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ABSTRACT

Genre provides one of the most convenient categorizations
of music, but it is often regarded as a poorly defined or
largely subjective musical construct. In this work, we
provide evidence that musical genres can to a large ex-
tent be objectively modeled via a combination of musi-
cal attributes. We employ a data-driven approach utiliz-
ing a subset of 48 hand-labeled musical attributes com-
prising instrumentation, timbre, and rhythm across more
than one million examples from Pandorar Internet Ra-
dio’s Music Genome Projectr. A set of audio features
motivated by timbre and rhythm are then implemented to
model genre both directly and through audio-driven mod-
els derived from the hand-labeled musical attributes. In
most cases, machine learning models built directly from
hand-labeled attributes outperform models based on audio
features. Among the audio-based models, those that com-
bine audio features and learned musical attributes perform
better than those derived from audio features alone.

1. INTRODUCTION

Musical genre is a high-level label given to a piece of mu-
sic (e.g., Rock, Jazz) to both associate it with similar music
pieces and distinguish it from others. Genre is a very pop-
ular way to organize music as it is being used by virtually
all actors in the music industry, from record labels and mu-
sic retailers, to music consumers and musicians via radio
and music streaming services on the internet.

Just because genres are widely used does not necessar-
ily mean that they are easy to categorize, or easy to rec-
ognize. In fact, previous research shows that the music in-
dustry uses inconsistent genre taxonomies [21], and there
is debate over whether genre is the product of objective or
subjective categorizations [28]. Furthermore, it is debated
whether individual musical properties (e.g. tempo, rhythm,
instrumentation), which are not always exclusive to a sin-
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gle genre, represent defining components [1, 10]. For ex-
ample, an Afro-Latin clave pattern occurs many places,
both in Antonio Carlos Jobim’s The Girl from Ipanema
(Jazz) and in The Beatles’ And I Love Her (Rock). It can
even be heard in the recently popular song, All About that
Bass, by Meghan Trainor. However, when discriminating
the more specific subgenres of ‘Bebop’ Jazz (fast swing)
and ‘Brazilian’ Jazz (Afro-Latin rhythms), this clave prop-
erty becomes much more salient. Despite these intriguing
relationships, a large-scale analysis of the association of
musical properties to genre, to the knowledge of the au-
thors, has yet to be performed.

If it were possible to define a categorization of music
genres that is useful, meaningful, consensual and consis-
tent at some level, then an automated categorization of mu-
sic pieces into genres would be both achievable and highly
desirable. Since early research in Music Information Re-
trieval (MIR), and still to date, the automatic genre recog-
nition from music pieces has precisely been an important
topic [1, 28, 30].

In this work, we explore the intriguing relationship
of genre and musical attributes. In Section 3, we will
overview the expertly-curated data used. In Section 4,
we detail an applied musicology experiment that uses
expertly-labeled musical attributes to model genre. We
then report in Section 5 on a series of experiments regard-
ing automated categorization of music pieces into genres
using audio signal analysis. In the following section, we
will briefly outline each of these approaches.

2. APPROACH

In this work we explore four approaches to modeling mu-
sical genre, investigating both expert human annotations
as well as audio representations (Figure 1). We explore
a subset of 12 ‘Basic’ musical genres (e.g. Jazz) as well
as a selected subset of 47 subgenres (e.g. Bebop). In
the first approach, we address via data-driven experiments
whether objective musical attributes of music pieces carry
sufficient information to categorize their genre. The next
set of approaches uses audio features to model genre auto-
matically. In the second approach, we use audio features
directly. The third approach uses audio features to model
each of the musical attributes individually, which are then
used to model genre. In the fourth approach, the estimated
attributes are used in conjunction with raw audio features.
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Figure 1. An overview of the experiments performed.

By injecting human-inspired context, we hope to automat-
ically capture elements of genre in a manner similar to that
of models derived from attributes labeled by music experts.

