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ABSTRACT

Music imagery information retrieval (MIIR) systems may one
day be able to recognize a song from only our thoughts. As
a step towards such technology, we are presenting a public
domain dataset of electroencephalography (EEG) recordings
taken during music perception and imagination. We acquired
this data during an ongoing study that so far comprises 10
subjects listening to and imagining 12 short music fragments
– each 7–16s long – taken from well-known pieces. These
stimuli were selected from different genres and systematically
vary along musical dimensions such as meter, tempo and the
presence of lyrics. This way, various retrieval scenarios can
be addressed and the success of classifying based on specific
dimensions can be tested. The dataset is aimed to enable music
information retrieval researchers interested in these new MIIR
challenges to easily test and adapt their existing approaches
for music analysis like fingerprinting, beat tracking, or tempo
estimation on EEG data.

1. INTRODUCTION

We all imagine music in our everyday lives. Individuals can
imagine themselves producing music, imagine listening to oth-
ers produce music, or simply “hear” the music in their heads.
Music imagination is used by musicians to memorize music
pieces and anyone who has ever had an “ear-worm” – a tune
stuck in their head – has experienced imagining music. Recent
research also suggests that it might one day be possible to
retrieve a music piece from a database by just thinking of it.

As already motivated in [29], music imagery information re-
trieval (MIIR) – i.e., retrieving music by imagination – has the
potential to overcome the query expressivity bottleneck of cur-
rent music information retrieval (MIR) systems, which require
their users to somehow imitate the desired song through singing,
humming, or beat-boxing [31] or to describe it using tags, meta-
data, or lyrics fragments. Furthermore, music imagery appears
to be a very promising means for driving brain-computer in-
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terfaces (BCIs) that use electroencephalography (EEG) – a
popular non-invasive neuroimaging technique that relies on
electrodes placed on the scalp to measure the electrical activity
of the brain. For instance, Schaefer et al. [23] argue that “music
is especially suitable to use here as (externally or internally
generated) stimulus material, since it unfolds over time, and
EEG is especially precise in measuring the timing of a response.”
This allows us to exploit temporal characteristics of the signal
such as rhythmic information.

Still, EEG data is generally very noisy and thus extracting
relevant information can be challenging. This calls for sophisti-
cated signal processing techniques as they have emerged in the
field of MIR within the last decade. However, MIR researchers
with the potential expertise to analyze music imagery data usu-
ally do not have access to the required equipment to acquire
the necessary data for MIIR experiments in the first place. 1

In order to remove this substantial hurdle and encourage the
MIR community to try their methods in this emerging interdis-
ciplinary field, we are introducing the OpenMIIR dataset.

In the following sections, we will review closely related
work in Section 2, describe our approach for data acquisition
(Section 3) and basic processing (Section 4), and outline further
steps in Section 5.

2. RELATED WORK

Retrieval based on brain wave recordings is still a very young
and largely unexplored domain. A recent review of neuroimag-
ing methods for MIR that also covers techniques different from
EEG is given in [14]. EEG signals have been used to measure
emotions induced by music perception [1,16] and to distinguish
perceived rhythmic stimuli [28]. It has been shown that oscilla-
tory neural activity in the gamma frequency band (20-60 Hz) is
sensitive to accented tones in a rhythmic sequence [27]. Oscilla-
tions in the beta band (20-30 Hz) entrain to rhythmic sequences
[2, 17] and increase in anticipation of strong tones in a non-
isochronous, rhythmic sequence [5,6,13]. The magnitude of
steady state evoked potentials (SSEPs), which reflect neural os-
cillations entrained to the stimulus, changes when subjects hear
rhythmic sequences for frequencies related to the metrical struc-
ture of the rhythm. This is a sign of entrainment to beat and me-
ter [19,20]. EEG studies have further shown that perturbations

1 For instance, the Biosemi EEG system used here costs several ten-
thousand dollars. Consumer-level EEG devices with a much lower price have
become available recently but it is still open whether their measuring precision
and resolution is sufficient for MIIR research.
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of the rhythmic pattern lead to distinguishable event-related
potentials (ERPs) 2 [7]. This effect appears to be independent
of the listener’s level of musical proficiency. Furthermore, Vlek
et al. [32] showed that imagined auditory accents imposed on
top of a steady metronome click can be recognized from EEG.

