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ABSTRACT

Automatic melody segmentation is an important yet un-
solved problem in Music Information Retrieval. Research
in the field of Music Cognition suggests that previous lis-
tening experience plays a considerable role in the percep-
tion of melodic segment structure. At present automatic
melody segmenters that model listening experience com-
monly do so using unsupervised statistical learning with
‘non-selective’ information acquisition techniques, i.e. the
learners gather and store information indiscriminately into
memory.

In this paper we investigate techniques for ‘selective’
information acquisition, i.e. our learning model uses a goal-
oriented approach to select what to store in memory. We
test the usefulness of the segmentations produced using se-
lective acquisition learning in a melody classification ex-
periment involving melodies of different cultures. Our re-
sults show that the segments produced by our selective
learner segmenters substantially improve classification ac-
curacy when compared to segments produced by a non-
selective learner segmenter, two local segmentation meth-
ods, and two naı̈ve baselines.

1. INTRODUCTION

Motivation: In Music Information Retrieval (MIR),
melody segmentation refers to the task of dividing a
melody into smaller units, such as figures, phrases, or sec-
tions. Given that melody is an aspect of music shared by al-
most all cultures in the world, and that melodies are known
to be memorable, many MIR systems base their functional-
ity in melody processing. Automatic melody segmentation
is hence an important preprocessing step for MIR tasks in-
volving searching, browsing, visualising, and summarising
music collections.

Scope: Research in automatic melody segmentation has
been conducted by subdividing the segmentation problem
into a number of subtasks, the most traditional one being
segment boundary detection, i.e. automatically locating the
time instants separating contiguous segments. In this paper
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we focus on detecting the boundaries of segments resem-
bling the musicological concept of subphrase. The musi-
cal factors influencing the perception of melodic segment
boundaries are diverse [4, 8]. In this paper we focus on
modelling factors related to previous listening experience
and melodic expectation [1, 9, 23, 25, 27].

Terminology: We use the term ‘phrase’ to refer to a se-
quence of notes lasting roughly from 6 notes to 8 bars. We
use the term ‘figure’ to refer to a relatively short sequence
of notes, lasting roughly from 2-6 notes. We use the term
‘subphrase’ to refer to melodic figures in the context of
phrases, i.e. as the constituent parts of a melodic phrase.

Assumptions: Our main assumption is that human lis-
teners exposed to melodies of a given culture acquire a
vocabulary of melodic figures through ‘incidental’ learn-
ing, 1 and that this acquired melodic vocabulary aids the
segmentation of phrases into subphrases. 2 We refer to
such a listener as ‘enculturated’.

Problem statement: At present, automatic melody seg-
menters that model previous listening experience usually
do so by storing information indiscriminately into mem-
ory. We argue that selective (rather than indiscriminate)
information acquisition is necessary to simulate encultura-
tion. We hence propose and investigate two techniques for
selective acquisition in the context of phrase segmentation:
one in which an artificial learner selects the subphrases that
give it the ‘clearest’ possible ‘understanding’ of a phrase,
and another in which the learner attempts to use subphrases
it ‘knows well’ to expand its melodic vocabulary. To com-
pare the segmentations produced by enculturated segmen-
ters using selective and non-selective acquisition techni-
ques, we perform a melody classification experiment in-
volving melodies of different cultures, where the segments
are used as classification features.

Paper contributions: We have three main contribu-
tions. First, the proposed techniques for selective acquisi-
tion are, to the best of our knowledge, novel in the context
of melody segmentation. Second, we focus on subphrase
level segmentation, which is a neglected area in music seg-
mentation research. Third, our results show that the seg-
ments produced by our selective learning segmenters sub-
stantially improve classification accuracy when compared
to segments produced by using a non-selective learning

1 We use the term incidental to mean that the listener does not have an
explicit learning intention.

2 Refer to [15, 16, 24] for experimental work in music cognition and
cognitive neuroscience that supports our assumption.
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segmenter, two local segmentation methods [5,6], and two
naı̈ve baselines.

Paper summary: The remainder of this paper is or-
ganised as follows: §2 reviews related work, §3 describes
our selective acquisition learning model , §4 describes our
proposed enculturated segmenter, §5 describes the classi-
fication experiment and presents results, §6 discusses the
evaluation results, and finally, §7 summarises our conclu-
sions and outlines possibilities of future work.