3. DATA - THE MUSIC GENOME PROJECTr

Both the musical attribute and genre labels used were de-
fined and collected by musical experts on a corpus of over
one million music pieces from Pandorar Internet Radio’s
Music Genome Projectr (MGP) 1 . The labels were col-
lected over a period of nearly 15 years and great care was
placed in defining them and analyzing each song with that
consistent set of criteria.

3.1 Musical Attributes

The musical attributes refer to specific musical compo-
nents comprising elements of the vocals, instrumentation,
sonority, and rhythm. They are designed to have a gen-
eralized meaning across all genres (in western music) and
map to specific and deterministic musical qualities. In this
work, we choose subset of 48 attributes (10 rhythm, 38
timbre). An overview of the attributes is shown in Table 1.

Meter attributes denote musical meters separate from simple
duple (e.g, cut-time, compound-duple, odd)

Rhythmic Feel attributes denote rhythmic interpretation
(e.g., swing, shuffle, back-beat strength) and elements of
rhythmic perception (e.g., syncopation, danceability)

Vocal attributes denote the presence of vocals and timbral
characteristics of voice (e.g., male, female, vocal grittiness).

Instrumentation attributes denote the presence of instru-
ments (e.g., piano) and their timbre (e.g., guitar distortion)

Sonority attributes describe production techniques (e.g., stu-
dio, live) and the overall sound (e.g., acoustic, synthesized)

Table 1. Explanations of rhythm and timbre attributes.

1 “Pandora” and “Music Genome Project” are registered trademarks of
Pandora Media, Inc. http://www.pandora.com/about/mgp

Each of the attributes is rated on continuous scale from
0-1. In some contexts, it is helpful to convert them to bi-
nary labels if they show only low (absence) or high (pres-
ence) ratings with little in between [25].

3.2 Genre and Subgenre

In this work we will explore a selected subset of 12 ‘Ba-
sic’ genres and 47 additional sub-genres. ‘Basic’ genre is
assembled as a mix of very expansive genres (e.g., Rock,
Jazz) as well as some more focused ones (e.g., Disco and
Bluegrass), serving as an analog to many previous genre
experiments in MIR. The presence of a genre is notated in-
dependently for each song by a binary label. A selection
of genre labels and a simplistic high-level organization for
discussion purposes is shown in Table 2.

Basic Genre: Rock, Jazz, Rap, Latin, Disco, Bluegrass, etc.

Jazz Subgenre: Cool, Fusion, Hard Bop, Afro-Cuban, etc.

Rock Subgenre: Light, Hard, Punk, etc.

Rap Subgenre: Party, Old School, Hardcore, etc.

Dance Subgenre: Trance, House, etc.

World Subgenre: Cajun, North African, Indian, Celtic, etc.

Table 2. Some of the musical genres and subgenres used.

4. MUSICAL ATTRIBUTE MODELS OF GENRE

In order to see the extent to which genre can be modeled by
musical attributes, we first perform an applied musicology
experiment using the set of expertly-labeled attributes from
Section 3.1 and relate them to labels of genre. A model for
each induvidual genre is trained on each of the musical
attributes alone and in rhythm- and timbre-based aggrega-
tions. This will show the role that each attribute or collec-
tion of attributes plays and how they interact with one an-
other in order to create joint representations of genre. Each
model employs logistic regression trained using stochastic
gradient decent (SGD) [25]. The training data was sep-
arated on a randomly shuffled 70%:30% (train:test) split
with no shared artists between training and testing. Due
to the size of the dataset, a single trial for each attribute
is both tractable and sufficient. The learning rate for each
genre model is tuned adaptively.