EEG has also been successfully used to distinguish per-
ceived melodies. In a study by Schaefer et al. [26], 10 partic-
ipants listened to 7 short melody clips with a length between
3.26s and 4.36s. For single-trial classification, each stimulus
was presented 140 times in randomized back-to-back sequences
of all stimuli. Using a quadratically regularized linear logistic-
regression classifier with 10-fold cross-validation, they were
able to successfully classify the ERPs of single trials. Within
subjects, the accuracy varied between 25% and 70%. Apply-
ing the same classification scheme across participants, they
obtained between 35% and 53% accuracy. In a further analysis,
they combined all trials from all subjects and stimuli into a
grand average ERP. Using singular-value decomposition, they
obtained a fronto-central component that explained 23% of the
total signal variance. The time courses corresponding to this
component showed significant differences between stimuli that
were strong enough to allow cross-participant classification.
Furthermore, a correlation with the stimulus envelopes of up
to 0.48 was observed with the highest value over all stimuli at
a time lag of 70–100ms.

FMRI studies [10,11] have shown that similar brain struc-
tures and processes are involved during music perception and
imagination. As Hubbard concludes in his recent review of the
literature on auditory imagery, “auditory imagery preserves
many structural and temporal properties of auditory stimuli”
and “involves many of the same brain areas as auditory per-
ception” [12]. This is also underlined by Schaefer [23, p. 142]
whose “most important conclusion is that there is a substantial
amount of overlap between the two tasks [music perception
and imagination], and that ‘internally’ creating a perceptual
experience uses functionalities of ‘normal’ perception.” Thus,
brain signals recorded while listening to a music piece could
serve as reference data. The data could be used in a retrieval
system to detect salient elements expected during imagination.
A recent meta-analysis [25] summarized evidence that EEG
is capable of detecting brain activity during the imagination
of music. Most notably, encouraging preliminary results for
recognizing imagined music fragments from EEG recordings
were reported in [24] in which 4 out of 8 participants produced
imagery that was classifiable (in a binary comparison) with an
accuracy between 70% and 90% after 11 trials.

Another closely related field of research is the reconstruc-
tion of auditory stimuli from EEG recordings. Deng et al. [3]
observed that EEG recorded during listening to natural speech
contains traces of the speech amplitude envelope. They used
independent component analysis (ICA) and a source local-
ization technique to enhance the strength of this signal and
successfully identify heard sentences. Applying their technique
to imagined speech, they reported statistically significant single-
sentence classification performance for 2 of 8 subjects with
better performance when several sentences were combined for

2 A description of how event-related potentials (ERPs) are computed and
some examples are provided in Section 4.

a longer trial duration.
Recently, O’Sullivan et al. [21] proposed a method for de-

coding attentional selection in a cocktail party environment
from single-trial EEG recordings approximately one minute
long. In their experiment, 40 subjects were presented with 2
classic works of fiction at the same time – each one to a differ-
ent ear – for 30 trials. To determine which of the 2 stimuli a
subject attended to, they reconstructed both stimulus envelopes
from the recorded EEG. To this end, they trained two different
decoders per trial using a linear regression approach – one to
reconstruct the attended stimulus and the other to reconstruct
the unattended one. This resulted in 60 decoders per subject.
These decoders where then averaged in a leave-one-out cross-
validation scheme. During testing, each decoder would predict
the stimulus with the best reconstruction from the EEG using
the Pearson correlation of the envelopes as measure of qual-
ity. Using subject-specific decoders averaged from 29 training
trials, the prediction of the attended stimulus decoder was cor-
rect for 89% of the trials whereas the mean accuracy of the
unattended stimulus decoder was 78.9%. Alternatively, using
a grand-average decoding method that combined the decoders
from every other subject and every other trial, they obtained a
mean accuracy of 82% and 75% respectively.