2. RELATED WORK

Previously proposed melody segmenters that model listen-
ing experience have mostly used non-selective learners.
For instance, [23] presents a segmentation model with a
long-term memory (LTM) component. To train the LTM
model the prediction by partial match (PPM) algorithm [21]
is used, which gathers and stores ngrams and ngram statis-
tics indiscriminately into LTM. Much of the work carried
out by the authors of [23] in melodic learning has focused
mostly on dealing with melodic multidimensionality [19]
and on the combination of short-term and long-term mem-
ory models [20], but not much attention has been paid to
the construction of the LTM itself.

We base our approach on [11], where selective acquisi-
tion learning is used for motivic pattern extraction from a
corpus of melodies. Our approach extends their work by
proposing and testing different selective acquisition tech-
niques, and by combining the learning approach proposed
in [11] with characteristics of the ‘feature selection’ learn-
ing approach proposed in [3] for natural language process-
ing. Moreover, we focus on using selective learning to cre-
ate more powerful LTM models for melody segmentation.
In the following section we describe our approach in detail.

3. ENCULTURATION VIA SELECTIVE
ACQUISITION LEARNING

The goal of selective acquisition learning is to construct an
enculturated LTM model. In this paper we model encul-
turation as a refinement process. That is, our learner takes
two inputs: (1) a LTM model, which is simply a collection
of melodic figures acquired during prior listening experi-
ence, and (2) a corpus of melodies of a given culture to
which the learner is to be exposed. The output is a LTM
model in which, ideally, only melodic figures characteris-
tic of the culture to which the learner has been exposed are
preserved. Our learning approach is summarised as pseudo
code in Algorithm 1.

As shown in Algorithm 1, our learner ‘listens’ to each
melody one phrase at a time, and decides which figures to
store in LTM by evaluating different segmentations. That
is, the learner stores in LTM only the figures that allow it
to segment the phrase in an optimal way. This process is
continued until the learner has acquired the melodic vo-
cabulary that allows it to perform optimal segmentations.
In the following sections we describe each part of the ap-
proach in more detail.

Input: LTM model, Phrase-segmented Melodic
Corpus,

Output: LTM model

while termination condition not met do
read melody from corpus;
for each phrase in melody do

Compute possible segmentations;
Select the optimal segmentation;
Store suphrases in LTM;

Check termination condition;
Algorithm 1: Selective Acquisition Learning

3.1 Input/Output

3.1.1 Input: Melody Representation

Our learner takes as input melodies represented as a se-
quence of chromatic pitches, constrained to a range of two
octaves. 3 Formally, we take p = p1 . . . pN to be a se-
quence of pitch intervals, where each interval pi 2 A =
{�12, . . . , 0, . . . , +12}. In A each numerical value en-
codes the distance in semitones between two contiguous
pitches, and the ± symbol encodes its orientation (ascend-
ing, descending).

3.1.2 Input: phrase segmented corpus

We assume input melodies are annotated with phrase bound-
aries, so that our learner can process melodies on a phrase
by phrase basis, finding for each an optimal segmenta-
tion. We choose to process phrases based on cognitive
constraints, as exhaustively evaluating multiple segmenta-
tions for a whole melody would break known limitations
of human memory.

3.1.3 Input/Output: long term memory (LTM) model

We model LTM probabilistically using a Markov modelling
strategy. Essentially this boils down to constructing a data
structure to hold the number of times melodic figures up to
5 intervals appear in a corpus, and then use those counts to
estimate probabilities (we go into more detail in §3.3). 4

3 In this paper our learner and segmenters take as input symbolic en-
codings of melodies, i.e. computer readable representations of scores
transcribed by experts (see §5.1 for more details). Symbolically encoded
melodies can be represented in a variety of ways, e.g. chromatic pitch,
step-leap pitch intevals, inter onset intervals, and so on. In statistical
learning this multi-dimensional attribute representation of melodic events
can be tackled using multiple viewpoint systems [7, 19]. However, using
multiple viewpoints comes at expense of a considerable increase in the
complexity of the statistical model architecture, resulting in an increase in
processing time and space requirements, as well as lower interpretability
of the model. In this paper we favour using a single melodic represen-
tation to simplify the evaluation our of segmenters, which is important
considering that we evaluate our segmenters indirectly, by means of a
classification experiment (see §5).

