneme set, and different
evaluation measures.

3. DATASETS

3.1 Speech data

For training our phoneme recognition models, we used the
well-known TIMIT speech dataset [10]. Its training sec-
tion consists of 4620 phoneme-annotated English utteran-
ces spoken by native speakers. Each utterance is a few
seconds long.
The test section of TIMIT contains similar 1680 similarly
phoneme-annotated utterances. We used it to test the ge-
neral performance of our models.

3.2 Singing data

To test the performance on singing data, we used the data
set previously presented in [6] and [12]. It consists of the
vocal tracks of 19 commercial pop songs in studio quality.
We use unaccompanied singing to avoid a possible source
of interference. They do not contain background music,
but have been post-processed (e.g. EQ, compression,
reverb). Some of them contain choir singing. Of these
19 songs, 12 were annotated with time-aligned phonemes
and could therefore be used for our phoneme recogni-
tion experiments. We split these 12 songs into 562 clips,
each of which roughly represents a line of the songs’ lyrics.

4. PROPOSED APPROACH

An overview of our approach is shown in figure 1. We first
generate five variants of the TIMIT speech dataset (training
set). MFCC features are then extracted from these new da-
tasets and used to train two models per dataset: A Neural
Network and a Deep Belief Network.
Similarly, MFCCs are extracted from the TIMIT Test set
and from the singing dataset. The ten previously trained
models are used to recognize phonemes on these test da-
tasets. Viterbi decoding can then be used to generate pho-
neme sequences. Finally, the results are evaluated.

4.1 Training data modifications

In order to make the training data more “song-like”, we
developed several variants of this dataset. Table 1 shows
an overview over the five datasets generated from TIMIT
using three modifications. Dataset N is the original TIMIT
training set. For dataset P , four of the eight blocks of TI-
MIT were pitch-shifted. For dataset T , five blocks were
time-stretched and vibrato was applied to two of them. In
dataset TP , the same is done, except with additional pitch-
shifting. Finally, dataset M contains a mix of these modi-
fied blocks.
In detail, the modifications were performed in the follo-
wing way:

Time stretching For time stretching, we used the phase
vocoder from [3], which is an implementation of
the Flanagan/Dolson phase vocoder [9] [2]. This
algorithm works by first performing a Short-Time
Fourier Transform (STFT) on the signal and then
resampling the frames to a different duration and
performing the inverse Fourier transform.
As demonstrated in [12], time variations in singing
are mainly performed on vowels and are often much
longer than in speech. We therefore used the TI-
MIT annotations to only pick out the vowel seg-
ments from the utterances. They were modified ran-
domly to a duration between 5 and 100 times the
original duration and then re-inserted into the ut-
terance. This effectively leads to more vowel frames
in the training data, but since there is already a large
amount of instances for each phoneme in the origi-
nal training data, the effects of this imbalance should
be negligible.

Pitch shifting To pitch-shift the signal, we used code
from the freely available Matlab tool AutoTune Toy
[1] which also implements a phase vocoder. In this
case, the fundamental frequency is first detected au-
tomatically. The signal is then stretched or expanded
to obtain the new pitch and interpolated to retain the
original duration.
Using the TIMIT annotations, we split the utterance
up into individual words, then generate a pitch-
shifted version of each word and concatenate the re-
sults. Pitches are randomly selected from a range
between 60% and 120% of the original pitch.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 337



Figure 1: Overview of our phoneme recognition system

N P T TP M
DR1 N N N N N
DR2 N N N N N
DR3 N N N N P
DR4 N N T TP TV
DR5 N P T TP TPV
DR6 N P T TP TV
DR7 N P TV TPV P
DR8 N P TV TPV TPV

Table 1: The five TIMIT variants that were used for trai-
ning (rows are TIMIT blocks, columns are the five data-
sets). Symbols: N - Unmodified; P - Pitch-shifted; T -
Time-stretched; V - Vibrato

Vibrato The code for vibrato generation was also taken
from AutoTune Toy. It functions by generating a sine
curve and using this as the trajectory for the pitch
shifting algorithm mentioned above. We used a sine
of amplitude 0.2 and frequency 6Hz.
In singing, vibrato is commonly done on long so-
unds, which are usually vowels. Since spoken vo-
wels are usually very short, vibrato cannot be per-
ceived on them very well. We therefore only applied
vibrato when time stretching was also applied. Vi-
brato was then added to the extracted and stretched
vowels.

