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ABSTRACT

We show that traditional music information retrieval
tasks with well-chosen parameters perform similarly using
computationally extracted chord annotations and ground-
truth annotations. Using a collection of Billboard songs
with provided ground-truth chord labels, we use estab-
lished chord identification algorithms to produce a cor-
responding extracted chord label dataset. We imple-
ment methods to compare chord progressions between two
songs on the basis of their optimal local alignment scores.
We create a set of chord progression comparison param-
eters defined by chord distance metrics, gap costs, and
normalization measures and run a black-box global opti-
mization algorithm to stochastically search for the best pa-
rameter set to maximize the rank correlation for two har-
monic retrieval tasks across the ground-truth and extracted
chord Billboard datasets. The first task evaluates chord
progression similarity between all pairwise combinations
of songs, separately ranks results for ground-truth and ex-
tracted chord labels, and returns a rank correlation coeffi-
cient. The second task queries the set of songs with fabri-
cated chord progressions, ranks each query’s results across
ground-truth and extracted chord labels, and returns rank
correlations. The end results suggest that practical retrieval
systems can be constructed to work effectively without the
guide of human ground-truthing.

1. INTRODUCTION

Computational algorithms to approximate harmonic con-
tent in a song typically output sequences of chord sym-
bols which can be evaluated in terms of accuracy using
their recall compared to human-annotated chord progres-
sions. Leading algorithms to extract chord progressions
from audio files have an accuracy of around 80% using
popular Western music [12, 15]. Though these algorithms
can effectively match human chord-labeling intuitions, it
is largely unexplored how these approximated chord anno-
tations perform in typical music retrieval tasks relative to
human annotations. In this paper, we propose a method
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for evaluating the correlation of music retrieval task results
across extracted and ground-truth datasets corresponding
to the same collection of songs. We limit the scope of our
exploration to chord labels and a few established similarity
methods, but the resulting procedure can be generalized to
other musical features such as melody, rhythm, and mid-
level representations.

1.1 Contribution

This paper explores an alternative way to evaluate the effi-
cacy of algorithms to extract musical features from songs.
Rather than simply calculate accuracy of computationally
extracted information relative to a reference, or ground-
truth, dataset, we propose the use of correlational metrics.
Given a set of common music informatics retrieval tasks on
a set of songs, correlational metrics quantify to what extent
the output results differ between two input sets: computa-
tionally extracted and ground-truth features for the same
set of songs. Testing this system on a chord labeling algo-
rithm, we design an alignment-based system to calculate
harmonic similarity, devise two simple tasks—evaluating
similarity between pairs of songs and querying by chord
progression—and use a global optimization algorithm over
the system’s parameters to maximize the resulting correla-
tional metric. The input datasets used and the design of the
system are described in the following sections.

2. CHORD PROGRESSION DATASETS

The selection of songs we consider in this paper is moti-
vated by availability. In order to compare ground-truth and
computationally extracted chord datasets, it is necessary to
have a set of song files, their corresponding ground-truth
chord progression data, and a computer algorithm to ex-
tract chords from the audio files and create an extracted
chord dataset. The number of reliable research-backed hu-
man ground-truth chord progression datasets is scarce, thus
to maintain a separation of algorithm from data, it is use-
ful to use a chord extraction algorithm that predates the
ground-truth dataset such that it could not have been trained
against any of its data.

2.1 Chord Extraction

Chordino 1 is an open-source chord extraction software
program written by Matthias Mauch based on his winning

1 http://isophonics.net/nnls-chroma
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2009 and 2010 MIREX chord estimation algorithm sub-
missions [4, 15]. Chordino achieves an 80% chord symbol
recall and is still considered state-of-the-art [16]. Though
an algorithm by Khadkevich [12] currently has the high-
est chord symbol recall in the 2014 MIREX audio chord
estimation task, there is no publicly released source code
for his work, whereas Chordino is available as a VAMP 2

plugin. The ground-truth dataset we use, as detailed in the
following subsection, was compiled in 2011. Unlike Khad-
kevich’s chord identification algorithm released in 2014,
there is no possibility that Chordino could have been influ-
enced by or tested against this dataset, maintaining a purity
of separation between data and system. Chordino is the
only chord extraction algorithm considered in this paper
and is used with default settings.

