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ABSTRACT

In this paper, we evaluate a set of methods for combining
features for cover song identification. We first create mul-
tiple classifiers based on global tempo, duration, loudness,
beats and chroma average features, training a random for-
est for each feature. Subsequently, we evaluate standard
combination rules for merging these single classifiers into
a composite classifier based on global features. We further
obtain two higher level classifiers based on chroma fea-
tures: one based on comparing histograms of quantized
chroma features, and a second one based on computing
cross-correlations between sequences of chroma features,
to account for temporal information. For combining the
latter chroma-based classifiers with the composite classi-
fier based on global features, we use standard rank aggre-
gation methods adapted from the information retrieval lit-
erature. We evaluate performance with the Second Hand
Song dataset, where we quantify performance using multi-
ple statistics. We observe that each combination rule out-
performs single methods in terms of the total number of
identified queries. Experiments with rank aggregation me-
thods show an increase of up to 23.5 % of the number of
identified queries, compared to single classifiers.

1. INTRODUCTION

Recent years have seen an increased interest in cover song
recognition problems in the Music Information Retrieval
(MIR) community. Such systems deal with the problem
of retrieving different versions of a known audio query,
where a version can be described as a new performance
or recording of a previously recorded track [26]. Cover
song recognition is a challenging task because the different
renditions of a song may differ from the original work in
terms of tempo, pitch, instrumentation or singing style. It
is therefore an ongoing challenge to design features which
are robust to variation in these musical characteristics.

Several approaches have been studied for cover song
recognition problems. In existing work, retrieving cov-
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ers is usually done by performing pairwise comparisons
between audio queries and a reference database [10, 13,
14, 26], or by using index-based methods [2, 3, 16, 18]. A
comprehensive review of existing methods is given in [24].
All these methods are based on single chroma representa-
tion, and do not consider using multiple features. Only
few authors have considered the combination of features
and distance measures. In the work of Foster et al. [11],
multiple chroma-based distances are computed, then com-
bined after ranking distances. Similarly, in an investigation
performed by Ravuri et al. [22], the authors compute mul-
tiple chroma-based input features at multiple time scales,
and combine them using a linear model. Finally, authors
in Osmalskyj et al. [20] compare a range of methods for
combining multiple spectral features for cover song iden-
tification.

In this paper, we make a distinction between cover song
retrieval and cover song identification. In the first case,
given an audio query, the goal is to retrieve as many covers
as possible in a database. In the second case, the goal is
to extract some information about the query, similarly to
what fingerprinting systems do [27]. In that case, it is suf-
ficient to retrieve only one version of the requested song as
a human listener will act as the final expert by confirming
a match in the returned set of results. Cover song identifi-
cation covers a different set of applications, such as identi-
fication of live music, query by example, or retrieving any
information related to an unknown version.

To take into account multiple sources of musical infor-
mation, we propose to process an audio query using several
methods based on different features. First, supervised ma-
chine learning is used to build classifiers that return prob-
ability estimates of similarity based on global features, in-
cluding the tempo, the duration, the loudness, the num-
ber of beats and the average chroma features. We then
merge these classifiers using standard probabilistic fusion
rules to build a composite classifier. Then, we combine
the latter with two methods based on chroma features. The
first one is based on comparing histograms of quantized
chroma features, to take into account the harmonic content
of the songs. The second one is based on the cross-correla-
tion of chroma sequences and further accounts for tempo-
ral information. As the scores returned by all these meth-
ods have different scales, we propose to combine them at
the rank level using standard rank aggregation techniques
inspired by the information retrieval literature, especially
techniques used in web search engines [9, 21, 23]. We
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demonstrate that combining global features with chroma
based features for cover identification improves the results
over methods based on single features.

The remaining of this paper is organized as follows.
Section 2 gives an overview of our approach and describes
our methodology. Section 3 details the combination rules
evaluated throughout this research. In Section 4, we de-
scribe our experimental setup as well as the evaluation pro-
cedure. Section 5 presents the realized experiments and the
results obtained. Finally, Section 6 concludes the paper.

