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ABSTRACT

Over the past decade and a half, music information re-
trieval (MIR) has grown into a robust, cross-disciplinary
field spanning a variety of research domains. Collabo-
rations between MIR and neuroscience researchers, how-
ever, are still rare, and to date only a few studies using
approaches from one domain have successfully reached
an audience in the other. In this paper, we take an initial
step toward bridging these two fields by reviewing studies
from the music neuroscience literature, with an emphasis
on imaging modalities and analysis techniques that might
be of practical interest to the MIR community. We show
that certain approaches currently used in a neuroscientific
setting align with those used in MIR research, and discuss
implications for potential areas of future research. We ad-
ditionally consider the impact of disparate research objec-
tives between the two fields, and how such a discrepancy
may have hindered cross-discipline output thus far. It is
hoped that a heightened awareness of this literature will
foster interaction and collaboration between MIR and neu-
roscience researchers, leading to advances in both fields
that would not have been achieved independently.

1. INTRODUCTION

Since its inception, music information retrieval (MIR) has
been characterized as an interdisciplinary and multifaceted
field, drawing from such diverse domains as information
science, music, computer science, and audio engineering
to explore topics ranging from indexing and retrieval to
musical analysis and user studies [22, 24]. The field has
become increasingly collaborative over time, and cross-
disciplinary output has grown [33].

However, one field that has yet to establish itself as a
definitive sub-discipline of MIR is that of neuroscience.
Recent papers by Aucouturier and Bigand [6,7] have high-
lighted the challenges faced by MIR researchers attempt-
ing to publish in cognitive science and neuroscience jour-
nals, pointing out that MIR approaches have occupied at
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best a marginal or incidental role in that literature. The au-
thors cite as a main obstacle a fundamental lack of interest,
or understanding, from the cognitive science/neuroscience
community. At the same time, the few brain-based MIR
studies published to date [16, 40, 52] have emphasized
application over background, potentially leaving readers
lacking sufficient introduction to the imaging technique
and brain response of interest. As things currently stand,
the fields of MIR and neuroscience operate largely inde-
pendently, despite sharing approaches and questions that
might benefit from cross-disciplinary investigation.

In an effort to begin reconciling these two fields,
the present authors—whose backgrounds collectively span
music, neuroscience, and engineering—present a review
of studies drawn from the music neuroscience literature
and examine their relevance to MIR research. While
such a review will not immediately resolve the signifi-
cant philosophical issues described above, it may perhaps
open a window between the two disciplines by highlight-
ing shared approaches and potential collaborations while
acknowledging differences in aims and motivations. Envi-
sioned outcomes are twofold: First, that MIR researchers
may find, in brain responses, a new setting to apply analy-
sis techniques already developed for other types of data;
and second, and more importantly, that heightened aware-
ness of this literature will increase collaborations between
MIR and neuroscience researchers, advancing both fields
and leading to the formation of a robust cross-discipline.

Since a review of the entire literature on music and neu-
roscience would be beyond the scope of this paper, we
narrow the present focus to approaches that align closely
with MIR applications. For rigor, we include only peer-
reviewed papers, though interested readers are encour-
aged to visit other venues—including but not limited to
ICMPC, SMPC, and late-breaking ISMIR proceedings—
for a wealth of additional ideas and findings. The primary
focus here is on EEG, though behavioral and fMRI studies
will be touched upon as appropriate.

The remainder of this paper is structured as follows.
First, we evaluate the suitability of various neuroimaging
modalities for MIR research (§2). We then review three
neuroimaging approaches used in music research (§3) and
consider how these methods, and others, might be used for
MIR research (§4). We conclude with a discussion of di-
verging objectives between the two fields, and opportuni-
ties for future cross-disciplinary research (§5).
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2. NEUROIMAGING METHODS FOR MIR

Neuroimaging is the use of magnetic, electrical, hemody-
namic, optical, or chemical means to measure activity in
the central nervous system, most often the cerebral cortex
(Table 1). The central idea behind bridging neuroimag-
ing with MIR is that music is encoded by the brain, and
thus can be “read out” or decoded using imaging tech-
niques. In order to exploit this idea, it would be advan-
tageous to track neural activity at the temporal resolution
of music (i.e., milliseconds), which necessitates the use of
techniques that provide direct electromagnetic measures
of neural activity. While techniques measuring hemody-
namic responses, such as functional magnetic resonance
imaging (fMRI), provide superb spatial resolution that can
indirectly probe neural activation on a millimeter scale and
elucidate the functional brain networks recruited to process
music, the sluggishness of these responses makes them less
likely to play a role in MIR.

