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ABSTRACT

The times when music is played can indicate context for
listeners. From the peaceful song for waking up each
morning to the traditional song for celebrating a holiday to
an up-beat song for enjoying the summer, the relationship
between the music and the temporal context is clearly im-
portant. For music search and recommendation systems,
an understanding of these relationships provides a richer
environment to discover and listen. But with the large
number of tracks available in music catalogues today, man-
ually labeling track-temporal context associations is diffi-
cult, time consuming, and costly.

This paper examines track-day contexts with the pur-
pose of identifying relationships with specific music
tracks. Improvements are made to an existing method
for classifying Christmas tracks and a generalization to
the approach is shown that allows automated discovery
of music for any day of the year. Analyzing the top 50
tracks obtained from this method for three well-known hol-
idays, Halloween, Saint Patrick’s Day, and July 4th, preci-
sion@50 was 95%, 99%, and 73%, respectively.

1. INTRODUCTION

With the ever increasing amount of recorded music, struc-
tured metadata is important to organize it. For holiday mu-
sic, there is some metadata that indicates an association
with a music track, often Christmas [1], but comprehensive
labeling for other holidays is still lacking. One reason for
this is the varying nature of holiday music. Across geogra-
phies, cultures, and time, what music is used to celebrate
holidays changes dramatically. There is a bit of a para-
dox as to whether a holiday track is so because the artist
recorded it for that purpose or the listeners use it to cele-
brate 1 . Given this complex landscape of holiday music,
manual labeling of a large number of music tracks is diffi-
cult, time consuming, and costly. Methods for automated
labeling are desirable for large scale organization, further

1 The interpretation of the authors of what is truly holiday music is the
latter.
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improving the capabilities of music search and recommen-
dation systems.

One automated approach is using text search of track
names or album names for keywords also associated with
the target holiday [2]. For example, tracks with the key-
words ”winter” or ”spooky” may be likely associated with
Christmas or Halloween, respectively. This approach has
drawbacks, however. First, it requires experts to create
keywords lists, which can be costly or difficult, particularly
for music in different languages. Second, the keywords
do not guarantee correct track-holiday association, particu-
larly for ambiguous words like ”whiskey”, which could be
linked contextually to Saint Patrick’s Day or simply drink-
ing beverages. This problem is compounded when using
multiple keywords, as is required for a comprehensive set
of tracks.

Another automated approach for labeling holiday music
is through user crowdsourcing. LastFM (last.fm), for ex-
ample, allows users to add their own tags to music tracks,
which include tags for some holidays like Halloween [3].
This has the advantages of outsourcing the work of label-
ing and getting a better representation of the holiday music
preferences of a larger number of listeners. But this too
has drawbacks. Users tend to only label popular tracks
and artists, leading to imbalanced coverage. The quality
of these tags can suffer to due misspellings, synonyms, bi-
ases, or dishonest labeling. And the users providing tags
are still typically a small subset of the total users of a ser-
vice [4].

Alternatively, leveraging user listening data avoids the
quality issues associated with user tagging and keyword as-
sociation, can utilize the entire user base, and is language
agnostic. Researchers have studied temporal dynamics of
user data previously to understand context. [5] examined
temporal context to improve biosurveillance. [6] and [7]
classified web search queries using features in the pop-
ularity signal over time and in music, [8], [9], and [10]
show the usefulness of temporal analysis in recommenda-
tions systems. An approach proposed by [11] exploits user
listening data to automatically label tracks as associated
with Christmas. However, the approach performs poorly
for other holidays in our experiments. In this paper we
show that the methodology in [11] can be improved and
generalized to discover tracks associated with other holi-
days throughout the year.
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Figure 1. Mean listen rates R for tracks above 1,500 total
listen threshold with ”Christmas” in track or album name
(solid line) and tracks without (dotted line) for December
18, 2012 - January 1, 2013.