4.1 Evaluating the Role of Musical Attributes

In order to evaluate each of the models, the area under
the receiver operating characteristic (ROC) curve will be
used. Each genre has large and varying class imbalance,
so this is first corrected for by weighting training exam-
ples appropriately in the cost function. However, accuracy
alone still does not tell the whole story. High accuracy can
be achieved by predicting only the negative class (genre
absence). Area under the ROC curve allows for a more
comparable difference between each of the models than
raw accuracy alone. It gives insight into the trade-off be-
tween true positive and false positive rates. Alternatively
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we could have used precision and recall (PR) curves for
evaluation, but it is shown that if one model dominates in
the ROC domain, it will also dominate in the PR domain
and vice-versa [5]. In this work, the area under the ROC
curve will be referred to as AUC.

The results for each of the attribute-based genre models
are shown in Tables 3 and 4. The tables outline the AUC
values for classifying genre using timbre attributes, rhythm
attributes, and their combination. Table 3 summarizes all
results, showing the mean of all AUC values for each genre
model contained in the subgroups defined in Section 3.2.
Using attributes of rhythm and timbre together show bet-
ter performance than using each alone. Secondly, timbre
tends to perform better than rhythm. This suggests that
the timbre attributes in this context are better descriptors.
However in some cases, the rhythm attributes, even though
there are less of them (10 rhythm, 38 timbre), are not that
far behind. They are especially important in defining Jazz
and Rap, where rhythms such as swing in Jazz or synco-
pated vocal cadences over back-beat heavy drums in Rap
play defining roles.

Genre Group Timbre Rhythm Both
Basic 0.905 0.841 0.918
Rock Sub 0.910 0.819 0.919
Jazz Sub 0.925 0.856 0.945
Rap Sub 0.901 0.891 0.940
Dance Sub 0.961 0.881 0.965
World Sub 0.885 0.833 0.904
Mean 0.913 0.848 0.931

Table 3. An overview of all models using musical at-
tributes.

In Table 4 we show the individual AUC results for
the set of ‘Basic’ genres and subgenres of Jazz. Within
these individual groups, rhythm and timbre attributes to-
gether are once again able to better represent genre than
when used individually. Each of the ‘Basic’ genres can be
represented reasonably well with just timbre, as each has
slightly differing instrumentation. However, we again see
the importance of rhythm, describing what instrumentation
and timbre cannot capture alone. Genres heavily reliant on
specific rhythms (e.g., Funk, Rap, Latin, Disco, Jazz) are
all able to be represented rather well with only rhythm at-
tributes. In the Jazz subgenre this emphasis on rhythm in
certain cases is even more clear. In the next subsection, we
will dive deeper into the attributes that best describe the
Jazz subgenres.

4.2 The Influence of Rhythm and Timbre in Jazz

In order to more deeply explore the defining relationships
of rhythm and instrumentation within a subgenre, we will
look further into Jazz. Table 5 shows a subset of the im-
portant musical attributes for the Jazz subgenres. The AUC
accuracy of classifying each subgenre based on individual
musical attributes is shown.

The presence of solo brass (e.g, trumpet), piano, reeds
(e.g., saxophone) and auxiliary percussion (e.g., congas)
are important defining characteristics of instrumentation.

Basic Jazz
Genre Timbre Rhythm Both Subgenre Timbre Rhythm Both
Rock 0.843 0.759 0.856 New Orleans 0.970 0.957 0.989
Blues 0.913 0.783 0.915 Boogie 0.943 0.893 0.978
Gospel 0.810 0.664 0.843 Swing 0.970 0.933 0.984
Soul 0.869 0.793 0.887 Bebop 0.976 0.965 0.988
Funk 0.937 0.862 0.937 Cool 0.964 0.928 0.975
Rap 0.926 0.890 0.951 Hard Bop 0.944 0.905 0.967
Folk 0.943 0.760 0.952 Fusion 0.843 0.750 0.886
Country 0.952 0.794 0.955 Free 0.906 0.855 0.936
Reggae 0.893 0.819 0.905 Afro-Cuban 0.961 0.910 0.972
Latin 0.940 0.904 0.945 Brazilian 0.871 0.847 0.905
Disco 0.899 0.891 0.902 Acid 0.886 0.660 0.891
Jazz 0.937 0.850 0.963 Smooth 0.862 0.667 0.871
Mean 0.905 0.814 0.918 Mean 0.925 0.856 0.945

Table 4. Experimental results for ‘Basic’ genre and Jazz
subgenre models using musical attributes.