4 The input LTM model can also be computed by sampling from
known parametric distributions, e.g. in [2] the LTM model is constructed
sampling from a Dirichlet distribution. However, by using corpus statis-
tics we can assess how different (and perhaps more suitable) are the seg-
mentations produced by one of the learners in respect to the others when
exposed to the same melodies, which is a better way to try to prove or
disprove our hypothesis.
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3.2 Computing Possible Segmentations

Ideally, our learner should evaluate all possible segmenta-
tions of a phrase. However, processing time is exponential
on the number of notes in the phrase, so in practice eval-
uating all segmentations is unfeasible. Thus, we use the
algorithm proposed in [17] to efficiently compute a con-
strained space of possible segmentations. The algorithm
takes as input the minimum and maximum length of sub-
phrases, as well as the minimum and maximum number of
subphrases. As we mentioned previously we have limited
subphrases to be sequences of 1-5 intervals in length. We
also limit phrases to be composed of at most 6 subphrases
(by doing so we are able to cope with phrases of a maxi-
mum length of 30 intervals).

3.3 Select the optimal segmentation

Below we present two techniques to select an optimal seg-
mentation. One in which the learner selects subphrases that
give it the ‘clearest’ possible understanding of a phrase,
and another in which the learner uses subphrases it ‘knows
well’ to increase its vocabulary.

3.3.1 Common and Complete Figures

Melodic figures that aid segmentation should be ‘charac-
teristic’ of a melodic culture. One way to measure how
characteristic figures are is by searching for ‘common’ fig-
ures in a corpus representative of a melodic culture. How-
ever, common figures are mainly of short duration, and
normally less specific and informative than figures of larger
duration (see [28]). There is hence a trade-off between
how common a figure is and how specific to a given tra-
dition it can be. 5 Thus, we need a way to automatically
determine how long do the figures we are after need to be,
so that we search for the longest possible common figures
instead of only the most common ones. One way to do
so is by attempting to determine if a given figure is some-
how ‘complete’ on its own, or if its part of a larger figure.
Our search then would be for figures that are common, yet
large enough so as to be perceptually complete. Accord-
ing to melodic expectation theory [14, 27], the perceptual
completeness of a melodic figure is inversely proportional
to the degree by which it stimulates expectation. In other
words, melodic figures for which is hard to predict what
comes next are perceived as more complete than those for
which is easy to predict what comes next.

Using information theory we can attempt to jointly quan-
tify the commonness and completeness of a figure. If from
within a phrase of length T we take a figure w = pi . . . pj ,
with i, j 2 [1 : T ], we can compute its conditional entropy
h as

h(x|w) = P (w)
X

x2A
P (x|w)log (P (x|w)) (1)

5 In natural language this is also a commonly found problem, ‘content’
or informative words (e.g. nouns) tend to be of greater length that ‘non-
content’ words (e.g. determinants).

where x is used to symbolise melodic events that can
follow w, and P denotes probability. In Eq. 1 the first term
P (·) will be high for common figures in a corpus, and the
second term

P

P (·)log (P (·)) will be high if it is hard to
predict what comes after w. Hence, h will be high for fig-
ures that are common and complete in an information the-
oretic sense.

The values of probabilities P (·) can be estimated from
the counts of w and the concatenation wx in a given melo-
dic corpus: P (w) ⇠ N(w)/NT and P (x|w) ⇠ N(wx)/
N(w), where N(·) denotes counts, and NT denotes the to-
tal number of counts for figures of length equal to w in the
corpus.

3.3.2 Monitoring LTM

Using conditional entropy we can monitor the state of our
LTM before and after a new melodic figure is listened to.
So, first, the total entropy for figures w of the same size is

Ho = �
X

w2A⇤

P (w)
X

x2A
P (x|w)logP (x|w) (2)

where we use A⇤ to denote the space of all figures of
size o with attribute space A. In our LTM o = {1, . . . , 5}
and hence its total entropy is

H = H1 + · · · + H5 (3)

and then we can define �H as

�H = Hafter listening to w � Hbefore listening to w (4)

which allows us to monitor the evolution of our LTM.