2. METHODOLOGY

[11] hypothesized that the listening signals of two tracks,
one associated with a holiday and one not, will have dif-
fering and detectable patterns on and around that holiday.
This can readily be seen for Christmas tracks and non-
Christmas tracks in Figure 1. In this section we show the
methodology in [11] for detecting Christmas tracks and
propose improvements.

2.1 Listening Rates

The form of the raw data is listening events in which a
known user has listened to a known track at a date and
time. If a track is associated with a day, we expect users
to engage more relative to other time periods. The signal
used in [11] can be described as user engagement,

Eij =
U

X

k=1

cijk (1)

which is the total number of listens for all users for track
i in time period j.

In Eqn (1), cijk is an element of C, and C 2 RT⇥W⇥U

where T is the number of tracks, W is the number of time
periods, and U is the number of users. To account for dif-
ferences between popularity of tracks, the E was normal-
ized across the periods of time as described by

Rij =
Eij

PW
l=1 Eil

(2)

which were the listen rates used to train the Christmas
model.

We propose a new signal based on absolute user engage-
ment, Ê. Given the function

f(x) =

(

1, if x > 0

0, otherwise
(3)

Êij is the number of users who listened to a track i in
time period j and is calculated by

Êij =
U

X

k=1

f(cijk) . (4)

Number of Records 4,819,992,847
Number of Users 1,648,796
Number of Tracks 13,227,376
Date Range January 2012 - February 2013

Table 1. Dataset of listening records.

This is similarly normalized across time periods to get
new listen rates

R̂ij =
Êij

PW
l=1 Êil

. (5)

The intuition is to limit the effect of repeat plays among
individual users. In estimating cultural preferences, there
is likely more information gained when 100 users listen
to a track once than when one user listens to a track 100
times.

2.2 Detection

For detection, [11] fit a multi-variate Gaussian with listen
rates of only Christmas tracks with parameters ✓Christmas

composed of mean, µRj , and covariance matrix, ⌃Rj .
Given a new track with listen rates for the same time peri-
ods, x = [R1, R2, ..., RW ], the metric for detection was

P (x|✓Christmas) =
W
Y

j=1

N (x|µRj , ⌃Rj ) . (6)

We propose another metric using the posterior probabil-
ity from a direct application of Bayes’ Rule in

P (✓c|x) =
P (x|✓c) ⇤ P (c)

P (x|✓c) ⇤ P (c) + P (x|✓n) ⇤ P (n)
(7)

where c subscript represents Christmas and n subscript
represents non-Christmas. This includes a model for non-
Christmas tracks and prior probabilities P (c) and P (n),
which represent the proportion of Christmas and non-
Christmas tracks in matrix C, respectively. The priors in
particular are important because of the small number of
Christmas tracks in the dataset. P (x|✓n) is calculated from
Eqn (6) where µRj

and ⌃Rj
are calculated using all non-

Christmas tracks.

2.3 Dataset

This study uses the same internal Gracenote dataset of
online radio listening records in North America as [11].
Some basic information is shown in Table 1. Each record
in the dataset represents one listen of a track by one user
and provides User ID, Date, Time, and Track ID. Track
metadata is also available such as track name, album name,
and artist name.

60 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Min. Listens All Tracks Christmas Tracks
1,500 338,406 4,732
500 767,116 10,647
200 1,397,032 18,170
100 2,087,863 26,134
10 5,906,307 68,582
1 10,207,335 118,515

Table 2. Track distribution at each threshold of minimum
listens.

3. CHRISTMAS

3.1 Experiments

In these experiments, we compared the performance of the
signals and prediction metrics in Section 2. As in [11], we
generated a ground truth of Christmas tracks by searching
for keyword ”Christmas” in track names and album names.
We defined the window radius, rw, as the number of con-
secutive days before and after the target holiday, December
25, 2012, such that the window length W = 2 ⇤ rw + 1.
Since [11] showed an increase in performance with in-
creasing popularity of tracks, we use the same thresholds
of minimum listens in the dataset (1,500, 500, 200, 100,
10, 1) for direct comparison. Table 2 shows the distribu-
tion of tracks for each threshold.