Jazz Timbre Aux. Rhythm
Subgenre Solo Brass Piano Reeds Perc. BackBeat Dance Swing Shuffle Syncop.
New Orleans 0.808 0.786 0.790 0.680 0.652 0.564 0.936* 0.513 0.515
Boogie 0.510 0.924* 0.544 0.714 0.592 0.712 0.737 0.505 0.676
Swing 0.721 0.784 0.748 0.679 0.624 0.578 0.923* 0.511 0.508
Bebop 0.725 0.850 0.862 0.703 0.662 0.525 0.946* 0.509 0.602
Cool 0.639 0.750 0.836 0.701 0.697 0.424 0.890* 0.504 0.568
HardBop 0.606 0.774 0.737 0.669 0.726 0.555 0.808* 0.684 0.606
Fusion 0.604 0.497 0.669 0.507 0.574 0.577 0.507 0.500 0.693*
Free 0.606 0.538 0.784 0.615 0.809* 0.765 0.577 0.515 0.558
Afro-Cuban 0.696 0.822 0.706 0.832* 0.782 0.648 0.512 0.501 0.790
Brazilian 0.560 0.736 0.568 0.572 0.761* 0.555 0.532 0.504 0.635
Acid 0.591 0.513 0.658* 0.507 0.585 0.622 0.509 0.515 0.635
Smooth 0.530 0.577 0.748* 0.590 0.559 0.614 0.513 0.509 0.573

Table 5. Attributes important to the Jazz subgenres are
shown. AUC values greater than 0.70 are bold. The highest
performing attribute for each genre is denoted with a *.

Boogie and Afro-Cuban styles, even though different,
place heavy emphasis on the piano, which is shown here
as well. Bebop, Hard-bob, and Afro-Cuban Jazz show em-
phasis placed on solo brass, piano, and reeds, as they rely
heavily on solo artists of these instruments (e.g., “Dizzy”
Gillespie, Miles Davis, Thelonious Monk, John Coltrane).
The presence of auxiliary percussion is also a good de-
scriptor of Afro-Cuban Jazz, where the use of hand drums
(e.g., bongos, congas) is very prevalent.

Rhythm is also important in Jazz subgenres. The dance-
ability, back-beat, and presence of swing and syncopation
are defining characteristics of certain Jazz rhythms. It is
important to note that a high AUC does not necessarily de-
note the presence of that attribute, only its consistent re-
lationship. For example, back-beat is a good predictor of
Free Jazz possibly due to its absolute absence. Alterna-
tively, one may think that the presence of swing is impor-
tant in all Jazz. Bebop, Hard Bop, New Orleans, and Swing
Jazz do have a heavy dependence on swing being present.
However, Afro-Cuban Jazz relies on straight time, clave-
based rhythms, so syncopation is actually a better predic-
tor. It is also important to note that while the attributes
of swing and shuffle are musically related, there is a clear
distinction in their application. In this case, swing is very
important, while shuffle is only slightly useful (e.g., Boo-
gie). However, outside of the Jazz genre, the opposite case
may be true, where shuffle is the more important attribute
(e.g. Blues, Country). This suggests that it is important to
make a clear distinction between swing and shuffle.
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5. PREDICTING GENRE FROM AUDIO

There is a large body of work on musical genre recogni-
tion from and audio signals [28,30]. However, most known
prior work in this area focuses on discriminating a discrete
set of basic genre labels with little emphasis on what de-
fines genre. In response, researchers have tried to develop
datasets that focus on style or subgenre labels (e.g., ball-
room dance [7, 13, 24], latin [19], electronic dance [23],
Indian [17]) that have clear relations to the presence of
specific musical attributes. However, because models are
designed for these specific sets, the methods used do not
adapt to larger more generalized music collections. For ex-
ample, tempo alone is a good descriptor for the ballroom
dance style dataset, which is not true for more general col-
lections [12].