3. STUDY DESCRIPTION

This section provides details about the study that was conducted
to collect the data released in the OpenMIIR dataset. The study
consisted of two portions. We first collected information about
the participants using questionnaires and behavioral testing
(Section 3.1) and then ran the actual EEG experiment (Sec-
tion 3.2) with those participants matching our inclusion criteria.
The 12 music stimuli used in this experiment are described in
Section 3.3.

3.1 Questionnaires and Behavioral Testing

14 participants were recruited using approved posters at the
University of Western Ontario. We collected information about
the participants’ previous music experience, their ability to
imagine sounds, and information about musical sophistication
using an adapted version of the widely used Goldsmith’s Mu-
sical Sophistication Index (G-MSI) [18] combined with an
adapted clarity of auditory imagination scale [33]. Questions
from the perceptual abilities and musical training subscales of
the G-MSI were used to identify individual differences in these
areas. For the clarity of auditory imagery scale, participants
had to self-report their ability to clearly hear sounds in their
head. Our version of this scale added five music-related items
to five items from the original scale.

We also had participants complete a beat tapping and a stim-
uli familiarity task. Participants listened to each stimulus and
were asked to tap along with the music on the table top. The
experimenter then rated their tapping ability on a scale from 1
(difficult to assess) to 3 (tapping done properly). After listening
to each stimulus participants rated their familiarity with the
stimuli on a scale from 1 (unfamiliar) to 3 (very familiar). To
participate in the EEG portion of the study, the participants
had to receive a score of at least 90% on our beat tapping task.
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Figure 1. Setup for the EEG experiment. The presentation and
recording systems were placed outside to reduce the impact
of electrical line noise that could be picked up by the EEG
amplifier.

Participants received scores from 75%–100% with an average
score of 96%. Furthermore, they needed to receive a score
of at least 80% on our stimuli familiarity task. Participants
received scores from 71%–100% with an average score 87%.
These requirements resulted in rejecting 4 participants. This
left 10 participants (3 male), aged 19–36, with normal hear-
ing and no history of brain injury. These 10 participants had
an average tapping score of 98% and an average familiarity
score of 92%. Eight participants had formal musical training
(1–10 years), and four of those participants played instruments
regularly at the time of data collection. After the experiment,
we asked participants the method they used to imagine music.
The participants were split evenly between imagining them-
selves producing the music (singing or humming) and simply
“hearing the music in [their] head.”

3.2 EEG Recording

For the EEG portion of the study, the 10 participants were
seated in an audiometric room (Eckel model CL-13) and con-
nected to a BioSemi Active-Two system recording 64+2 EEG
channels at 512 Hz as shown in Figure 1. Horizontal and
vertical EOG channels were used to record eye movements.
We also recorded the left and right mastoid channel as EEG
reference signals. Due to an oversight, the mastoid data was
not collected for the first 5 subjects. The presented audio was
routed through a Cedrus StimTracker connected to the EEG re-
ceiver, which allowed a high-precision synchronization (<0.05
ms) of the stimulus onsets with the EEG data. The experiment
was programmed and presented using PsychToolbox run in
Matlab 2014a. A computer monitor displayed the instructions
and fixation cross for the participants to focus on during the
trials to reduce eye movements. The stimuli and cue clicks
were played through speakers at a comfortable volume that was
kept constant across participants. Headphones were not used
because pilot participants reported headphones caused them
to hear their heartbeat which interfered with the imagination
portion of the experiment.

The EEG experiment was divided into 2 parts with 5 blocks
each as illustrated in Figure 2. A single block comprised of all

Table 1. Information about the tempo, meter and length of the
stimuli (without cue clicks) used in this study.
ID Name Meter Length Tempo

1 Chim Chim Cheree (lyrics) 3/4 13.3s 212 BPM
2 Take Me Out to the Ballgame (lyrics) 3/4 7.7s 189 BPM
3 Jingle Bells (lyrics) 4/4 9.7s 200 BPM
4 Mary Had a Little Lamb (lyrics) 4/4 11.6s 160 BPM

