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ABSTRACT

We present a new dataset for singing analysis and mod-
elling, and an exploratory analysis of pitch accuracy and
pitch trajectories. Shortened versions of three pieces from
The Sound of Music were selected: “Edelweiss”, “Do-Re-
Mi” and “My Favourite Things”. 39 participants sang three
repetitions of each excerpt without accompaniment, result-
ing in a dataset of 21762 notes in 117 recordings. To ob-
tain pitch estimates we used the Tony software’s automatic
transcription and manual correction tools. Pitch accuracy
was measured in terms of pitch error and interval error.
We show that singers’ pitch accuracy correlates signifi-
cantly with self-reported singing skill and musical train-
ing. Larger intervals led to larger errors, and the tritone
interval in particular led to average errors of one third of a
semitone. Note duration (or inter-onset interval) had a sig-
nificant effect on pitch accuracy, with greater accuracy on
longer notes. To model drift in the tonal centre over time,
we present a sliding window model which reveals patterns
in the pitch errors of some singers. Based on the trajectory,
we propose a measure for the magnitude of drift: tonal ref-
erence deviation (TRD). The data and software are freely
available. 1

1. INTRODUCTION

Singing is common in all human societies [2], yet the fac-
tors that determine singing proficiency are still poorly un-
derstood. Many aspects are important to singing, including
pitch, rhythm, timbre, dynamics and lyrics; here we fo-
cus entirely on the pitch dimension. Music psychologists
have studied singing pitch [4, 6, 18], and engineers have
developed advanced software for automatic pitch track-
ing [5, 11, 21], but the process of annotating and analysing
the pitch of singing data remains a laborious task. In this
paper, we present a new extensive dataset for the analy-
sis of unaccompanied solo singing, complete with audio,
pitch tracks, and hand-annotated note tracks matched to
the scores of the music. In addition, we provide an anal-
ysis of the data with a focus on intonation: pitch errors,

1 see Data Availability, Section 7
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interval errors, pitch drift, and the factors that influence
these phenomena.

Intonation, defined as “accuracy of pitch in playing or
singing” [23], or “the act of singing or playing in tune”
[12], is one of the main priorities in choir rehearsals [9] and
in choral practice manuals (e.g. [3]). Good intonation in-
volves the adjustment of pitch to maximise the consonance
of simultaneous notes, but it also has a temporal aspect,
particularly in the absence of instrumental accompaniment,
where the initial tonal reference can be forgotten over time
[15]. A cappella ensembles frequently observe a change in
tuning over the duration of a piece, even when they are un-
able to detect any local changes. This phenomenon, called
intonation drift or pitch drift [22], usually exhibits as a
lowering of pitch, or downward drift [1]. Several studies
present evidence that drift is induced by harmonic progres-
sions as singers negotiate the tradeoff between staying in
tune and singing in just intonation [7,10,24]. Yet this is not
the only cause of drift, since drift is also observed in solo
singing, such as unaccompanied solo folk songs [17] and
even queries to query-by-humming systems [20]. A factor
that has received relatively little attention in the singing re-
search community is the effect of note duration on singing
accuracy [8], so one of our aims in this paper is to explore
the effect of duration.

The definitions of intonation given above imply the ex-
istence of a reference pitch, which could be provided by ac-
companying instruments or (as in the present case) could
exist solely in the singer’s memory. This latter case al-
lows for the reference to change over time, and thus explain
the phenomenon of drift. We introduce a novel method to
model this internal reference as the pitch which minimises
the intonation error given some weighted local context,
and we compare various context windows for parametris-
ing our model. Using this model of reference pitch, we
compute pitch error as the signed pitch difference relative
to the reference pitch and score, measured in semitones on
an equal-tempered scale. Interval error is measured on the
same scale, without need of any reference pitch, and pitch
drift is given by the trajectory of score-normalised refer-
ence pitch over time.

In this paper we explore which factors may explain into-
nation error in our singing data. The effects of four singer
factors, obtained by self-report, were tested for signifi-
cance. Most of the participants in this study were amateur
singers without professional training. Their musical back-
ground, years of training, frequency of practice and self-
reported skill were all found to have a significant effect on
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Figure 1: Score of piece Do-Re-Mi, with some intervals
marked (see Section 3)

Table 1: Summary details of the three songs used in this
study.