EEG MEG ECoG fMRI DTI
Temporal Resolution high high high low NA
Spatial Resolution low low high high high
Invasiveness low low high low low
Mobility/Portability high low low low low
Field of View large large small large large
Expense to Operate low high NA high high

Table 1. Characteristics of neuroimaging techniques fre-
quently used in music and auditory research. Adapted from
Mehta and Parasuraman [39].

On the other hand, electroencephalography (EEG) and
magnetoencephalography (MEG) provide millisecond tem-
poral resolution that can in principle be used to infer prop-
erties of the stimuli evoking encephalographic responses.
EEG and MEG consist of sensors placed at or near the
scalp surface that detect mass superpositions of activity
in the cerebral cortex. The signal-to-noise ratio (SNR)
of EEG/MEG is inherently low, typically on the order of
-20 dB. However, as activity is usually collected over a
spatial aperture consisting of tens or hundreds of sensors,
multivariate approaches can be used to derive spatial filters
that will enhance the desired signal while suppressing the
noise. The limitation of EEG/MEG is low spatial resolu-
tion that results from a spatial smoothing of the evoked sig-
nal and renders it difficult to localize the underlying source.
In order to achieve fine resolution in both space and time,
electrodes can be placed directly on the cortical surface, an
invasive practice that is feasible only in the case of neuro-
logical disease where it is known as electrocorticography
(ECoG), which has been recently employed to study pro-
cessing of music [47, 48, 55]. Note, however, that in the
context of MIR, precise spatial localization is likely not a
fundamental requirement. All of the above techniques re-
fer to imaging the function of the brain; methods that mea-
sure the connections among brain areas, such as diffusion
tensor imaging (DTI), have also been used in the context
of music research (e.g., [38]).

In order to feasibly integrate neuroimaging with MIR,
a form of imaging that is inexpensive, noninvasive, and

finely temporally resolved is required. For these reasons,
our primary focus in the present paper is on EEG, which
represents the most promising modality for bridging neural
responses with MIR. Moreover, EEG offers a whole-brain
field of view that allows for studying the interaction of dis-
tributed brain areas during musical processing.

3. APPROACHES OF INTEREST

In this section we review three approaches that may prove
useful for MIR. The first is an early-latency response gen-
erated by the auditory brainstem, while the latter two in-
volve longer latency cortical responses.

3.1 The Frequency-Following Response

The frequency-following response (FFR) is an early-
latency subcortical response generated by the auditory
brainstem less than 10 msec after an auditory stimulus oc-
curs. It is a sustained, phase-locked response that oscil-
lates at the same frequency as an auditory stimulus to such
an extent that the stimulus can be “played back” from an
average of many trials of the brain response [25].

The FFR is typically recorded from a single electrode
at the vertex of the head, plus reference and ground elec-
trodes. The response is averaged over many stimulus pre-
sentations, and is usually analyzed in the frequency or
time-frequency domain. The FFR has an especially low
SNR; therefore, FFR experiments require on the order of
hundreds or thousands of stimulus presentations. The fre-
quency range of interest for this response is primarily un-
der 1,000 Hz, and studies presented here generally use
complex, synthesized stimuli with fundamental frequen-
cies no greater than 300 Hz. An introduction to the re-
sponse and technique can be found in the 2010 tutorial by
Skoe and Kraus [51], and recent findings pertaining to mu-
sic are summarized in a 2013 review by Bidelman [9].

Despite being an early, low-level auditory response, the
FFR has been found to show effects of learning-based neu-
ral plasticity. Its involvement in the music literature grew
out of speech studies that compared subcortical responses
of speakers of tone languages, such as Mandarin and Thai,
to those of English speakers. These studies showed that
FFRs to certain pitch-varying phonemes and phoneme-
like stimuli were more robust in the tone-language speak-
ers than in the English speakers, pointing to experience-
dependent processing enhancements [29–32, 56]. Trained
musicians, who possess a complementary type of pitch
expertise, became a population of interest in generalizing
these findings. For example, a study by Wong et al. [62]
showed that musicians exhibited more robust encoding of
Mandarin phonemes than did nonmusicians, despite not
being tone-language speakers.