3.3.3 Selection Technique 1

We have now the necessary information to formulate our
first selection technique. Since common and complete fig-
ures are expected to have high entropy, a ‘good’ phrase
segmentation among a group of possible segmentations is
that segmentation with the highest average �H . That is, if
we have a space of possible segmentations S , the average
�H of a candidate segmentation s = w1, . . . , wm is

�(s) =
�H(w1) + · · · + �H(wm)

m
(5)

and hence our first selection technique is

s⇤ = argmax
s2S

�(s) (6)

Where s⇤ denotes the segmentation with maximal score.
Note that, to ensure convergence, the leaner stores in LTM
only the subphrases in s⇤ for which �H is positive.

One problem with our first technique is that it makes
our learner very conservative. The melodic figures stored
are characteristic of the corpus as a whole. Hence, the
technique operates under the assumption that the corpus is
stylistically homogeneous. For most cultural traditions the
assumption of complete stylistic homogeneity is too strong
(it is likely that certain figures are important but only char-
acteristic of subsets of the corpus).
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Collection Subset Cultural Encoding Number of Average Melody Number of Average Phrase
Name Abbreviation Name Origin of Sample Melodies Size in Notes Phrases Size in Notes
MTC FS Dutch ⇤⇤kern 4120 52.3 (22.5) 19935 9.1 (2.5)
EFSC CHINA Chinese ⇤⇤kern 2201 62.8 (41.2) 11046 12.5 (4.7)
OHFT - Hungarian EsAC 2323 38.6 (12.0) 9308 9.6 (3.2)

Table 1. Melodic Corpora. Numbers in parenthesis correspond to standard deviation.

3.3.4 Selection Technique 2

Our second technique aims to relax the assumption of ho-
mogeneity and stimulate the learner to expand its vocabu-
lary. More importantly, it aims to reveal segmentations in
which one or more subphrases are common and complete,
and others are representative of the melody, yet relatively
rare in the corpus. For a figure w the latter idea can be
quantified as

⇢(w) = �Pmelody(w) ⇤ log (Pcorpus(w)) (7)

with Pmelody(w) ⇠ M(w)/MT and Pcorpus(w) ⇠
N(w)/NT , where M denotes counts of w in the melody,
MT is used to indicate the total number of counts of figures
of size equal to w in the melody/corpus, and N denotes
counts of w in the corpus.

For a complete segmentation we take the average of ⇢

⇢(s) =
⇢(w1) + · · · + ⇢(wm)

m
(8)

Finally, we combine the ⇢ and � using a geometric mean: 6

�(s) =
p

�(s) · ⇢(s) (9)

and compute our second technique as

s⇤ = argmax
s2S

�(s) (10)

Where s⇤ denotes the segmentation with maximal score.
Our leaner stores all subphrases of s⇤ in LTM.

3.4 Termination Condition

We keep track of the scores of s⇤ when processing the
corpus, expecting that, as the learner reaches convergence,
the score difference between subsequent instances s⇤ gets
smaller and smaller. We hence assume convergence has
been reached if �s⇤ < ✏.

Since Eq. 10 encourages learning new vocabulary, con-
vergence is slow and not guaranteed. Thus, in addition to
�s⇤ < ✏, we also set a maximum number of learning iter-
ations as a second termination condition.

4. ENCULTURATED SEGMENTATION

Once the LTM model has been trained (via either selec-
tive or non-selective learning), our segmenter proceeds in
a way similar to Algorithm 1. That is, it processes each
melody a phrase at a time, for each phrase it computes a

6 Since �(s) can in principle be negative, to compute � we consider
negative �H(w) values to be zero when computing �(s) to avoid the
possibility of negativity.

space of possible segmentations, and selects the best one.
However, this time the selection of the best segmentation
is made by computing

h
⇤

= argmax
s2S

h(s) (11)

where h(s) = h(w1)+···+h(wm)
m and h(w) is computed

using Eq. 1.

