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ABSTRACT

Computers are now powerful enough and data sets
large enough to enable completely data-driven studies of
Schenkerian analysis, the most well-established variety of
hierarchical music analysis. In particular, we now have
probabilistic models that can be trained via machine learn-
ing algorithms to analyze music in a hierarchical fashion
as a music theorist would. Most of these models, however,
only analyze the monophonic melodic content of the mu-
sic, as opposed to taking all of the musical voices into ac-
count. In this paper, we explore the feasibility of extending
a probabilistic model developed for analyzing monophonic
music to function with homophonic music. We present de-
tails of the new model, an algorithm for determining the
most probable analysis of the music, and a number of ex-
periments evaluating the quality of the analyses predicted
by the model. We also describe how varying the way the
model interprets rests in the input music affects the result-
ing analyses produced.

1. INTRODUCTION

Music analysis is primarily concerned with studying the
structure of music compositions, both at the small- and
large-scale levels. Hierarchical music analysis, best exem-
plified by Schenkerian analysis, illustrates the structure of
a music composition by identifying hierarchical relation-
ships among the notes of the music. These relationships
collectively group the notes into a series of hierarchical
levels that demonstrate the function of each note in the mu-
sic in relation to other notes at various levels of the hierar-
chy.

One of the complicating factors of Schenkerian analy-
sis is that there is no single established algorithm for per-
forming the analysis. Instead, textbooks present guidelines
and sample analyses from which students gradually learn
the techniques, often through trial and error. Historically,
there have been a number of research endeavors that at-
tempted to replicate the Schenkerian analysis procedure:
purely algorithmic efforts run into problems because of the
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conflicting and ambiguous nature of the Schenkerian anal-
ysis rule set [4, 6] and up until recently, machine learning
approaches often hit roadblocks due to the lack of a large
standardized corpus of Schenkerian analysis upon which
to train [5, 10, 11].

However, more recent efforts to create such a corpus
of Schenkerian analysis have led to a data-driven system
capable of learning to analyze music in a hierarchical fash-
ion [7, 9]. This system, however, is only capable of hier-
archically analyzing the monophonic main melody of the
composition, with any other voices or harmonic parts con-
tributing only auxiliary information to the algorithms. In
this work, we study the practicality of extending this mono-
phonic model of music analysis to support homophonic
textures with a soprano part and a supporting bass line. We
present evidence that there are homophonic patterns that
can be harnessed by machine learning techniques, demon-
strate the workings of a probabilistic model on homophonic
input, and evaluate the system both for accuracy and for
determining where mistakes are made.

Because Schenkerian analysis is one of the most com-
prehensive forms of music analysis available today [3], the
uses of this work extend beyond the obvious application
of studying computationally-produced analyses of music.
Algorithms for calculating music similarity or identifying
musical styles or genres could be enhanced with the prob-
abilistic model described here, as could systems for music
recommendation or new music discovery. At a more fun-
damental level, studying computational models of music
analysis can lead us towards a better understanding of mu-
sical perception and structure [1].

2. MODELING MONOPHONY AND
HOMOPHONY

Schenkerian analysis hypothesizes that music composi-
tions are structured as a series of hierarchical levels de-
fined by prolongations: situations where a note, chord, or
melodic interval remains in control of a passage of mu-
sic even though it may not be sounding constantly during
that time. Consider the five-note descending phrase in Fig-
ure 1, occurring over G major harmony. In this melody, a
music theorist would identify a prolongation over the first
three notes D–C–B: the note C prolongs the passing mo-
tion from the D to the B. A similar prolongation occurs
among the notes B–A–G. This places the notes D, B, and
G — the notes being prolonged — at a higher structural
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level than the C or the A.

!"# !! !!!
D C B A G

Figure 1. An arpeggiation of a G-major chord with passing
tones. The slurs are a Schenkerian notation used to indicate
the locations of prolongations.

However, there is another level of prolongation at work
in this melody. The interval of a fifth between the first note
D and the last note G is prolonged by the motion to and
from the B in the middle. This leads to a three-level hierar-
chy of intervals as shown in the binary tree in Figure 2(a).
An equivalent structure, illustrated in Figure 2(b), is known
as a maximal outerplanar graph or MOP: this structure is
equivalent to a binary tree of melodic intervals but repre-
sents the same information more succinctly [14]. We claim
that any hierarchical analysis can be represented as a MOP,
and therefore, illustrated as a fully-triangulated polygon.

