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ABSTRACT

Here we propose a score-informed monaural source separation
system to extract every tone from a mixture of piano tone sig-
nals. Two sinusoidal models in our earlier work are employed
in the above-mentioned system to represent piano tones: the
General Model and the Piano Model. The General Model, a
variant of sinusoidal modeling, can represent a single tone with
high modeling quality, yet it fails to separate mixtures of tones
due to the overlapping partials. The Piano Model, on the other
hand, is an instrument-specific model tailored for piano. Its
modeling quality is lower but it can learn from training data
(consisting entirely of isolated tones), resolve the overlapping
partials and thus separate the mixtures. We formulate a new
hierarchical Bayesian framework to run both Models in the
source separation process so that the mixtures with overlapping
partials can be separated with high quality. The results show
that our proposed system gives robust and accurate separation
of piano tone signal mixtures (including octaves) while achiev-
ing significantly better quality than those reported in related
work done previously.

1. INTRODUCTION

Here we propose a score-informed monaural source separation
system under a new hierarchical Bayesian framework to ex-
tract every tone from a mixture of piano tone signals with high
separation quality. Two sinusoidal models in our earlier work
in [14, 15] are employed in the above mentioned system to
represent piano tones. Sinusoidal modeling is commonly used
in many existing monaural source separation systems to model
pitched musical sounds [6,7,9,11,16]. The major difficulty of
source separation (SS) is to resolve overlapping partials.

Existing systems are based on assumptions on the general
properties of pitched musical sounds. For example, the spectral
envelope of tones is assumed to be smooth (as in [7,16]), or
that the amplitude envelope of each partial from the same note
tends to be similar [11] (known as common amplitude modula-
tion (CAM)), or that the amplitude envelope of a partial evolves
similarly among different notes of the same musical instrument
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in [9]. Yet these assumptions may not be suitable for SS of
piano mixtures as explained in [15]. A very recent work in [17]
can resolve two closed partials but it may not work on octaves,
in which the partials of the upper tone are totally immersed
within the frequencies of the lower tone. Moreover, it assumes
that partials are exact multiples of the fundamental frequency.
This assumption is not valid for piano because piano tones are
only quasi-harmonic [1].

Instead of formulating similar assumptions, we limit input
mixtures to piano music signals. This allows us to design a
piano-specific model called the Piano Model (PM) to resolve
overlapping partials in [15]. In piano music, a particular pitch
tends to appear more than once. The tones of the same pitch
share some common characteristics which can be captured
by PM. Our system is based on two requirements. First, the
pitches in the mixtures should reappear as isolated tones in the
target recording. Second, the piano music is performed without
pedaling. Then the isolated tones can be used as the training
data for PM to resolve the overlapping partials even for octaves.

Although PM can resolve the overlapping partials, its mod-
eling quality of single piano tones is lower than our General
Model (GM) in [14]. However, GM cannot be directly applied
to SS because it fails to separate mixtures of tones due to the
overlapping partials. Here we formulate a new hierarchical
Bayesian framework to run both PM and GM in the SS process
so that the mixtures with overlapping partials can be separated
with high quality. The separation process is divided into the
training stage and the SS stage. Given the estimated PM param-
eters and the training data, we can, in the SS stage, set the prior
distributions of the GM parameters to favor the proper regions
of values under the Bayesian framework, estimate the GM
parameters successfully even the case of overlapping partials,
and reconstruct the individual tones in the mixtures with high
quality. We hope that our system could shed some light on the
empirical study of expressiveness in music performance [5]
by comparing the subtleties of various artists’ performances,
based on individual tones extracted by SS.

2. SIGNAL MODELS

Here an individual tone (the sound of hitting one piano key) is
considered as a particular sound source of the corresponding
pitch. When multiple piano keys are pressed, a mixture signal
is generated. We model a mixture signal as a sum of its cor-
responding individual tones as y(t)=

PK
k=1xk(t) where y(t)

is the observed mixture signal in the time domain, K is the
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number of tones in the mixture, xk(t) is the kth individual tone
in the mixture, and t is the time in seconds. We assume that
the score has been known so that the pitch and the duration of
each xk(t) are given (music transcription systems [2,10] can
be used here). The goal of our research is to recover the signal
of each individual tone xk(t) from the mixture signal y(t) via
the signal models GM and PM.