5. EVALUATING SUBPHRASE SEGMENTATIONS

At present, freely available corpora annotated with sub-
phrase boundaries do not exist. This implies we are un-
able to evaluate our segmenters in a traditional scenario
(i.e. by comparing automatic segmentations to human-an-
notated segmentations). Hence, we opt for a ‘use-case’
evaluation scenario: test the output of our segmenters in a
melody classification experiment.

The classification task consists in predicting the cultural
origin of each melody in a dataset of melodies, using sub-
phrases as classification features. In this scenario ‘good’
segmentations should facilitate classification and thus re-
sult in high classification performance.

In the following subsections we describe the melodic
corpora used for our classification experiment, the com-
pared segmenters, the classifiers employed, and finally we
list evaluation metrics and present results.

All segmenters and baselines were coded in Matlab. All
source files as well as the train/test data listings are avail-
able at http://www.projects.science.uu.nl/music/.

5.1 Phrase Annotated Melodic Corpora

The melodic corpora used in our experiments is summa-
rised in Table 1. The Meertens Tune Collection 7 (MTC) is
a collection of Dutch folk songs. The Essen Folk Song Col-
lection 8 (EFSC) is a collection of vocal folk songs from
Eurasia. The Old Hungarian Folksong Types collection 9

(OHFT) is a collection of vocal folk songs from Hungary.
All corpora summarised in Table 1 have been annotated

with phrase boundaries by expert Ethnomusicologists. 10

We cleaned the collections by removing all melodies with
overly short and overly long phrases. We considered a

7 http://www.liederenbank.nl
8 http://www.esac-data.org
9 We obtained the OHFT data directly from the author of [11].

10 In the case of the EFSC-CHINA the origin of the phrase markings
is uncertain. However, it is often assumed it corresponds to notated
breath marks and/or to the phrase boundaries of lyrics. In the case of
the MTC-FS phrase boundary markings where produced by two experts
(which agreed on a single segmentation). The annotation process is de-
tailed in [26]. In the case of the OHFT the phrase boundary marking
process is detailed in [10, 12].
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Segmenter Parameter Setting

Segmentation Results (for the best parametric setting)
Mean Number of Mean Number of Total Number of Unique
Subphrases per Phrase Subphrases per Melody Subphrases per Corpus
C H D C H D C H D

NS LTM training: PPM-C, with exclusion, 5.0 4.8 4.8 27.7 16.7 23.4 1300 1091 1197
1000 melodies of each culture.

ST1 LTM training: convergence 10E-8 or 8000 phrases, 3.8 3.7 3.7 21.7 13.7 19.6 3437 2562 2204
1000 melodies of each culture.

ST2 LTM training: convergence 10E-8 or 8000 phrases, 3.6 3.5 3.5 23.2 15.4 21.3 3566 2743 2311
1000 melodies of each culture.

LBDM detection threshold {0.2, 0.4, 0.6}, others: suggested setting in [5]. 3.0 2.9 2.9 15.5 10.4 15.4 4497 3841 2999
PAT detection threshold {0.2, 0.4, 0.6}, others: suggested setting in [6]. 3.6 3.4 3.4 19.3 11.4 16.7 3603 3139 2810
FIXLEN constant size CS = 3 intervals. 4.0 3.8 3.8 22.0 13.5 18.9 1371 1179 1474
RAND constant size RS 2 [2 � 4] intervals. 4.1 3.9 3.9 22.2 13.5 19.2 2827 2413 2551

Table 2. Parameter settings and segmentation results. C - Chinese, H - Hungarian, D - Dutch. Text in bold indicates best
performing parametric settings.

phrase to be overly short if it contains only one note or
one interval. We considered a phrase to be overly long if it
is longer than 30 notes in length.

5.2 Enculturated Segmenters

We evaluate three enculturated segmenters: NS, ST1, ST2.
The NS segmenter uses a LTM model trained with non-
selective acquisition (using the PPM-C algorithm [22]).
The ST1 segmenter uses a LTM model trained with the se-
lective acquisition technique 1, Eq. 6. The ST2 segmenter
uses a LTM model trained with the selective acquisition
technique 2, Eq. 10. A sample of 1000 melodies from each
collection is used to train the LTM models. The paramet-
ric settings for each enculturated segmenter are specified
in Table 2.

