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ABSTRACT

With an increasing number of available music characteris-
tics, feature selection becomes more important for various
categorisation tasks, helping to identify relevant features
and remove irrelevant and redundant ones. Another ad-
vantage is the decrease of runtime and storage demands.
However, sometimes feature selection may lead to “over-
optimisation” when data in the optimisation set is too dif-
ferent from data in the independent validation set. In this
paper, we extend our previous work on feature selection
for music genre recognition and focus on so-called “album
effect” meaning that optimised classification models may
overemphasize relevant characteristics of particular artists
and albums rather than learning relevant properties of gen-
res. For that case we examine the performance of classifi-
cation models on two validation sets after the optimisation
with feature selection: the first set with tracks not used for
training and feature selection but randomly selected from
the same albums, and the second set with tracks selected
from other albums. As it can be expected, the classifica-
tion performance on the second set decreases. Neverthe-
less, in almost all cases the feature selection remains ben-
eficial compared to complete feature sets and a baseline
using MFCCs, if applied for an ensemble of classifiers,
proving robust generalisation performance.

1. INTRODUCTION

Among many different scenarios for automatic classifica-
tion of music data (we refer to [4] for an introduction to
content-based music information retrieval and an overview
of related tasks), the recognition of high-level music cate-
gories such as music genres and styles is one of the most
prominent and user-related applications. Probably the first
study on automatic categorisation of music was addressed
to distinguish between several classical and popular pieces
[22]. After the seminal work of Tzanetakis and Cook on
classifying musical data into a hierarchy of 25 music gen-
res and speech categories [38] many efforts were spent to
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enhance the methods, develop new features, and integrate
actual techniques from machine learning research [42]. [37]
lists several hundreds of studies related only to the recog-
nition of genres. Since 2005, audio genre classification
belongs to tasks of the annual MIREX contest [6].

The operating principle of supervised classification is
based on two stages: the training of a classification model
CT and its application C on uncategorised data:

CT :
�

X 2 RF⇥TT R ,yL 2 RTT R
� 7! M,

C :
�

X 2 RF⇥T , M� 7! yP 2 RT . (1)

Given a set of F numeric data characteristics, or fea-
tures, for TTR data instances (also referred to as classifi-
cation windows) resulting in the feature matrix X, and the
corresponding labels yL, the training stage identifies rele-
vant dependencies between features and labels and stores
them as a model M. Some approaches are based on the es-
timation of probability-based distribution of features (Naive
Bayes) or boundaries between data instances of different
categories (support vector machines); for an overview of
classification approaches see, e.g., [13, 43]. Once the clas-
sification models are saved, they can be applied to classify
T unlabelled data instances represented by the same F pre-
viously extracted features.

Music classification can be carried out using features
from different sources. For instance, the score allows a
precise estimation of harmonic, instrumental, and rhyth-
mic descriptors of music pieces, but it is not always avail-
able for popular music. Meta data, cultural features, or
tags provide another source of information, but are some-
times incomplete or erroneous. Audio features can be ex-
tracted for every digitised music piece, and many classifi-
cation approaches are limited to or focused on this kind of
features [9, 18, 19, 21, 27, 34, 36, 38, 40]. Another advan-
tage of these characteristics is that they are not dependent
on the popularity of a song, availability of the score, or In-
ternet connection for the download of metadata. Even if
audio features typically require high computing efforts for
their extraction, these costs can be reduced to a certain de-
gree if the extraction is done offline or on a server farm. In
that case only the time for the training and the application
of classification models will influence a user’s satisfaction
during the definition of new categorisation tasks. For these
reasons we have limited the scope of this study to audio
features only.
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Having a large number of available descriptors at hand,
individual features may be very important or completely
useless depending on a categorisation task. As the com-
bination of features from different sources may increase
the classification quality (e.g., as shown for audio, sym-
bolic, and cultural features in [26]), the inclusion of fea-
tures from many sources would lead to an increased num-
ber of both relevant and irrelevant features. If the number
of irrelevant features would become too high, the classifi-
cation quality may suffer because the probability increases
that some irrelevant features are identified as relevant by
chance [13, 43]. A solution is to start with a sufficiently
large initial feature set and to remove irrelevant and noisy
characteristics for a current category by means of feature
selection (FS). Other benefits of FS are that classification
models created with less features often require less storage
space, the classification is done faster, and the danger of
overfitting towards the training set may be reduced using a
proper evaluation of models and feature sets [3].