2.1 General Model (GM)

In [14], we present a frame-wise sinusoidal model called GM
to represent a piano tone. For a piano tone, the frequencies of
the partials are stable so the frequencies can be fixed across
frames. The number of partials can also be fixed for a tone. In
GM, the estimated tone bxk,r, which is the estimate of the kth
tone in a mixture at the rth frame, can be written as:

bxk,r[l]=
Mk
X

m=1

w[l]

(↵k,m,rcos(2⇡fk,mtl)+�k,m,rsin(2⇡fk,mtl)) (1)
where Mk is the number of partials, ↵k,m,r is the amplitude
of the cosine component, �k,m,r is the amplitude of the sine
component, fk,m is the frequency, w[l] is the window function
with the window length L and l=0,...,L�1, and tl is the time
in second at the index l so tl = l/fs and fs is the sampling
frequency in Hz. The overlap-and-add method in [18] can be
used to reconstruct the entire signal from GM.

Based on the above model, the estimated mixture byr[l] at
the rth frame is the sum of each estimated tone bxk,r[l] such
that byr[l]=

PK
k=1bxk,r[l]. The observed mixture is the sum of

the estimated mixture and the noise term so yr[l]=byr[l]+vr[l]
where vr[l] is the noise component. To estimate the parameters
in each frame, it is convenient to rewrite the model in (1) into
the matrix form. Let Hk be the frequency matrix of the kth
tone in the form of

Hk[l,u] =

8

<

:

w[l]cos(2⇡fk,utl) if 1uMk,

w[l]sin(2⇡fk,u�Mk
tl)

if Mk+1
u2Mk

(2)

and we also let fk be the frequency vector containing all fk,u.
The amplitudes of the cosine and sine terms of the kth tone

at the rth frame can be expressed as a column vector gk,r

defined by

gk,r[u]=

(

↵k,u,r if 1uMk,

�k,u�Mk,r if Mk+1u2Mk
. (3)

For the mixture, the frequency matrices from each tone are
concatenated into the matrix H=[H1 ··· HK] and all fk are
concatenated into the column vector f =

⇥

fT
1 ··· fT

K

⇤T. The
amplitude vectors of each tone can also be concatenated into
a column vector gr =

⇥

gT
1,r ··· gT

K,r

⇤T. The estimated mixture
at rth frame can be expressed as byr =Hgr and the estimated
mixture is related to the observed mixture as below:

yr =Hgr+vr (4)
where vr is the noise term. It is modeled as the zero-mean
Gaussian noise with the variance �2

vr
.

The observed mixture signal can be expressed in the form
of Y=[y1 ··· yR]. Then the estimated mixture for all frames

can be written as
bY=HG (5)

where bY=[by1 ···byR], G=[g1 ··· gR] and R is the number of
frames. All GM parameters can be grouped into⇥={f,G}.
The goal of our SS is to estimate both the frequency matrix H
and the amplitude matrix G so that each individual tone can
be reconstructed. However, H is often rank deficient. This
happens when some of the partials from different tones in the
mixture are overlapping. This implies that if only the mixture
in such case is given, it is impossible to separate the mixture
into its individual tones unless more information is provided.
This problem can be solved by using the training data as the
prior information under the Bayesian framework in Section 3.

2.2 Piano Model (PM)

In [15], we propose PM to resolve the overlapping partials
by exploring the common properties of recurring tones. PM
employs a time-varying sum-of-sinusoidal signal model for
piano tones, and it describes a tone in an entire duration instead
of a single analysis frame as

b

xk(tn)=
Mk
X

m=1

a(tn;ck,'k,m)·cos(2⇡fk,mtn+�k,m) (6)

where Mk is the number of partials of the kth tone, fk,m

and �k,m are the frequency and the phase respectively, and
a(tn;ck,'k,m) is the time-varying amplitude of the partial
stated in [15] where the envelope parameters 'k,m control
the envelope surface against the intensity ck and the time tn.
The intensity ck is assigned to be the peak amplitude of the
observed time-domain signal of the tone. The onset of each
tone in the mixture may not be exactly the same so a time-
shift factor is introduced for each tone in the estimated mixture
b

