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ABSTRACT

We introduce a novel low level feature for identifying cover
songs which quantifies the relative changes in the smoothed
frequency spectrum of a song. Our key insight is that a
sliding window representation of a chunk of audio can be
viewed as a time-ordered point cloud in high dimensions.
For corresponding chunks of audio between different ver-
sions of the same song, these point clouds are approxi-
mately rotated, translated, and scaled copies of each other.
If we treat MFCC embeddings as point clouds and cast
the problem as a relative shape sequence, we are able to
correctly identify 42/80 cover songs in the “Covers 80”
dataset. By contrast, all other work to date on cover songs
exclusively relies on matching note sequences from Chroma
derived features.

1. INTRODUCTION

Automatic cover song identification is a surprisingly diffi-
cult classical problem that has long been of interest to the
music information retrieval community [5]. This problem
is significantly more challenging than traditional audio fin-
gerprinting because a combination of tempo changes, mu-
sical key transpositions, embellishments in time and ex-
pression, and changes in vocals and instrumentation can
all occur simultaneously between the original version of a
song and its cover. Hence, low level features used in this
task need to be robust to all of these phenomena, ruling out
raw forms of popular features such as MFCC, CQT, and
Chroma.

One prior approach, as reviewed in Section 2, is to com-
pare beat-synchronous sequences of chroma vectors be-
tween candidate covers. The beat-syncing helps this be
invariant to tempo, but it is still not invariant to key. How-
ever, many schemes have been proposed to deal with this,
up to and including a brute force check over all key trans-
positions.

Chroma representations factor out some timbral infor-
mation by folding together all octaves, which is sensible
given the effect that different instruments and recording en-
vironments have on timbre. However, valuable non-pitch
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information which is preserved between cover versions,
such as spectral fingerprints from drum patterns, is ob-
scured in Chroma representation. This motivated us to take
another look at whether timbral-based features could be
used at all for this problem. Our idea is that even if ab-
solute timbral information is vastly different between two
versions of the same song, the relative evolution of timbre
over time should be comparable.

With careful centering and normalization within small
windows to combat differences in global timbral drift be-
tween the two songs, we are indeed able to design shape
features which are approximately invariant to cover. These
features, which are based on self-similarity matrices of
MFCC coefficients, can be used on their own to effectively
score cover songs. This, in turn, demonstrates that even if
absolute pitch is obscured and blurred, cover song identifi-
cation is still possible.

Section 2 reviews prior work in cover song identifica-
tion. Our method is described in detail by Sections 3 and
4. Finally, we report results on the “Covers 80” benchmark
dataset [7] in Section 5, and we apply our algorithm to the
recent “Blurred Lines” copyright controversy.

2. PRIOR WORK

To the best of our knowledge, all prior low level feature de-
sign for cover song identification has focused on Chroma-
based representations alone. The cover songs problem
statement began with the work of [5], which used FFT-
based cross-correlation of all key transpositions of beat-
synchronous chroma between two songs. A follow-up
work [8] showed that high passing such cross-correlation
can lead to better results. In general, however, cross-
correlation is not robust to changes in timing, and it is
also a global alignment technique. Serra [22] extended this
initial work by considering dynamic programming local
alignment of chroma sequences, with follow-up work and
rigorous parameter testing and an “optimal key transposi-
tion index” estimation presented in [23]. The same authors
also showed that a delay embedding of statistics spanning
multiple beats before local alignment improves classifica-
tion accuracy [25]. In a different approach, [14] compared
modeled covariance statistics of all chroma bins, as well
as comparing covariance statistics for all pairwise differ-
ences of beat-level chroma features, which is not unlike the
“bag of words” and bigram representations, respectively,
in text analysis. Other work tried to model sequences of
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chords [2] as a slightly higher level feature than chroma.
Slightly later work concentrated on fusing the results of
music separated into melody and accompaniment [11] and
melody, bass line, and harmony [21], showing improve-
ments over matching chroma on the raw audio. The most
recent work on cover song identification has focused on
fast techniques for large scale pitch-based cover song iden-
tification, using a sparse set of approximate nearest neigh-
bors [28] and low dimensional projections [12]. Authors
in [9] and [17] also use the magnitude of the 2D Fourier
Transform of a sequences of chroma vectors treated as an
image, so the resulting coefficients will be automatically
invariant to key and time shifting without any extra com-
putation, at the cost of some discriminative power.