(a) (b)D–G
D–B B–G

D–C C–B B–A A–G

D G
B

C A

Figure 2. The prolongational hierarchy of a G-major chord
with passing tones represented as (a) a tree of melodic in-
tervals, and (b) a MOP.

By combining a corpus of musical excerpts and corre-
sponding MOP analyses with a supervised machine learn-
ing algorithm, it is possible to learn a probabilistic model
over MOP structures. This model admits a O(n3) algo-
rithm for determining the most probable MOP for a new
piece of music [9].

In the original MOP model of prolongation, a single tri-
angle describes the elaboration of a parent melodic interval
by two child intervals. This model, as first conceived, can
only represent monophonic note sequences. As it would be
desirable to enable hierarchical music analysis of all the
voices within a composition, it is worth exploring exten-
sions to represent multi-voice musical textures. One pos-
sibility is using a separate MOP to represent the structure
of each voice in the music: this would allow for indepen-
dent analyses of each voice. This representation, however,
would increase the computational complexity of the al-
gorithm for determining the most probable MOP analysis
from O(n3) to O(n6) for a two-voice composition [13].

Instead, we investigate MOPs that store multiple pitches
in a single vertex. In particular, we study MOPs that store
up to two pitches per vertex, with the pitches derived from
separate soprano and bass voices. We call these new MOPs
interval MOPs, so named because the two pitches stored in
a vertex form a harmonic interval between the soprano and
bass parts. Where it is necessary to differentiate between
the two varieties of MOPs, we will call the original type of
MOP a monophonic MOP.

2.1 The Interval MOP Model

Consider the five-note descending melodic pattern from
Figure 1, now augmented with a bass line, as in Figure
3(a). The equivalent interval MOP is shown alongside, in
Figure 3(b). Clearly, the triangles within an interval MOP
have the same prolongational interpretations as in mono-
phonic MOPs. One will observe, however, that there can
be potential conflicts in the prolongational structure be-
tween different voices. For instance, consider the melodic
voices in Figure 4(a), where the prolongational slurs imply
that the MOP-like structure in Figure 4(b) is necessary to
represent the prolongations in the soprano and bass parts.
Unfortunately, the definition of a MOP prohibits any edge-
crossings of this variety: such a crossing breaks the strict
hierarchy necessary to maintain the mathematical (and as
we will show later, computational) properties inherent in a
MOP.

(a) (b) D-G G-G
B-B

C-G A-D!
!

!

!!!! "
#

$% #
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!

Figure 3. (a) A musical passage with independent soprano
and bass parts, and (b) the corresponding interval MOP.

(a) (b) D-D C-A

C-F B-G

 

! !!!" !! !! ? ?

Figure 4. (a) A musical passage with conflicting soprano
and bass prolongations and (b) the only way of represent-
ing both prolongations in a MOP-like structure, illustrating
the conflicting edges that would arise.

Though note-against-note textures are easily represented
in interval MOPs, some explanation is necessary for how
to handle more complicated rhythms. When one voice has
a change in pitch while another voice has a sustained pitch
(i.e., oblique motion), the sustained note may be duplicated
in the interval MOP. For example, consider the first and
second beats in Figure 3(a): the bass note G is held for both
of these beats and is duplicated in the first two vertices of
the interval MOP in Figure 3(b).

Rests can be explicitly represented in an interval MOP.
Suppose that the half note G in the bass part of of Figure
3(a) were a quarter note followed by a quarter rest. This
would alter the interval MOP of Figure 3(b) to have the
vertex C–G store the pair C–(rest) instead.

Every interval MOP contains two additional vertices,
representing the START and FINISH of a composition. The
START vertex is always (temporally) the first vertex in a
MOP: it does not correspond to the first note in the mu-
sic, but rather should be thought of as occurring before the
start of the music. Similarly, the FINISH vertex is always
the last vertex in a MOP and temporally occurs after the
end of the music. These extra vertices are necessary to per-
mit any pair of intervals in a MOP to represent the most
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abstract level of the musical hierarchy. Consider a MOP
not containing such extra vertices: because prolongations
are oriented temporally, with the left and right vertices of
a prolongation always higher in the structural hierarchy
than the middle vertex, the most abstract edge of the MOP
would have to be between the first harmonic interval of the
music and the last. Because the first and last harmonic in-
tervals are not always the most musically important pair
of events, including START and FINISH allow for any pair
of harmonic intervals in the music to represent the most
abstract level in the structural hierarchy [14].