Title Tempo (BPM) Key Notes
Edelweiss 80 B[ 54
Do-Re-Mi 120 C 59
My Favourite Things 132 Em 73

intonation errors. We then considered as piece factors three
melodic features, note duration, interval size and the pres-
ence of a tritone interval, for their effect on intonation. All
of these features had a significant effect on both pitch and
interval error. Finally we consider the pitch drift trajecto-
ries of individual singers. Our model tracks the direction
and magnitude of cumulative pitch errors and captures how
well participants remain in the same key. Some trajectories
have periodic structure, revealing systematic errors in the
singing.

2. MATERIALS AND METHODS

2.1 Musical material

We chose three songs from the musical “The Sound of Mu-
sic” as our material: “Edelweiss”, “Do-Re-Mi” (shown in
Figure 1) and “My Favourite Things.” Despite originating
from one work, the pieces were selected as being diverse in
terms of tonal material and tempo (Table 1), well-known to
many singers, and yet sufficiently challenging for amateur
singers. The pieces were shortened so as to contain a single
verse without repeats, which the participants were asked
to sing to the syllable “ta”. In order to observe long-term
pitch trends, each song was sung three times consecutively.
Each trial lasted a little more than 5 minutes.

2.2 Participants

We recruited 39 participants (12 male, 27 female), most
of whom are members of our university’s music society or
our music-technology focused research group. Some par-
ticipants took part in the experiments remotely. The age
of the participants ranged from 20 to 27 years (mean 23.3,
median 23 years). We asked all participants to self-assess
their musical background with questions loosely based on

the Goldsmiths Musical Sophistication Index [16]. 2 Ta-
ble 2 shows the results, suggesting a range of skill levels,
with a strong bias towards amateur singers.

Table 2: Self-reported musical experience

Musical Background Instrumental Training
None 5 None 5
Amateur 27 1–2 years 15
Semi-professional 5 3–4 years 7
Professional 2 5+ years 12

Singing Skill Singing Practice
Poor 2 None 4
Low 25 Occasionally 22
Medium 9 Often 12
High 3 Frequently 1

2.3 Recording procedure

Participants were asked to sing each piece three times on
the syllable ‘ta’. They were given the starting note but no
subsequent accompaniment, except unpitched metronome
clicks.

2.4 Annotation

We used the software Tony 3 to annotate the notes in the
audio files [13]: pitch track and notes were extracted using
the pYIN algorithm [14] and then manually checked and,
if necessary, corrected. Approximately 28 corrections per
recording were necessary; detailed correction metrics on
this data have been reported elsewhere [13].

2.5 Pitch metrics

The Tony software outputs the median fundamental fre-
quency f0 for every note. We relate fundamental frequency
to musical pitch p as follows:

p = 69 + 12 log2
f0

440 Hz
(1)

This scale is chosen such that a difference of 1 corresponds
to 1 semitone. For integer values of p the scale coincides
with MIDI pitch numbers, with reference pitch A4 tuned
to 440 Hz (p = 69).

2.5.1 Interval Error

A musical interval is the difference between two pitches
[19] (which is proportional to the logarithm of the ratio
of the fundamental frequencies of the two pitches). Using
Equation 1, we define the interval from a pitch p1 to the
pitch p2 as i = p2�p1 and hence we can define the interval
error between a sung interval i and the expected nominal
interval in (given by the musical score) as:

eint = i � in (2)
2 The questions were: How do you describe your musical background?

How many years do you have instrument training? How do you describe
your singing skills? How often do you practice your singing skills?

3 https://code.soundsoftware.ac.uk/projects/tony
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Hence, for a piece of music with M intervals
{eint

1 , . . . , eint
M}, the mean absolute interval error (MAIE)

is calculated as follows:

MAIE =
1

M

M
X

i=1

|ei
int| (3)

2.5.2 Tonal reference curves and pitch error

In unaccompanied singing, pitch error is ill-defined, since
singers use intonation with respect to their internal refer-
ence, which we cannot track directly. If it is assumed that
this internal reference doesn’t change, we can estimate it
via the mean error with respect to a nominal (or given)
reference pitch. However, it is well-known that unaccom-
panied singers (and choirs) do not maintain a fixed internal
reference (see Section 1). Previously, this has been ad-
dressed by estimating the singer’s reference frequency us-
ing linear regression [15], but as there is no good reason
to assume that drift is linear, we adopt a sliding window
approach in order to provide a local estimate of tuning ref-
erence.