Other work in genre recognition avoids the problem of
strict genre class separations. Audio feature similarity, self
organizing maps, and nearest-neighbor approaches can be
used estimate genre of an unknown example [22]. Simi-
larly, auto-tagging approaches use audio features to learn
the presence of both musical attributes and genre tags cu-
rated by the public [2, 8] or by experts [29].

In this work, we compare modeling genre both with
audio features directly and with stacked approaches that
exploit the relationships of audio features and musical at-
tributes.

5.1 Timbre Related Features

In order to capture timbral components and model vo-
cal, instrumentation, and sonority attributes, block-based
Mel-Frequency Cepstral Coefficients (MFCC) are imple-
mented. Means and covariances of 20 MFCCs are cal-
culated across non-overlapping 3-second blocks. These
block-covariances are further summarized over the piece
by calculating their means and variances [27]. This yields
a 460 dimensional timbre based feature set.

5.2 Rhythm Related Features

In order to capture aspects of each rhythm attribute, a set
of rhythm-specific features was implemented. All rhythm
features described in this section rely on global estimates
of an accent signal [3]

The beat profile quantizes the accent signal between
consecutive beats to 36 subdivisions. The beat profile fea-
tures are statistics of those 36 bins over all beats. The fea-
ture relies on estimates of both beats [9] and tempo.

The tempogram ratio feature (TGR) uses the tempo es-
timate to remove the tempo dependence in a tempogram.
By normalizing the tempo axis of the tempogram by the
tempo estimate, a fractional relationship to the tempo is
gained. A compact, tempo-invariant feature is created by
capturing the weights of the tempogram at musically re-
lated ratios relative to the tempo estimate.

The Mellin scale transform is a scale invariant trans-
form of a time domain signal. Similar musical patterns
at different tempos are scaled relative to the tempo. The
Mellin scale transform is invariant to that tempo scaling. It

was first introduced in the context of rhythmic similarity by
Holzapfel [16], around which our implementation is based.
In order to exploit the natural periodicity in the transform,
the discrete cosine transform (DCT) is computed. Median
removal (by subtracting the local median) and half-wave
rectifying the DCT creates a new feature that emphasizes
transform periodicities.

The previous rhythm features are also extended to
multiple-band versions by using accent signals that are
constrained to be within a set of specific sub-bands. This
affords the ability to capture the rhythmic function of in-
struments in different frequency ranges. The rhythm fea-
ture set used in this work is an aggregation of the median
removed Mellin Transform DCT and multi-band represen-
tations of the beat profile and the tempogram ratio features.
This yields a 372 dimensional rhythm based feature set that
was shown in previous work to be relatively effective at
capturing musical attributes related to rhythm (see [25] for
more details).

5.3 Genre Recognition Experiments

In addition to the experiment from Section 4, we present
three additional methods for modeling genre, each based
on audio signal analysis. The second method (Figure 1b)
performs the task of genre recognition with rhythm and
timbre inspired audio features directly. The third method
(Figure 1c) is motivated similar to the first experiment,
which employs the expertly-labeled musical attributes.
However, inspired by work in transfer learning [4], au-
dio features are used to develop models for the humanly-
defined attributes which in turn are used to model genre.
Through this supervised pre-training of musical attributes,
models of genre can be learned from attributes’ estimated
presence. In the fourth approach (Figure 1d), inspired
by [6] and [18], the learned attributes are combined with
the audio features directly in a shared middle layer to train
models of genre.

Similar to Section 4, genre is modeled with logistic re-
gression fit using stochastic gradient decent (SGD). The
data was separated on the same 70%:30% (train:test) split.
Once again, there were no shared artists between training
and testing. Due to the size of the dataset, a single trial for
each genre, as well as for each learned musical attribute,
is both tractable and sufficient. The learning rate for each
model is tuned adaptively.