2. APPROACH OVERVIEW

Cover songs are different versions of underlying original
works. The notion of cover therefore closely relates to mu-
sical similarity between two songs. A cover song identifi-
cation system may therefore be conceived as measuring the
similarity between two songs to classify them into a similar
or a dissimilar class. We consider a binary notion of cover
song identity. Our approach is based on several pairwise
comparison functions called rejectors, as used in [19]. A
rejector is a function R that takes two audio tracks as an in-
put and returns a score ranking the similarity between two
tracks. In a cover song identification scenario, one track is
the query while the other one is any track of the database.
Rejectors aim to filter out result candidates, while retain-
ing a subset of the database containing at least one match
with respect to the query.

We design several rejectors based on different features
and combine them such that the global output takes the
information brought by each rejector into account. We
make the assumption that the outputs of rejectors based
on different features are independent, and therefore con-
tribute to improving the performance of the system. We
first design multiple probabilistic rejectors based on sev-
eral global features using random forests [5]. We next de-
sign a rejector based on the quantization of chroma fea-
tures. Finally, to take into account temporal information,
we implement a rejector that computes cross-correlations
between sequences of beat synchronous chroma features.
This technique was first proposed by Ellis et al. [10] and is
used as a baseline in our research.

2.1 Probabilistic Rejectors

Previous work, performed by Osmalskyj et al. [19,20], de-
monstrates that features such as tempo, duration, or spec-
tral features perform better than random. However, as such
features are global and low-dimensional, they do not bring
much information when taken individually. Based on that
observation, we select several of these global features and
combine them in order to build a composite classifier that
takes advantage of each single feature. For each feature,
we build a probabilistic rejector using supervised machine
learning. To determine the similarity of candidates with
respect to a query, we perform pairwise comparisons using
the rejectors. Features are extracted from the tracks and
used as an input for the learned model to predict a probabil-
ity. The probabilistic rejectors are furthermore combined

using several rules to build a composite rejector.

2.2 Codebook Rejector

To take into account the harmonic content of the songs, we
build a rejector based on the quantization of chroma fea-
tures. Similar features have been used in [19] and [11].
For each track, chroma features are mapped to specific
codewords. A track is then represented by a histogram
of the frequency of each codeword, known as a bag-of-
features representation [12]. Codewords are determined
using an unsupervised K-Means clustering of 200,000 beat
synchronous and unit-normalized chroma vectors. We eval-
uated the number of codewords in the range 25 to 100. Best
performance was achieved with a clustering of 100 code-
words. To account for key transpositions, we make use
of the Optimal Transposition Index (OTI) [25] as it is a
straightforward approach that has been used in many other
investigations [1, 11, 19, 24].

The similarity between two bag-of-features representa-
tions is computed as the cosine similarity between both
histograms. We evaluated the cosine similarity against Eu-
clidean and Bhattacharyya distances, as well as a super-
vised learning based distance. However, best results were
achieved with the cosine similarity. Furthermore, the co-
sine similarity is fast to compute, especially when the input
vectors are normalized to unit norm, as it can be computed
as a simple dot product.

2.3 Cross Correlation Rejector

To take into account temporal information, we implement a
baseline algorithm, initially proposed by Ellis et al. in [10].
In that method, songs are represented by beat-synchronous
chroma matrices. Beat-tracking is used to align chromas
on detected beats. Comparing songs is then performed by
cross-correlating entire chroma-by-beat matrices. Sharp
peaks in the resulting signal indicate a good alignment be-
tween the tracks. The input chroma matrices are high-pass
filtered along time. We re-implemented existing work us-
ing a high-pass filter with the alpha coefficient set to 0.99.
To compute the cross-correlation, we used a 2-dimensional
FFT. This, on one hand, allows to find the optimal lag in
the time dimension, and on the other hand, to find the best
transposition shift along the chroma pitches. To emphasize
sharp local maxima, the resulting cross-correlation signal
is high-pass filtered. The final distance between two songs
is taken as the reciprocal of the peak value of the cross-
correlated signal.