y(tn)=
PMk

k=1bxk(tn�⌧k) where ⌧k is the time shift in seconds.
All parameters in PM for the kth tone can be grouped

into a parameter set  k so  k = {'k,m,fk,m,�k,m,ck,⌧k}
and  = { 1,..., K}. The PM parameters  k can be di-
vided into two groups: the invariant PM parameters  k,I =
{'k,m,fk,m,�k,m} and the varying PM parameters  k,V =
{ck,⌧k}. The invariant PM parameters contain parameters in-
variant to instances of the same pitch and they are estimated
from the training data. The varying PM parameters consist of
parameters which may vary across instances. Given a mixture,
only the varying PM parameters of the mixture are required
to be estimated if the invariant PM parameters have been esti-
mated from the training data.

In both GM and PM, we have assumed that the number of
partials Mk of each tone is known. The number of partials Mk

is fixed for all experiments. The details of finding Mk can be
found in [14].

3. BAYESIAN FRAMEWORK FOR SS

This section will explain how the Bayesian framework inte-
grates the two models in the previous section and incorporates
the training data to resolve overlapping partials. Given the
mixture y and the training data X , the goal of Bayesian SS
with GM is to find the Maximum A Posterior (MAP) solution
b⇥y that maximizes the posterior p(⇥y|y,X ) where⇥y is the
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Figure 1. (a) The likelihood function. (b) The prior. (c) The
posterior. This schematic diagram shows that an appropriate
prior gives the desirable MAP solution. The vertical line shows
the true value of⇥y.

GM parameter set for y. By Bayes’ theorem, the posterior can
be written in the form p(⇥y|y,X )/p(y|⇥y)p(⇥y|X ).

The key issue of Bayesian SS is how to set up the prior
p(⇥y|X ). If overlapping partials are present, the frequency
matrix H is rank deficient and many choices of⇥ can give sim-
ilar values of the likelihood p(y|⇥y). Hence, there are many
peaks in the likelihood function as shown in the schematic
diagram (Figure 1(a)). In order to find the desirable MAP
solution, it is advantageous that the prior distribution has a high
density around the correct value of ⇥y. In Figure 1(b), the
prior is appropriate so that the MAP solution, i.e. the peak of
the posterior, can be located correctly as depicted in Figure
1(c). In short, an appropriate prior of the GM parameters is
crucial for resolving the overlapping partials. It can be found
by using the training data and the estimated PM parameters.

The prior p(⇥y|X ) expresses the probability distribution
of⇥y given the training data X and before the mixture y is
observed. The functional form of p(⇥y|X ) can be formulated
in terms of PM. The PM parameter set y of the mixture y
is divided into two sets: the invariant PM parameter set y,I
and the varying PM parameter set y,V. For the training data
X , the PM parameter set X is divided into the invariant PM
parameter set X ,I and the varying PM parameter set X ,V.
Note that both the mixture and the training data share the same
set of the invariant PM parameters. The subscripts y and X
for the invariant PM parameters can be omitted for clarity so
 I= y,I= X ,I.

The posterior p(⇥y|y,X ) of the GM parameters can be
linked up with the PM parameters by using marginalization:

p(⇥y|y,X )=

ZZ

p(⇥y, y,V, I|y,X )d y,Vd I. (7)

Note that the noise variance �2
vr

of the mixture in (4) is omit-
ted in the derivation for clarity. Then by the product rule of
probability, (7) can be put into

p(⇥y|y,X )=

ZZ

p(⇥y|y,X , y,V, I)

p( y,V, I|y,X )d y,Vd I (8)
where the first term is the posterior of⇥y and the second is
the posterior of y,V and I.

However, finding the MAP solution involves evaluating
the integration over all possible values of  y,V and  I in
(8). PM is a highly dimensional and nonlinear model that
makes the integration analytically infeasible. Different ap-
proximation techniques can be used to find the MAP solution.