4.2 Models

Using the generated data, we trained models using two
machine learning algorithms: Classical Neural Networks
(NNs) and Deep Belief Networks (DBNs). Both were im-

plemented using the Theano framework for Python 1 . In
both cases, we first extracted Mel-Frequency Cepstral Co-
efficients (MFCCs) and retainen the first 13 plus their del-
tas and double-deltas as features. We also expanded the
training data to use 9 context frames. The output layer re-
presents the 39 phonemes of the CMU Sphinx phoneme
set 2 . To make the training more exact, these phonemes
were split into triphones, making the dimension of the out-
put layer 117.
Our first models are traditional Neural Networks with two
layers of 200 units each.
In recent publications, DBNs have been used very success-
fully for phoneme recognition (e.g. [16]). We therefore
also trained DBNs on the speech data. We chose an archi-
tecture with three hidden layers and 300 units each. The
first hidden layer is a Gaussian RBM.
Both models are used to generate posterior phoneme pro-
babilities. The results for the triphone states of each pho-
neme are summed up into one probability for the phoneme.
We then run a simple Viterbi decoding on these posteriors
to generate phoneme sequences. In this decoding, all pho-
nemes have equal transition probabilities, only the inser-
tion penalty is variable (i.e., the transition probability to
another phone). No language models are employed. We
keep this post-processing simple on purpose so that the re-
sults of the various models are easily comparable.

4.3 Evaluation measures

As described in section 2, there is no single common eva-
luation measure for phoneme recognition in singing. We
decided to compare our results using three measures:

1 http://www.deeplearning.org, last checked 04/29/15
2 http://cmusphinx.sourceforge.net/, last checked

04/29/15

338 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Percentage of correct frames This measure describes
the percentage of correctly classified frames. Cor-
rect in this case means that the exact phoneme was
chosen for this frame during Viterbi decoding. A si-
milar measure was used by Fujihara [4] and Gruhne
[5].

Phoneme error rate This is the most commonly used
evaluation measure in phoneme recognition for
speech. It is equal to the Levenshtein distance nor-
malized by the length of the ground truth phoneme
sequence:

PER =
D + I + S

N
(1)

where D are deletions, I are insertions, and S are
substitutions of phonemes and N is the length of the
sequence.
The accuracy measure used by Mesaros [15] [14] is
the same as 1 � PER.

Weighted phoneme error rate Mesaros also uses a mea-
sure called correct which ignores insertions. This
makes sense if we assume that the phoneme results
are used afterwards by an algorithm that is tolerant
to insertions. We decided to go one step further and
assume that if algorithms are tolerant to insertions,
they can also be somewhat tolerant to deletions. For
cases like this, Hunt suggested a weighted error rate
that punishes insertions and deletions less heavily
than substitutions [8]:

PERHunt =
0.5D + 0.5I + S

N
(2)

5. EXPERIMENTS

We performed our experiments by training a set of models
on all five TIMIT variants where all other parameters were
left equal. We then classified two sets of data with these
models: The unmodified “Test” part of the TIMIT speech
dataset (which was not used in training) and our singing
dataset. On these phoneme posterior probabilities, we ran
the described simple Viterbi algorithm. The insertion pen-
alty was optimized to generate phoneme strings who were
closest in length to the ground truth phoneme strings. The
three evaluation measures described in 4.3 were then cal-
culated on the result of the Viterbi decoder.
We tested two machine learning algorithms: Neural Net-
works and Deep Belief Networks.

5.1 Neural Network models

Figure 2 shows the results of the Neural Network models.
As figure 2a demonstrates, results for singing are generally
worse than for speech. The base result for singing is a per-
centage of correct frames of 14.9% (model trained on the
original TIMIT dataset which is denoted as N here). When
comparing the models trained on the various TIMIT mo-
difications, a slight improvement is observed for the T and
M variants. For the T dataset, which includes randomly
time-stretched vowels, the result improves to 15.4%. This

is a very small improvement, but it is still interesting to
note. In contrast, none of the modifications improved the
result on the speech data at all. The base result here is 30%.
(It should be noted that much higher figures can be found
in literature, but we have not yet tested improvements like
language models or adaptations. Our focus for now was to
compare the different TIMIT modifications).
When looking at the phoneme error rate in figure 2b ins-
tead of the pure frame accuracy, the results become more
visible. The base phoneme error rate for singing is 1.16,
but falls to 1.07 for the TP and M modifications. For
speech, it rises from 0.6 to 0.68 (TP) and 0.66 (M) instead.
The P and T modifications form a middle ground here. The
P variant (randomly pitch-shifted words) does not change
the results very much in either direction: It decreases the
error rate on singing by 0.03 and increases it on speech
by less than 0.01. The T variant (randomly time-stretched
vowels) decrease the error on singing by just 0.02, but in-
crease it on singing by 0.07.
If we weight insertions and deletions lower than modifica-
tions, the phoneme error rates decrease generally (see fi-
gure 2c). The described effects are still active when using
this evaluation measure. The error rate falls from 0.88 to
0.83 on singing, and rises from 0.48 to 0.54 on speech.
The tendency for P and T is similar here.