The first step is to take the annotated musical pitches
pi of a recording and remove the nominal pitch si given
by the score, t⇤i = pi � si, which we adjust further by
subtracting the mean: ti = t⇤i � t̄⇤. The resulting raw tonal
reference estimates ti are then used as a basis for our tonal
reference curves and pitch error calculations.

The second step is to find a smooth trajectory based on
these raw tonal reference estimates. For each note, we cal-
culate the weighted mean of ti in a context window around
the note, obtaining the reference pitch ci, from which the
pitch error can be calculated:

ci =
n

X

k=�n

wkti+k, (4)

where
Pn

k=�n wk = 1. Any window function W = {wk}
can be used in Equation 4. We experimented with sym-
metric windows with two different window shapes (rect-
angular and triangular) and seven window sizes (3, 5, 7,
9, 11, 15 and 25 notes) to arrive at smooth tonal reference
curves. The rectangular window WR,N = {wR,N

k } cen-
tred at the ith note is used to calculate the mean of its N-
note neighbourhood, giving the same weight to all notes in
the neighbourhood, but excluding the ith note itself:

wR,N
k =

⇢

1
N�1 , 1  |k|  N�1

2

0, otherwise.
(5)

The triangular window WT,N = {wT,N
k } gives more

weight to notes near the ith note (while still excluding the
ith note itself). For example, if the window size is 5, then
the weights are proportional to 1, 2, 0, 2, 1. More gener-
ally:

wT,N
k =

⇢ 2N+2�4|k|
N2�1 , 1  |k|  N�1

2

0, otherwise.
(6)
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Figure 2: Pitch error (MAPE) for different sliding win-
dows.

The smoothed tonal reference curve ci is the basis for cal-
culating the pitch error:

ep
i = ti � ci, (7)

so for a piece with M notes with associated pitch errors
ep
1, . . . , e

p
M , the mean absolute pitch error (MAPE) is:

MAPE =
1

M

M
X

i=1

|ep
i |. (8)

2.5.3 Tonal reference deviation

The tonal reference curves ci can also be used to calculate a
new measure of the extent of fluctuation of a singer’s refer-
ence pitch. We call this measure tonal reference deviation
(TRD), calculated as the standard deviation:

TRD =

v

u

u

t

1

M � 1

M
X

i=1

(ci � c̄M )2. (9)

3. RESULTS

We first compare multiple choices of window for the cal-
culation of the smoothed tonal reference curves ci (Sec-
tion 2.5.2), which provide the local tonal reference es-
timate used for calculating mean absolute pitch error
(MAPE). We assume that the window that gives rise to the
lowest MAPE models the data best. Figure 2 shows that
for both window shapes an intermediate window size N
of 5 notes minimises MAPE, with the triangular window
working best (MAPE = 0.276 semitones, computed over
all singers and pieces). Hence, we use this window for all
further investigations relating to pitch error, including tonal
reference curves, and for understanding how pitch error is
linked to note duration and singers’ self-reported skill and
experience.
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(a) Edelweiss, singer 11
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(b) Do-Re-Mi, singer 39
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(c) My Favourite Things, singer 31

Figure 3: Examples of tonal reference trajectories. Dashed vertical lines delineate the three repetitions of the piece.

3.1 Smoothed tonal reference curves

The smoothed curves exhibit some unexpected behaviour.
Figure 3 shows three examples of different participants and
pieces. Several patterns emerge. Figure 3a shows a perfor-
mance in which pitch error is kept within half a semitone
and tonal reference is almost completely stable. This is
reflected in very low values of MAPE (0.171) and TRD
(0.070), respectively. However, most singers’ tonal refer-
ence curves fluctuate. For example, Figure 3b illustrates a
tendency of some singers to smoothly vary their pitch ref-
erence in direct response to the piece. The trajectory shows
a periodic structure synchronised with the three repetitions
of the piece. The fluctuation measure TRD is much higher
as a result (0.624). This is a common pattern we have
observed. The third example (Figure 3c) illustrates that
strong fluctuations are not necessarily periodic. Here, TRD
(0.635) is nearly identical, but originates from a mostly
consistent downward trajectory. The singer makes signif-
icant errors in the middle of each run of the piece, most
likely due to the difficult interval of a downward tritone
occurring twice (notes 42 and 50; more discussion below).
Comparing Figures 3b and 3c also shows that MAPE and
TRD are not necessarily related. Despite large fluctuations
(TRD) in both, pitch error (MAPE) is much smaller in Fig-
ure 3c (0.297).