11 Chim Chim Cheree 3/4 13.5s 212 BPM
12 Take Me Out to the Ballgame 3/4 7.7s 189 BPM
13 Jingle Bells 4/4 9.0s 200 BPM
14 Mary Had a Little Lamb 4/4 12.2s 160 BPM
21 Emperor Waltz 3/4 8.3s 178 BPM
22 Hedwig’s Theme (Harry Potter) 3/4 16.0s 166 BPM
23 Imperial March (Star Wars Theme) 4/4 9.2s 104 BPM
24 Eine Kleine Nachtmusik 4/4 6.9s 140 BPM

mean 10.4s 176 BPM

12 stimuli in randomized order. Between blocks, participants
could take breaks at their own pace. We recorded EEG in 4
conditions:
1. Stimulus perception preceded by cue clicks
2. Stimulus imagination preceded by cue clicks
3. Stimulus imagination without cue clicks
4. Stimulus imagination without cue clicks, with feedback
The goal was to use the cue to align trials of the same stimulus
collected under conditions 1 and 2. Lining up the trials allows
us to directly compare the perception and imagination of music
and to identify overlapping features in the data. Conditions 3
and 4 simulate a more realistic query scenario during which
the system does not have prior information about the tempo
and meter of the imagined stimulus. These two conditions
were identical except for the trial context. While the condition
1–3 trials were recorded directly back-to-back within the first
part of the experiment, all condition 4 trials were recorded
separately in the second part, without any cue clicks or tempo
priming by prior presentation of the stimulus. After each con-
dition 4 trial, participants provided feedback by pressing one
of two buttons indicating on whether or not they felt they had
imagined the stimulus correctly. In total, 240 trials (12 stimuli
x 4 conditions x 5 blocks) were recorded per subject. The event
markers recorded in the raw EEG comprise:
• Trial labels (as a concatenation of stimulus ID and condition)

at the beginning of each trial
• Exact audio onsets for the first cue click of each trial in

conditions 1 and 2 (detected by the Stimtracker)
• Subject feedback for the condition 4 trials (separate event

IDs for positive and negative feedback)

3.3 Stimuli

Table 1 shows an overview of the stimuli used in the study.
This selection represents a tradeoff between exploration and
exploitation of the stimulus space. As music has many facets,
there are naturally many possible dimensions in which music
pieces may vary. Obviously, only a limited subspace could be
explored with any given set of stimuli. This had to be balanced
against the number of trials that could be recorded for each
stimulus (exploitation) within a given time limit of 2 hours for a
single recording session (including fitting the EEG equipment).
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Figure 2. Illustration of the design for the EEG portion of the study.

Based on the findings from related studies (c.f. Section 2),
we primarily focused on the rhythm/meter and tempo dimen-
sions. Consequently, the set of stimuli was evenly divided into
pieces with 3/4 and 4/4 meter, i.e. two very distinct rhythmic
“feels.” The tempo spanned a range between 104 and 212 beats
per minute (BPM). Furthermore, we were also interested in
whether the presence of lyrics would improve the recognizabil-
ity of the stimuli. Hence, we divided the stimulus set into 3
equally sized groups:
• 4 recordings of songs with lyrics (1–4),
• 4 recordings of the same songs without lyrics (11–14), and
• 4 instrumental pieces (21–24).
The pairs of recordings for the same song with and without
lyrics were tempo-matched by pre-selection and subsequent
fine adjustment using the time-stretching function of Audac-
ity. 3 Due to minor differences in tempo between pairs of
stimuli with and without lyrics, the tempo of the stimuli had
to be slightly modified after the first five participants.

All stimuli were considered to be well-known pieces in the
North-American cultural context. They were normalized in
volume and kept as similar in length as possible with care taken
to ensure that they all contained complete musical phrases start-
ing from the beginning of the piece. Each stimulus started
with approximately two seconds of clicks (1 or 2 bars) as an
auditory cue to the tempo and onset of the music. The clicks
began to fade out at the 1s-mark within the cue and stopped at
the onset of the music.