In our previous work we have applied feature selection
for the recognition of music genres and styles and mea-
sured a significant increase of classification performance
compared to complete feature sets [39]. For the final eval-
uation of models optimised with feature selection, we used
an independent validation set with tracks not used for model
training and feature selection. The motivation for an in-
dependent evaluation in music classification is discussed
in [9]. However, strictly observed, the validation set used
in our previous experiments was not completely indepen-
dent: due to the limited size of our music database, mu-
sic pieces for validation were different from training and
optimisation sets, but randomly selected from the same al-
bums. Therefore, a danger existed that optimised classifi-
cation models would have an especially high performance
on music pieces of the same artists and albums.

Such effect was observed in [30] for the recognition
of genres. Also the tags of songs belonging to the same
albums may have higher co-occurrences as inspected in
[20]. Further investigations showed interesting results on
the difference between album and artist effect for music
databases of different sizes [10] as well as varying im-
pact of artist filter with regard to music from different ge-
ographic locations around the world [15]. However, none
of these studies explicitly evaluated the sensitivity of FS to
artist/album effect using a large number of features. Such
evaluations can be promising in future, in particular be-
cause both latter papers stated differences in measured artist
effect for different feature groups, even if the overall num-
bers of integrated features were not very high.

Thus, the idea behind this study was to re-evaluate the
measured advantage of feature selection using a new “album-
independent” validation set and to estimate the album ef-
fect for different music categories. In the next section,
we outline basic concepts of feature selection and refer to
several applications. Section 3 describes the setup of the
study. In Section 4, the results and the album effect on
feature selection are discussed. We conclude with a brief
summary of the work and outline steps for future research.

2. FEATURE SELECTION

For an exhaustive introduction into feature selection meth-
ods see [12]. In general, the task of feature selection is to
find an optimal feature subset indicated by the binary vec-
tor q (qi = 1 for the i-th feature to be selected, otherwise
qi = 0), so that some relevance function, or evaluation cri-
terion m (e.g., classification error) is minimised. The func-
tions to maximise (e.g., accuracy) can be easily adapted for
minimisation. We define the task of feature selection as:

q⇤ = arg min
q

[m (yL,yP , �(x,q))] , (2)

where �(x,q) corresponds to the subset of the original
feature vector x. yL 2 [0; 1] are the labelled category re-
lationships of classification instances, and yP 2 [0; 1] are
the predicted category relationships. Note that in general
m may not necessarily depend on labels, e.g., if the corre-
lation between features is used as selection criterion, or if
labels are not available (as in unsupervised classification).

Feature selection with regard to only one evaluation cri-
terion may lead to a decrease of performance for other
ones. For example, classification models built with too
many features may have smaller classification errors for
a specific data set, but be slower and have a poor general-
isation performance on other data. Therefore, several rel-
evance functions or objectives m1, ..., mO may be consid-
ered for simultaneous optimisation:

q⇤ = arg min
q

[m1 (yL,yP , �(x,q)) , ...,

mO (yL,yP , �(x,q))].
(3)

In literature, individual features are often referred to as
relevant or redundant w.r.t. the performance of a Bayesian
classifier which predicts labels based on a probabilistic dis-
tribution of feature vectors. For a given feature set X , a
feature subset X 0 ⇢ X is called relevant, iff its removal
will decrease the performance of a Bayesian classifier:

P (yP |yL = yP , X) < P (yP |yL = yP , X \ X 0) and
P (yP |yL 6= yP , X) > P (yP |yL 6= yP , X \ X 0). (4)

A redundant feature subset X 0 can be replaced without
decrease of a Bayesian classifier’s performance by at least
one subset S, which does not contain X 0:

9S ✓ X, X 0 \ S = ; : P (yP |X) = P (yP |S). (5)

The equations (4)–(5) can be adapted to any relevance
function, describing a decrease of performance after the re-
moval of relevant features and retaining it after the removal
of redundant features.