3. COMBINING REJECTORS

The core of our method lies in the combination of rejectors.
We first build probabilistic rejectors based on global fea-
tures and combine them to produce a composite rejector.
We evaluate several probabilistic fusion rules. Then, we
combine that composite rejector with two other rejectors
based on chroma features, using rank aggregation meth-
ods. This section details both kinds of combinations.
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3.1 Score-based Combination

As stated in Section 2.1, previous work shows that rejec-
tors based on global features such as the tempo or the du-
ration of the songs do not produce satisfying results, when
taken individually. It makes therefore sense to investigate
their combination so that more information is taken into ac-
count when comparing two songs. As the global rejectors
estimate probabilities of cover identities, we evaluate sev-
eral combination rules to take advantage of each feature.
Multiple rules have been proposed as a mean of combining
probability estimates for classification [7, 8, 15]. We select
in particular the product, the sum and the median rules [15]
and evaluate the combination of our probabilistic rejectors
with them.

3.1.1 Product Rule

The probabilistic product decision rule combines the a pos-
teriori probabilities generated by the individual rejectors
by a product rule. For N rejectors, the rule is given by

p =
1

Cs
N�1

QN
j=1 Rj,s

1
Cs

N�1

QN
j=1 Rj,s + 1

Cd
N�1

QN
j=1 Rj,d

(1)

where Cs is the a priori probability of the similar class,
Cd is the a priori probability of the dissimilar class, and
Rj,s (respectively Rj,d) is the probability that the rejector
Rj considers the input tracks similar (respectively dissim-
ilar). According to [15], it is a severe rule as it is sufficient
for one rejector to inhibit a particular interpretation by out-
putting a close to zero probability for it.

3.1.2 Sum Rule

The sum probabilistic rule computes the final probability
by computing the sum of each probability and averaging it
by the number of rejectors. It is expressed as

p =
1

N

N
X

i=1

Rj (2)

where N is the number of rejectors and Rj is the probabil-
ity returned by rejector j. For a set of classifiers that show
independent noise behavior (e.g. based on different sets of
features), the errors in the probability estimates are aver-
aged by the summation [7]. In particular, the sum rule can
be useful in reducing the noise for large sets of classifiers.

3.1.3 Median Rule

The median probabilistic rule is computed by taking the
median of the individual probabilities. It is well estab-
lished that the median is a robust estimate of the mean.
The probabilistic sum in Equation 2 computes the average
of the a posteriori probabilities. Therefore, if one rejector
outputs an outlier probability, it will affect the final prob-
ability and it could lead to an incorrect decision. In that
case, it might be more appropriate to use the median rule
rather than the sum rule [15].

3.2 Rank Aggregation

While the composite global rejectors built by probabilis-
tic fusion rules output probability estimates, two remain-
ing rejectors, based on chroma features, return scores on
different scales. Consequently, the rules described in Sec-
tion 3.1 do not apply for fusing all rejectors together. As
each rejector returns a list of ordered tracks, we propose
to fuse all rejectors based on rank aggregation techniques,
adapted from the information retrieval literature. Rank ag-
gregation methods have been particularly studied in the
web literature [9, 21, 23]. Compared to score-based com-
bination, rank-aggregation is more suited as it is naturally
calibrated and scale insensitive [21]. Indeed, using the re-
turned scores requires to rescale the score values to the
same range (e.g. between 0 and 1) so that different scales
do not influence the aggregation results. Another advan-
tage of rank aggregation is that the methods are usually
computationally cheap as they usually consist in arithmetic
operations on integer ranks. Furthermore, they require none
or few parameters to set up.

In the case of cover song identification, each rejector
compares queries to the entire search database and returns
a full permutation of the database. Rank aggregation meth-
ods look at the position of each track in each list, and com-
pute an aggregated rank to be associated to each track in
the final list. A new list of results is then built by set-
ting each track at the new rank position.We evaluated three
rank aggregation rules: minimum rank, mean rank, median
rank. For each track, we retrieve its rank in each input list,
which allows us to aggregate ranks by respectively com-
puting the minimum, the mean and the median of the ranks
for each track. The final aggregated list is then sorted ac-
cording to the new rank. Details of the experiments and
the results are given in Section 5.

4. EXPERIMENTAL SETUP

4.1 Evaluation Database

For evaluation, we use the Second Hand Song dataset 1

(SHS), which is a subset of the Million Song Dataset [4]
(MSD). The SHS is organized into 5,854 cliques, which
correspond to groups of cover songs of original works.
It contains on average 3.097 versions for 5,854 original
songs. The SHS does not provide audio files, but con-
tains pre-computed features such as the tempo, the dura-
tion, the beats, the loudness and the chroma features for
18,196 tracks, which makes it suitable for our research.
Furthermore, it has been used in several research papers [3,
13,14,18], which allows us to compare our results to other
methods.