3.4 Data and Code Sharing

With the explicit consent of all participants and the approval of
the ethics board at the University of Western Ontario, the data
collected in this study are released as OpenMIIR dataset 4 un-
der the Open Data Commons Public Domain Dedication and
License (PDDL). 5 This comprises the anonymized answers
from the questionnaires, the behavioral scores, the subjects’
feedback for the trials in condition 4 and the raw EEG and
EOG data of all trials at the original sample rate of 512 Hz.
This amounts to approximately 700 MB of data per subject.

3 http://web.audacityteam.org/
4 https://github.com/sstober/openmiir
5 http://opendatacommons.org/licenses/pddl

Raw data are shared in the FIF format used by MNE [9], which
can easily be converted to the MAT format of Matlab.

Additionally, the Matlab code and the stimuli for running
the study are made available as well as the python code for
cleaning and processing the raw EEG data as described in Sec-
tion 4. The python code uses the libraries MNE-Python [8]
and deepthought 6 , which are both published as open-source
under the 3-clause BSD license. 7

This approach ensures accessibility and reproducibility. Re-
searchers have the possibility to just apply their methods on
the already pre-processed data or change any step in the pre-
processing pipeline according to their needs. No proprietary
software is required for working with the data. The wiki on
the dataset website can be used to share code, ideas and results
related to the dataset.

4. BASIC EEG PROCESSING

This section describes basic EEG processing techniques that
may serve as a basis for the application of more sophisticated
analysis methods. More examples are linked in the wiki on the
dataset website.

4.1 EEG Data Cleaning

EEG recordings are usually very noisy. They contain artifacts
caused by muscle activity such as eye blinking as well as pos-
sible drifts in the impedance of the individual electrodes over
the course of a recording. Furthermore, the recording equip-
ment is very sensitive and easily picks up interferences such
as electrical line noise from the surroundings. The following
common-practice pre-processing steps were applied to remove
unwanted artifacts.

The raw EEG and EOG data were processed using the
MNE-Python toolbox. The data was first visually inspected for
artifacts. For one subject (P05), we identified several episodes
of strong movement artifacts during trials. Hence, these partic-
ular data need to be treated with care when used for analysis
– possibly picking only specific trials without artifacts. The bad

6 https://github.com/sstober/deepthought
7 http://opensource.org/licenses/BSD-3-Clause
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trials might however still be used for testing the robustness of
analysis techniques.

For recordings with additional mastoid channels, the EEG
data was re-referenced by subtracting the mean mastoid sig-
nal [30]. We then removed and interpolated bad EEG channels
identified by manual visual inspection. For interpolation, the
spherical splines method described in [22] was applied. The
number of bad channels in a single recording session varied be-
tween 0 and 3. The data were then filtered with an fft-bandpass,
keeping a frequency range between 0.5 and 30 Hz. This also
removed any slow signal drift in the EEG. Afterwards, we
down-sampled to a sampling rate of 64 Hz. To remove artifacts
caused by eye blinks, we computed independent components
using extended Infomax ICA [15] and semi-automatically re-
moved components that had a high correlation with the EOG
channels. Finally, the 64 EEG channels were reconstructed
from the remaining independent components without reducing
dimensionality.

4.2 Grand Average Trial ERPs

A common approach to EEG analysis is through the use of
event-related potentials (ERPs). An ERP is an electrophysio-
logical response that occurs as a direct result of a stimulus. Raw
EEG data is full of unwanted signals. In order to extract the
signal of interest from the noise, participants are presented with
the same stimulus many times. The brain’s response to the stim-
ulus remains constant while the noise changes. The consistent
brain response becomes apparent when the signals from the
multiple stimulus presentations are averaged together and the
random noise is averaged to zero. In order to identify common
brain response patterns across subjects, grand average ERPs
are computed by averaging the ERPs of different subjects.

The size and the timing of peaks in the ERP waveform
provide information about the brain processes that occur in
response to the presented stimulus. By performing a principle
component analysis (PCA), information regarding the spatial
features of these processes can be obtained.