5.3 Reference Segmenters and Baselines

We compared the performance of the enculturated segmen-
ters to two local boundary detection segmenters (LBDM
and PAT), and two naı̈ve baseline segmenters (FIXLEN and
RAND). The LBDM and PAT segmenters were selected
for comparison because they have been used for subphrase
level segmentation in the past [6, 18]. The LBDM seg-
menter [5] computes subphrase boundaries by detecting
large pitch intervals and inter-onset-intervals. Intervals si-
zes are given a score by comparing them to immediately
surrounding intervals (the larger the difference the higher
the score). High scoring intervals are taken as subphrase
ends. The PAT segmenter [6] computes subphrase bound-
aries by detecting and scoring repetitions of pitch inter-
val sequences within each phrase. The starting points of
high scoring repetitions are taken as subphrase starts. The
FIXLEN baseline segments a phrase into subphrases of con-
stant size. The RAND baseline segments a phrase into sub-
phrases of randomly chosen sizes. The parametric settings
for each of the reference and baseline segmenters are spec-
ified in Table 2.

5.4 Features and Classifiers

As mentioned above, in our experiment we are interested
in evaluating the effectiveness of subphrases as classifica-
tion features. To use subphrases in the most transparent

way, we represent melodies as a ‘bag-of-subphrases’. That
is, we use a vector space model representation, 11 where
each vector element is weighted using the common term
frequency - inverse document frequency (tf ⇤ idf ) heuris-
tic [13]. We then use two simple and well known classifiers
for the cultural origin prediction task: k-means and k near-
est neighbours (kNN).

Segmenter k-means (k=3) kNN (k optimised)

R P A R P A

NS 0.94 0.93 0.71 0.93 0.87 0.83
ST1 0.90 0.95 0.74 0.93 0.94 0.87⇤

ST2 0.92 0.93 0.71 0.92 0.96 0.88
LBDM 0.47 0.50 0.47 0.75 0.84 0.76
PAT 0.74 0.76 0.58 0.83 0.87 0.79
FIXLEN 0.88 0.89 0.67 0.86 0.90 0.83
RAND 0.84 0.84 0.63 0.88 0.85 0.78

Table 3. Clasification results: recall (R), precision (P ),
and accuracy (A) averaged over 10-folds. Text in bold
highlights the highest performances. Asterisks indicate
performances that are not significantly different from the
highest performances.

5.5 Test set, Performance Measures, and Results

We constructed a dataset of 3000 melodies by randomly
sampling 1000 melodies from each corpus. (All melodies
used to train the enculturated segmenters were excluded
from the sample.) For each of the 3000 melodies, the
classifiers are required to predict whether the melody is
of Hungarian, Chinese, or Dutch origin. Validation tech-
nique: We used 10-fold cross validation to iteratively sep-
arate the melodic dataset into training and test sets. Eval-
uation measures: Given a Ntotal of melodies per fold
to be classified, we use tp to indicate the number of true
positives, fp the false positives, and fn the false nega-
tives. With these statistics we measure measure classifica-
tion performance using accuracy A = Ncorrect

Ntotal
, precision

P = tp

tp+fp

and recall R = tp

tp+fn

. Statistical testing: We

11 in a vector space model, melodies are represented as a vector of size
|V |, where |V | is the number of unique figures occurring in the corpus. If
a figure occurs in the melody, its value in the vector is equal to the number
of times it appears in the melody. The frequency of occurrence of each
figure is then used as a feature for classification.
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used an an ANOVA test (↵ = 0.01) with Bonferroni cor-
rection to test the statistical significance of the differences
in accuracy for each segmenter. Setting and optimising
classifier parameters: The training sets were used to opti-
mise the permutation labels of the k-means classifier and
select the optimal number of nearest neighbours for the
kNN classifier. The optimal number of nearest neighbours
(selected from k 2 [1, 15]) was set by optimizing cross-
validated accuracy on the training data.

The results of our experiment are presented in Table 3.
We discuss our results below.