Outside of cover song identification, there are other
works which examine gappy sequences of MFCC in mu-
sic, such as [4]. However, these works look at matched
sequences of MFCC-like features in their original feature
space. By contrast, in our work, we examine the rela-
tive shape of such features. Finally, we are not the first
to consider shape in an applied musical context. For in-
stance, [29] turns sequences of notes in sheet music into
plane curves, whose curvature is then examined. To our
knowledge, however, we are the first to explicitly model
shape in musical audio for version identification.

3. TIME ORDERED POINT CLOUDS FROM
BLOCKS OF AUDIO

The first step of our algorithm uses a timbre-based method
to turn a block of audio into what we call a time-ordered
point cloud. We can then compare to other time-ordered
point clouds in a rotation, translation, and scale invariant
manner using normalized Euclidean Self-Similarity matri-
ces (Section 3.3). The goal is to then match up the relative
shape of musical trajectories between cover versions.

3.1 Point Clouds from Blocks and Windows

We start with a song, which is a function of time f(t) that
has been discretized as some vector X . In the following
discussion, the symbol X(a, b) means the song portion be-
ginning at time t = a and ending at time t = b. Given
X , there are many ways to summarize a chunk of audio
w 2 X , which we call a window, as a point in some feature
space. We use the classical Mel-Frequency Cepstral coef-
ficient representation [3], which is based on a perceptually
motivated log frequency and log power short-time Fourier
transform that preserves timbral information. In our appli-
cation, we perform an MFCC with 20 coefficients, giving
rise to a 20-dimensional point.

MFCC(w) 2 R20 (1)

Given a longer chunk of audio, which we call a block,
we can use the above embedding on a collection of K
windows that cover the block to construct a collection of
points, or a point cloud, representing that block. More for-
mally, given a block covering a range [t1, t2], we want a set
of window intervals [ai, bi], with i = 1..K, so that

• ai < bi

• ai < ai+1, bi < bi+1

• [K
i=1[ai, bi] = [t1, t2]

Where t1, t2, ai, and bi are all discrete time indices into
the sampled audio X . Hence, our final operator takes a set
of time-ordered intervals {[a1, b1], [a2, b2], ..., [aK , bK ]}
which cover a block [t1, t2] and turns them into a K-
dimensional point cloud in R20

PC({[a1, b1], ..., [aK , bK ]}) =

{MFCC(X(a1, b1)), ..., MFCC(X(aK , bK))} (2)

3.2 Beat-Synchronous Blocks

As many others in the MIR community have done, includ-
ing [5] and [8] for the cover songs application, we com-
pute our features synchronized within beat intervals. We
use a simple dynamic programming beat tracker developed
in [6]. Similarly to [8], we bias the beat tracker with three
initial tempo levels: 60BPM, 120BPM, and 180BPM, and
we compare the embeddings from all three levels against
each other when comparing two songs, taking the best
score out of the 9 combinations. This is to mitigate the ten-
dency of the beat tracker to double or halve the true beat
intervals of different versions of the same song when there
are tempo changes between the two. The trade-off is of
course additional computation. We should note that other
cover song works, such as [23], avoid beat tracking step
altogether, hence bypassing these problems. However, it is
important for us to align our sequences as well as possible
in time so that shape features are in correspondence, and
this is a straightforward way to do so.