In the remainder of this paper, we study the feasibility of
using interval MOPs to represent Schenkerian analyses for
two-voice homophonic compositions. We do not consider
polyphonic textures with completely independent voices
due to the likelihood of encountering conflicting prolon-
gational structures, such as in Figure 4(a), and the inability
of interval MOPs to represent such structures, as discussed
earlier. We show that there are patterns that arise in the en-
coding of music analyses in the interval MOP structure,
we illustrate algorithms for harnessing these patterns and
identifying the probabilistically most likely interval MOP
analysis for new pieces of music, and we conclude with
experiments showing how (1) accurately these algorithms
can reproduce ground truth analyses and (2) what sorts of
errors the algorithms make.

3. CONSTRUCTING INTERVAL MOPS FROM
REAL-WORLD ANALYSES

Earlier work in computational Schenkerian analysis has
verified that there are regularities in the prolongations that
humans identify during the analysis procedure. Specifically,
if we recall that each triangle in a MOP corresponds to a
three-note prolongation, then it has been shown that var-
ious types of triangle occur more frequently than others
[9]. However, in order to confirm this finding for interval
MOPs, we first require an algorithm to convert a pair of
monophonic MOPs — one representing the soprano line
and one representing the bass line — into a single inter-
val MOP. The strategy we use is to first align the notes
of the monophonic MOPs to create an initial completely-
untriangulated interval MOP consisting of corresponding
pairs of notes between the soprano and bass MOPs. A pair
of notes is created any time there is an temporal overlap
between a soprano note and a bass note, so an individual
note may appear multiple times in an interval MOP. Next,
interior edges are added from the original soprano MOP
in corresponding locations in the interval MOP; this has
the same effect as copying every prolongation from the so-
prano MOP to the interval MOP. Lastly, all edges are added
from the original bass MOP to the interval MOP that can be
added without creating conflicts (overlapping edges). We
prioritize the soprano prolongations because the soprano
voice is more easily heard in the overall music and usually
is more melodically significant.

We ran an experiment to verify the appropriateness of
using interval MOPs as a representation of a multi-voice
Schenkerian analysis. We used an updated version of the

SCHENKER41 corpus: a data set containing 41 excerpts of
common practice period music and corresponding Schenke-
rian analyses. All of the music in the corpus is for a solo
keyboard instrument or for voice with keyboard accompa-
niment, is in a major key, and does not modulate. All of the
excerpts are between two and sixteen measures in length,
but most are either four or eight measures long. 39 of the
Schenkerian analyses in the corpus are taken from text-
books and two analyses were sourced from a local expert
music analyst [7]. We translated all the musical excerpts
from monophonic MOPs to interval MOPs using the algo-
rithm described above. Because we are interested in con-
firming that there are patterns in prolongational data as rep-
resented by interval MOPs, we examined how often every
type of triangle appeared in the converted interval MOPs.

Specifically, we calculated the frequencies of all trian-
gle types in the corpus in order to test the statistical sig-
nificance given the null hypothesis that the corpus anal-
yses represented as interval MOPs resemble randomly-
constructed MOPs in their triangle frequencies. Determin-
ing the expected frequency of a triangle in a MOP under
this null hypothesis is straightforward precisely because of
the mathematical underpinnings of the MOP formulation.

Assume we have a polygon with n vertices, numbered
clockwise from 0 to n�1, and we are interested in the num-
ber of times that the triangle between vertices x, y, and z
(x < y < z) appears across all complete triangulations
of this polygon. We observe that any triangle drawn inside
a polygon necessarily divides the interior of the polygon
into four regions: the triangle itself, plus the three regions
outside the triangle but inside the polygon, as in Figure 5
(though it is possible for some of these regions to be de-
generate line segments). Any complete triangulation of the
polygon that contains 4xyz must necessarily completely
triangulate the three regions outside of the triangle, and we
simply multiply the number of ways of triangulating each
of those three regions to obtain the total number of com-
plete triangulations that contain 4xyz.

x

y

z

Cn+x-z-1

Cz-y-1

Cy-x-1

Figure 5. The number of times 4xyz appears in all pos-
sible triangulations of the octagon can be calculated from
the sizes of the shaded regions.