6. DISCUSSION

6.1 Selective vs. Non-Selective Learning Segmenters

Table 2 shows the NS segmenter produces relatively short
segments, resulting in an average of ⇠4.9 subphrases per
phrase, and an average of ⇠1196 unique subphrases over
all three corpora. Conversely, the ST1-2 segmenters pro-
duce larger segments, resulting in an average of ⇠3.6 sub-
phrases per phrase, and an average of ⇠2767 unique sub-
phrases over all three corpora. Using the k-means classifier
with subphrases computed using ST1 we obtain a (statis-
tically significant) 3% A improvement over the NS seg-
menter, which seems to be driven by a 2% improvement
in P . Using the k-NN classifier with subphrases computed
using both ST1 and ST2 we obtain (statistically signifi-
cant) 3-4% A improvements over the NS segmenter, which
are again in pair with 7-9% increases in P . These results
show the larger segments produced by the ST1-2 segmen-
ters allow better discrimination between melodies of differ-
ent cultural origin, suggesting that selective learning leads
to better models of prior listening experience than non-se-
lective learning.

6.2 Selective Learning Segmenters vs. Local
Segmenters

Segmentation results in Table 2 show that local segmenters
prefer larger segments than the ST1-2 segmenters. Also,
the local segmenters produce an average of ⇠3481 unique
subphrases over all three corpora, which is 741 subphrases
larger than the average of unique subphrases produces by
the ST1-2 segmenters. Table 3 shows that A results using
the segments produced by ST1-2 are >8% better than A
results using the segments produced by LBDM and PAT.
The A performance improvements are in line with rela-
tively large improvements in both P and R. These results
show that the larger segments produced by the local seg-
menters leads to an increase in unique subphrases, and that
these unique subphrases are not discriminative of cultural
origin. The relatively large improvements in A of the ST1-
2 segmenters over the local segmenters supports the hy-
pothesis that enculturated listening might be of importance
for the segmentation of melodic phrases.

6.3 Selective Learning Segmenters vs. Baselines

Table 2 shows the baseline segmenters produce relatively
short segments (of 2 or 3 intervals), resulting in an av-

erage of ⇠3.9 subphrases per phrase, and an average of
⇠1969 unique subphrases over all three corpora. When
using the k-means classifier we can observe significant and
relatively large differences (> 5%) between the A obtained
using ST1-2 and those obtained using the baseline seg-
menters. These results show the larger segments produced
by the ST1-2 segmenters allow better discrimination be-
tween melodies of different cultural origin than the shorter
segments produced by the baseline segmenters, indicating
once more the ST1-2 segmenters might be capturing im-
portant aspects of subphrase structure.

6.4 Scepticism

Any conclusions from our use case evaluation results are
limited to classification schemes using ‘bag-of-subphrases’
representations of melodies. This representation limits the
similarity assesment between any two subphrases to exact
matches, which might be introducing an unwanted bias on
the evaluation. To draw more definitive conclusions our
experiment needs to be complemented with other use case
studies.

7. CONCLUSIONS

In this paper we introduce techniques for selective acquisi-
tion learning in the context of melodic segmentation, specif-
ically the segmentation of melodic phrases into subphrases.
Our aim is to show that enculturated listening is important
for the segmentation of melodic phrases, and that selective
rather than indiscriminative acquisition techniques are bet-
ter to model an enculturated segmenter. We present two
selective acquisition techniques: one in which an artificial
learner selects the subphrases that give it the ‘clearest’ pos-
sible understanding of a phrase, and another in which the
learner attempts to use subphrases it ‘knows well’ to ex-
pand its melodic vocabulary.

To test the segmentations produced by enculturated seg-
menters using selective and non-selective acquisition tech-
niques, we perform a melody classification experiment in-
volving melodies of different cultures. Our results show
that the segments produced by our selective learning seg-
menters substantially improve classification accuracy when
compared to segments produced by using a non-selective
learning segmenter, two local segmentation methods, and
two naı̈ve baselines.

In future work we plan to conduct experiments to test
the sensitivity of our selection techniques to cross-learn-
ing. That is, cases in which the learners have prior knowl-
edge of one melodic tradition and are required to adapt
their knowledge to the particularities of a different melo-
dic tradition. We also plan to extend the current approach
so that it can process multiple attribute representations of
a melody. To this end an integration between our approach
and the multipleviewpoint formalism of [7, 19] is planned.
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