The SHS proposes a pre-defined learning set (LS) and
test set (TS), respectively containing 70% (12,960 tracks)
and 30% (5,236 tracks) of the samples. However, to evalu-
ate our method with variable LS and TS sizes, we merged
both provided sets into one large set of 18,196 songs so that
we can split it to different LS and TS sizes. Typically, since

1 http://labrosa.ee.columbia.edu/millionsong/secondhand

464 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Cliques sizes
0 10 20 30 40 50

N
u

m
b

e
r 

o
f 

o
cc

u
re

n
ce

s

1

10

100

1000

Figure 1: Distribution of the size of the cliques in the SHS
dataset. Most of the cliques have a constant size of 2 or 3.
However, some cliques contain more elements. The evalu-
ation is therefore specific to that dataset as songs contain-
ing more versions will be more likely to be identified.

supervised learning algorithms such as the random forests
require a decent amount of training samples, we set the LS
to 70% and the TS to 30% of the SHS. However, to inves-
tigate how the system behaves on a larger scale, we also
experimented with a larger TS containing 10,870 tracks.
As the SHS provides a list of known duplicate tracks, we
removed them from the dataset. Note that due to the re-
moval of the duplicates, the number of cliques is reduced
to 5,828, losing 26 cliques in the process.

It should be noted that the cliques in the SHS do not
have a constant size, as can be seen in Figure 1. Although
most of the cliques contain two elements, some cliques
contain a lot more cover versions. Such songs containing
many cover versions will be more likely to be identified in
that evaluation set. The interpretation of the evaluated met-
rics remains therefore limited to the SHS dataset, as they
characterize not only the identification algorithm, but also
the dataset used to assess them.

4.2 Rejectors

Each rejector described in Section 2 makes use of the fea-
tures pre-computed in the SHS. We specifically make use
of the tempo, the duration, the loudness, the beats as well
as the chroma features. The chroma features provided in
the SHS are aligned on onsets rather than on the beats.
As our chroma rejectors make use of beat-synchronous
chroma features, we aligned the provided chromas on the
provided beats, therefore approaching the beat-aligned rep-
resentation proposed in Ellis et al. [10]. Note that in the
work of Khadkevich et al. [14], the authors computed their
own chroma features and compared them to the ones pro-
vided in the SHS. They report an improvement of 9.87% in
terms of mean average precision against the chromas pro-
vided in the SHS with their chroma extraction algorithm.
We therefore expect our method to perform better using a
different chroma implementation (compared to the results
presented in Section 5).

To account for differences in key for our probabilistic
rejector based on average chroma features, we compute the

OTI [25] between average chromas and shift one chroma
accordingly, similarly to what is done in Section 2.2 with
the codebook rejector.

For the random forest algorithm, we use both a LS con-
taining 70% of the cliques (selected at random) of the SHS,
and a LS containing 40% of the cliques to study how the
system behaves on a larger scale. A model is learned for
each feature by processing the samples of the learning set.
Note that to avoid overfitting during the learning phase,
the depth of the trees is limited and the optimal depth is
found by maximizing the area under the Receiver Oper-
ating Characteristic (ROC). The models are learned with
100 trees and with a maximal depth of 11.

4.3 Evaluation Algorithm and Metrics

For evaluation, each track of the TS is taken as a query
and compared to the remaining tracks of the TS using our
rejectors. As the results are provided for each query as a
list of tracks ordered by descending order of similarity, we
compute scores such as the Mean Rank (MR) of the first
identified cover, the Mean Reciprocal Rank (MRR) and
the Mean Average Precision (MAP) [17]. The MR cor-
responds to the mean position of the first identified query
(lower is better). The MRR is computed as the average
of the reciprocal of the rank of the first identified query
(higher is better). The MAP for a set of queries corre-
sponds to the mean of the average precision scores for each
query (higher is better). Note that since we are interested in
cover song identification rather than retrieval, we are only
interested in retrieving at least one match for each query.
Therefore, MR and MRR are more suited than the MAP as
the latter takes into account the position of all matches in
the list of results and is therefore only given as indicator.
We also report the results in terms of the number of queries
identified in top-k position, with k set to 10, 100 and 1000.
This metric is also used in the MIREX evaluation [6].