The number of ways of triangulating each of the three
regions is directly related to the size of each region, which
we can calculate from the values of the vertices x, y, and
z. The sizes (number of vertices in the polygons) of these
regions are y � x + 1, z � y + 1, and n + x � z + 1, re-
spectively. Precisely because edges in MOPs cannot cross,
the number of triangles that will appear in each of these
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regions is solely a function of the size of each region: the
number of ways to triangulate each region is the Catalan
number for the size of each region minus two, and there-
fore the complete calculation for the expected frequency is
Cy�x�1 · Cz�y�1 · Cn+x�z�1, where Ci = 1

i+1

�2i
i

�

.
We ran binomial tests for each type of triangle by com-

paring the expected frequencies of the triangles with the
observed frequencies in the corpus. We found that there
were 48 different types of triangles that were possible in
the corpus of interval MOPs, where a triangle type was de-
fined by categorizing the three harmonic intervals between
the endpoints as either consonant, dissonant, single (for
single notes), or not applicable (for MOP vertices contain-
ing a START or FINISH vertex). We checked for triangles
that were statistically significant at the 5% level. By us-
ing the Šidák correction, we found that only triangles that
had a p-value of less than 0.001 would be considered sig-
nificant; there were six triangles that matched this criteria.
These triangles are described in Figure 6.

4. A PROBABILISTIC INTERPRETATION OF
INTERVAL MOPS

Now that we have verified that there are statistically sig-
nificant prolongational patterns in the corpus of interval
MOPs, we may continue towards our goal of developing
an algorithm to harness the patterns in such a way as to be
able to analyze new compositions. We proceed in a manner
similar to that which was used in the original probabilistic
model of monophonic MOPs [9].

Given two monophonic sequences of notes, a soprano
line S = s1, s2, . . . , sn, and a bass line B = b1, b2, . . . , bm,
our goal is to calculate the most probable analysis A for
these notes, which means maximizing P (A | S, B). An in-
terval MOP is defined by the set of triangles T1, T2, . . . , Tk

within, and thus we define

P (A | S, B) = P (T1, T2, . . . , Tk).

This full joint probability distribution cannot be efficiently
estimated using the amount of training data available to
us, so we decompose it into a product of probabilities of
individual triangles:

P (T1, T2, . . . , Tk) ⇡ P (T1) · P (T2) · · · P (Tk).

In other words, we assume that each triangle in an interval
MOP is independent of the other triangles. An earlier ex-
periment [8] verifies that this does not appreciably alter the
probabilistic rankings of the MOP analyses.

We define the individual probability of a triangle within
an interval MOP analysis in terms of random variables rep-
resenting the three endpoints of the triangle:

P (Ti) = P (Ci | Li, Ri).

The three random variables in this distribution each repre-
sent either a harmonic interval or a single soprano or bass
note with a rest in the other voice. The endpoints are unam-
biguously named because MOPs are oriented by the tem-
poral dimension: later notes always appear to the right of
earlier notes.

Our goal is to use the SCHENKER41 data set to esti-
mate P (C | L, R), but this is impractical due to the high-
dimensional nature of the random variables involved: we
would like to use melodic, harmonic, and rhythmic fea-
tures of the triangle endpoints, and a data set of 41 analyses
does not give us enough data to do this by directly counting
triangle frequencies and normalizing them into a probabil-
ity distribution. Instead, we use random forests [2], a type
of ensemble classifier, to estimate this probability. Specif-
ically, we create a large collection of decision trees, with
each tree designed to predict a certain feature of the middle
point C, trained on a subset of the features of the left and
right endpoints L and R. The predictions of all the trees
for a given feature of C are then aggregated and normal-
ized into a probability distribution [12].

4.1 Features

We use a set of twenty-seven features to represent a trian-
gle. Specifically, we use eighteen features solely involving
the left and right endpoints (L and R) to predict nine fea-
tures for the center point (C). These features are:

• The category of the interval involving the soprano and
the bass note, listed either as Cons (Consonant) or Dis
(Dissonant) (three features, one each for L, C, and R).

• For a given note in an interval, the scale degree (1-7)
of the note (six features).

• The harmony present in the music at the time of the
interval as a Roman numeral (six features). These har-
monic labels, provided by experts, are included in the
SCHENKER41 corpus.

• The broader category of harmony present in the music
at the time of the interval, such as tonic or dominant
(six features).