For each listen rate in Section 2.1, a matrix was con-
structed from the dataset using tracks above the specified
threshold, all users, and W days. We varied W by choos-
ing rw ranging 1 to 30 to capture the signal up to one month
before and a month after December 25. The matrix was
randomized and split into train (60%) and test (40%) sets
on the first dimension. Two single component Gaussian
Mixture Models, for Christmas and non-Christmas, were
trained with the training set in a supervised manner with
each training example a track and features the listen rates
for each day in the signal window. Classification was per-
formed with each metric in Section 2.2 on the test set and
the area under the Receiver Operating Characteristic (AU-
ROC) was calculated for evaluation.

3.2 Results

Figure 2 and Figure 3 show the AUROC against the win-
dow radius for the proposed listen rate, R̂, and each predic-
tion metric. Observing the difference in y-axis scale, the
most notable difference between the figures is an increase
in performance across all thresholds and signal lengths
for the posterior probability. In particular, the lowest two
thresholds have quite large increases of about 0.15 at each
signal length.

Among tracks with the strongest listening signals, there
is a small decay with increased window length. In contrast,
the weakest listening signals show a large boost in perfor-
mance with increased signal length. Similar plots for listen
rates R are not shown because they track very closely and
mostly just below the trends for R̂. Lastly, Table 3 shows
the maximum AUROC value for each threshold across sig-

Figure 2. AUROC for each listen threshold for listen rate
R̂ and prediction metric P (x|✓c)

Figure 3. AUROC for each listen threshold for listen rate
R̂ and prediction metric P (✓c|x)

nal lengths as a measure of overall performance. The pro-
posed signal and prediction metric give the highest AU-
ROC for the top four thresholds, and the signal from [11]
with the proposed prediction metric have slightly higher
AUROC for the bottom two thresholds.

3.3 Analysis

The posterior probability performs better than the likeli-
hood because the inclusion of a non-Christmas model pro-
vides additional discriminative information. There is a lot
of complexity in the non-Christmas tracks that is not mod-
eled well by a single Gaussian with a mostly uniform dis-
tribution as shown in Figure 1. This suggests that incor-
porating models for other common signal shapes such as
those of newly released tracks might further improve per-
formance.

The signal length effects the performance in different
ways. Tracks with the strongest listening signals perform
best more with localized time window. We believe this is
due primarily to higher variability of listening rates lead-
ing up to Christmas. The Christmas holiday is celebrated
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P (x|✓c) P (✓c|x)

Threshold R R̂ R R̂
1,500 0.987 0.991 0.989 0.992
500 0.975 0.981 0.978 0.983
200 0.964 0.969 0.969 0.973
100 0.950 0.956 0.958 0.963
10 0.851 0.850 0.892 0.888
1 0.680 0.682 0.784 0.783

Table 3. Best AUROC for any signal window.

for many days before, and the signals during this time may
be less stable than nearby December 25th. Tracks with the
weakest listening signals perform best with a larger time
window performs. This is likely because there is more in-
formation available with a longer signal, even if a small
amount. Tracks with 50 plays in the dataset average only
one play in ten days so capturing enough discriminatory
information for detection requires a longer signal window.

The proposed signal of user counts, R̂, has a smoothing
effect over the signal of play counts, R, boosting perfor-
mance. With tracks of stronger signals this appears to be
more discriminating as shown in Table 3. But tracks with
weaker signals, this seems to remove some useful infor-
mation, which would explain why the play counts, R, per-
form slightly better at the two lowest thresholds. No single
configuration appears to give optimal performance for this
task.