General Model
(GM)

Piano 
Model
(PM)

Invariant
PM

parameters

Piano Model
(PM)

Varying
PM

parameters

Training Source separation

bªI bªy;V
p(ªIjX )

p(ªy;Vjy; bªI) p(£yjy;X ; bªy;V; bªI)

Input:
mixture  y

Input:
training

data
X

Output:
GM 

parameters
b£y

Figure 2. Bayesian framework for SS.

For computational efficiency, here we have used the evidence
approximation [12, 13]. Following the derivation of the evi-
dence approximation in [3, p. 408], we assume that the pos-
terior p( y,V, I|y,X ) is sharply peaked around their most
probable values b y,V and b I. Then (8) can be written as
p(⇥y|y,X )⇡p(⇥y|y,X ,b y,V,b I).

Hence, the MAP solution b⇥y is the maximum of the pos-
terior p(⇥y|y,X ,b y,V,b I). The estimation of b y,V and b I
can be done as follows: (i) b y,V is estimated by maximizing
the posterior p( y,V|y,X ) via the evidence approximation
which gives p( y,V|y,X ) ⇡ p( y,V|y, b I) (note that X is
omitted because  y,V is independent of X if b I is given);
(ii) b I is estimated by maximizing the posterior p( I|y,X )
that can be approximated by using the training data only so
p( I|y,X )⇡p( I|X ).

According to these results, the whole SS process is sum-
marized in Figure 2. The whole process is divided into the
following two stages:

1. Training. Given the training data X , find the most
probable value of the invariant PM parameters b I of
p( I|X ).

2. SS. Given the mixture y, the training data X and the
invariant PM parameters b I, SS functions in two steps:

(a) SS with PM. Given y and b I, find the most prob-
able value of the varying PM parameters b y,V of
p( y,V|y,b I).

(b) SS with GM. Given y, X , b y,V and b I, find the
MAP solution b⇥y of p(⇥y|y,X ,b y,V,b I).

4. TRAINING AND SS WITH PM

The goal of the training stage is to find the most probable
invariant PM parameters b I that maximize the posterior of
the invariant PM parameters p( I|X ) given the training data
X . By Bayes’ theorem, the posterior can be rewritten as
p( I|X )/p(X | I)p( I). The prior p( I) reflects our prior
knowledge of the invariant PM parameters I. The values of
 I greatly vary from different pitches and pianos. If we have
little idea on suitable values for a parameter, it is safe to assign
a prior which is insensitive to the values of that parameter [4].
Then maximizing the posterior p( I|X ) is effectively equiv-
alent to maximize the likelihood p(X | I). The details of
finding the solution b I can be found in [15].

Given the invariant PM parameters b I and the mixture y,
we perform SS with PM as shown in Figure 2. The goal of SS
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with PM is to find the most probable varying PM parameters
b y,V that maximize the posterior of the varying PM param-
eters p( y,V|y, b I). By Bayes’ theorem, the posterior can
be rewritten as p( y,V|y, b I)/p(y| y,V, b I)p( y,V). The
prior p( y,V) reflects our prior knowledge of the invariant PM
parameters y,V. The values of y,V greatly vary from differ-
ent playings. Hence, we choose an insensitive prior for y,V as
 I. Then maximizing the posterior p( y,V|y,b I) is again ef-
fectively equivalent to maximize the likelihood p(y| y,V,b I).
The details of finding b y,V are also presented in [15].

5. SS WITH GM

The process of SS with GM is divided into the following two
steps: (1) estimate the hyperparameters, and (2) given the hy-
perparameters, find the MAP solution b⇥y. We will focus on
the second step first.

5.1 Find the MAP solution

The MAP solution b⇥y is found by maximizing the posterior
p(⇥y|y,X , b y,V, b I). The GM parameters ⇥y include the
amplitude matrix G and the frequencies f . An iterative update
scheme is designed to find the MAP solution: (1) given f ,
update G, and (2) given G, update f . Steps 1 to 2 are repeated
until convergence. The iterative update starts with the input
frequencies from the estimated frequencies in PM in Section 4.
The frequencies in PM are close to those in GM. We find that
10 iterations are enough for convergence. In the followings, the
iterative update scheme will be discussed in details.