Turning from the trajectories to pitch error measure-
ments, we observe that the three pieces show distinct pat-
terns (Figure 4). The first piece, Edelweiss, appears to be
the easiest to sing, with relatively low median pitch errors.
In Do-Re-Mi, the third quarter of the piece appears much
more difficult than the rest. This is most likely due to faster
runs and the presence of accidentals, taking the singer out
of the home tonality. Finally, My Favourite Things ex-
hibits a very distinct pattern, with relatively low pitch er-
rors throughout, except for one particular note (number
50), which is reached via a downward tritone, a difficult
interval to sing. The same tritone (A-D]) occurs at note
42, where the error is smaller and notably in the oppo-
site direction (this D] is flat, while note 50 is over a semi-
tone sharp on average). It appears that singers are drawn
towards the more consonant (and more common) perfect
fifth and fourth intervals, respectively.

Estimate Std. Err. t p
(intercept) 0.374 0.012 32.123 0.000

nominal duration -0.073 0.004 -17.487 0.000
prev. nom. IOI -0.021 0.004 -4.646 0.000

abs(nom. interval) 0.016 0.001 13.213 0.000
abs(next nom. interval) 0.010 0.001 8.471 0.000

tritone 0.370 0.019 19.056 0.000
quest. score -0.011 0.001 -9.941 0.000

(a) MAPE

Estimate Std. Err. t p
(intercept) 0.481 0.015 33.124 0.000

nominal duration -0.076 0.005 -14.570 0.000
prev. nom. IOI -0.050 0.006 -8.984 0.000

abs(nom. interv.) 0.030 0.002 19.700 0.000
abs(next nom. interv.) -0.006 0.002 -3.826 0.000

tritone 0.373 0.024 15.404 0.000
quest. score -0.012 0.001 -8.665 0.000

(b) MAIE

Table 3: Effects of multiple covariates on error for a linear
model. t denotes the test statistic. The p value rounds to
zero in all cases, indicating statistical significance.

3.2 Duration, interval and proficiency factors

The observations on pitch error patterns suggest that note
duration and the tritone interval may have significant im-
pact on pitch error. In order to investigate their impact we
make use of a linear model, taking into account further-
more the size of the intervals sung and singer bias via con-
sidering the singers’ self assessment.

Table 3a lists all dependent variables, estimates of their
effects and indicators of significance. In the following we
will simply speak of how these variables influence, re-
duce or add to error, noting that our model gives no in-
dication of true causation, only of correlation. We turn
first to the question of whether note duration influences
pitch error. The intuition is that longer notes, and notes
with a longer preparation time (previous inter-onset inter-
val, IOI), should be sung more correctly. This is indeed
the case. We observe a reduction of pitch error of 0.073
semitones per added second of duration. The IOI between
previous and current note also reduces pitch error, but by
a smaller factor (0.021 semitones per second). Conversely,
absolute nominal interval size adds to absolute pitch error,
by about 0.016 semitones per interval-semitone, as does

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 423



●

●
● ● ● ● ● ● ●

● ●
● ●

●
● ● ● ●

● ●
●

● ● ● ●
●

●
●

● ● ●
● ●

●
● ● ●

● ● ● ● ●
●

● ● ● ● ● ● ● ●
● ● ●

0 10 20 30 40 50

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

se
m
ito
ne
s

(a) Edelweiss

●
● ●

●
●

●
● ●

●
● ●

●
● ●

● ● ●

●

●
●

●
●

●

●

● ● ● ●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

● ●

●
●

●

●
●

0 10 20 30 40 50 60

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

se
m
ito
ne
s

(b) Do-Re-Mi

● ●
● ●

●
● ●

●
●

●
●

●

●
● ●

●
●

● ●
●

● ●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●

●
●

● ●

●

●

● ●

●
●

●
●

●

● ●
●

●
● ●

●
●

●
● ●

●

●

●

●

●
● ● ●

●
● ● ●

0 10 20 30 40 50 60 70

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

se
m
ito
ne
s
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Figure 4: Pitch errors by note for each of the three pieces. The plots show the median values with bars extending to the
first and third quartiles.

the absolute size of the next interval (0.010 semitones).
The intuition about the tritone interval is confirmed here,
as the presence of any tritone (whether upward or down-
ward) adds 0.370 semitones—on average—to the absolute
pitch error. The last covariate, questionnaire score, is the
sum of the points obtained from the four self-assessment
questions, with values ranging between 5 and 14. The re-
sult shows that there is correlation between the singers’
self-assessment and their absolute pitch error. For every
additional point in the score their absolute pitch error is
reduced by 0.012 semitones. The picture is very similar
as we do the same analysis for absolute interval error (Ta-
ble 3b): the effect directions of the variables are the same.