2.2 Ground-Truth Dataset

The McGill Billboard annotations collected in [3] and
freely available online 3 are a state-of-the-art human-
annotated chord dataset. The dataset is comprised of
over 1,000 songs sampled from different decades from the
1950s to the early 1990s across different Billboard charts
from the United States “Hot 100”. 4 The researchers hired
music experts and professional jazz musicians to annotate
the songs randomly sampled from the Billboard charts.
Each song was annotated twice to maintain a standard of
accuracy. The resulting dataset is the most comprehensive
current ground-truth set of chord annotations and is used
in recent MIREX chord annotation competitions. Impor-
tantly, the dataset postdates the Chordino chord extraction
algorithm, obviating the possibility of training bias.

We were able to locate source audio for 529 of the
McGill songs. The corresponding ground-truth annota-
tions for these 529 form the ground-truth McGill dataset,
or McGillg . We extracted chord annotations for each of
these 529 songs using Chordino with default settings, lead-
ing to the creation of the extracted McGill dataset, or
McGille. To maintain a consistent chord alphabet, we sim-
plify the harmonies used within the ground-truth dataset to
match the closest chord within the alphabet of chord quali-
ties used by Chordino. We preserve the root and bass notes
of each chord and evaluate the closest simplified chord us-
ing the Harte metric as described in Subsection 3.2.1.

3. A HARMONIC SIMILARITY SYSTEM

3.1 Smith-Waterman Local Alignment Algorithm

The Smith-Waterman algorithm [17] is a dynamic program-
ming algorithm that searches through two sequences ex-
haustively, looking for the pair of subsequences with opti-
mal similarity based on the cost of transforming one subse-
quence into the other using three operators. The sequences
are composed of symbols within an alphabet ⌃. The first
operator, substitution, defines the cost of transforming any

2 http://www.vamp-plugins.org/
3 http://ddmal.music.mcgill.ca/billboard
4 http://www.billboard.com/charts/hot-100

one symbol into any other and can be represented as a two-
dimensional cost matrix S, where |S| = |⌃| ⇥ |⌃|. The
second and third operators, insertion and deletion, quan-
tify the cost of removing or adding a number of elements
at a certain position in one of the subsequences, resulting
in gaps in the final alignment. These two operators can be
represented concisely using a gap function W that assigns
costs to gaps of specified lengths. Given a substitution ma-
trix S with a negative expected value but positive values
for similar input symbols, the Smith-Waterman algorithm
effectively isolates the strongest local regions of similarity
corresponding to the highest score.

Smith-Waterman is useful in the context of comparing
chord progressions as it has mechanisms to deal well with
inexact data, using different gap costs and chord substitu-
tion functions that compensate for small errors. To account
for songs in different keys, the score that is returned can be
the maximum Smith-Waterman score of all twelve trans-
positions of one sequence relative to the other. Assuming
a fixed substitution and gap function, let sw(s1, s2) return
the Smith-Waterman score for two sequences s1 and s2.
If t(s, i) is a transpose function that returns a transposed
sequence given an input sequence s and a number of semi-
tones i, we can express our final score as a similarity func-
tion SW :

SW (s1, s2) =
11

max
t=0

sw(s1, t(s2, i)) (1)

Due to its advantages and research that supports its effi-
cacy [6, 10], the Smith-Waterman algorithm will be used
to compare chord progressions in this paper and quantify
harmonic similarity. There are downsides to the Smith-
Waterman algorithm. In its current form, the score returned
reflects only the optimal local alignment and does not con-
sider other strong subregions of similarity. Allali et al. [1]
describe a process for constructing a 3-dimensional Smith-
Waterman algorithm that can account for modulations to a
new key signature mid-song. These adaptations leave room
for future experimentation. This paper focuses on only re-
turning one optimal local alignment score in the highest
scoring transposition.

3.2 Parameters

We chose a number of parameters to alter the nature of
the Smith-Waterman algorithm used. These parameters are
used with global optimization techniques to find good set-
tings such that ground-truth and extracted chord annota-
tions perform similarly.

3.2.1 Chord Distance Functions

We consider two chord distance metrics. Like Haas et
al. [6], we use Lerdahl’s Tonal Pitch Space (TPS) [14] as
a chord distance function to populate the substitution ma-
trix S. TPS quantifies the distance between two chords
relative to the key signature of a song based on psycholog-
ical qualities of human chord perception. We utilize the
key finding approach in [6] to establish the tonic and mode
of each song we are considering and assume no transpo-
sitions occur midsong. We additionally consider a metric
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proposed in Harte’s PhD thesis (Harte) [11] which quanti-
fies the fraction of similar pitch classes between two chords
over their cumulative set of pitch classes. If Pc(c) returns
the set of pitch classes for a given chord c this can be ex-
pressed as:

Harte(c1, c2) =
|Pc(c1) \ Pc(c2)|
|Pc(c1) [ Pc(c2)| (2)

We denote a variable Cd to correspond to which distance
function is used, TPS or Harte.