The first study to investigate the FFR specifically in re-
sponse to musical stimuli was a 2007 study by Musacchia
and colleagues [41]. Here, musicians’ enhanced subcor-
tical encoding of speech and musical stimuli presented in
audio, visual, and audiovisual modalities could be identi-
fied in both the time and frequency domains of the brain

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 539



response. Subsequent studies have investigated encoding
of musical intervals by musicians and nonmusicians [34],
as well as encoding of music by both musicians and Man-
darin speakers [10, 11].

Musical characteristics of the stimuli have also been
found to modulate the strength of the FFR. A 2009 study
by Bidelman and Krishnan [12], revealed enhanced encod-
ing for consonant versus dissonant musical intervals. The
authors later found a similar effect in responses to pleasant
(major/minor) versus unpleasant (augmented/diminished)
triads [13]. It should be noted that these results cannot be
merely a reflection of the acoustical properties of the stim-
uli, as the consonant and dissonant intervals are interleaved
(e.g., the dissonant tritone lies between the consonant P4
and P5), as are the constituent intervals (major and minor
thirds) comprising the different types of musical triads.

3.2 Single-Trial EEG Classification

We now move from the auditory brainstem to the cerebral
cortex, where responses begin roughly 50 msec after stim-
ulus onset and are typically recorded from between 32–
256 electrodes arranged across the surface of the scalp at
regular intervals, often by means of a cap or net. Corti-
cal responses are generally analyzed in a lower frequency
range than FFRs, usually below 50 or 60 Hz.

Cortical EEG research has a long history of univari-
ate analysis. Readers may be familiar with time-averaged
event-related potential (ERP) studies, which focus on am-
plitudes and latencies of particular waveform peaks from
selected electrodes. Some recent studies have taken a dif-
ferent approach to EEG analysis by classifying single tri-
als of the brain response. The goal in this case is to cor-
rectly predict, from the brain response, which stimulus the
participant was experiencing (see Blankertz et al. [15] for
an introduction and tutorial). This multivariate approach
enables data from multiple electrodes and time points to
be analyzed at once. Classification of neuroimaging data
has a longer history in fMRI (as multi-voxel pattern analy-
sis [43]) than in EEG; however, the overarching methodol-
ogy lends itself well to extracting stimulus- or task-relevant
components out of noisy, high-dimensional EEG data, as is
done with other types of data used in music research [50].

The first single-trial EEG classification study focusing
on musical stimuli was published in 2011 by Schaefer and
colleagues [49]. They found that brain responses to seven
short excerpts of naturalistic music 1 from a variety of gen-
res could be classified significantly above chance. More
recently, Stober et al. recorded EEG responses from East
African listeners who heard twelve Western and twelve
East African rhythms, and used deep-learning techniques
to predict both the rhythm family of a stimulus (2-class
problem) as well as the individual rhythm (24-class prob-
lem) from the EEG [52]. The prediction task of EEG clas-
sification has also extended beyond characterizing the stim-
uli to labeling listeners’ emotional states—for example, in
response to music videos [28] and musical excerpts [16].

1 The term “naturalistic music” is used to refer to ecologically valid
musical material as opposed to controlled, synthesized stimuli.

A brain-computer interface (BCI) is often cited as a
general application of single-trial EEG classification [14].
In a musical context, a successful BCI would enable a user
to communicate mentally by selectively interacting with an
ongoing musical stimulus. Studies by Vlek and colleagues
showed that subjective (mentally imposed) metrical ac-
cents on a beat sequence could be detected in the EEG
response [60], and that a classifier trained upon responses
to perceived accents could be used to detect the imagined
accents [61]. In a recent EEG study by Treder et al. [58],
also working toward BCI application, listeners were played
polyphonic musical stimuli wherein each stream produced
intermittent “oddball” musical events, and attended to just
one of the streams. The authors leveraged the fact that
the brain responds differently to attended oddball auditory
stimuli than to unattended oddballs, and classified brain re-
sponses to just the oddball events in the music in order to
identify the attended stream.