5.2 Deep Belief Network models

Figure 3 shows the same evaluation measures for the Deep
Belief Networks. In general, the results are better and the
effect of the various training sets is similar, but more pro-
nounced.
The base percentage of correct frames is 14% here and ri-
ses to 19% when training on the randomly timed dataset T.
On speech data, the best result is 38% for models trained
on the original TIMIT data and falls for all other variants.
The phoneme error rate falls from 1 to 0.91 on the singing
data. Again, the results are best when the models are trai-
ned on the TP or M datasets, with the model trained on T
performing just slightly worse. The lowest error rate on
speech is 0.41 with the N model.
The weighted phoneme error rate sinks from 0.77 to 0.71
on the singing data.

5.3 Confusion of Deep Belief Networks

After evaluating the general performance of the Deep Be-
lief Networks, we examined the results in detail. As an
example, table 2 shows the phoneme-wise results for the
singing data. The first two columns lists the frame-wise
precisions and recalls when using the N model, the two
columns after that show the same values for the M model,
and the last column lists the three phonemes with which
the concerned phoneme is confused most frequently when
using the M model (except sil). This leads to several in-
teresting discoveries.
It turns out that the precisions of long vowels such as aa,
iy, or oy improve when using the M model for recogni-
tion, but some consonant accuracies become worse. This
makes sense since the M modifications place an emphasis
on vowels by randomly stretching them. The consonant

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 339



(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 2: Evaluation measures for the results obtained with Neural Network models on singing data (Acap) and on speech
data (Timit). The models were trained with the five different Timit variants (different colors).

(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 3: Evaluation measures for the results obtained with Deep Belief Network models on singing data (Acap) and on
speech data (Timit). The models were trained with the five different Timit variants (different colors).

results may become worse because the training data also
contains randomly pitch-shifted versions, which may not
be a natural modification (this can be verified by looking
at the results of the T model). Consonants generally seem
harder to recognize since they are shorter than vowels and,
for the most part, are less static over their duration. Some
very bad consonant results can also be explained because
they occur very rarely in the singing dataset (e.g. zh, oy).
The most frequent confusion for most phonemes occurs
with the sil state, which serves as the general “non-pho-
neme” state. This confusion is not displayed here.
Consonants are often confused with similar consonants
(e.g. m/n) or with softer consonants that can be extended
over a longer duration (e.g. s, f). This may be related
to singing technique. However, they are also frequently
confused with some vowels, particularly uh and iy. This
might be caused by slight timing inaccuracies in the trai-
ning annotations which become exaggerated by the time-
stretching, or even by some merging of neighboring pho-
nemes by the speaker.
Longer vowels are almost exclusively confused with other
long vowels. This poses a contrast to speech, where they
are usually confused with similar short vowels (e.g. aa !
ah).
This becomes more conclusive when considering the con-
fusions of short vowels. In the singing data, short vowels
are very often confused with similar long vowels (e.g. eh
! ae). When stretching out such short vowels in singing,
singers will automatically change to such a longer vowel.
Additionally, some vowels are confused with more “open”
vowels (e.g. ey ! ae). This is also caused by singing
technique. These two very interesting effects could be ex-

ploited to improve phoneme recognition on singing in the
future.

6. CONCLUSION

In this paper, we evaluated phoneme models trained on va-
rious artificially “songified” variants of the TIMIT speech
dataset. The reason for this is the lack of phoneme-
annotated singing datasets. We generated five such vari-
ants by randomly time-stretching vowels, randomly pitch-
shifting words, and by adding vibrato to long vowels.
MFCC features were extracted from these datasets and
then used to train two models each: A Neural Network and
a Deep Belief Network. We then used these models to re-
cognize phonemes in singing data and in unrelated speech
data. No additional mechanics were used to improve the
results, such as language modeling or gender or speaker
adaptation.
In general, the results are not as good as the state of the art
for the speech data. For the singing data, it is very hard
to compare the results to the state of the art because other
publications use different datasets, phoneme sets, and eva-
luation measures. However, this was not necessarily our
goal - we were mainly interested in the comparative per-
formance of the various models.
As expected, recognizing phonemes in speech seems to be
much easier than in singing. Deep Belief Models perfor-
med better than their Neural Network counterparts in all
test cases. For speech, the models trained on the unmodi-
fied TIMIT dataset always performed best. The best result
is 38% correctly classified frames, a phoneme error rate of
0.41, and a weighted phoneme error rate of 0.32.
For singing, the models trained on the modified TIMIT da-

