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ABSTRACT

Benford’s law defines a peculiar distribution of the lead-
ing digits of a set of numbers. The behavior is logarith-
mic, with the leading digit 1 reflecting largest probability
of occurrence and the remaining ones showing decreasing
probabilities of appearance following a logarithmic trend.
Many discussions have been carried out about the applica-
tion of Benford’s law to many different fields. In this paper,
a novel exploitation of Benford’s law for the analysis of au-
dio signals is proposed. Three new audio features based on
the evaluation of the degree of agreement of a certain au-
dio dataset to Benford’s law are presented. These new pro-
posed features are succesfully tested in two concrete audio
tasks: the detection of artificially assembled chords and the
estimation of the quality of the MIDI conversions.

1. INTRODUCTION

Benford’s law, also known as the ‘first-digit law’, describes
a peculiar distribution of the leading digits of datasets of
numbers, especially those related to the measure of ‘real-
life phenomena’. Unlike the central limit theorem, Ben-
ford’s law states that the typical distribution of the lead-
ing digits of a large number of datasets, derived from the
measure of several common variables follows a logarithm-
shaped law.

Most of the measures from real-life (tax returns, street
addresses, population number or length of rivers) seem to
present this peculiar distribution. Many works have been
published on Benford’s law, mixing the empirical evidence
with some more mathematical formalism.

Benford’s law has been widely proposed as a discrimi-
nating tool for ‘naturally-shaped’ datasets [6] and even em-
ployed [8] or criticized [5] as a somewhat reliable diagnos-
tic tool to detect a large variety of frauds.

In this paper, Benford’s law is evaluated as a discrimina-
tor for audio signals. In particular it is employed to detect
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differences between natural and artificially created chords
and real music and MIDI-generated music.

The article is organized as follows: in Section 2, Ben-
ford’s law is discussed and its probabilistic framework is
detailed. In Section 3, the three new audio features based
on the evaluation of the degree of agreement of a certain
dataset to Bendford’s law are defined. These descriptors
are widely employed in Section 4 for the aforementioned
tasks, as part of the audio signals analysis. Finally, in Sec-
tion 5, some conclusions are drawn.

2. BENFORD’S LAW

Benford’s law affirms that the frequency of occurrence of
the leading significative digit of a large dataset coming
from real-life measurements, presents a peculiar histogram
in which the height of the bars follows a logarithmic scale
(see Figure 1).
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Figure 1. The logarithm-shaped distribution of the leading
digits, following Benford’s law.

More specifically, the probability value of the d-th digit
is computed as follows:

P (d) = log10

✓

1 +
1

d

◆

(1)

where d is the digit number.
Simon Newcomb [11] first described this peculiar be-

havior after the observation of the pages of the tables of
common logarithms. He noticed that the logarithms begin-
ning with the digit 1 were more frequently browsed than
the others. In his two-page paper, he briefly described the
empirical evidence of such observation, extending it to all
the digits.
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However, his work remained unknown for several years.
In 1938, the General Electric physicist Frank Benford,
apparently unaware of Newcomb’s paper, formalized the
same observations with a more consistent article published
by the American Philosophical Society [4]. He included
the formalization of the same law and a large amount of
observations of real-life phenomena gathered during sev-
eral years of research.

The rigorous mathematical discussion of the law was
tackled several years after, and it is currently a matter of
question. In 1976, the mathematician Ralph Raimi wrote
about the mathematical explanation of the law, citing the
‘scale-invariance’ as one of the possible keys for inter-
pretation of the phenomenon [14]. Theodore Hill [7], in
1995, described the statistical derivation of the law, while
in 1997, Stephen Smith [15], in his book “The Scientist and
Engineer’s Guide to Digital Signal Processing” presented
a rigorous complete description, under the point of view of
the signal processing.

Nowadays, Benford’s law is a well defined probabilistic
problem, and it has been demonstrated that it is based on
an intrinsic property of a large number of real-life datasets.
According to the central limit theorem [13], the distribu-
tion of a certain measure of a quantity follows a normal dis-
tribution. The larger the amount of data, the closer the fit
of the sample histogram to the Gaussian distribution. Nev-
ertheless, when a single measure is iteratively repeated, its
variance tends to be steady and to robustly define the range
of variability of the quantity measured. Usually, it limits
the width of the distribution to few orders of magnitude.
In fact, it is infrequent that a series of iterative measures of
the same variable could span across a wide range of values.