5.1.1 Step 1: update the amplitude matrix G

Each gr in the amplitude matrix G can be estimated indepen-
dently. Given the estimated frequencies bf , now we rewrite the
posterior of gr into p(gr|yr,X ,bf,b y,V,b I,b�2

vr
). The goal of

this step is to find the MAP solution bgr which maximizes the
posterior of gr. By Bayes’ theorem, the posterior of gr can be
expressed in the form of

p(gr|yr,X ,bf,b y,V,b I,b�
2
vr

)

/p(yr|gr,bf,b�
2
vr

)p(gr|X ,b y,V,b I) (9)
where b�2

vr
represents the estimated variance of the zero-mean

Gaussian noise in (4).
The prior p(gr|X , b y,V, b I) in (9) represents the prior

distribution of gr conditioned on the training data X and the
PM parameters b y,V and b I. It is modeled as a Gaussian with
the mean bµgr

and the covariance matrix b⌃gr . In this section,
it is assumed that the hyperparameters b�2

vr
, bµgr

and b⌃gr
have

been estimated and their values are known. The estimation of
these hyperparameters fromX , b y,V and b I will be discussed
in Section 5.2. Note that each gr has its own set of bµgr

and b⌃gr

so the MAP solution of each gr can be found independently.
As byr =Hgr is a linear model for given H, and both the

noise and the prior are Gaussian, the resulting posterior of gr

is also Gaussian. Therefore, the MAP solution bgr is equal to
the posterior mean. By using the result in [4, p. 153], the MAP
solution is

bgr =
⇣

b⌃
�1

gr
+b��2

vr
HTH

⌘�1⇣
b⌃

�1

gr
bµgr

+b��2
vr

HTyr

⌘

. (10)

5.1.2 Step 2: update the frequencies f

Given the estimated amplitude matrix bG in Step 1, the goal
of Step 2 is to find the MAP solution bf which maximizes the
posterior p(f|Y,X , bG, b y,V, b I, b�

2
v). However, the model

bY=HG in (5) is nonlinear with f . Based on our work in [14],
we vectorize the matrix bY into bYvec and then linearize bYvec

by using Taylor’s expansion so
bYvec(f)⇡ bYvec(f

cur)+Z(fcur)(f�fcur) (11)

where bYvec(f) is the estimate depending on the new frequency
vector f which is to be updated, and bYvec(fcur) is the esti-
mate depending on the current estimate of fcur. The matrix
Z = Z(fcur) is the Jacobian matrix @ bYvec/@f evaluated at
fcur and Z =

⇥

ZT
1 ··· ZT

r ··· ZT
R

⇤T. The matrix Zr is the Ja-
cobian matrix @byr/@f at rth frame for all tones and Zr =
[Z1,r ··· Zk,r ··· ZK,r]. Then the Jacobian matrix Zk,r at rth
frame for kth tone is

Zk,r[l,m]=
@ŷr[l]

@fk,m
=2⇡tlw[l]

(�↵k,m,rsin(2⇡fk,mtl)+�k,m,rcos(2⇡fk,mtl)). (12)
Hence, each element in Z can be computed from (12).

Following the prior distribution of gr, the prior distribution
of f is also modeled as a Gaussian with the mean bµf and the
covariance matrix b⌃f . By applying (11) to the result in [4, p.
93], the MAP solution bf is

bf =
⇣

b⌃
�1

f +ZT
b⌃

�1

v Z
⌘�1

⇣

b⌃
�1

f bµf +ZT
b⌃

�1

v

⇣

Yvec� bYvec+Zfcur
⌘⌘

(13)

where Z = Z(fcur), bYvec = bYvec(fcur), and the covariance
matrix b⌃v = diag(b�2

v1
1L,...,b�2

vR
1L) and 1L denotes the L-

dimensional column vector filled with 1’s. In the next section,
we will show how to find the hyperparameters which are crucial
for resolving overlapping partials.

5.2 Estimation of the hyperparameters

Given the training dataX , we first estimate the GM parameters
for each isolated tone in X by the method in [14]. Together
with the estimated PM parameters b y,V and b I found in Sec-
tion 4, we will estimate the hyperparameters b�2

vr
, bµgr

, b⌃gr
,

bµf and b⌃f .