3.3 Tracking Temporal Dynamics of Acoustical
Features

Certain music cognition studies have drawn explicitly from
MIR techniques, utilizing acoustical features developed
specifically for music analysis [59]. These studies use
short-term (e.g., spectral flux, spectral centroid) and long-
term (e.g., musical mode, pulse clarity) acoustical features,
computationally extracted from musical stimuli, as a basis
for quantitatively comparing stimuli with responses.

A 2010 behavioral study by Alluri and Toiviainen [1]
set the foundation for this approach in the music cognition
literature. The authors formulated perceptual scales suit-
able for assessing timbre of naturalistic music, and then
linked human ratings of short musical excerpts to the ex-
cerpts’ constituent short-term acoustical features. Subse-
quent fMRI studies used a refined set of short-term fea-
tures, as well as long-term features, to characterize their
musical stimuli. Alluri and colleagues identified brain re-
gions whose fMRI time series correlated with those of the
acoustical features of a tango piece [2], and later predicted
brain activations from the features of a variety of musical
excerpts [3]. A 2014 study by Toiviainen and colleagues
took the inverse approach, predicting acoustical features
from fMRI-recorded responses to Beatles songs [57].

Acoustical feature representation has also been studied
in ongoing EEG. In contrast to relatively short epochs used
in FFR and classification analysis, ongoing-EEG epochs
can span many minutes, and are thus well suited to the
analysis of responses to longer musical excerpts such as
songs [17]. A 2013 study by Cong and colleagues used
the same stimulus and long-term acoustical features as the
2012 Alluri study [2] in an ongoing-EEG paradigm, de-
composing the EEG response into temporally independent
sources using Independent Component Analysis (ICA),
and then identifying sources whose frequency content
corresponded to the time courses of the acoustical fea-
tures [17]. More recently, Lin and colleagues also used
EEG ICA sources to link ongoing-EEG responses to musi-
cal mode and tempo in shorter musical excerpts [36].
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4. MIR APPLICATIONS

In the previous section, we reviewed three approaches used
to study brain responses to music: The FFR, which directly
encodes the pitch of an auditory stimulus, and two analy-
sis techniques used for classifying and characterizing cor-
tical responses. We will now discuss MIR applications of
neuroimaging data. We consider the relevance of each ap-
proach to MIR research and assess the added value of an-
alyzing the brain response—over analyzing, for example,
the auditory stimulus directly.

4.1 Transcription

The FFR is unique among the auditory responses presented
here in that it directly reflects the stimulus. As described
above, the FFR has been used primarily as a measure of en-
coding. To date, its robustness has been the main attribute
of interest, reflecting effects of expertise (tone-language
speaker or musician) and stimulus properties (musical con-
sonance or pleasantness) in the brain response.

The FFR could prove to be a powerful transcription
tool; to our knowledge, this application has not yet been
explored. From an MIR perspective, there would be little
added value in transcribing responses to the simple musi-
cal stimuli used in the FFR studies described here (mostly
monophonic, sometimes intervals or triads—see §3.1), as
transcription could be easily accomplished directly from
the audio. However, selective attention has been found
to enhance FFR amplitudes for simultaneously presented
speech stimuli [26, 35]; therefore, future research could
study this topic further using musical stimuli, for exam-
ple to extract a melody from polyphonic music—an open
topic in audio MIR research, but something a human can
accomplish effortlessly. Though FFRs to imagined sounds
have yet to be confirmed, an FFR-based transcription sys-
tem of this kind would certainly open another exciting and
novel avenue for future research.

As described above, FFR studies typically involve up to
thousands of stimulus repetitions due to low SNR. There-
fore, signal-processing techniques that could efficiently ex-
tract the FFR out of the EEG—perhaps by recording the re-
sponse from a montage of multiple electrodes, analogous
to the use of multiple microphones in a source-separation
scenario—would provide a useful resource for more flex-
ible experiment design, and provide a critical step toward
FFR-based transcription.

4.2 Tagging and Annotation

Characterizing musical attributes and listener responses is
a recurring goal in MIR research, and has also been ex-
plored in EEG research [28, 37, 40]. In their 2010 pa-
per, Alluri and Toiviainen [1] draw explicit connections
between their proposed approach and the use of acousti-
cal features in computational systems for music categoriza-
tion. Along these lines, the acoustical feature following
approach used in neuroimaging studies could extend be-
yond the prediction of the features from the brain response
(as in [57]), toward a global prediction of musical genre

from combinations of these features over time, as is done
in audio-based genre classification.