Also, if we multiply groups of random numbers, each
following a normal distribution, we will obtain a new
dataset following the so called ‘log-normal’ distribution
[9]. Its name derives from the dome-shaped histogram that
this kind of distribution shows, when it is represented on a
logarithmic scale. In log-normal distributions, 95% of the
values are distributed within the mean µ minus twice the
standard deviation � and the mean µ plus twice the stan-
dard deviation �, on the logarithmic scale. This leads to an
accumulation of values on the left edge of the distribution,
on the linear scale [15]. Actually, in log-normal distribu-
tions the median is lower than the mean and they present
large positive values of skewness [9] (see Figure 2).

The fact that the log-normal distribution usually de-
rives from the combination of normally distributed vari-
ables, leads one to assume that, in nature, it is as common
as the normal distribution [15]. Most of the datasets of
real-life variables are log-normally distributed, especially
those with only-positive values, where the intrinsic limita-
tion leads to an increase of probability around the smallest
values. Most of these datasets follow Benford’s law. In en-
vironmental pollutants datasets, for instance, most of the
measures are typically very low and only few of them are
larger than their mean. Moreover, these variables are typ-
ically only positive, but they usually show very low val-
ues, very close to zero. This leads to a compression of the
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(a) The histogram of a log-normal shaped dataset (linear axis).
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(b) The histogram of a log-normal shaped dataset (logarithmic axis).

Figure 2. An example of log-normal shaped dataset in lin-
ear and logarithmic axis. The median and the mean are
represented with continuous and dashed line, respectively.
Note that the median and the mean coincide when the his-
togram is spaced on the logarithmic axis (the distribution is
normally-shaped). The histogram bins have been equally
spaced on the logarithmic axis, such to define a constant
width of the bars.

histogram toward the minimum, resulting in a typical log-
normal distribution.

Nevertheless, the shape of the histogram is not sufficient
to be an index of the degree of fit to Benford’s law. Usually,
the log-normal distributions derived from the combination
of multiple normal distributions (with different widths) are
broader than them, because of the larger range of variabil-
ity they present. In fact, it is the width of these kinds of
distributions, that is key to understand their relation to Ben-
ford’s law. Smith [15] shows how the degree of fit to the
law of a certain dataset is a mere question of distribution
width. The broader the distribution of the data, the more
accurate the fit to the theoretical law.

This is a very important issue, related to the data ma-
nipulation by humans. The most common way to system-
atically extract the leading digit of a number is to multiply
or divide it by ten, until it reaches a value between 1 and
9.9 periodic. In particular, the number must be divided by
10, if it is higher than 10 and multiplied by 10, if it is lower
than 1.

Thus, for instance, the number 0.00567 will be multi-
plied by 10 three times to obtain the number 5.67, whose
integer part (5) is taken into account as the leading digit.
Similarly, for the number 7865, it has to be divided by 10
three times to obtain 7.865, and the correspondent leading
digit (7).

This ’human-driven’ mechanism is primarily responsi-
ble for dependence of the distribution of the leading digits
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on the logarithmic law [15]. Hence, the amount of depen-
dence, namely the degree of fit to Benford’s law, depends
on the broadness of the original data distribution. If the
data span across a large number of orders of magnitudes,
with respect to unity, they will need several steps of mul-
tiplications/divisions to be scaled to range between 1 and
9.9 periodic. Conversely, if the dataset ranges from 1 to
9, the numbers will not require any operation. The impact
of these kinds of manipulations is directly related to the
degree of agreement to Benford’s law.

3. BENFORD’S LAW BASED AUDIO FEATURES

In order to evaluate the degree of agreement of a certain
dataset to Benford’s law, several approaches can be em-
ployed. The task is to obtain new features to be used as
comparative measure among the different audio elements
to be classified. In this section three new features will be
extracted: the one-scaling-test, the Fourier-based method
and the goodness-of-fit test.

3.1 The one-scaling-test

Raimi [14], still speaking about a “universal law”, intro-
duced the scale-invariance principle to define the validity
of the law. He affirmed that “...since God is not known
to favor either the metric system or the English system...”,
Benford’s law must be scale-invariant. Smith [15] formal-
ized a test based on the scale-invariance of the law, by mea-
suring the variation of the probability of occurrence of the
leading digit 1, when the dataset is iteratively multiplied
by a constant.