5.2.1 Estimation of the noise variance �2
vr

To estimate the noise variance �2
vr

of yr in (4), we model the
noise variance of an isolated tone xk,r at a frame is directly
proportional to the signal power. Then the noise variance of
xk,r is �2

vk,r
= �̄2

vk
||xk,r||2 where �̄2

vk
is the proportionality

constant for pitch pk and it can be determined by the training
dataX which may contain multiple instances of the same pitch.
Let xi

k,r,X be a frame of an isolated tone in X where the index
i denotes the ith instance of the pitch pk. Then �̄2

vk
can be

estimated by

�̄2
vk

=
1

IkRkL

Ik
X

i=1

Ri
k

X

r=1

L�1
X

l=0

0

@

xi
k,r,X [l]�x̂i

k,r,X [l]
�

�

�

�

�

�

xi
k,r,X

�

�

�

�

�

�

1

A

2

(14)
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where Ik is the number of instances of pitch pk in X , Ri
k is

the number of frames in the ith instance of the pitch pk and
Rk =

PIk

i=1Ri
k, and x̂i

k,r,X is the estimate of xi
k,r,X and is

found by using the method in [14].
The noise variance of the mixture yr is

�2
vr

=
K
X

k=1

�2
vk,r,y

=
K
X

k=1

�̄2
vk

||xk,r,y||2 (15)

where xk,r,y is the kth individual tone in the mixture, and
�2

vk,r,y
is its noise variance. However, xk,r,y is not known. In

order to estimate �2
vr

, we approximate ||xk,r,y||2 into

||xk,r,y||2⇡
 

bck
PK

k=1bck

!

||yr||2 (16)

where the estimated intensity bck in PM determines the pro-
portion of ||xk,r,y||2 in ||yr||2. Substituting (16) into (15), we
estimate the noise variance b�2

vr
in the mixture yr in the form of

b�2
vr

=
K
X

k=1

 

bck�̄2
vk

PK
k=1bck

!

||yr||2. (17)

5.2.2 Estimation of the prior distribution of the amplitudes gr

The prior distribution p(gr|bµgr
,b⌃gr

) of gr is modeled as the
Gaussian with the mean bµgr

and the covariance b⌃gr
. Both

bµgr
and b⌃gr

depend on b y,V and b I. This dependence can
be formulated by converting the PM parameters b y,V and b I
into the GM parameters. Let t0r be the time at the center of the
rth frame so that t0r = ((r�1)D+0.5L)/fs where D is the
hop size in samples. Evaluating the envelope function of PM
in (6) at the center of the rth frame, we can find the estimated
amplitude bak,m,r,y,PM = a(t0r;bck,b'm) where bck and b'm are
included in b y,V and b I respectively.

The phase at the center of rth frame can be calculated from
b y,V and b I by

b�k,m,r,y,PM =2⇡bfk,m,PM(t0r�b⌧k)+b�k,m,PM (18)

where the frequency bfk,m,y,PM and the phase b�k,m,PM are in-
cluded in b I, and the time shift b⌧k is included in b y,V. Then
bak,m,r,y,PM and b�k,m,r,y,PM in PM can be transformed into
the amplitude of cosine b↵k,m,r,y,PM and the amplitude of sine
b�k,m,r,y,PM in GM. The mean bµgr

of the prior is assigned to
be these estimated amplitudes from PM so that
bµ↵k,m,r

=b↵k,m,r,y,PM =bak,m,r,y,PMcosb�k,m,r,y,PM (19)

bµ�k,m,r
=b�k,m,r,y,PM =�bak,m,r,y,PMsinb�k,m,r,y,PM (20)

where bµ↵k,m,r
and bµ�k,m,r

are the elements in bµgr
and they

follow the ordering in (3).
The covariance b⌃gr

measures the deviation between the
values of gr estimated by PM and those estimated by GM. It
is modeled as a diagonal matrix of which the diagonal is filled
with the variances b�2

↵k,m,r
and b�2

�k,m,r
and follows the order-

ing in (3). We assume that the variances b�2
↵k,m,r

and b�2
�k,m,r

are identical and they are directly proportional to the power of
the partial amplitude. This gives

b�2
↵k,m,r

=b�2
�k,m,r

= �̄2
Gk

(bak,m,r,y,PM)2 (21)

where �̄2
Gk

is the proportionality constant and it can be deter-
mined by the training data X as below.