Given a set of beat intervals, the union of which makes
up the entire song, we take blocks to be all contiguous
groups of B beat intervals. In other words, we create a
sequence of overlapping blocks X1, X2, ... such that Xi is
made up of B time-contiguous beat intervals, and Xi and
Xi+1 differ only by the starting beat of Xi and the fin-
ishing beat of Xi+1. Hence, given N beat intervals, there
are N � B + 1 blocks total. Note that computing an em-
bedding over more than one beat is similar in spirit to the
chroma delay embedding approach in [25]. Intuitively, ex-
amining patterns over a group of beats gives more informa-
tion than one beat alone, the effect of which is empirically
evaluated in Section 5. For all blocks, we take the win-
dow size W to be the length of the average tempo period,
and we advance the window intervals evenly from the be-
ginning of the block to the end of a block with a hop size
H = W/200. Hence, there is a 99.5% overlap between
windows. We were inspired by theory on raw 1D time
series signals [18], which shows that matching the win-
dow length to be just under the length of the period in a
delay embedding maximizes the roundness of the embed-
ding. Here we would like to match beat-level periodicities
and fluctuations therein, so it is sensible to choose a win-
dow size corresponding to the tempo. This is in contrast
to most other applications that use MFCC sliding window
embeddings, which use a much smaller window size on the
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(a) Window size 0.05 seconds (b) Window size 0.5 seconds

Figure 1. A screenshot from our GUI showing PCA on
the sliding window representation of an 8-beat block from
the hook of Robert Palmer’s “Addicted To Love” with two
different window sizes. Cool colors indicate windows to-
wards the beginning of the block, and hot colors indicate
windows towards the end.

order of 10s of milliseconds, generally with a 50% overlap,
to ensure that the frequency statistics are stationary in each
window. In our application, however, we have found that
a longer window size makes our self similarity matrices
(Section 3.3) smoother, allowing for more reliable matches
of beat-level musical trajectories, while having more win-
dows per beat (high overlap) leads to more robust matching
of SSMs using L2 (Section 4.1).

Figure 1 shows the first three principal components of
an MFCC embedding with a traditional small window size
versus our longer window embedding to show the smooth-
ing effect.
3.3 Euclidean Self-Similarity Matrices

For each beat-synchronous block Xl spanning B beats,
we have a 20-dimensional point cloud extracted from the
sliding window MFCC representation. Given such a time-
ordered point cloud, there is a natural way to create an im-
age which represents the shape of this point cloud in a rota-
tion and translation invariant way, called the self-similarity
matrix (SSM) representation.
Definition 1. A Euclidean Self-Similarity Matrix (SSM)
over an ordered point cloud Xl 2 RM⇥k is an M ⇥ M
matrix D so that

Dij = ||Xl[i] � Xl[j]||2 (3)

In other words, an SMM is an image representing all
pairwise distances between points in a point cloud ordered
by time. SSMs have been used extensively in the MIR
community already, spearheaded by the work of Foote in
2000 for note segmentation in time [10]. They are now
often used in general segmentation tasks [24] [15]. They
have also been successfully applied in other communities,
such as computer vision to recognize activity classes in
videos from different points of view and by different ac-
tors [13]. Inspired by this work, we use self-similarity ma-
trices as isometry invariant descriptors of local shape in
our sliding windows of beat blocks, with the goal of cap-
turing relative shape. In our case, the “activities” are mu-
sical expressions over small intervals, and the “actors” are
different performers or groups of instruments.

The Beatles Five Man Acoustical Jam

Ti
m
e

Ti
m
e

Time Time

(a) A block of 4 beats with 400 windows sliding in the song “We Can Work
It Out” by The Beatles with a cover by Five Man Acoustical Jam

Neil Young Annie Lennox

Ti
m
e

Time Time

Ti
m
e

(b) A block of 4 beats with 400 windows sliding in the song “Don’t Let It
Bring You Down” by Neil Young with a cover by Annie Lennox.

Figure 2. Two examples of MFCC SSM blocks which
were matched between a song and its cover in the cov-
ers80 dataset. Hot colors indicate windows in the block
are far from each other, and cool colors indicate that they
are close.