We additionally devise two parameters to scale and sub-
tract the function Cd such that a cost matrix S populated
by Cd has a negative expected value. We first normal-
ize the chord distance function to a value in [0,1], where
0 indicates no similarity and 1 perfect similarity. In TPS
this requires a division by 13. mx represents the amount
by which this normalized value is multiplied and ms the
amount it is subtracted. We round this number to the near-
est integer out of consideration for the Smith-Waterman
implementation we used. We arbitrarily only considered
integers from 1 through 30 inclusive for both mx and ms

as values in this range seemed to achieve a good resolution
of scaled chord distance values. Finally, S can be pop-
ulated based on the final scaled and subtracted value and
choice of Cd by iterating over all possible pairs of chords
in ⌃.

3.2.2 Gap Costs

We only consider one class of gap functions, affine gap
functions [9], which can be defined by the following equa-
tion for gaps of size i � 1:

W (i) = �gapopen � gapextension · (i � 1) (3)

The two constants gapopen and gapextension are parameters
that can be changed to alter the penalty of the initial gap
and following gaps in the sequence alignment, a potentially
useful feature to model an initial alignment gap being more
or less costly than subsequent gaps. In our implementation,
we considered integer values ranging from 0 through 127
inclusive for gapopen and gapextension.

3.2.3 Normalization

A difficulty with comparing Smith-Waterman scores is that
they tend to have a positive correlation with increased se-
quence length. There are approaches to combat this effect
using statistical learning techniques [2]. We tested a sim-
pler normalization metric that returns values in [0,1]:

SWnorm(s1, s2) =
SW(s1, s2)

max{SW(s1, s1), SW(s2, s2)} (4)

We devise a parameter CPd to represent the chord pro-
gression similarity function used, SW or SWnorm.

4. EXPERIMENTAL DESIGN

This paper tests how similarly common harmonic music
retrieval tasks perform using extracted chord data versus

Collection of
Musical Songs

Ground-Truth
Chord Annotations

Extracted
Chord Annotations 

Evaluate Fully Connected
Chordal Comparisons

Query Harmonically
by Random N-Grams

Harmonic Music Information Retrieval Task

Ground-Truth
Result Rankings

Extracted Chord
Result Rankings

Rank Correlation
Coefficient

Output Result

Black-box
Optimization

Initial Set
of Parameters

Acceptable Result?
Yes

Decrease Temperature

Adjust Parameters

No

More Iterations?
YesReturn Optimal

Set of Parameters
No

Run Retrieval Task

Figure 1. Flowchart of experimental design. This exper-
iment requires a collection of songs with corresponding
ground-truth and computationally extracted chord annota-
tions. These different chord datasets describing the same
collection of songs are fed into a harmonic retrieval task in
isolated experiments, each producing a different result list.
These result lists are ranked and correlated to return a cor-
relational metric. Global optimization techniques search
for maximum correlational metric scores by running many
iterations of the retrieval task with changing parameters
based on the performance of the correlational result rela-
tive to previous iterations. The returned set of parameters
represents an approximate optimal configuration for min-
imizing algorithmic differences between human and com-
putationally extracted chord inputs.

human-produced data. We primarily test two tasks across
McGillg and McGille datasets, rank both sets of results,
and calculate a correlational metric P . We then run a black-
box optimization strategy to approximate a maximum for
this correlational metric across the different parameters de-
tailed in Section 3.2. This process is outlined in a flowchart
in Figure 1.

4.1 Retrieval Tasks

This subsection describes the two high-level tasks that form
the substance of the experiments. Inputted with the param-
eters described in the previous section, these algorithms
perform chord progression comparisons over a collection
of songs using the harmonic similarity system previously
outlined to accomplish a common music retrieval objec-
tive. The result is a collection of harmonic similarity scores
that can be enumerated in an ordered fashion.

4.1.1 Fully Connected Pairwise Harmonic Comparison

This method (FCC), given parameters and a collection of
chord annotations, returns the harmonic similarity scores
for every pairwise combination of songs. The algorithm
proceeds in a well-ordered manner such that no pair of
songs is iterated twice and results are consistently posi-
tioned across two sets of chord annotations corresponding
to the same collection of songs (e.g. McGillg and McGille).