5.3.1 Using Audio Features Directly

Of the four presented approaches, the second uses audio
features directly to model genre. The features from Sec-
tions 5.1 and 5.2 are used in aggregation and a model is
trained and tested for each individual genre. This provides
a baseline for what audio features are able to capture with-
out any added context. However, this lack of context makes
it hard to interpret what about genre they are capturing.

5.3.2 Stacked Methods

The third and fourth approaches are also driven by au-
dio features. However instead of targeting genre directly,
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models are learned for each of the vocal, instrumentation,
sonority, and rhythm attributes. Inspired by approaches in
transfer learning [4], and similar in structure to previous
methods in the MIR community [20], the learned attributes
are then used to predict genre. This approach is formu-
lated similar to a basic neural network with a supervised
pre-trained (and no longer hidden) musical attributes layer.

The rhythm-based attributes are modeled with a feature
aggregation of the Mellin DCT, multi-band beat profile,
and multi-band tempogram ratio features. The vocals, in-
strumentation, and sonority attributes are modeled with the
block-based MFCC features. Each attribute is modeled us-
ing logistic regression for binary labels (categorical) and
linear regression for continuous labels (scale-based). If an
individual attribute is formulated as a binary classification
task (see Section 3.1), the probability of the positive class
(its presence) is used as the feature value.

The first version of the stacked methods (third ap-
proach) uses audio features to estimate musical attributes
and employs only those estimated attributes to model
genre. The second version (fourth approach) concatenates
the audio features and the learned attributes in a shared
middle layer to model genre [6, 18].

5.4 Results

In this section, we will give an overview of all of the re-
sults from the audio-based methods, and compare them
to the models learned from the expertly-labeled attributes.
In order to show the overall performance of each method
in a compact way, only combined rhythm and timbre ap-
proaches will be compared. Once again each genre model
will be evaluated using area under the ROC curve (AUC).
In order to better evaluate the stacked models, we will fin-
ish with a brief evaluation of the learned attributes.

5.4.1 Learning Genre

A summary of the results for the audio experiments us-
ing rhythm and timbre features is shown in Table 6. The
human attribute model results are also included for com-
parison. Similar to Table 3, the mean AUC of each genre
grouping is shown.

Genre Human Audio Learned Audio +
Group Attrib. Feat. Attrib. Learned
Basic 0.918 0.892 0.878 0.899
Rock Sub 0.919 0.902 0.903 0.911
Jazz Sub 0.945 0.910 0.893 0.923
Rap Sub 0.940 0.916 0.914 0.927
Dance Sub 0.965 0.963 0.955 0.966
World Sub 0.904 0.850 0.846 0.865
Mean 0.931 0.905 0.897 0.915

Table 6. An overview of experimental results using audio-
based models that utilize timbre and rhythm features.

Compared to the human attributes approach, using au-
dio features alone to model genre performs relatively well.
This is especially true for the ‘Basic’, Rock, and Dance
groups, where the audio feature AUC results are very close
to human attribute performance. Across the other groups,

the differences between the audio feature models and the
musical attribute models suggest that the audio features
lose some important, genre-defining information. Further-
more, performance that was close to musical attributes
when using only audio features alone is also close when
musical attributes learned from audio features. This sug-
gests that, in these cases, the audio features may be cap-
turing similarly salient components related to the musical
attributes that describe these genre groups.

Overall, the learned attributes perform just as good as
or worse than the audio features alone. This suggests that
they are at most as powerful as the audio features used
to train them. However, combining audio features and
learned attributes shows significant improvement (paired
t-test p < 0.01 across all genres) over using audio features
or learned attributes alone. This evidence suggests that
audio features and learned attribute models each contain
slightly different information. The added human context
of the learned attributes is helpful to achieve results that
approach those of the expertly-labeled attributes. This also
suggests that the decisions made from learned labels are
possibly more similar to the decisions made from human
attribute labels, and the errors in estimating the musical at-
tributes are possibly to blame for the performance decrease
when used alone.