Interestingly, a fine-grained temporal representation of
acoustical musical features in the brain response has yet to
be explored using noninvasive imaging techniques. While
short-term acoustical features were used in the behavioral
and fMRI studies discussed above (§3.3), they were aver-
aged or downsampled to match the length of the behav-
ioral stimuli (1.5 seconds) or the sampling rate of fMRI
(0.45–0.5 Hz) [1–3, 57]. At the same time, the studies us-
ing EEG—arguably the best modality for investigating rep-
resentation of short-term acoustical features—considered
only long-term acoustical features in their analysis [17,36].
It may be the case, too, that neurally encoded features of
music do not correspond exactly to the hand-crafted acous-
tical features discussed here; therefore, feature-learning
approaches could also prove useful for connecting tem-
porally resolved stimulus features to the brain response,
whether to study feature processing and representation, or
to develop an annotation tool.

Single-trial EEG classification could also be applied to
this problem. Of the classification studies discussed here,
only one used naturalistic music as stimuli [49]; the oth-
ers used rhythmic patterns [52, 60, 61] or short events seg-
mented from an ongoing stimulus [58]. One possibility
for future MIR application could be to classify responses
to a larger set of naturalistic musical excerpts to build,
for example, a classification model that surpasses excerpt-
level specificity and instead predicts genre, mood, or other
global attributes from responses to new musical excerpts.

4.3 Predicting Large-Scale Audience Preferences

Brain responses can also be used to model listener prefer-
ences. This topic has been explored to some extent in the
music neuroscience literature (e.g., [4]). However, to ac-
complish a widespread application of this goal—for exam-
ple, in a neuromarketing setting [5]—would require that re-
sponses of the experimental sample generalize beyond that
sample to a large-scale measure of success, such as sales of
a product or ratings collected from the general public [8].

Recent studies have successfully used brain responses
from a small sample to predict large-scale audience prefer-
ences. In a 2012 study, Berns and Moore collected fMRI
responses and subjective ratings from participants who lis-
tened to a set of unknown songs. The authors then tracked
the sales of the songs over the next three years and found
a brain region whose activity correlated significantly with
eventual song popularity [8]. Recent studies by Falk et
al. [23] and Dmochowski et al. [21] showed that large-
scale success of television commercials could be predicted
from fMRI and EEG responses, respectively. In all three
of these studies, the brain responses of the experimental
sample correlated more strongly with large-scale measures
of popularity and success than they did with self-reported
preferences of that same sample. These findings lend cre-
dence to the theory that brain responses provide objective
measures of preference, and that generalizations may be
drawn from these responses with greater validity than sub-
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Company Product Application Website Features
Emotiv EPOC commercial http://emotiv.com/ fixed montage, wireless, iOS, Android
NeuroSky MindWave, MindSet commercial http://neurosky.com/ fixed montage, wireless, iOS, Android
EGI Avatar research http://avatareeg.com/ flexible montage and sensors, wireless, Android
Grass Comet research http://www.grasstechnologies.com/ flexible montage and sensors
Neuroelectrics StarStim research http://www.neuroelectrics.com/ flexible montage and sensors, wireless, stimulation

Table 2. Selected portable/mobile EEG systems.

jective ratings from a small experimental sample—even
the very sample providing the brain responses. Therefore,
MIR researchers may find brain-based measures of pref-
erence or success to be a useful channel of information in
predicting or modeling large-scale music popularity.

4.4 Portable/Mobile EEG

While not an application per se, another area of growing
interest in neuroscience involves portable and mobile EEG
systems. It should be noted that nearly all of the studies
reviewed here were conducted in controlled laboratory set-
tings; thus, the listening experiences of the experimental
participants likely did not reflect their experiences of music
in everyday life. However, a number of commercial- and
research-grade systems have come to market over the past
decade (Table 2), and have recently begun to gain traction
in the scientific literature as valid data-acquisition tools.