340 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Ph. Prec. Rec. Prec. Rec. Conf.
N N M M M

aa 0.18 0.08 0.35 0.09 ao, ay, ow
iy 0.33 0.27 0.43 0.25 ey, uh, ae
ch 0.0 0.02 0.01 0.03 s, sh, iy
zh 0.26 0.02 0.0 0.0 iy, y, sh
eh 0.06 0.11 0.13 0.15 ae, ey, aa
ah 0.0 0.35 0.03 0.23 aa, er, ae
ao 0.39 0.17 0.25 0.14 aa, ow, l
ih 0.01 0.08 0.05 0.11 ey, iy, ae
ey 0.36 0.17 0.26 0.2 iy, ae, ay
aw 0.1 0.07 0.08 0.09 aa, ae, ay
ay 0.27 0.44 0.23 0.44 aa, ae, iy
ae 0.38 0.16 0.4 0.16 aa, ay, aw
er 0.22 0.1 0.19 0.08 aa, ae, eh
ng 0.07 0.16 0.06 0.11 n, uh, iy
sh 0.58 0.05 0.51 0.09 s, jh, z
th 0.0 0.0 0.0 0.0 dh, er, ey
oy 0.0 0.0 0.0 0.0 ao, ay, aa
dh 0.04 0.14 0.04 0.08 er ,iy ,uh
ow 0.07 0.23 0.16 0.25 ae, ae, aa
hh 0.14 0.09 0.09 0.15 iy, uh, sh
jh 0.07 0.08 0.12 0.07 y, z, sh
b 0.13 0.19 0.09 0.24 ey, m, iy
d 0.02 0.19 0.02 0.1 iy, n, er
g 0.04 0.36 0.03 0.32 y, ow, n
f 0.02 0.13 0.02 0.5 s, er, iy
k 0.02 0.37 0.05 0.31 iy, y ,uh
m 0.26 0.24 0.13 0.22 uh, n, er
l 0.1 0.14 0.11 0.15 ao, er, ow
n 0.18 0.28 0.2 0.25 uh, er, uw

uh 0.23 0.02 0.15 0.02 er, ih, eh
p 0.01 0.15 0.01 0.1 er, iy, l
s 0.41 0.41 0.44 0.46 z, iy, er
r 0.16 0.24 0.17 0.18 er, aa, ao
t 0.0 0.29 0.0 0.42 s, sh, iy
w 0.24 0.26 0.19 0.2 ao, l, uw
v 0.0 0.02 0.0 0.25 er, aa, m
y 0.31 0.08 0.16 0.12 iy , y, uh
z 0.28 0.18 0.28 0.17 s, iy, n

uw 0.13 0.35 0.12 0.33 uh, er, iy

Table 2: Results per phoneme (singing data): Precision
and recall with the N and M models, and most frequent
confusions with M model (except sil)

taset produced better results. The best result is for singing
is 18% correctly classified frames, a phoneme error rate
of 0.91, and a weighted phoneme error rate of 0.71. The
improvement over the models trained on the unmodified
TIMIT data is 6% for the correctly classified frames, 0.09
for the phoneme error rate, and 0.06 for the weighted pho-
neme error rate.
The models trained on data that was only pitch-shifted only
showed a very slight difference when compared to the ori-
ginal data. MFCCs are supposed to be pitch-invariant, and
pitch-shifting therefore does not seem to make a big dif-
ference. This modification might be useful when using

other features, though. A bigger improvement on sin-
ging data was achieved when training the models on time-
stretched speech data. In fact, this dataset generated the
highest percentage of correctly classified frames. In this
time-stretched dataset, we also applied vibrato to the stret-
ched vowels, which happens naturally in singing. Howe-
ver, since the effect of pitch-shifting seemed to be small,
we assume that vibrato did not have a big effect either.
There were also two datasets where both modifications
(time-stretching and pitch-shifting) were mixed. Both pro-
duced the best phoneme error rates in singing.
The results were also analyzed on a phoneme-wise basis. It
turned out that vowels were recognized more exactly with
the modified models, while consonants were recognized
somewhat worse. This may be caused by the emphasis of
the generated data on longer vowels.
The most interesting effect seen in the confusion matrices
is the confusion of short vowels with similar longer vowels.
This has a foundation in singing technique and would be
interesting to further explore to improve phoneme recogni-
tion in singing.
In general, we showed that phoneme recognition in sin-
ging can be improved when training models on artificial
singing data. This finding can now be used to improve
other approaches. For example, it can be combined with
the techniques described in [15].