Basic Human Audio Learned Audio + Jazz Human Audio Learned Audio +
Genre Attrib. Feat. Attrib. Learned Subgenre Attrib. Feat. Attrib. Learned
Rock 0.856 0.831 0.835 0.839 New Orleans 0.989 0.947 0.951 0.956
Blues 0.915 0.892 0.883 0.899 Boogie 0.978 0.962 0.939 0.962
Gospel 0.843 0.798 0.794 0.805 Swing 0.984 0.929 0.929 0.940
Soul 0.887 0.833 0.818 0.842 Bebop 0.988 0.951 0.943 0.957
Funk 0.937 0.911 0.886 0.918 Cool 0.975 0.900 0.901 0.916
Rap 0.951 0.963 0.951 0.969 HardBop 0.967 0.946 0.930 0.952
Folk 0.952 0.905 0.903 0.916 Fusion 0.886 0.844 0.812 0.867
Country 0.955 0.885 0.880 0.897 Free 0.936 0.920 0.923 0.931
Reggae 0.905 0.926 0.885 0.929 AfroCuban 0.972 0.934 0.912 0.946
Latin 0.945 0.921 0.905 0.923 Brazilian 0.905 0.879 0.858 0.904
Disco 0.902 0.936 0.893 0.938 Acid 0.891 0.841 0.763 0.846
Jazz 0.963 0.907 0.906 0.916 Smooth 0.871 0.868 0.853 0.894
Mean 0.918 0.892 0.878 0.899 Mean 0.945 0.910 0.893 0.923

Table 7. Experimental results for the ‘Basic’ genres and
Jazz subgenres using audio-based models.

The left half of Table 7 shows the results for predict-
ing the ‘Basic’ genre labels. Within this set, we see some
interesting patterns start to emerge. In the case of Rap,
Reggae, and Disco, audio features are actually able to out-
perform the musical attributes. This suggests that our small
selected subset of 48 human attribute labels do not always
tell the whole story, and that the audio features, which are
much larger in dimensionality, possibly contain additional
and/or different information. As in previous results, the
learned attribute models perform similarly to methods that
use audio features directly, but with a few exceptions. In
the cases that the audio feature models do better than the
human-labeled musical attribute models, the learned at-
tribute models are able to perform at most as good as the
human-labeled musical attribute models. This once again
suggests that the learned attribute approach may be better
approximating the decisions the human-labeled attribute
approach is making. When adding audio and learned at-
tributes together, the added context is once again benefi-
cial, with combined methods outperforming models that
use audio or learned attributes alone. Audio feature mod-
els that perform better than the human attributes models
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are additionally improved, showing again that the audio
features and human attribute labels contain complementary
information.

The right half of Table 7 shows the results for predict-
ing the Jazz subgenre labels. The Jazz genre shows more
expected relationships between the human attribute, au-
dio feature, and learned attribute methods. The combined
method outperforms each of the audio feature and learned
attribute methods. The human attribute method performs
better than all audio-based methods.

5.4.2 Learning Attributes

In order to further explore the stacked audio-based mod-
els, we performed a small evaluation of how well the audio
features are able to learn each of the expertly-labeled mu-
sical attributes. Sticking with a common theme, we will
explore the results of modeling attributes that are impor-
tant to Jazz (from Table 5). Table 8 shows the ability to
directly predict these attributes from audio features. AUC
accuracies are reported for the binary attributes; R2 values
are reported for continuous attributes. The results of eval-
uating the model for the training and testing sets is shown.

Musical Audio Training Testing Label
Attributes Features AUC/R2 AUC/R2 Type
Solo Brass Timbre 0.796 0.798 binary
Piano Timbre 0.721 0.716 binary
Reeds Timbre 0.790 0.789 binary
Aux Percussion Timbre 0.750 0.750 binary
FeelSwing Rhythm 0.907 0.902 binary
FeelShuffle Rhythm 0.919 0.920 binary
FeelSyncopation Rhythm 0.772 0.770 binary
FeelBackBeat Rhythm 0.400 0.393 continuous
FeelDance Rhythm 0.527 0.515 continuous

Table 8. The results for learning binary (AUC) and contin-
uous (R2) attributes important to Jazz are shown.