In an MIR context, a 2013 study by Morita et al. used
the NeuroSky MindSet to assess mental states in response
to music [40], and the 2014 study by Stober and col-
leagues (§3.2) used a portable Grass system for data col-
lection [52]. Other recent scientific publications report
real-time 3D imaging implementations using wireless EEG
with a smartphone interface built using Emotiv equip-
ment [44, 54], and a 2014 study by De Vos and colleagues
showed that usable single-trial auditory responses could be
recorded from a custom portable apparatus, also built off of
the Emotiv system [18, 19]. The adoption of such method-
ologies by the scientific community presents an opportu-
nity for MIR researchers to study music consumption and
music processing in real-world listening situations [36].

5. DISCUSSION

In this review, we have surveyed neuroimaging techniques
that can be used in MIR research, and highlighted a number
of potential research topics spanning the two fields. Why,
then, have collaborations not flourished to date?

One answer may emerge from a consideration of fun-
damental motivational differences between the two fields.
Neuroscience, by definition, is the study of the brain; there-
fore, the thrust of much neuroscientific research is to gain
an understanding of brain functioning underlying process-
ing of various stimuli, including music. As a result, exper-
iment design, data analysis, and interpretation of results
will tend toward this goal, even when analysis involves de-
coding or prediction of stimulus or response features. A
useful perspective on this topic is provided by Naselaris
and colleagues [42], who characterize encoding versus de-
coding approaches used in fMRI research: Encoding ap-

proaches assess variations in neural space in response to
variations in stimulus space, or perhaps seek to predict the
brain response from the stimulus. Decoding, on the other
hand, seeks to predict information about the stimulus from
the brain response. In a neuroscientific setting, both ap-
proaches are used to map stimulus features to responses in
order to better understand brain processing.

This objective is clearly evident in the studies reviewed
above (§3). The FFR, providing arguably the most decod-
able brain signal, is used primarily to study neural encod-
ing of auditory stimuli. One outcome of single-trial clas-
sification is the identification of temporal and spatial EEG
components that best discriminate or differentiate stimuli
or stimulus categories. The acoustical feature studies also
focused upon identifying brain areas whose activity covar-
ied with the stimuli, and not specifically on transcription.
Of the approaches described above, perhaps only the BCI-
focused EEG classification studies are purely application-
based, with system performance taking priority over an ex-
ploration of the underlying neural processing—though an
understanding of the latter is often a design consideration
in the development of a high-performing BCI system.

MIR, on the other hand, tends to be a more application-
and goal-oriented field [7]. For MIR researchers, then,
brain data may serve more as a medium through which in-
formation about music may be recovered, than as the fun-
damental object of investigation. This disparity in what the
brain, and brain data, represent in the overall goal of the re-
search may be partly responsible for the lack of connection
and collaboration between the two fields to date.

Another likely hinderance to the incorporation of neuro-
scientific techniques in MIR is access to data. Historically,
researchers have had to acquire their own data, which re-
quires access to equipment as well as domain-specific ex-
pertise in experiment design and data collection. Follow-
ing that, data preprocessing and analysis can require sig-
nificant signal-processing proficiency to extract stimulus-
related information from noisy EEG recordings, especially
for the single-trial and ongoing-EEG approaches discussed
above. Luckily, the global scale of music neuroscience re-
search now underway should provide many opportunities
for collaboration, whereby MIR researchers may bypass
some of the above steps if they wish. In addition, the
creation of publicly available repositories of neuroimag-
ing data has become a recent area of focus in the fMRI
community [45, 46], and the EEG community is following
suit (music-related EEG datasets include Koelstra et al.’s
DEAP [27] and Stober et al.’s OpenMIIR [53]). Such pub-
lic datasets, as well as open-source analysis packages such
as EEGLAB [20], can facilitate cross-disciplinary research
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even in the absence of formal collaborations.
While the fields of MIR and neuroscience have yet to

form a strong connection, there exist many opportunites
for collaboration that could advance both fields. It is hoped
that the studies and ideas presented in this review will prove
useful to both MIR researchers and neuroscientists. It is
likely that the two fields will take some time to grow closer;
therefore, MIR output using neuroscientific data may not
immediately reach the neuroscientific audience (nor should
it be intended to). Even so, we hope that a greater knowl-
edge of neuroscientific approaches and findings will spark
the interest of MIR researchers and lead to future intersec-
tions between these two exciting fields.
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