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 563



4.1.2 Query by N-gram

This retrieval task (QBN), given parameters and a collec-
tion of chord annotations, involves comparing the collec-
tion of annotations with random chord sequence queries to
simulate a basic search algorithm. Each query sequence
is compared with every song in the database, and a two-
dimensional table of harmonic similarity scores is returned.

We initially fabricate 100 query sequences, generated
randomly within the alphabet of chord qualities ⌃ but used
consistently across experiments and song collections. Out
of the 100 query sequences, four groups of 25 query se-
quences are generated with lengths of 4, 8, 16, and 32,
respectively. Each query sequence is padded in length by
repeating itself such that the length is at least that of the
longest song in the collection so that the Smith-Waterman
scores are not restricted by length of query sequence. We
chose this repetition of query sequences to imitate the repet-
itive structure of musical songs and emphasize the cyclic
nature of chord progression perception. For each of the 100
query sequences, QBN collects harmonic similarity scores
by comparing the query sequence against each of the songs
in the given collection. The result is a two-dimensional ta-
ble of harmonic similarity scores of size 100 by the length
of the input collection of songs.

4.2 Correlational Metrics

4.2.1 Ranking and the Spearman Correlation Coefficient

The ranking of a sequence is a mapping of every element of
the sequence to its position in the sequence. This ranking is
done such that elements with the same value are assigned
the average index of their positions. Two equally sized
lists of rankings s1 and s2 can be assigned a correlation
coefficient based on the Spearman correlation coefficient
(⇢) [7]. If n is the length of one of the ranked lists, ⇢ can
be calculated:

⇢(s1, s2) = 1 � 6
Pn

i (s1i
� s2i

)2

n(n2 � 1)
(5)

⇢ returns a number in [-1,1], with 1 indicating a perfect
positive correlation, -1 a perfect negative correlation, and
0 no correlation.

4.2.2 Calculating the Correlational Metric

For each of the two experimental tasks, we compare the re-
sulting harmonic similarity scores across ground-truth and
extracted chord annotations corresponding to the same set
of songs, McGillg and McGille.

The resulting correlational metric P is calculated by
ranking the result lists for McGillg and McGille separately
and returning a rank correlation between both resulting
lists. For FCC, P is calculated by simply ranking each
result list and returning the Spearman correlation coeffi-
cient ⇢ between the two ranked lists. For QBN, each result
list from McGillg and McGille for each of the 100 queries
generated is ranked independently. The correlation coeffi-
cients ⇢ for each of the 100 pairs of ranked lists is averaged
and returned as P .

Variable Notation Values
Similarity Function CPd {SW, SWnorm}

Gap Open Cost gapopen [0, 128]
Gap Extension Cost gapextension [0, 128]

Chord Distance Cd {Harte, TPS}
Distance Multiplier mx [1, 30]
Distance Subtractor ms [1, 30]

Table 1. Summary of experimental parameters.

4.3 Global Optimization with Simulated Annealing

To derive optimal parameters to maximize the correlational
metric P across tasks, we use a basic implementation of the
simulated annealing algorithm [5,13]. Let f refer to one of
the retrieval tasks that takes as input a set of parameters st

and runs over McGillg and McGille to return a correlational
metric P .

We try to stochastically search for parameters in st to
maximize f(st). Simulated annealing takes a function,
move(st), which returns a new state s0

t that is slightly
changed from st in a random manner. f is recalculated
with s0

t to see if the move was beneficial. A temperature
variable T stores acceptable deltas between old and new
states. If |f(s0

t) � f(st)| > T , the move is rejected and
st is left unchanged; otherwise, st takes on the new state
value, s0

t.
Simulated annealing runs with a fixed number of iter-

ations it. In each iteration, we perform move(st), and
following each iteration, T exponentially decreases. This
gives the optimization process more exploratory freedom
in initial stages when T is higher. After it iterations, the
resulting st is an approximate maximum of f . This algo-
rithm is useful in search spaces that are sufficiently com-
plex or large, such that exact optimization algorithms are
infeasible.