To help normalize for loudness and other changes in re-
lationships between instruments, we first center the point
cloud within each block on its mean and scale each point
to have unit norm before computing the SSM. That is, we
compute the SSM on X̂ l, where

X̂l =

⇢

x � mean(x)

||x � mean(x)||2 : x 2 Xl

�

(4)

Also, not every beat block has the same number of sam-
ples due to natural variations of tempo in real songs. Thus,
to allow comparisons between all blocks, we resize each
SSM to a common image dimension d ⇥ d, which is a pa-
rameter chosen in advance, the effects of which are ex-
plored empirically in Section 5.

Figure 2 shows examples of SSMs of 4-beat blocks
pulled from the Covers80 dataset that our algorithm
matches between two different versions of the same song.
Visually, similarities in the matched regions are evident. In
particular, viewing the images as height functions, many
of the critical points are close to each other. The “We Can
Work It Out” example shows how this can work even for
live performances, where the overall acoustics are quite
different. Even more strikingly, the “Don’t Let It Bring
You Down” example shows how similar shape patterns
emerge even with an opposite gender singer and radically
different instrumentation. Of course, in both examples,
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there are subtle differences due to embellishments, local
time stretching, and imperfect normalization between the
different versions, but as we show in Section 5, there are
often enough similarities to match up blocks correctly in
practice.

4. GLOBAL COMPARISON OF TWO SONGS

Once all of the beat-synchronous SSMs have been ex-
tracted from two songs, we do a global comparison be-
tween all SSMs from two songs to score them as cover
matches. Figure 3 shows a block diagram of our system.
After extracting beat-synchronous timbral shape features
on SSMs, we then extract a binary cross-similarity matrix
based on the L2 distance between all pairs of self-similarity
matrices between two songs. We subsequently apply the
Smith Waterman algorithm on the binary cross-similarity
matrix to score a match between the two songs.

4.1 Binary Cross-Similarity And Local Alignment

(a) Full cross-similarity matrix
(CSM)

(b) 212 ⇥ 212 Binary cross-
similarity matrix (BM ) with  =

0.05

(c) Smith Waterman with local
constraints: Score 93.1

Figure 4. Cross-similarity matrix and Smith Waterman on
MFCC-based SSMs for a true cover song pair of “We Can
Work It Out” by The Beatles and Five Man Acoustical Jam.

Given a set of N beat-synchronous block SSMs for a
song A and a set of M beat-synchronous block SSMs for a
song B, we compute a song-level matching between song
A and B by comparing all pairs of SSMs between the two
songs. For this we create an N ⇥M cross-similarity matrix
(CSM), where

CSMij = ||SSMAi � SSMBj ||2 (5)

is the Frobenius norm (L2 image norm) between the SSM
for the ith beat block from song A and the SSM for jth

beat block for song B. Given this cross-similarity infor-
mation, we then compute a binary cross similarity matrix
BM . A binary matrix is necessary so that we can apply the
Smith Waterman local alignment algorithm [27] to score
the match between song A and B, since Smith Waterman

only works on a discrete, quantized alphabet, not real val-
ues [23]. To compute BM , we take the mutual fraction 
nearest neighbors between song A and song B, as in [25].
That is, BM

ij = 1 if CSMij is within the M th small-
est values in row i of the CSM and if CSMij is within
the N th smallest values in column j of the CSM, and 0
otherwise. As in [25], we found that a dynamic distance
threshold for mutual nearest neighbors per element worked
significantly better than a fixed distance threshold for the
entire matrix.

(a) Full cross-similarity matrix
(CSM)

(b) 212 ⇥ 185 Binary cross-
similarity matrix (BM ) with  =

0.05

(c) Smith Waterman with local
constraints: Score 8

Figure 5. Cross-similarity matrix and Smith Waterman on
MFCC-based SSMs for two songs that are not covers of
each other: “We Can Work It Out” by The Beatles and
“Yesterday” by En Vogue.