First of all, we see that testing and training AUC is
almost identical. Because of this, a single trial (fold) is
appropriate when learning attribute models. The learned
models should generalize over all music without over fit-
ting. This justifies using the the same 70%:30% (train:test)
split for each layer in the stacked models. We see that
MFCC’s do somewhat well for brass and reeds, but the
lower AUC overall shows that these timbre features are not
doing enough to capture these attributes, which may be a
source of error in genre models that rely heavily on timbre.
However, the rhythm results are much better, especially for
swing and shuffle, which was argued in Section 4 and Ta-
ble 5 as an important distinction to make when predicting
Jazz subgenres.

Attribute Type Num Mean Median Maximum
Continous Rhythm (R2) 3 0.432 ± 0.077 0.393 0.515
Continous Timbre (R2) 12 0.266 ± 0.192 0.194 0.514
All Continuous 15 0.299 ± 0.186 0.389 0.515
Binary Rhythm (AUC) 7 0.889 ± 0.059 0.902 0.946
Binary Timbre (AUC) 26 0.794 ± 0.074 0.794 0.925
All Binary 15 0.814 ± 0.080 0.806 0.946

Table 9. Overall summary of learned attributes.

Table 9 shows a summary of learning the all of the se-
lected 48 attributes from audio features. It shows similar
trends to Table 8, with rhythmic attributes better described
by audio features than timbral attributes. Furthermore, the
continuous timbral attributes, which are sometimes com-
plicated perceptually (e.g., vocal grittiness), are not mod-
eled very well at all. This suggests that MFCC’s, and pos-
sibly other spectral approximations, do not provide the full
picture into what we perceive as the components of timbre.
This is especially true in the context of instrument identi-
fication in mixtures, which is a main utility of the timbre
features in this context. While these models as a whole
can be improved, the problems of instrument identification
and rhythm analysis are separate, large, and active research
areas [14, 15, 25, 26].

6. CONCLUSION

In this work, we demonstrated that there is potential to de-
mystify the constructs of musical genre into distinct mu-
sicological components. The attributes we selected from
music experts are able to provide a great deal of genre dis-
tinguishing information, but this is only an initial investiga-
tion into these questions. We were also able to discover and
outline the importance of certain attributes in specific con-
texts. This strongly suggests that the expression of musical
attributes are necessary additions to definitions of genre.

It was also shown here (and in previous work [25]) that
audio features motivated by timbre and rhythm are, with
some success, able to model musical attributes. Audio fea-
tures are also able to describe musical genre directly and
through stacked approaches that exploit the learned models
of musical attributes. This is strong evidence suggesting
that audio-based approaches are learning the presence of
the musical attributes, to some degree, when distinguish-
ing genre. In some cases, the audio-based models were
more powerful than the human musical attribute models.
This suggests that there is more to genre than our chosen
subset of rhythm and orchestration attributes, and it makes
us contemplate that there is more about the definition of
genre yet to be discovered.

In seeking to improve on this work, we next look to
investigate replacing the feature concatenation with late
fusion of context-dependent classifiers (e.g., rhythm, tim-
bre), which has shown improved results for genre classifi-
cation [11]. It may also be helpful to use a greater number
of the available attributes than the chosen 48, as well as
additional attribute types (e.g., melody, harmony). Further-
more, perhaps the most interesting direction is to treat each
musical attribute model as a hidden layer in a neural net-
work. In these cases, the models that are trained to predict
musicological attributes will serve as a form of domain-
specific pre-training. These models would perform full
back propagation across an additional layer which con-
nects our attributes to genres. This will potentially help
to learn better models of genre as well as adjust the mod-
els of musical attributes in order better capture their genre
relationships.
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