FS is a very complex task: for F features, the number
of all possible non-empty feature subsets is 2F �1, and the
related problems were described as NP-hard [1,14]. There-
fore, metaheuristics like evolutionary algorithms (EA) [33]
which simulate the natural evolution based on principles
of recombination (keeping the positive characteristics of
solutions) and mutation (exploring the search space using
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some random procedure) are a possible remedy. EAs have
proven their ability to solve many complex optimisation
tasks, among others for data mining and classification [28].
The first application of EAs for FS was introduced in [35],
and EAs were recommended for sets with more than 100
features in [16] after the comparison of 18 FS methods.

FS has been already often applied for music classifi-
cation, for example for the recognition of musical instru-
ments (44 features) [5], moods (66 features) [34], or sev-
eral classification tasks (between 60 and 1140 features)
[25]. Evolutionary FS was integrated in music classifi-
cation for the first time in [11] and was applied also in
later studies, e.g., [8, 27, 36]. The first application of evo-
lutionary multi-objective algorithms to FS for the simul-
taneous minimisation of the number of features and mis-
classification rate was proposed in [7]. In music classifi-
cation, multi-objective evolutionary feature selection was
introduced in [40] for genre categorisation and later for the
recognition of instruments [41].

In the following, we will describe the study to measure
the impact of two-objective FS (minimisation of the clas-
sification error and the number of features) on the classifi-
cation into music genres and styles. Classification results
are compared to models built with full feature sets and a
baseline with MFCCs. Further, we will investigate the sen-
sitivity of the proposed method to the album effect.

3. EXPERIMENTAL SETUP

3.1 Categorisation Tasks

We distinguish between music genres and styles provided
by AllMusicGuide, where a track may belong to one mu-
sic genre and up to several music styles which are more
specific and are typically harder to predict.

Our main database for experiments consists of 120 al-
bums with approximately one third of commercial popu-
lar music (45 Pop/Rock albums) as well as tracks of sev-
eral other genres for a better evaluation of generalisation
performance (15 albums of each genre Classic, Electronic,
Jazz, Rap, and R&B). For the evaluation of the album ef-
fect the database was extended with 120 songs from al-
bums of other artists but the same genre and similar style
distribution. It is important to mention that we use our
own database, because many publicly available ones were
not well suited for this work. Several databases contain
only segments of songs so that it is not possible to extract
features from long frames (e.g., structural complexity, see
the next section). Others are strongly biased towards cer-
tain genres or are expensive because of a large share of
commercial music. These problems could be in principle
avoided using data sets with features only (e.g., Echo Nest
descriptors). However, a sufficiently large number of audio
features is necessary to measure the impact of feature se-
lection, and many descriptors are developed by ourselves
being not available in freely distributed feature sets.

We distinguish between training, optimisation, and two
test sets (all of them are disjunct on track level, i.e. it is
not permitted to have the same track in more than one

set). Each classification model is trained from 20 tracks,
10 of which belong to the category to predict (positive ex-
amples), and 10 do not belong to it (negative examples).
These small training sets are motivated by the real-world
situation, where a listener would like to omit high efforts
for the labelling of ground truth. On the other side, mu-
sic pieces have strong variations on different levels (instru-
mentation, vocal segments, harmony, etc.) and we build
classification instances from music intervals of 4 s with 2
s overlap, so that 20 tracks contribute to more than 2,000
classification instances. The data set for the identification
of relevant features is the optimisation set of 120 songs,
each of them selected randomly from the 120 albums. The
final evaluation of feature sets after feature selection is
done either on 120 test tracks randomly selected from the
original albums (test set TS) or 120 tracks from other artists
(test set TSAI). Thus, the overall number of tracks for each
classification experiment was equal to 260. The exact lists
of tracks are available on our web site 1 .