Once we have the BM matrix, we can feed it to the
Smith Waterman algorithm, which finds the best local
alignment between the two songs, allowing for time shift-
ing and gaps. Local alignment is a more appropriate choice
than global alignment for the cover songs problem, since
it is possible that different versions of the same song may
have intros, outros, or bridge sections that were not present
in the original song, but otherwise there are many sec-
tions in common. We choose a version of Smith Waterman
with diagonal constraints, which was shown to work well
for aligning binary cross-similarity matrices for chroma in
cover song identification [23]. In particular, we recursively
compute a matrix D so that

Dij = max
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Song A Beat 
Tracking

Tempo Bias A, B 
(60/120/180 bmp)

Beat-Synchronous 
MFCC Sliding 

Window Blocks

BeatsPerBlock (B)

Self-Similarity 
Matrix Computation

Image Resize Dimension d

Binary Cross Similarity
A to B with Mutual
Nearest Neighbors
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Local AlignmentSong B

A
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Final Score
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Figure 3. A block diagram of our system for computing a cover song similarity score of two songs using timbral features.

i, j

i-1,
j-1

i-1,
j-2

i-2,
j-1

i-2,
j-2

i-3,
j-2

i-2,
j-3

Figure 6. Constrained local matching paths considered in
Smith Waterman, as prescribed by [23].

where � is the Kronecker delta function and

�(a, b) =

8

<

:

0 b = 1
-0.5 b = 0,a = 1
-0.7 b = 0,a = 0

9

=

;

(7)

The (2�(Bi�1,j�1) � 1) term in each line is such that
there will be a +1 score for a match and a -1 score for
a mismatch. The � function is the so-called “affine gap
penalty” which gives a score of �0.5 � 0.7(g � 1) for a
gap of length g. The local constraints are to bias Smith
Waterman to choosing paths along near-diagonals of BM .
This is important since in musical applications, we do not
expect large gaps in time in one song that are not in the
other, which would show up as horizontal or vertical paths
through the BM matrix. Rather, we prefer gaps that occur
nearly simultaneously in time for a poorly matched beat or
set of beats in an otherwise well-matching section. Fig-
ure 6 shows a visual representation of the paths considered
through BM .

Figure 4 shows an example of a CSM, BM , and result-
ing Smith Waterman for a true cover song pair. Several
long diagonals are visible, indicating large chunks of the
two songs are in correspondence, and this gives rise to a
large score of 93.1 between the two songs. Figure 5 shows
the CSM, B, and Smith Waterman for two songs which are
not versions of each other. By contrast, there are no long
diagonals, and this pair only receives a score of 8.

5. RESULTS

To benchmark our algorithm, we apply it to the standard
“Covers 80” dataset [7], which consists of 80 sets of two
versions of the same song, most of which are pop songs
from the past three decades. There are designated two sets
of songs A and B, each with exactly one version of every
pair. To benchmark our algorithm on this dataset, we fol-
low the scheme in [5] and [8]. That is, given a song from
set A, compute the Smith Waterman score from all songs

from set B and declare the cover song to be the one with
the maximum score. Note that a random classifier would
only get 1/80 in this scheme. The best scores reported on
this dataset are 72/80 [20], using a support vector machine
on several different chroma-derived features.

Table 1 shows the correctly identified songs based on
the maximum score, given variations of the parameters we
have in our algorithm. We achieve a maximum score of
42/80 for a variety of parameter combinations. The near-
est neighbor fraction  and the dimension of the SSM im-
age have very little effect, but increasing the number of
beats per block has a positive effect on the performance.
The stability of  and d are encouraging from a robustness
standpoint, and the positive effect increasing the number
of beats per block suggests that the shape of medium scale
musical expressions are more discriminative than smaller
ones.

Table 1. The number of songs that are correctly ranked
as the most similar in the Covers 80 dataset, varying
paramters.  is the nearest neighbor fraction, B is the num-
ber of beats per block, and d is the resized dimension of the
Euclidean Self-Similarity images.