As proposed in [26], we computed grand average ERPs by
aggregating over all trials (excluding the cue clicks) of the same
stimulus from all subjects except P05 (due to the movement
artifacts). In their experiment, Schaefer et al. [26] used very
short stimuli allowing each stimulus to be repeated many times.
They averaged across hundreds of short (3.26s) trials, concate-
nated the obtained grand average ERPs and then applied PCA,
which resulted in clearly defined spatial components. We had
fewer repetitions of our stimuli. Therefore, to preserve as much
data as possible, we used the full length of the trials as opposed
to the first 3.26 seconds. We then concatenated the grand av-
erage ERPs and applied a PCA, which resulted in principal
components with poorly defined spatial features as shown in
Figure 3 (A and B). As an alternative, we performed a PCA on
the concatenated raw trials without first calculating an average
across trials. This approach produced clearly defined spatial
components shown in Figure 3 (C and D). Components 2 to
4 are similar to those described in [26]. Except for their (ar-
bitrary) polarity, the components are very similar across the
two conditions, which may be indicative of similar processes
being involved in both perception and imagination of music as

Figure 3. Topographic visualization of the top 4 principle
components with percentage of the explained signal variance.
Channel positions in the 64-channel EEG layout are shown
as dots. Colors are interpolated based on the channel weights.
The PCA was computed on A: the grand average ERPs of
all perception trials, B: the grand average ERPs of all cued
imagination trials, C: the concatenated perception trials, D: the
concatenated cued imagination trials.

described in [11,25].
Schaefer et al. [26] were able to use the unique time course

of the component responsible for the most variance to differen-
tiate between stimuli. Analyzing the signals corresponding to
the principle components, we have not yet been able to repro-
duce a significant stimulus classification accuracy. This could
be caused by our much smaller number of trials, which are
also substantially longer than those used by [26]. Furthermore,
the cross-correlation between the stimulus envelopes and the
component waveforms were much lower (often below 0.1) than
reported in [26].

4.3 Grand Average Beat ERPs

In the previous section, we computed ERPs based on the trial
onsets. Similarly, it is also possible to analyze beat events.
Using the dynamic beat tracker [4] provided by the librosa 8

library, we obtained beat annotations for all beats within the au-
dio stimuli. To this end, the beat tracker was initialized with the
known tempo of each stimulus. The quality of the automatic
annotations was verified through sonification.

Knowing the beat positions allows to analyze the respective
EEG segments in the perception condition. For this analysis,
the EEG data was additionally filtered with a low-pass at 8
Hz to remove alpha band activity (8–12 Hz). Figure 4 shows

8 https://github.com/bmcfee/librosa
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Figure 4. Grand average beat ERP for the perception trials (16515 beats). All times are relative to the beat onset. Left: Individual
channels and mean over time. Right: Topographic visualization for discrete time points (equally spaced at 1/30s interval).

Figure 5. Grand average beat ERP for the cued imagination
trials (16515 beats). All times are relative to the beat onset.
Note the difference in amplitude compared to Figure 4.

the grand average ERP for all beats except the cue clicks 9

in all perception trials of all subjects except P05. Here we
considered epochs, i.e., EEG segments of interest, from 200 ms
before until 300 ms after each beat marker. Before averaging
into the ERP, we applied a baseline correction of each epoch
by subtracting the signal mean computed from the 200 ms
sub-segment before the beat marker.

The ERP has a negative dip that coincides with the beat
onset time at 0 ms. Any auditory processing related to the beat
would occur much later. A possible explanation is that the dip
is caused by the anticipation of the beat. However, this requires
further investigation. There might be potential to use this effect
as the basis for an MIIR beat or tempo tracker. For comparison,
the respective grand average ERP for the cued imagination
trials is shown in Figure 5. This ERP looks very different from
the one for the perception conditions. Most notably the ampli-
tude scale is very low. This outcome was probably caused by
the imprecise time locking. In order to compute meaningful
ERPs, the precise event times (beat onsets) need to be known.
However, small tempo variations during imagination are very
likely and thus the beat onsets are most likely not exact.

9 Cue clicks were excluded because these isolated auditory events illicit
a different brain response than beats embedded into a stream of music.