3.2 Features

Two large audio feature sets are used as baselines to com-
pare them with sets optimised by means of feature selec-
tion. For exact definitions and references please see [39].
The third baseline set is built with MFCCs which are often
used for music classification [18].

The first large set comprises low-level audio signal de-
scriptors. Such features can be roughly grouped into tim-
bre, rhythmic, and pitch characteristics [38]. We extend
this categorisation to ‘timbre and energy’, ‘chroma and
harmony’, ‘temporal and correlation characteristics’, and
‘rhythm’. Table 1 provides examples of features for differ-
ent extraction domains and lists numbers of corresponding
feature dimensions. Because we estimate the mean and the
standard deviation of each feature vector in a classification
window, the original number of 318 dimensions leads to
636 features used for the training of categorisation models.

The second set contains semantic audio features which
are closely related to music theory and are listed in Ta-
ble 2. They can be assigned to four main groups accord-
ing to their properties and the extraction procedure. The
first group consists of chroma-related, harmony, and chord
characteristics. The second one comprises temporal, rhyth-
mic, and structural characteristics. The third group (in-
struments, moods, and various high-level characteristics)
relates to features estimated with supervised classification
models previously optimised as described in [39]. The last
group was extracted using the concept of structural com-
plexity [24]. Here, selected interpretable musical charac-
teristics (instrumentation, harmonic properties, etc.) are
represented by a vector of base features, and estimated
statistics describe the temporal progress of these vectors
over large texture frames.

1 https://ls11-www.cs.uni-dortmund.de/rudolph/mi#music test database
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Table 1. Low-level audio features
Groups and examples of features No.
TIMBRE AND ENERGY - TIME DOMAIN
Linear prediction coefficients, low energy,
peak characteristics

17

TIMBRE AND ENERGY - SPECTRAL DOMAIN
Various spectral characteristics (bandwidth, centroid,
etc.), tristimulus, sub-band energy ratio

29

TIMBRE AND ENERGY - CEPSTRAL DOMAIN
MFCCs, delta MFCCs,
CMRARE modulation features [21]

101

TIMBRE AND ENERGY - PHASE DOMAIN
Angles and distances [27] 2
TIMBRE AND ENERGY - ERB AND BARK DOMAINS
Bark scale magnitudes, charact. of ERB bands [17] 53
CHROMA AND HARMONY
Charact. of spectral peaks, fundamental frequency,
chroma, chroma DCT-reduced log pitch (CRP) [29]

101

TEMPORAL AND CORRELATION CHARACTERISTICS
Characteristics of periodicity peaks 3
RHYTHM
Characteristics of fluctuation patterns [17] 12

Table 2. Semantic audio features
Groups and examples of features No.
CHROMA AND HARMONY
Consonance [23], tonal centroid [17],
strengths of major and minor keys [17]

129

CHORD STATISTICS
Number of different chords and chord changes in 10
s, shares of the most frequent chords [39]

5

TEMPO, RHYTHM AND STRUCTURE
Duration of music piece, estimated number of beat,
tatum, and onset events per minute, tempo, segmen-
tation characteristics after [31]

9

INSTRUMENTS
Identification of guitar, piano, wind, and strings [41] 32
MOODS
Aggressive, confident, energetic, etc. [39] 64
VARIOUS HIGH-LEVEL CHARACTERISTICS
Singing characteristics, effects distortion,
characteristics of melodic range [32]

128

STRUCTURAL COMPLEXITY
Chord, harmony, instruments, tempo and rhythm
complexity [39]

70

3.3 Algorithms and Evaluation

The exhaustive tuning of classification methods was be-
yond the scope of this study - however it was important
to test the impact of feature selection and the album effect
using classifiers with different operating methods. After
preliminary studies, we selected four algorithms. Deci-
sion tree C4.5 provides interpretable models and already
includes internal feature pruning, but is rather slow. Ran-
dom forest (RF) creates a large number of unpruned trees
based on a randomly drawn subset of features. It is often
superior to C4.5 w.r.t. classification quality and is faster,
but classification models are not the same if trained an-
other time and are not interpretable. Naive Bayes (NB) is
very fast and leads to comprehensible models, especially if
they are created from interpretable semantic features. On
the other side, it is a probabilistic method which treats fea-
ture distributions independently from each other, and clas-

sification performance is usually lower. Finally, support
vector machine (SVM) is in many cases the state-of-the
art method, which achieves the best classification results.
However, for the best performance it requires parameter
tuning, is slower than other methods, and models have a
lower interpretability.