The theoretical probability of occurrence, by Benford’s
law, of the first leading digit is 0.301. If the empirical prob-
ability of the digit 1 of a certain dataset is close to this
value, we can suppose that the dataset follows (potentially)
Benford’s law. This is obviously not sufficient. Recalling
the concept about the scale-invariance, we can affirm that
if the dataset follows the law, the empirical probability of
occurrence of its leading digits (the digit 1 in this case)
should not vary, or vary very weakly, if the dataset is itera-
tively multiplied or divided. The so called one-scaling-test
proposed by Smith [15] exploits this property to evaluate
the agreement of a certain dataset to Benford’s law.

If we take two log-normally distributed datasets with
equal mean, 10, and different standard deviation, 0.5 and
3, respectively, and we multiply them iteratively by a con-
stant (e.g.: 1.01), we will observe a certain variation of the
probability of occurrence of the first leading digit around
the value 0.301 (Figure 3).

A broader distribution presents a much weaker varia-
tion of the probability of occurrence of the first leading
digit around the value 0.301, than a narrower distribution.
The means of the distribution of the probability values are
0.3010 and 0.3013, for the broader and the narrower dis-
tribution, respectively. That is, they both follow Benford’s
law, showing a value close to the expected theoretical prob-
ability (0.301). However, their standard deviations 0.0069
and 0.1450 reveal a much larger variation around the mean
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(a) The variability of the probability of occurrence of the leading digit 1
for a broad log-normally distributed dataset (� = 3).
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(b) The variability of the probability of occurrence of the leading digit 1
for a narrow log-normally distributed dataset (� = 0.5).

Figure 3. An example of the effect of the width of the (log-
normal) distribution on the one-scaling-test. Means are
represented with thick lighter line. The equivalent PDFs
are displayed on the right side of the plots.

for the dataset with the narrower distribution. Although
both datasets seem to follow Benford’s law, the broader
one required a heavier manipulation of the original data
to extract the leading digits and it emphasized the loga-
rithmic pattern attributed to their distribution, leading it to
approach the theoretical law closer.

Note that in both cases, the variation of the probability
shows a periodic pattern due to the factor chosen for the
multiplication. The leading digit is unchanged when the
numbers are multiplied by 10. In our example, this occurs
every 232 times (1.01232 ⇡ 10).

The one-scaling-test presents a main drawback related
to the high computational cost derived from the iterative
multiplication of the whole dataset. If we consider one
single minute of an audio signal recorded at a sampling
frequency of 44.1 kHz, we have to handle with a vector of
more than 2.5 millions samples. If we want to multiply this
dataset at least 232+1 times (to observe at least one whole
period), we must do more than 600 millions of operations.
In the case of exploiting Benford’s law in a classifier tool
for music genres, we should have to handle hundreds of
songs, each of them with a length of several minutes. This
would become an unfeasible task from the point of view of
the computational cost.

3.2 The Fourier transform-based method

Smith [15] reinterprets the problem from the point of view
of signal processing. He proves that the degree of agree-
ment of a certain dataset to Benford’s law, can be estimated
by evaluating the behavior of the Fourier transform (FT) of
the normalized histogram in logarithmic axes. In particu-
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lar, the measure of how fast the transform falls, from its
maximum value (1 at frequency 0) to its minimum value
(zero at some frequency higher than zero), is directly re-
lated to the width of the distribution measured with the
normalized histogram and, consequently, with the degree
of correspondence with the law.

Ideally, in order to follow perfectly Benford’s law, the
Fourier transform should present a unitary value at fre-
quency zero and a zero value at all the remaining frequen-
cies. This would occur if the distribution was uniform from
�1 to +1 [12].

In real-life, this does not occur. Hence, the faster the
Fourier transform drops to zero, the closer the agreement
of the dataset to Benford’s law. In particular, Smith de-
fines the value at frequency 1 as the threshold to discrim-
inate between the agreement or not of the dataset to the
law [15]. If the transform of the histogram in logarithmic
axes (denoted as PDF) falls to zero before frequency 1Hz,
the correspondent dataset follows Benford’s law. If it does
not occur, the dataset does not follow the law. In practice,
the value of the PDF at f = 1Hz is a reliable index of the
degree of agreement with the law.

In Figure 4, an example of the application of the Fourier
transform to the histograms of the dataset tested in the pre-
vious section, is shown.
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(a) Broad log-normally distributed dataset. Left: distribution on a loga-
rithmic axis. Right: Fourier transform of the distribution (PDF).
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(b) Narrow log-normally distributed dataset. Left: distribution on a loga-
rithmic axis. Right: Fourier transform of the distribution (PDF).