7. FUTURE WORK

As described in section 5.3, many phoneme confusions
may arise from inexact or unnatural time stretching on the
speech recordings. A more natural approach to this is re-
quired and we need to make sure that stretched vowels do
not “leak” into neighboring consonants. We also noticed
that short vowels in singing often shift towards their long
versions. We will exploit this interesting effect in future
phoneme recognition approaches, e.g. by allowing these
confusions or composing vowels of several states.
In this paper, we tried to apply three characteristics of sin-
ging to speech recordings, but there are more, such as diffe-
rent pronunciations and different forming of sounds. Such
other characteristics could also be tested in a similar way.
Conversely, we could also attempt to make our features and
models more robust to these variations. In the past, this has
often been done by adapting models trained on speech to
singing in some way (also see section 2). Adaptations to
gender or voice also proved helpful.
We kept the approach fairly simple for now, but the results
could be improved by employing language modeling in the
recognition process. We will implement this in future ver-
sions.
A possible alternative would be creating a dataset from po-
lyphonic music data by using the lyrics and force-aligning
them.
Finally, it will be interesting to see how the results of this
phoneme recognition approach can be applied to practical
tasks, such as lyrics-to-music alignment, keyword spotting,
and language identification. For these purposes, the algo-
rithm must also be tested on accompanied singing data.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 341



8. REFERENCES

[1] C. Arft. AutoTune Toy, 2010. Web resource, Last
checked: 4/29/15.

[2] M. Dolson. The phase vocoder: A tutorial. Computer
Music Journal, 10(4):14–27, 1986.

[3] D. P. W. Ellis. A phase vocoder in Matlab, 2002. Web
resource, Last checked: 04/29/15.

[4] H. Fujihara, M. Goto, and H. G. Okuno. A novel fra-
mework for recognizing phonemes of singing voice in
polyphonic music. In WASPAA, pages 17–20. IEEE,
2009.

[5] M. Gruhne, K. Schmidt, and C. Dittmar. Phoneme re-
cognition on popular music. In Proceedings of the 8th
International Conference on Music Information Retrie-
val (ISMIR), Vienna, Austria, September 2007.

[6] J. K. Hansen. Recognition of phonemes in a-cappella
recordings using temporal patterns and mel frequency
cepstral coefficients. In 9th Sound and Music Compu-
ting Conference (SMC), pages 494–499, Copenhagen,
Denmark, 2012.

[7] H.-G. Hirsch and D. Pearce. The Aurora experimental
framework for the performance evaluation of speech
recognition systems under noisy conditions. In ISCA
ITRW ASR, pages 29–32, 2000.

[8] M. J. Hunt. Figures of merit for assessing connected-
word recognisers. Speech Communication, 9(4):329–
336, 1990.

[9] R. M. Golden J. L. Flanagan. Phase vocoder. Bell Sys-
tem Technical Journal, pages 1493–1509, November
1966.

[10] J. S. Garofolo et al. TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus. Technical report, Linguistic
Data Consortium, Philadelphia, 1993.

[11] C. Jankowski, A. Kalyanswamy, S. Basson, and
J. Spitz. NTIMIT: A phonetically balanced, continuous
speech telephone bandwidth speech database. ICASSP,
pages 109–112, 1990.

[12] A. M. Kruspe. Keyword spotting in a-capella singing.
In 15th International Conference on Music Information
Retrieval (ISMIR), Taipei, Taiwan, 2014.

[13] A. Loscos, P. Cano, and J. Bonada. Low-delay singing
voice alignment to text. In Proceedings of the ICMC,
1999.

[14] A. Mesaros and T. Virtanen. Automatic recognition of
lyrics in singing. EURASIP J. Audio, Speech and Music
Processing, 2010, 2010.

[15] A. Mesaros and T. Virtanen. Recognition of phonemes
and words in singing. In ICASSP, pages 2146–2149.
IEEE, 2010.

[16] A.-R. Mohamed, G. E. Dahl, and G. Hinton. Acoustic
modeling using deep belief networks. IEEE Trans. Au-
dio, Speech, Lang. Process, pages 14–22, 2012.

[17] G. Szepannek, M. Gruhne, B. Bischl, S. Krey, T. Har-
czos, F. Klefenz, C. Dittmar, , and C. Weihs. Classifi-
cation as a tool for research, chapter Perceptually Ba-
sed Phoneme Recognition in Popular Music. Springer,
Heidelberg, 2010.

342 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015