The following two criteria are minimised during feature
selection. Because of imbalanced distribution of songs in
the optimisation and test sets, the balanced relative error
mBRE measures classification quality:

mBRE =
1

2

✓

FN

TP + FN
+

FP

TN + FP

◆

, (6)

where TP is a number of true positives (tracks belong-
ing to a category and predicted as belonging to it), TN is
a number of true negatives (tracks not belonging to a cate-
gory and predicted as not belonging to it), FP is a number
of false positives (tracks not belonging to a category and
predicted as belonging to it), and FN is a number of false
negatives (tracks belonging to a category and predicted as
not belonging to it).

The predicted relationships of tracks to categories are
estimated by major voting across all corresponding classi-
fication windows:

yP (x1, ...,xTS
; j) =

&

PTS

i=1 yP (xi)

TS
� 0.5

'

, (7)

where TS is the number of classification instances in the
song j and xi describes the feature vector of instance i.

The second optimisation criterion is the selected feature
rate mSFR:

mSFR =
|�(x,q)|

|X| , (8)

where |�(x,q)| is the number of selected features and
|X| the number of all features. mSFR is a rough estima-
tor for runtime and storage demands (classification using
a model with more features is typically slower), but may
also correlate with the generalisation performance of clas-
sification models: models built with less features have a
lower tendency to be overfitted towards the training set if
the optimisation of feature selection is done using an inde-
pendent song set.

The feature selection method itself is based on a multi-
objective evolutionary algorithm SMS-EMOA [2]. The
output is the set of non-comparable feature subsets: the
first with the largest mSFR and smallest mBRE , and the
last with the smallest mSFR and largest mBRE

2 . Because
we focus here on the measurement of album effect having
regard to classification error, the discussion of results in the
next section is based on subsets with the smallest mBRE .
These subsets contain smallest errors achieved for as small
feature subsets as possible.

2 As we minimise both m
SFR

and m
BRE

, an example of two non-
comparable (also referred to as non-dominated) subsets is, e.g., a subset
with m

SFR

= 0.05, m
BRE

= 0.20 and another one with m
SFR

=

0.10, m
BRE

= 0.15. The first subset is built with less features and the
second one has a smaller classification error.
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Table 3. Errors of optimised feature sets and comparison to baselines (smaller values are better). For details see the text.
Categorisation tasks Data set LOW-LEVEL FEATURES SEMANTIC FEATURES

em
BRE

�
LL

�
MFCC

em
BRE

�
SEM

�
MFCC

RECOGNITION OF GENRES
Classic TS 0.0127 41.91 33.07 0.0137 37.43 35.68

TSAI 0.0175 39.95 32.47 0.0270 57.20 50.09
Electronic TS 0.0928 66.19 48.91 0.1191 59.25 62.78

TSAI 0.1040 82.47 56.37 0.1275 56.52 69.11
Jazz TS 0.0497 66.89 47.56 0.0605 69.86 57.89

TSAI 0.1192 107.00 89.42 0.1113 49.47 83.50
Pop TS 0.1291 74.71 68.34 0.1270 43.94 67.23

TSAI 0.1599 41.20 75.53 0.1353 27.91 63.91
Rap TS 0.0508 70.26 56.31 0.0650 76.29 72.06

TSAI 0.0475 72.74 88.29 0.0579 56.54 107.62
R&B TS 0.1570 89.82 74.09 0.1484 76.85 69.93

TSAI 0.1337 84.73 56.29 0.1486 73.67 62.57
RECOGNITION OF STYLES
AdultContemporary TS 0.1192 67.31 55.94 0.1344 57.02 63.07