Figure 4. Example of the application of the Fourier trans-
form for the estimation of the agreement of the data to Ben-
ford’s law. The transform of the broader distribution drops
to zero faster than the narrower one, revealing a closer cor-
relation with the law.

The distribution of the data shown in Figure 4(a) is broa-
der than the one in Figure 4(b). Actually the two datasets
are the same that were previously analyzed in Figure 3,
with standard deviation 3 and 0.5, respectively. The PDF
of the broader distribution falls to zero much faster than
the narrower one. In particular, the amplitude of the PDF
at frequency 1Hz is 0.0023 and 0.4184, for the broader

and the narrower distribution, respectively. This issue re-
veals a closer agreement to Benford’s law of the broader
distribution, as observed previously.

Note that unlike the one-scaling-test, the method based
on the Fourier transform has a reasonable computational
cost. Furthermore, this method returns a higher discrim-
inant range for the two datasets: The ratio between the
two standard deviations of the one-scaling-test is about 20,
while the ratio between the two values of the transforms at
frequency 1Hz is about 180. If the aim of the application
of Benford’s law is a boolean discrimination of the data,
then the Fourier transform-based method is efficient.

3.3 The �2 divergence and the goodness-of-fit test

An alternative to the the two empirical methods proposed
so far, is the well known �2 test [9]. It is called the
goodness-of-fit test and it returns a measure of how well
an empirical distribution fits a theoretical one.

The divergence is calculated as follows:

D =
(f(d) � P (d))2

P (d)
(2)

where f(d) is the empirical relative frequency of the digit
d and P (d) stands for its theoretical probability defined, in
our case, by Benford’s law, detailed in equation (1).

The null hypothesis H0 is verified if its associated prob-
ability (the p-value) does not exceed the significance level
fixed a priori. This probability value, when the test is
passed, can be employed as additional information for the
measure of the agreement to Benford’s law.

The goodness-of-fit test applied to the two datasets an-
alyzed before, returns a divergence value of 0.2484 and
0.0009, for the narrower and the broader distribution, re-
spectively. Actually, the narrower distributed dataset did
not pass the test. In Figure 5, the two empirical distribu-
tions of the leading digits are shown.
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Figure 5. The distribution of the leading digits for the two
datasets of the previous example. Both empirical distribu-
tions are compared against the theoretical values.

Once again, the broader distribution reveals a larger cor-
relation with Benford’s law, than the narrower one. Note
that the ratio between the two divergences (about 280) is
even larger than the one measured between the two values
of the transform in the previous example.

Nevertheless, the approach based on the Fourier trans-
form does not need to extract the samples in the dataset and
it is, therefore, more efficient.
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4. EVALUATION OF BENFORD’S LAW
PERFORMANCE IN PATTERN RECOGNITION

TASKS FOR MUSIC SIGNALS

In this section, the performance of the proposed features
based on quantitative measurements of agreement to Ben-
ford’s law is evaluated in two concrete audio tasks.

4.1 Real and artificially assembled chords

Often, the methods employed in the evaluation of the al-
gorithms for multi-pitch estimation are based on the usage
of ground-truth datasets of artificially assembled chords,
i.e. made up by the summation of individual waveforms of
the single notes that compose the chords. In this context,
this procedure leads to cleaner spectra that can be more
easily analysed. Benford’s law based audio features are
employed to discriminate between real and artificially as-
sembled chords. A set of 230 chords has been examined.
The half of them are real chord [3] and the other half are the
same chords but artificially assembled adding single notes.
The two sets of chords do not reveal any kind of signifi-
cant difference when submitted to a perceptual evaluation.
They sound practically the same.

Using this data set, the descriptors to evaluate the agree-
ment of the data to Benford’s law have been calculated
for each pair of chords (real and artificially assembled).
The ones-scaling test has not been performed because of
its high computational costs. In order to evaluate the per-
formance of the new Bendford’s law based features, they
have been compared against a set of time and frequency
features commonly used for the music classification task
(RMS, ZCR, CER, SPF) [16].

The descriptors defined in this context reflect a notable
discrepancy between the two classes of chords. Surpris-
ingly, an average value of the 30% of the samples (12 out
of 115 for the artificial chords and 56 out of 115 of the
real chords) did not pass the �2 test. The signals showed
rather skewed distributions on the logarithmic axis with the
consequent decrease of the level of agreement to Benford’s
law.