Kappa = 0.05 B = 8 B = 10 B = 12 B = 14
d = 100 30 33 36 40
d = 200 31 33 36 39
d = 300 31 34 36 40
Kappa = 0.1 B = 8 B = 10 B = 12 B = 14
d = 100 35 39 41 42
d = 200 36 38 42 42
d = 300 36 38 41 41
Kappa = 0.15 B = 8 B = 10 B = 12 B = 14
d = 100 36 42 41 42
d = 200 36 41 41 42
d = 300 38 42 42 41

In addition to the Covers 80 benchmark, we apply our
cover songs score to a recent popular music controversy,
the “Blurred Lines” controversy [16]. Marvin Gaye’s es-
tate argues that Robin Thicke’s recent pop song “Blurred
Lines” is a copyright infringement of Gaye’s “Got To Give
It Up.” Though the note sequences differ between the two
songs, ruling out any chance of a high chroma-based score,
Robin Thicke has said that his song was meant to “evoke an
era” (Marvin Gaye’s era) and that he derived significant in-
spiration from “Got To Give It Up” specifically [16]. With-
out making a statement about any legal implications, we
note that our timbral shape-based score between “Blurred
Lines” and “Got To Give It Up” is in the 99.9th percentile
of all scores between songs in group A and group B in the
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(a) Shape-based timbre (b) Chroma delay embedding

Figure 7. Corresponding portions of the binary cross-
similarity matrix between Marvin Gaye’s “Got To Give It
Up” and Robin Thicke’s “Blurred Lines” for both shape-
based timbre (our technique) and chroma delay embedding

Covers 80 dataset, for  = 0.1, B = 14, and d = 200.
Unsurprisingly, when comparing “Blurred Lines” with all
other songs in the Covers 80 database plus “Got To Give It
Up,” “Got To Give It Up” was the highest ranked. For ref-
erence, binary cross similarity matrices are shown in Fig-
ure 7, both for our timbre shape based technique and the
delay embedding chroma technique in [25]. The timbre-
based cross-similarity matrix is densely populated with di-
agonals, while the pitch-based one is not.

6. CONCLUSIONS AND FUTURE WORK

We show that timbral information in the form of MFCC
can indeed be used for cover song identification. Most
prior approaches have used Chroma-based features aver-
aged over intervals. By contrast, we show that an analysis
of the fine relative shape of MFCC features over intervals
is another way to achieve good performance. This opens
up the possibility for MFCC to be used in much more flex-
ible music information retrieval scenarios than traditional
audio fingerprinting.

On the more technical side, we should note that for
comparing shape, L2 of SSMs for cross-similarity is fairly
simple and not robust to local re-parameterizations in time
between versions, though we tried many other isometry
invariant shape descriptors that were significantly slower
and yielded inferior performance in initial implementation.
In particular, we tried curvature descriptors (ratio of arc
length to chord length), Gromov-Hausdorff distance af-
ter fractional iterative closest points aligning MFCC block
curves [19], and Earth Mover’s distance between SSMs
[26]. If we are able to find another shape descriptor which
performs better than our current scheme but is slower, we
may still be able to make it computationally feasible by
using the “Generalized Patch Match” algorithm [1] to re-
duce the number of pairwise block comparisons needed
by exploiting coherence in time. This is similar in spirit
to the approximate nearest neighbors schemes proposed
in [28] for large scale cover song identification, and we
could adapt their sparse Smith Waterman algorithm to our
problem. In an initial implementation of generalized patch
match for our current scheme, we found we only needed to
query about 15% of the block pairs.

7. SUPPLEMENTARY MATERIAL

We have documented our code and uploaded directions for
performing all experiments run in this paper. We also cre-
ated an open source graphical user interface which can be
used to interactively view cross-similarity matrices and to
examine the shape of blocks of audio after 3D PCA using
OpenGL. All code can be found in the ISMIR2015 direc-
tory at
github.com/ctralie/PublicationsCode.
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