TSAI 0.1906 64.83 81.45 0.1860 64.27 79.49
AlbumRock TS 0.0900 65.41 46.68 0.1066 51.15 55.29

TSAI 0.1225 61.47 49.04 0.1617 50.73 64.73
AlternativePopRock TS 0.1066 70.92 49.67 0.1092 54.19 50.89

TSAI 0.1746 71.47 81.40 0.1818 64.10 84.76
ClubDance TS 0.1551 82.41 74.35 0.1389 55.02 66.59

TSAI 0.1398 70.25 54.69 0.1465 64.65 57.32
HeavyMetal TS 0.0839 59.25 92.20 0.0778 56.25 85.49

TSAI 0.1192 59.22 85.26 0.0991 55.06 70.89
ProgRock TS 0.1072 64.00 47.43 0.0973 53.52 43.04

TSAI 0.1780 57.68 65.56 0.2039 59.85 75.10
SoftRock TS 0.1104 67.28 45.19 0.1197 53.13 49.00

TSAI 0.1752 69.91 65.28 0.1498 62.39 55.81
Urban TS 0.1038 76.95 74.67 0.0837 57.06 60.22

TSAI 0.1541 59.09 58.81 0.1553 51.87 59.27

4. DISCUSSION OF RESULTS

4.1 Table with Results

Table 3 provides the summary of results and is organised
as follows. The first column lists categorisation tasks. The
second column indicates whether the album-dependent test
set TS or album-independent test set TSAI was used for
the final validation. Columns 3-5 describe results with
low-level features. In the column 3 the “mean best” er-
ror emBRE is listed. The mean is here calculated across
10 statistical repetitions: because evolutionary FS is based
on random decisions, the results are not the same for each
run. So the value of emBRE = 0.0127 corresponds to
the expected best mBRE after the application of FS. The
best means that we take into account feature subsets with
the smallest mBRE and the largest mSFR across compro-
mise solutions identified with a multi-objective selection
approach (see the previous section).

Entries in columns 4 and 5 measure the relative reduc-
tion of emBRE compared to complete set of low-level fea-
tures, �LL, and set of MFCCs, �MFCC . Smaller values
are better. For example, in the first line emBRE = 0.0127
corresponds to 41.91% of the error of the model which uses
all low-level descriptors (mBRE = 0.0303 3 ). Similarly,

3 Please note that we use an ensemble of four classifiers and select
the best one for each task. Using a complete feature set for the category
Classic leads to m

BRE

= 0.0303 if trained with random forest; for ex-
ample, using naive Bayes leads to m

BRE

= 0.0695, so that the error of

emBRE is reduced to 33.07% of the error of the model built
with MFCCs only.

Columns 6-8 contain values of emBRE for models built
with semantic features and the reduction of error compared
to full set of semantic features �SEM and �MFCC .

4.2 Album Effect and Two Cases where Feature
Selection Fails

As it could be expected, classification errors increase for
most of categories if we switch from the test set TS to
TSAI. The advantage of optimised feature subsets com-
pared to baselines (columns 4,5,7,8) is often decreased,
but not always. For instance, despite of a larger error for
AdultContemporary using TSAI (0.1906 against 0.1192),
the advantage of optimised low-level feature subsets com-
pared to the model with all low-level features is slightly
increased (64.83 against 67.31, smaller value is better), but
not if compared to the model built with MFCCs (81.45
against 55.94).

A more important observation is that in all but two cases
optimised models are better than baselines (only two en-
tries in columns 4,5,7,8 are above 100%) which means
that feature subsets after FS lead to a robust reduction of
error even if finally validated on the test set from inde-

the optimised combination “feature subset and classifier” is even stronger
reduced if compared to a simple application of naive Bayes together with
all low-level features.
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pendent artists and albums. The first exception is Jazz
(value of 107.00 in the 4th column): here the full �LL set
(mBRE = 0.1114) leads to a slightly smaller error than the
optimised set (mBRE = 0.1192). This can be explained by
the choice of music: in the artist-independent validation
song set the category Jazz was represented rather by Eu-
ropean Jazz, where the training and optimisation set con-
tained rather American Jazz 4 . Another exception relates
to the error of optimised subsets with semantic features
compared to MFCCs for Rap (value of 107.62, column 8).
This matches well the theoretical reason that MFCCs are
particularly successful for the recognition of speech. The
smallest error for Rap is achieved using the optimised set
with low-level features (and MFCCs belong to this set):
mBRE = 0.0475.