4. DISCUSSION

We have investigated how note length relates to singing ac-
curacy, finding that notes are sung more accurately as the
singer has more time to prepare and sing them. Yet it is not
entirely clear what this improvement is based upon. Do
longer notes genuinely give singers more time to find the
pitch, or is part of the effect we observe due to measure-
ment or statistical artefacts? To find out, we will need to
examine pitch at the sub-note level, taking vibrato and note
transitions into account. Conversely, studying the effect of
melodic context on the underlying pitch track could shed
light on the physical process of singing, and could be used
for improved physical modelling of singing.

Overall, the absolute pitch error of singers (mean: 28
cents; median: 18; std.dev.: 36) and the absolute inter-

val error (mean: 34 cents; median: 22; std.dev.: 46) are
slightly higher than those reported elsewhere [15], but this
may reflect the greater difficulty of our musical material in
comparison to “Happy Birthday”. We also did not exclude
singers for their pitch errors, although the least accurate
singers had MAPE and MAIE values of more than half a
semitone, i.e. they were on average closer to an erroneous
note than to the correct one. That the values of MAIE and
MAPE are similar is to be expected, as interval error is the
limiting case of pitch error, using a minimal window con-
taining only the current and previous note.

We used a symmetric window in this work, but this
could easily be replaced with a causal (one-sided) win-
dow [15], which would also be more plausible psycholog-
ically, as the singer’s internal pitch reference in our model
is based equally on past sung notes and future not-yet-sung
notes. However, for post hoc analysis, the fuller context
might reveal more about the singer’s internal state (which
must influence the future tones) than the more restricted
causal model.

Figure 4 shows how the three pieces in our data differ
in terms of pitch accuracy. It is interesting to see that ac-
cidentals (which result in a departure from the established
key), and the tritone as a particular example, seem to have
a strong adverse impact on accuracy. To compile more de-
tailed statistical analyses like the ones in Table 3 one could
conduct singing experiments on a wider range of intervals,
isolated from the musical context of a song. In future work
we also intend to explore the interaction between singers
as they negotiate a common tonal reference.
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Finally, we would like to mention that some singers
took prolonged breaks between runs in a three-run rendi-
tion of a song. The recording was stopped, but no new
reference note was played, so the singers resumed with the
memory of what they last sung. As part of the reproducible
code package (see Section 7) we provide information on
which recordings were interrupted and at which break. We
found that the regression coefficients (Tables 3b and 3a)
did not substantially change as a result of these interrup-
tions.

5. CONCLUSIONS

We have presented a new dataset for singing analysis, in-
vestigating the effects of singer and piece factors on the
intonation of unaccompanied solo singers. Pitch accuracy
was measured in terms of pitch error and interval error. We
introduced a new model of tonal reference computed using
the local neighbourhood of a note, and found that a win-
dow of two notes each side of the centre note provides the
best fit to the data in terms of minimising the pitch error.
The temporal evolution of tonal reference during a piece
revealed patterns of tonal drift in some singers, others ap-
peared random, yet others showed periodic structure linked
to the score. As a complement to errors of individual notes
or intervals, we introduced a measure for the magnitude of
drift, tonal reference deviation (TRD), and illustrated how
it behaves using several examples.

Two types of factors influencing pitch error were inves-
tigated, those related to the singers and those related to the
material being sung. In terms of singer factors, we found
that pitch accuracy correlates with self-reported singing
skill level, musical training, and frequency of practice.
Larger intervals in the score led to larger errors, but only
accounted for 2–3 cents per semitone of the mean absolute
errors. On the other hand, the tritone interval accounted
for 35 cents of error when it occurred, and in one case led
to a large systematic error across many of the singers. We
hypothesised that note duration might also have an effect
on pitch accuracy, as singers make use of aural feedback
to regulate their pitch, which results in less stable pitch at
the beginnings of notes. This was indeed the case: a small
but significant effect of duration was found for both the
current note, and the nominal time taken from the onset of
the previous note; longer durations led to greater accuracy.
Many aspects of the data remain to be explored, such as the
potential effects of scale degree, consonance, modulation,
and rhythm.
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