Let b↵i
k,m,r,X ,GM and b�i

k,m,r,X ,GM be the amplitudes in GM
for X and they have been estimated by the method in [14]. Let
b↵i

k,m,r,X ,PM and b�i
k,m,r,X ,PM be the amplitudes in GM for X

and they are converted from the PM estimate. The conversion
from the PM estimate to the GM estimate for X follows that
for the mixture y in (19) and (20). Let bai

k,m,r,X ,PM be the
partial amplitude in PM then

bai
k,m,r,X ,PM =

r

⇣

b↵i
k,m,r,X ,GM

⌘2
+
⇣

b�i
k,m,r,X ,GM

⌘2
. (22)

Following (21), we can estimate �̄2
Gk

from X by

�̄2
Gk

=
1

2IkMkRk

Ik
X

i=1

Mk
X

m=1

Ri
k

X

r=1
8

<

:

 

�b↵i
k,m,r

bai
k,m,r,X ,PM

!2

+

 

�b�i
k,m,r

bai
k,m,r,X ,PM

!2
9

=

;

(23)

where �b↵i
k,m,r = b↵i

k,m,r,X ,GM � b↵i
k,m,r,X ,PM and �b�i

k,m,r =
b�i

k,m,r,X ,GM�b�i
k,m,r,X ,PM.

Note that the prior p(gr|bµgr
, b⌃gr

) reflects the difference
between the individual tones estimated by GM and PM. As
PM gives satisfactory quality of estimation in [15], the differ-
ence should be small enough to make the prior distribution
p(gr|bµgr

,b⌃gr) has a high density around the correct value of
gr as shown in the schematic diagram in Figure 1. Hence, over-
lapping partials can be resolved and higher quality of SS can be
obtained. It will be verified and explained in the experiments.

5.2.3 Estimation of the prior distribution of frequencies f

The prior distribution p(f|bµf ,b⌃f) of f is modeled as the Gaus-
sian with the mean bµf and the covariance b⌃f . The mean bµf

is set to the estimated frequencies in PM from b I so that
bµfk,m

= f̂k,m,PM (24)
where bµfk,m

are the elements in bµf . Following the derivation
of b⌃gr

, we also assume that b⌃f is a diagonal matrix of which
the diagonal is filled with each variance b�2

fk,m
. The variance

b�2
fk,m

is modeled to be directly proportional to the square of
the frequency in PM. This gives

b�2
fk,m

= �̄2
fk

⇣

bfk,m,PM

⌘2
(25)

where �̄2
fk

is the proportionality constant which can also be
determined by the training data X . The estimate of �̄2

fk
is

�̄2
fk

=
1

Mk

Mk
X

m=1

 

bfk,m,X ,GM�bfk,m,PM

bfk,m,PM

!2

(26)

where bfk,m,X ,GM is the estimated frequency in GM for X and
it can be estimated by using the method in [14]. Note that there
is no subscript X in bfk,m,PM because bfk,m,PM are the invariant
PM parameters so the training data and the mixture share the
same set of bfk,m,PM.

In summary, after estimating the hyperparameters b�2
vr

in
(17), bµgr

in (19) and (20), b⌃gr
in (21), bµf in (24) and b⌃f in

(25), we can find the MAP solution b⇥y of GM by iteratively
updating the amplitude matrix G in (10) and the frequencies
f in (13). In the next section, experimental results will be

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 159



presented to show the performance of the whole SS process.