4.3 A Further Danger for Feature Selection (or
Advantage of Ensembles)

In all but two explained situations FS led to smaller errors.
However, this statement holds for classification with four
methods. Using an ensemble of classifiers makes often
sense, and in our previous work we have already observed
that there is no “winner” for all categories [39]. To exam-
ine whether the feature selection was successful for indi-
vidual combinations of a classifier and a task we compared
the results to baselines by means of Wilcoxon test. If no
statistical advantage against a baseline has been observed
for at least one of four classifiers, the corresponding entry
in Table 3 is marked with an italic font. If the baseline was
even better for at least one classifier, the entry is marked
with a bold font. Particularly some models with MFCCs
seem to provide a better generalisation performance rather
than optimised feature subsets. This happens only if test
set TSAI is used for the validation. In other words, opti-
mising feature selection with an individual classifier may
lead to overfitting–but in our study this case was avoided
using an ensemble of several classifiers.

4.4 A Remark on Resources

Beside possible problems for feature selection discussed
above, it should not be forgotten that FS provides a strong
advantage against large sets of features because it helps
to reduce storage and runtime demands. The advantage
of smaller feature sets is that the classification is typically
faster 5 . When the time expensive feature selection may be
run once for each new music category, the automatic clas-
sification based on the optimised feature set can be applied
on new songs over and over again. It is hard to precisely
measure the reduction of computing demands, especially
for experiments on different machines. As a rough mea-

4 We came to this explanation after the studies were accomplished.
The uniform sampling of European and American Jazz tracks for optimi-
sation and validation sets could be a better decision, but in that case it
would not be possible to exactly compare the results to [39].

5 As we could see, a set of MFCCs is also small and is sometimes
successful, so the reduction of demands on resources is not very strong
here. However, all but one values in columns 5 and 8 are below 100%, and
it is probably not the best idea to build classification models with MFCCs
only for all possible classification tasks (styles, tags, moods, etc.)

sure we may estimate the decrease of runtime of the last
FS iteration compared to the first iteration (in each itera-
tion, a classification model is trained and validated). As an
example, the mean of runtime of the last iteration divided
by runtime of the first iteration for the category Classic
is 15.08 for the low-level feature set and 12.57 for the se-
mantic set (classification with C4.5), 34.55 and 31.72 (RF),
20.88 and 8.56 (NB), and 12.68 and 10.54 (SVM).

5. CONCLUSIONS AND OUTLOOK

In this work we have examined whether the success of fea-
ture selection in music classification suffers from an “al-
bum effect”, so that the properties of albums and artists
rather than of target categories like genres and styles are
learned. As it could be expected, the danger of such over-
fitting exists, and the performance is typically reduced if
the validation set is built with tracks of other artists. How-
ever, if there are enough available features at hand, and fea-
ture selection is applied using an ensemble of classifiers, in
all but two cases the optimised subsets helped to build clas-
sification models not only with less features, but also with
smaller classification errors compared to baselines. These
two cases could be theoretically explained and do not de-
tract the general sense of feature selection - but they un-
derline the consequence that any significant achievements
in classification domain raise and fall with the design of
data sets. A very simple case observed in this study was
that the classification models optimised to recognise par-
ticularly American Jazz were not best suited to recognise
European Jazz. In future we plan to continue our work
investigating advantages and dangers of feature selection
for music classification. In particular, the application on
publicly available data sets is important for a reliable com-
parison of results. However, this is a hard task which re-
quires compromises, e.g., limiting the set of features only
to available Echo Nest descriptors. Further optimisation of
algorithm parameters (e.g., larger ensembles, various ker-
nels for SVMs) is another promising direction.
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