5. CONCLUSIONS AND OUTLOOK

We have introduced OpenMIIR – an open EEG dataset in-
tended to enable MIR researchers to venture into the domain
of music imagery and develop novel methods without the need
for special EEG equipment. We plan to add new EEG record-
ings with further subjects to the dataset and possibly adapt
the experimental settings as we learn more about the problem.
In our first experiments using this dataset, we were able to
partly reproduce the identification of overlapping components
between music perception and imagination as reported earlier.

Will it one day be possible to just think of a song and the
music player will start its playback? If this could be achieved,
it would require the intense interdisciplinary collaboration be-
tween MIR researchers and neuroscientists. We hope that the
OpenMIIR dataset will facilitate such a collaboration and con-
tribute to new developments in this emerging field for research.
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[18] D. Müllensiefen, B. Gingras, J. Musil, and L. Stewart. The
Musicality of Non-Musicians: An Index for Assessing
Musical Sophistication in the General Population. PLoS
ONE, 9(2), 2014.

[19] S. Nozaradan, I. Peretz, M. Missal, and A. Mouraux.
Tagging the neuronal entrainment to beat and meter. The
Journal of Neuroscience, 31(28):10234–10240, 2011.

[20] S. Nozaradan, I. Peretz, and A. Mouraux. Selective
Neuronal Entrainment to the Beat and Meter Embedded
in a Musical Rhythm. The Journal of Neuroscience,
32(49):17572–17581, 2012.

[21] J. A. O’Sullivan, A. J. Power, N. Mesgarani, S. Rajaram,
J. J. Foxe, B. G. Shinn-Cunningham, M. Slaney, S. A.
Shamma, and E. C. Lalor. Attentional Selection in a Cock-
tail Party Environment Can Be Decoded from Single-Trial
EEG. Cerebral Cortex, (25):1697–1706, 2015.

[22] F. Perrin, J. Pernier, O. Bertrand, and J. F. Echallier. Spher-
ical splines for scalp potential and current density mapping.
Electroencephalography and Clinical Neurophysiology,
72(2):184–187, 1989.

[23] R. Schaefer. Measuring the mind’s ear EEG of music
imagery. PhD thesis, Radboud University Nijmegen, 2011.

[24] R. Schaefer, Y. Blokland, J. Farquhar, and P. Desain. Single
trial classification of perceived and imagined music from
EEG. In Proceedings of the 2009 Berlin BCI Workshop.
2009.

[25] R. S. Schaefer, P. Desain, and J. Farquhar. Shared process-
ing of perception and imagery of music in decomposed
EEG. NeuroImage, 70:317–326, 2013.

[26] R. S. Schaefer, J. Farquhar, Y. Blokland, M. Sadakata,
and P. Desain. Name that tune: Decoding music from the
listening brain. NeuroImage, 56(2):843–849, 2011.

[27] J. S. Snyder and E. W. Large. Gamma-band activity
reflects the metric structure of rhythmic tone sequences.
Cognitive Brain Research, 24:117–126, 2005.

[28] S. Stober, D. J. Cameron, and J. A. Grahn. Using
convolutional neural networks to recognize rhythm stimuli
from electroencephalography recordings. In Advances
in Neural Information Processing Systems 27 (NIPS’14),
pages 1449–1457, 2014.

[29] S. Stober and J. Thompson. Music imagery information
retrieval: Bringing the song on your mind back to your ears.
In 13th International Conference on Music Information Re-
trieval (ISMIR’12) - Late-Breaking & Demo Papers, 2012.

[30] M. Teplan. Fundamentals of EEG measurement.
Measurement science review, 2(2):1–11, 2002.

[31] G. Tzanetakis, A. Kapur, and M. Benning. Query-by-Beat-
Boxing: Music Retrieval For The DJ. In Proceedings of
the 5th International Conference on Music Information
Retrieval (ISMIR’04), pages 170–177, 2004.

[32] R. J. Vlek, R. S. Schaefer, C. C. A. M. Gielen, J. D. R.
Farquhar, and P. Desain. Shared mechanisms in per-
ception and imagery of auditory accents. Clinical
Neurophysiology, 122(8):1526–1532, 2011.

[33] J. Willander and S. Baraldi. Development of a new clarity
of auditory imagery scale. Behaviour Research Methods,
42(3):785–590, 2010.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 769