5. RESULTS

5.1 Combining global rejectors

To investigate the behavior of probabilistic combination
rules, as presented in Section 3.1, we combined our proba-
bilistic rejectors based on global features using the product
rule, the sum rule and the median rule. We first analyzed
how each single rejector behaves on an evaluation database
containing 5,464 tracks, compared to random classifica-
tion. For the latter case, we simply built a rejector that
outputs a probability sampled at random from a uniform
distribution. Figure 2 shows curves corresponding to each
rejector. Examination of the curves of the single rejectors
shows that the rejector based on average chroma features
performs better than the others (+92.5 % for top-10 and
+18.5 % for top-100 compared to tempo). The tempo,
beats and duration rejectors have similar curve shapes and
perform similarly when taken individually. The composite
median rule (in dark bold), obtained by fusing all single re-
jectors using the rule described in Section 3.1.3, performs
better than the individual rejectors. In terms of the number
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Figure 2: Single rejectors based on global features and
composite rejector resulting from the probabilistic median
combination rule, with an evaluation set of 5,464 tracks.
The composite rejector outperforms any single rejector.

of tracks identified in the top-10, 100 and 1000, there is an
improvement of respectively 62.5 %, 43.7 % and 16.4 %,
compared to the average chroma rejector. In terms of MR
and MRR, the composite rejector improves the scores by
24.9 % and 63.2 % respectively. To establish how all com-
bination rules behave, Figure 3 displays the curves corre-
sponding to each rule. Overall, all rules behave similarly.
Zooming in the lower left corner (higher cutoff), the sum
rule outperforms the product and the median. Compared to
the median, the number of tracks identified in the top-5000
(lower-left area) is increased by 0.39% (5,419 tracks over
5,398). Similarly, the product rule outperforms other rules
in the upper right corner (lower cutoff), with an increase of
24 % and 4 % for the top-10 and top-100 over the median
rule. Our final choice is the median rule, as it produces a
MR of 979.6 compared to 1127 and 1090 with the sum and
product rules respectively.

5.2 Rank aggregation results

We combined the composite rejector based on global fea-
tures with chroma based rejectors based on the quantiza-
tion of chroma features and based on the cross correlation
of chroma sequences. The three rank aggregation methods
described in Section 3.2 are evaluated. We first report the
results on a TS containing 30% of the SHS samples con-
taining 1,745 cliques and 5,464 queries. Table 1 shows the
number of queries identified in the top 10, 100 and 1000
for each single rejector and for each aggregation rule. Ex-
amining the results, we observe that each aggregation rule
outperforms each single rejector. Best results for the top-
10 returned tracks are achieved with the minimum aggre-
gation rule. The number of identified tracks in the top-10
goes from 871 with the cross correlation rejector to 1004
with the minimum rule, which corresponds to an improve-
ment of 15.2 %. Best results for the top-100 and top-1000
returned tracks are both achieved with the mean rule, with
improvements of respectively 23.5 % and 7.19 %. Figure 4
shows the performance of the minimum rank aggregation
rule against each single rejector. The zooms in the lower
left and upper right corners indicate that the aggregated

Top Proba Cluster XCorr Min Mean Median

10 169 560 871 1004 972 916
100 1064 1731 1523 2042 2139 2113
1000 3732 3931 3386 4177 4214 4129

Table 1: Results for a TS of 1745 cliques and 5,464 tracks.
Rank aggregation combinations increase the number of
identified queries for each rule.

Proba Cluster XCorr Min Mean Median

MR 979.6 861.4 1166 718.3 704.3 749.5
MRR 0.016 0.059 0.122 0.107 0.112 0.104
MAP 0.008 0.027 0.067 0.055 0.059 0.054

Table 2: Results for a TS of 1745 cliques and 5,464. Each
rank aggregation combination outperforms single rejectors
in terms of the Mean Rank (MR).

rejector performs better across the whole range of cutoff
values. We also report the standard metrics (described in
Section 4.3) in Table 2. Surprisingly, the MRR and MAP
values are slightly decreased when compared to the best
performing single rejector (cross-correlation, XCorr in the
table). This might be due to the fact that when we aggre-
gate the lists of results (Section 3.2), several tracks can be
ranked at the same position. This might therefore affect
the metrics. Note however that in terms of the Mean Rank,
each combination outperforms each single rejector.