4.3.1 Implementation

Let st contain our parameters (see Table 1): {CPd, gapopen,
gapextension, Cd, mx, ms}. The move function represents a
transition to a nearby state—as each variable in st is an
integer, the jump must be discrete. Our move implementa-
tion takes a random step following a normal distribution for
each variable in the state, rounding the result to the nearest
integer and ensuring the value falls within the bounds of
the variable. The standard deviation of this random step
for each variable is chosen to be 1

3 of that variable’s range.
CPd and Cd, taking two possible function values each, can
be treated as integer variables with values in {0, 1}. If a
move results in a combination of parameters such that the
expected value of S is not negative or there are no positive
values, the scaling and subtraction factors mx and ms are
randomized again from their last values following the same
normal distribution jump process. This process repeats un-
til S has a negative expected value and some positive val-
ues so the Smith-Waterman algorithm can effectively iso-
late localized chord comparison results.
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Figure 2. Simulated annealing performance in FCC. Each
dot represents an iteration of the algorithm and correla-
tional metric P . The jagged line, an exponential moving
average, demonstrates the relatively constant increase in
performance as iterations progress.

For each task, FCC and QBN, we run 1,000 iterations
of simulated annealing to optimize the correlational met-
ric P with a temperature T that starts at 1 and decreases
exponentially to 0.005 at the final iteration.

5. RESULTS

In this section, we detail the results of the optimization
procedures across the two retrieval tasks (FCC and QBN)
as detailed in Subsection 4.1.

5.1 Optimizing Fully Connected Comparison

Across 1,000 iterations of simulated annealing for the
FCC task, the correlational metric P at each iteration
generally increased (see Figure 2). The maximal P re-
turned by the simulated annealing was 0.7619, indicat-
ing a strong correlation. The parameters st resulting in
this correlation first occurred at iteration 472 with values
{CP

d

: SW, gapopen : 0, gapextension : 28,C
d

: TPS,m
x

:
5,m

s

: 9}. The correlation between the ranked result lists
for ground-truth and extracted chord data with these pa-
rameters can be visualized with a 3-dimensional histogram
in Figure 3.

A common measure for accuracy in music retrieval is
the Average Dynamic Recall (ADR) [18], which has been
used to evaluate similarity assessments in MIREX com-
petitions since 2005. In the context of retrieval results,
ADR assesses at all given position how many songs have
occurred up to that position that should have occurred rela-
tive to ground-truth rankings, returning an average in [0,1],
with 1 indicating perfect similarity. We calculated the ADR
of the FCC results list of extracted chord data relative to
the generated ground-truth results list, deriving a result of
0.7664. As a warning, this measure is not particularly ap-
plicable to our work as the output ground-truth results list
does not demonstrate an actual ground-truth similarity as-
sessment, but its use here nonetheless illustrates the corre-
lation of this parameter set in the context of music retrieval.
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Figure 3. 3-dimensional histogram of the optimal fully
connected comparison (FCC) rankings. The correlation
(⇢=0.76) is visible through the elevated diagonal band. The
density of points along this band is greatest at the corners
as evidenced by bin heights—this means salient strongly
and weakly ranked chord progression results are most pre-
served by the parameters that led to this result.

5.2 Optimizing Query by N-grams

Like FCC, the correlational metric P also generally in-
creased across iterations in QBN (see Figure 4). The maxi-
mal P returned by simulated annealing was 0.7790, occur-
ring singularly with the parameters st = {CP

d

: SWnorm,
gapopen : 1, gapextension : 82,C

d

: TPS,m
x

: 1,m
s

: 10}.
The average ADR across each of the 100 queries with these
parameters was 0.7900.

Task P ADR
FCC 0.7619 0.7664
QBN 0.7790 0.7900

Table 2. Summary of experimental results.

5.3 Parameter Optimization

The harmonic retrieval tasks presented in this paper, FCC
and QBN, rely on a common set of parameters st. Though
generalizations on effective values for the parameter set
cannot be fully founded, it can still be useful to future ex-
perimentation to detail average correlational metric values
associated with ranges of parameter values from the simu-
lated annealing experiments.

CPd and Cd are the variables that perhaps change the
nature of the Smith-Waterman function the most funda-
mentally. Average output correlational metric values for
inputted choices of CPd and Cd are as follows:

FCC QBN
Harte TPS Harte TPS

SW 0.59 0.68 0.40 0.49
SWnorm 0.56 0.62 0.35 0.53

where maximum values are underlined. According to these
observational results, TPS outperforms the Harte chord dis-
tance metric in both experiments in terms of maximizing
correlation.

gapopen and gapextension take a wider range of values,
thus it is more useful to look at variable ranges and their
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Figure 4. Simulated annealing performance in QBN.

average outputs. Following are correlational metrics cor-
responding to ranges of gap variable values:

FCC QBN
Range gapopen gapextension gapopen gapextension

0 0.71 0.64 0.69 0.49
1-8 0.67 0.62 0.46 0.49
> 8 0.61 0.64 0.34 0.47

These results suggest that gap opening penalties of 0
influence higher correlational harmonic metric score.