6. EXPERIMENTS

6.1 Data set and experimental setup

We used the same data set in [15] for comparing the perfor-
mance. The data set contains 25 mixtures. Each mixture was
generated by mixing the isolated tones in the recorded piano
databases [8, 15], taken from 4 different pianos. Only tones
from the same piano were used to form a mixture. The pitches
in each mixture correspond to a chord randomly selected from
11 piano pieces in the RWC database [8]. The number of tones
(represented by K) in our selected mixtures ranges from 1 to
6: 1 tone (8 mixtures), 2 tones (6), 3 tones (5), 4 tones (4),
5 tones (1) and 6 tones (1). These 25 mixtures consist of 62
tones. 7 mixtures contain one pair of octaves, 2 (K =5 and
K =6) contain 2 pairs of octaves. For the training data, two
instances of each pitch are available so Ik =2. The first 0.5
second of the mixtures and the training data were used in the
experiments. All data were downsampled to 11.025 kHz for
faster processing. The window setting in GM is as follows: the
window function is the hamming window with length 11.61
ms (L=128) and 50% overlap. The titles of the piano pieces
used and details of the selected mixtures are available on the
website of this paper (link available at the end of this section).

6.2 Results

The performance of our SS system is evaluated by the signal-
to-noise ratio (SNR) defined by

SNR=10log10

P

nx(tn)2
P

n(x(tn)�bx(tn))2
(27)

where x(tn) is the isolated tone in the time domain before
mixing andbx(tn) is the estimated tone in the time domain. The
isolated tones give the ground truth for evaluation.

6.2.1 Evaluation on modeling quality

We followed the procedures in [15] to evaluate the modeling
quality, i.e. the quality of PM and GM to represent an isolated
tone before mixing. The isolated tones of the 25 mixtures
were inputted into our proposed SS system including both PM
and GM. The outputs of our system were the estimated tones
reconstructed from PM and GM. If the parameters obtained
in PM and GM are accurate, they can regenerate the original
tones in high quality. The result is that the average SNRs of
PM and GM are 11.15 dB and 17.38 dB respectively. The
average SNR of GM is much higher than that of PM. This is
because GM is more flexible to represent piano tones.

6.2.2 Comparing with other systems for separation quality

The procedures in [15] were followed to evaluate the separation
quality, i.e. the quality of PM and GM separating a mixture
into its individual tones. We also compared PM and GM with
a recent SS system in [11], in which Li, Woodruff and Wang
built their system (Li’s system) based on CAM mentioned in
Section 1. It uses the non-overlapping partials to estimate the
overlapping partials of the same note. The implementation of

SNR (dB)
PM GM Li

All mixtures 10.88 13.51 6.63
K=2 11.76 15.26 12.07

2K6 10.97 13.15 5.40
Upper tones in octaves 10.95 12.77 1.57

Table 1. Comparison of Li’s system and our PM and GM.
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Figure 3. Average SNR against the number of tones K for
PM, GM, and Li’s system.

Li’s system was provided by the authors. The true fundamental
frequency of each tone was supplied to Li’s system.

The results are shown in Table 1. For the 25 mixtures, the
average SNRs of PM, GM and Li’ system are 10.88 dB, 13.51
dB and 6.63 dB respectively. Both PM and GM outperform
Li’s system. A significant improvement is in the octave cases
as shown in the table. Li’s system is unable to resolve the
overlapping partials of the upper tones in octaves because non-
overlapping partials are not available. On the other hand, both
PM and GM are able to reconstruct the upper tone in an octave.
The overlapping partials were successfully resolved even for
mixtures containing 2 pairs of octaves of C3, G3, C4, E4, G4
(K=5) and of F]3, C4, F4, C5, D5, F5 (K=6).

The average SNR against the number of tones K is plotted
in Figure 3. The average SNR of Li’s system decreases much
more rapidly than PM and GM. Our system can make use
of the training data to give higher separation quality. Some
audio files in the experiments are selected for demonstration
purpose. The audio files, titles of piano pieces used, details of
the selected mixtures and mathematical notations used in this
paper are available at http://www.cse.cuhk.edu.hk/⇠khwong/
www2/conference/ismir2015/ismir2015.html.

7. CONCLUSIONS

Here we have proposed a score-informed monaural SS system
to extract each tone from a mixture of piano tone signals. Two
sinusoidal models, PM and GM, are employed to represent pi-
ano tones in the system. We formulate a hierarchical Bayesian
framework to run both Models in the SS process so that the
mixtures with overlapping partials can be resolved with high
quality. Experiments show that our proposed system gives
robust and accurate separations of mixtures and improves the
separation quality significantly comparing to the previous work.
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