To establish how the aggregated rejectors scale on a
larger dataset, we evaluated it on a TS containing 60% of
the samples of the SHS. The LS used for learning the prob-
abilistic rejectors is therefore smaller (40%) and produces
decreased performance for the machine learning models
built with random forests. That new TS contains 10,870
tracks, and is chosen to approach the size of the original
SHS training set (12,960 tracks), to compare our results to
results proposed in existing research papers [2,13,14]. We
further increased the size of the TS by decreasing the size
of the LS to 30% and 20% of the SHS. However, the pro-
duced results with the probabilistic rejectors showed worse
performance, due to the lack of enough learning samples
for the random forest algorithm. Table 3 shows the results
of our method against existing work. Note that care should
be taken while reading these results as our probabilistic
models do not perform as well as with a larger LS, and as
the sizes and the contents of both evaluation databases dif-
fer. In terms of the MR, our method is ranked at the second
position.

6. CONCLUSION

In this paper, we evaluated multiple techniques for com-
bining distances and features for cover song identification.
We first made use of random forests to design probabilistic
rejectors based on global features. We evaluated several
standard combination rules such as the sum, the product
and the median rules to build a composite rejector. Results
show that combining single rejectors based on global fea-
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Figure 3: Performance of the probabilistic sum, product and median combination rules to build a composite rejector based
on multiple global features. The second figure is a zoom of the left lower part (high cutoff). The sum rule performs slightly
better in that area. The third figure is a zoom of the upper right area. The product rule performs slightly better there.
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Figure 4: Performance of the minimum aggregation rule against rejectors based on global features (composite), quanti-
zation of chroma features and cross-correlation of chroma sequences (XCorr) on a database containing 5,464 tracks. The
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cutoff). In each case, the aggregation increases the number of identified tracks.

Method MR MAP

Khadkevich et al. [14] 958.2 0.10
Rank Aggregation (10,870 tracks) 1,455.6 0.048

Bertin-Mahieux et al. 2D-FTM (200 pcs) [3] 3,005 0.09
Humphrey et al. [13] 1,844 0.28

Table 3: Comparison of the rank aggregation method
against existing methods evaluated on the SHS original
training set. Care should be taken when reading the results
as the original SHS training set contains 12,960 songs, and
our subset contains 10,870 tracks sampled from the SHS.

tures improves the performance compared to single clas-
sifiers. We proposed to combine the composite rejector
based on global features with rejectors based on chroma
features. To take into account the harmonic content of
the songs, we introduced a rejector based on comparing
histograms of quantized chroma features. To account for
temporal information, we further implemented a baseline
rejector performing cross-correlations between sequences
of chroma features. As all these rejectors return values
on different scales, we proposed to combine them at the
rank level. We evaluated several rank aggregation meth-
ods such as the mean, the median and the minimum ag-
gregation rules. We conducted experiments on the Second

Hand Song dataset and observed that aggregation meth-
ods outperform methods in isolation for cover song identi-
fication. Results are provided in terms of standard metrics
such as the mean rank of the first match, the mean recip-
rocal rank and the mean average precision, as well as in
terms of the total number of queries identified in the top-k
results. Compared to single rejectors, the minimum ag-
gregation rule shows an improvement of up to 23.5 % of
the number of queries identified in the top-100 returned
tracks. Comparing our results to existing work, we observe
that our method does not perform as well as other methods
in terms of mean average precision. However, in terms
of mean rank of the first identified query, the results are
comparable to related methods and rank our method at the
second position. Although our method does not produce
state-of-the-art results, we showed that aggregating multi-
ple features and distance measures does increase the num-
ber of identified queries. These results suggest that com-
bining many other features as well as multiple comparison
algorithms could lead to significant improvements in any
cover song identification system. Future work therefore in-
cludes more experiments with features taking into account
e.g. the melodic line of the songs, or structural informa-
tion. In any case, many combining experiments should still
be performed to improve state-of-the art results.
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