Finally, we chart which scaling and subtraction factors,
mx and ms, produced the highest average correlation met-
ric scores:

FCC QBN
mx mx

1-9 10-19 20+ 1-9 10-19 20+
1-9 0.67 0.64 0.69 0.62 0.51 0.65

ms 10-19 0.68 0.65 0.65 0.51 0.43 0.49
> 20 0.58 0.58 0.57 0.39 0.38 0.30

These results are both consistent in assigning higher
correlational metric scores to large multiplication factors
and small subtraction factors. A possible explanation for
this behavior and favoritism towards gap penalties of 0
is that these factor choices result in the highest Smith-
Waterman expected values and result scores. Though this
expected value is ensured to be negative, a value close to
0 will more frequently match chords positively by chance
and result in longer local alignment scores that resemble
global alignment scores. It is possible that global sequence
alignment techniques used in FCC and QBN have strong
correlational harmonic metric scores. Further research in
global sequence alignment could present promising corre-
lational metric results.

6. DISCUSSION

This paper suggests a new class of similarity assessments
in music information retrieval (MIR), correlational met-
rics, and outlines an experimental procedure for assessing
these metrics. Correlational metrics capture the degree to

which ground-truth and extracted features perform simi-
larly through retrieval tasks. It is possible that similar re-
sults in a retrieval task do not necessarily imply correct or
good results. The experimental choices made in this paper,
such as using local alignments and the chord distance met-
rics, are demonstrated in MIR research as strong choices
for matching human intuitions of similarity [8, 11]; how-
ever, these experimental choices in this paper reflect one
possible use case. In the context of chord progressions,
there does not exist any reliable ground-truth similarity as-
sessments, which motivated this work.

Further experimentation is necessary with different
chord extraction algorithms and settings. The chord extrac-
tion algorithm used in this paper is highly accurate, which
may imply stronger correlational metric scores. Testing
a variety of chord extraction algorithms would render a
comparison of correlational metric scores associated with
a gradient of extraction algorithm accuracies, giving sta-
tistical significance to the resulting scores and potentially
uncovering other salient observations. Once there exist
research-backed ground-truth similarity assessments for
chord progressions, this work can be enriched with direct
comparisons to human intuitions. In its current form, this
paper is limited to Western harmonies, and more specif-
ically, pop songs from the 1950s onwards. Many other
features could be investigated within our experimental de-
sign, from those directly supplemental to harmony, such
as chord duration and melody, to external factors, such as
song popularity or artist. Incorporating and testing more
chord distance metrics and different parameters and ranges
would additionally benefit this class of research. Modify-
ing the retrieval tasks and implementing additional tasks
could extend this work, as well. For instance, random-
ized query sequences in the QBN task could be generated
according to probabilistic n-gram models to match more
likely search inputs and limit bias in the resulting corre-
lational metric score as a result of purely random queries
being unnatural and distant to the input datasets.

Assuming the parameter choices that resulted in the op-
timal correlational metrics in this paper resulted in a har-
monic similarity metric that matches human intuitions of
similarity, this paper suggests that effective MIR systems
can be constructed without the need for ground-truth chord
annotations and provides a framework for conducting such
experiments. As there are few research-backed ground-
truth chord datasets, this could massively expand the pos-
sible realm of chord datasets to reliably harmonically com-
pare. Correlational metrics can also be used in future re-
search across other musical features. The potential impli-
cations of this paper suggest that with proper algorithms
and parameters that currently exist in the literature, practi-
cal MIR systems can be constructed and optimized to work
without the guide of human ground-truthing in similarity
assessments.
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[16] Matt McVicar, Raúl Santos-Rodrı́guez, Yizhao Ni, and
Tijl De Bie. Automatic chord estimation from au-
dio: A review of the state of the art. Audio, Speech,
and Language Processing, IEEE/ACM Transactions
on, 22(2):556–575, 2014.

[17] Temple F Smith and Michael S Waterman. Identifica-
tion of common molecular subsequences. Journal of
Molecular Biology, 147(1):195–197, 1981.

[18] Rainer Typke, Remco C Veltkamp, and Frans Wiering.
A measure for evaluating retrieval techniques based
on partially ordered ground truth lists. In Multimedia
and Expo, 2006 IEEE International Conference, pages
1793–1796. IEEE, 2006.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 567