• For a given note in an interval, whether the note was
a chord tone in the harmony present at the time (six
features).

In some situations, certain features are not applicable.
In the case that L or R is a START or FINISH vertex, the
features are marked with invalid values to denote their in-
eligibility. Furthermore, in situations where L, C, or R is
not an interval, but instead a single note, only half of the
attributes per category listed above are applicable.

5. EVALUATION

As mentioned earlier, one reason for preferring interval
MOPs to a more complicated representation for multi-voice
prolongational hierarchies is the mathematical elegance of
the structure, which makes it an efficient choice from which
to infer probabilistic patterns. No less important is fact that
computing the optimal triangulation of a polygon can be
done in O(n3) time by using a standard dynamic program-
ming algorithm. This is the basis of the existing PARSE-
MOP algorithms designed for monophonic MOPs; we adapt
the algorithms to work with interval MOPs.

There are three variations of PARSEMOP; each varia-
tion is given different amounts of a priori information re-
garding the most abstract level of the hierarchical analysis
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Triangle frequency (     observed,      expected) 

Figure 6. Types of triangles statistically significant at the 5% level.

being produced. Heinrich Schenker theorized that all tonal
music compositions were derived from one of a small set
of simple structures involving a short melodic progression
harmonized in a specific way. Thus, the Schenkerian anal-
ysis process of finding prolongations theoretically always
reveals one of these structures, known as the fundamental
structure or Ursatz, at the background level.

All variants of the PARSEMOP algorithm accept the mu-
sical score as input, and are told which notes of the score
constitute the soprano and bass lines. PARSEMOP-A has
no conception of the Ursatz built into the algorithm, and
therefore will not necessarily find one of the fundamen-
tal structures in the music when it runs. PARSEMOP-B, on
the other hand, in addition to the musical score, is also
informed as to which specific notes in the score should
be placed into the background fundamental structure. This
version of PARSEMOP, therefore, will always find the cor-
rect background structure. PARSEMOP-C is a compromise
between the structurally-unaware PARSEMOP-A, and the
overly-aware PARSEMOP-B: this version is informed as to
which musical pitches constitute the fundamental structure
and in what order they should appear in the output, but the
algorithm is not told the exact locations of the correspond-
ing notes in the score.

We used leave-one-out cross-validation in conjunction
with the SCHENKER41 corpus to evaluate how well the
three PARSEMOP algorithms could reproduce the ground-
truth analyses in the corpus. Specifically, for each of the
41 excerpts in the corpus, we trained our probabilistic
model on the interval MOPs derived from the other 40 ex-
cerpts, and then used each PARSEMOP algorithm to de-
rive the most probable analysis for the original piece omit-
ted. We compared the algorithmically-produced MOPs to
the ground-truth MOPs using an metric called edge accu-
racy, which is the proportion of internal edges in an inter-
val MOP that correspond to an edge in the ground-truth
interval MOP. We use this metric rather than proportion of
triangles that match between two analyses because there
are cases where two analyses can have edges in common,
indicating some similarity, yet have no triangles in com-
mon.

Although occasionally music analysts may disagree on
what the “correct” Schenkerian analysis should look like
for a piece of music, the limited amount of data allowed us
only one ground-truth analysis per musical excerpt.

Figure 7 shows the aggregate edge accuracy levels for
the three PARSEMOP algorithms. For the sake of compar-

ison, we included the average edge accuracy as would be
obtained by a baseline algorithm that analyzes music ran-
domly: this hypothetical algorithm creates triangulations
uniformly at random from the space of all possible com-
plete triangulations.

Figure 7. Edge accuracies for the three PARSEMOP algo-
rithms and the baseline randomized algorithm.

Interestingly, the accuracy levels obtained by analyzing
all possible analyses for a given piece of music do not fol-
low a uniform or normal distribution. In fact, the distri-
bution of edge accuracies as would be obtained by select-
ing a complete triangulation uniformly at random is quite
skewed, as can be seen in Figure 8. This means that even
though the PARSEMOP algorithms never break 80% accu-
racy, when compared against the baseline algorithm, they
are doing quite well. In fact, we can use the distribution
of edge accuracies from the baseline algorithm to judge
each PARSEMOP algorithm’s accuracy against the null hy-
pothesis that the PARSEMOP algorithm does no better than
random. This results in p-values of 0.1022, < 0.0001, and
0.0061 for the -A, -B, and -C varieties of PARSEMOP, re-
spectively.