A knn classifier has been adopted here to perform the
classification of the chords using both the set of single
features selected and the two groups of features with and
without the two Benford’s law-based descriptors. As it
is shown in Table 1, Benford’s law-based features behave
rather well when compared against the typical features for
audio classification. Also, the multidimensional set of de-
scriptors improves its performance with the inclusion of
the two Benford’s law-based features. It is interesting to
note that the artificial chords returned smaller values of
PDF (f = 1Hz) than the real chords (see Figure 6).

4.2 Quality of MIDI conversion

Recalling the ‘Nature-dependence’ of Benford’s law, we
formulate the hypothesis that the agreement of MIDI [10]
audio to Benford’s law, could be used as a ranking measure
for the quality of automatic MIDI converters. Two soft-
ware tools for automatic MIDI conversion were tested: the

Feature Success rate (%)
Benford’s law-based features
PDF (f = 1Hz) 80.87
�2 divergence 71.74
Time and Frequency features
Root mean square 82.61
Zero crossing rate 68.70
Cepstrum residuals 58.26
Spectral flux 72.61
Grouped-feature set
Time and Frequency features set 79.57
Benford’s law-based features added 82.17

Table 1. Real and artificial chord classification accuracy
of the single-feature tests and the grouped-feature tests.
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Figure 6. Box-whiskers plot of the amplitude of
PDF (f = 1Hz), for artificial and real chords. The non-
overlapping notches, indicating the 95% confidence inter-
val of the two medians, reveal good discrimination power
of the analyized feature.

freeware software AMAZING MIDI (v1.70) by arakisoft-
ware [2] and the shareware software AKoff Music Com-
poser (v2.0) by the AKoff Sound Labs [1]. Both of them
present at least two different configuration sets. In particu-
lar, the AKoff software has been run with and without the
application of the ‘overtones filtering’, a utility to filter the
highest harmonics of the spectrum, while the AMAZING
MIDI software has been executed with and without a time
and an amplitude filter (to reduce the range of amplitude
and note duration).

The term “quality of a MIDI conversion” is a rather sub-
jective concept, i.e., it may depend on the person who is
evaluating that quality. Therefore, the sounds of the au-
tomatic conversion tools have been listened carefully by a
team of ten expert musicians who have evaluated person-
ally both the similarity between the converted track and
the original one, and the overall quality of the MIDI audio.
Each listener had to rank the MIDI converters with a score
in the range 0 (the worst quality) to 100 (the best quality).
Table 2 shows the mean of the subjective test scores ob-
tained by each tool/configuration.

In Figure 7, an example of the test performed, applied
to the song ‘Come sei veramente’ by the pianist G. Allevi,
is shown. The original track returned the smallest value in
the ones-scaling test, PDF (f = 1Hz) and the �2 diver-
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Software/configuration Mean score
AKoff with overtone control 27/100
AKoff without overtone control 48/100
AmazingMIDI with filters 75/100
AmazingMIDI without filters 80/100

Table 2. Mean subjective ranks of the four combination of
tool and configuration employed in the MIDI-quality test.

gence, with respect to the other four MIDI versions. The
two outcomes of the AKoff software returned the largest
values of each descriptor, revealing the lowest accordance
to Benford’s law. Note the relation between features ex-
tracted and the subjective ranks in Table 2. Therefore, the
accordance to Benford’s law provide us with a measure of
the quality of the MIDI converters.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

w/ filters
AmazingMIDI

AmazingMIDI
w/o filters

overtone control
AKoff w/o

AKoff w/
overtone control

Original track

Amplitude/Divergence/Standard deviation

PDF (f=1)
χ2

 divergence (*10)
Ones−scaling test

Figure 7. The three Benford’s law-based features calcu-
lated for the track ‘Come sei veramente’ by the Italian pi-
anist Giovanni Allevi. Divergence values are multiplied by
10 for displaying purposes.

5. CONCLUSIONS

In this paper, it has been shown how Benford’s law can be
conveniently exploited to extract useful features that can
be successfully used in different audio pattern recognition
tasks. Three new Benford’s law based audio features based
on different measurement of the agreement to Benford’s
law have been proposed.

Two concrete tasks have been addressed to highlight
this novel context of application of Bendford’s law for au-
dio signal. For chord analysis, the new proposed features
are rather compelling as good discriminators when com-
pared against other typical features for speech and audio
classification and also the results obtained for the determi-
nation of the quality of the automatic MIDI conversions
are promising.

Therefore, through this paper it has been illustrated how
Benford’s law, that substantially arises as a matter of shape
and width of the distribution of the leading digits of the
data, can be conveniently exploited for audio classification
problems.
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