Figure 8. Distribution of edge accuracies under the base-
line random algorithm.

We also analyzed where in the algorithmically-produced
MOP analyses PARSEMOP was making mistakes. Specifi-
cally, for each non-perimeter edge in a PARSEMOP analy-
sis that did not correspond to an edge in the ground MOP,
we computed the edge depth: a number between 0 and 1 in-
dicating how far down in the structural hierarchy the edge
lies, with 0 being the most abstract level of the hierarchy
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Figure 9. Probability distributions of the locations of errors in the PARSEMOP analyses.

and 1 being the surface level of the music. We produced
probability distributions illustrating the hierarchical loca-
tions where PARSEMOP is most likely to make an error;
these are shown in Figure 9. These distributions are unsur-
prising: PARSEMOP-A and -C make fewer errors at the ex-
treme levels of the hierarchy due to the surface-level music
constraining the low-level decisions at one end and fewer
high-level decisions to be made at the other. Furthermore,
PARSEMOP-B makes fewer mistakes at the most abstract
level because the Ursatz has been supplied ahead of time.
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Figure 10. Edge accuracies after three varieties of rest ad-
justment for the three PARSEMOP algorithms and the base-
line randomized algorithm.

6. ACCOUNTING FOR RESTS

Though the results from the previous section indicate that
the PARSEMOP algorithms using interval MOPs are doing
relatively well when compared against the baseline algo-
rithm, there is still plenty of room for improvement. One
area we hypothesized that could be adversely affecting ac-
curacy is the presence of rests in the soprano and bass parts.
Recall that each vertex in an interval MOP holds both a so-
prano and bass note, but only for note pairs sounding at
the same time. Notes may be paired with rests if a rest is
“sounding” at the same time as a note in the other voice.
This may be the wrong musical interpretation, however,
in situations where rests are stylistic indications for perfor-
mance (e.g., a substitute for staccato markings), rather than
indications that a melodic line contains a true pause. Thus,
we present a modification to the interval MOP construction
algorithm that within a voice, extends each note through

any intervening rests up to the start of the next note within a
voice. In essence, all rests are eliminated from the soprano
and bass parts, and notes durations are increased to fill the
gaps. There are three different versions of the rest adjust-
ment algorithm that control which voices are adjusted: just
the soprano, just the bass, or both voices adjusted.

The rest adjustment algorithm, when applied to all of
the soprano lines in the corpus, modifies the durations of
102 notes out of a total of 931. When applied to the bass
line, the algorithm elongates 316 notes out of a total of 908.

We re-ran the earlier cross-validation experiment with
each of the three versions of the rest adjustment algorithm;
the updated edge accuracies are shown in Figure 10. In-
terestingly, the only situation in which the rest adjustment
algorithm had any large affect on the edge accuracy was
for PARSEMOP-A, where it increased the edge accuracy
from roughly 40% to between 44% and 47%. Effects on
PARSEMOP-B and PARSEMOP-C were much smaller, and
in some cases caused a slight decrease in accuracy. The
effects on the p-values under the null hypothesis that the
PARSEMOP analyses resemble analyses chosen at random
were also small; these new p-values are shown in Table 1.

PARSEMOP variant: A B C
Sop only 0.0420 < 0.0001 0.0090
Bass only 0.0853 < 0.0001 0.0133
Sop & Bass 0.0601 < 0.0001 0.0110

Table 1. p-values calculated under the null hypothesis that
PARSEMOP analyses (with the rest adjustment algorithm)
resemble analyses done randomly.

7. DISCUSSION

Overall, the results from this study are encouraging. The
edge accuracies and their improvement over the random
baseline algorithm imply that interval MOPs can success-
fully model a homophonic prolongational hierarchy. In-
terval MOPs maintain all of the mathematical and com-
putational advantages of monophonic MOPs, including a
straightforward learning algorithm and a computationally-
efficient method for finding the most probable analysis for
a new piece of music.

However, it is clear that interval MOPs cannot represent
all of the prolongational situations that could arise in poly-
phonic textures, namely conflicting prolongations between
voices. We plan on studying the feasibility of using inde-
pendent MOPs for the soprano and bass; this will alleviate
the representational issue, but may require an approxima-
tion algorithm for finding the most probable MOPs for new
compositions in order to remain computationally tractable.
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