4. HOLIDAY GENERALIZATION

We are interested in detecting track-temporal context as-
sociations for many days other than Christmas. Directly
repeating the procedure in Section 3 for other holidays pro-
duced poor results on the dataset in Section 1. We believe
this is because the ground truth generated from keywords is
much less clean. Since many other holidays have a smaller
music repertoire than Christmas, discriminative keywords
like the holiday names generate too few tracks with strong
listening signals for model training. And less discrimina-
tive keywords inadvertently include tracks not associated
with the holiday, similarly compromising training.

Instead, the Christmas model in Section 2 can be rein-
terpreted as a holiday model with parameters ✓holiday com-
posed of the same mean, µRj

, and covariance matrix, ⌃Rj

as Eqn (6). Now a new track with listen rate signal of
the same length, W , centered on a different target holi-
day, x = [R1, R2, ..., RW ], can be detected with Eqn (6)
or Eqn (7).

4.1 Experiments

In these experiments, we show the performance of detec-
tion on three other holidays. Since the dataset in Section 1
is from users in North America, we chose Halloween, Saint
Patrick’s Day, and U.S. Independence Day as they are well-
known holidays in North America and likely to have music
associations. For the best results, we use only tracks with

Saint Patrick’s U.S. Independence Halloween
95% 73% 99%

Table 4. Average precision@50 for holiday track detec-
tion.

strong listening signals - above 1,500 total listens in the
dataset - and the best performing listen rate and prediction
metric from Section 3, R̂ and Eqn (7).

We constructed the training set feature matrix using
W = 15, implying rw = 7 and R̂i8 is the listen rate
for track i on December 25, 2012. Again, we trained two
single component Gaussian Mixture Models, holiday and
non-holiday, in a supervised manner. We constructed the
test set feature matrix similarly with W = 15, meaning
R̂i8 is the listen rate for track i on the target holiday.

We calculated the probability of each track in the test
set with Eqn (7) and ranked the tracks from highest proba-
bility to lowest for analysis. We chose precision@k to pro-
vide a general measure of relevance of tracks. We set k=50
with the assumption that there are at least 50 tracks truly
associated with each holiday in order to better attribute er-
rors in detection to the methodology. Three music content
experts examined each list and labeled tracks as relevant to
the holiday or not. We averaged the results to get a single
value of precision@50 for each holiday.

4.2 Results

Table 4 shows the average precision@50 of holiday track
detection as indicated by three music experts. Halloween
and Saint Patrick’s Day had high values at 99% and 95%,
respectively, and U.S. Independence Day was lower at
73%. The mean probability of the all tracks according to
the holiday model was 99.9%. The distribution of incor-
rect tracks for U.S. Independence Day is skewed toward
the bottom of the list.

The top 10 tracks for each holiday are shown in
Section 4.2.1 - Section 4.2.3 to further characterize the re-
sults. All of these tracks had a probability of 1.0 according
to the holiday model. The ordering for each track is track
name, artist name.

4.2.1 Top 10 Saint Patrick’s Tracks

1. When Irish Eyes Are Smiling, Bing Crosby
2. Maloney Wants A Drink, The Clancy Brothers
3. Sally MacLennane, The Pogues
4. When Irish Eyes Are Smiling, The Irish Folk
5. Danny Boy, Irish Drinking Songs
6. Water Is Alright In Tay, The Clancy Brothers
7. Whiskey In The Jar, The Clancy Brothers
8. A Pair of Brown Eyes, The Pogues
9. The Black Velvet Band, Irish Drinking Songs

10. Grace, Jim McCann

4.2.2 Top 10 U.S. Independence Tracks

1. America, Barry White
2. Independence Day, Elliott Smith
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3. Proud to be an American, Tiki
4. Stars And Stripes Forever, John Philip Sousa
5. Justice And Independence ’85, John Mellencamp
6. 4th of July, X
7. Our Country (Rock Version), John Mellencamp
8. America the Beautiful, Blake Shelton and Miranda

Lambert
9. This Is My Country, The Impressions

10. God Bless The U.S.A., Lee Greenwood

4.2.3 Top 10 Halloween Tracks

1. Purple People Eater, Halloween Hit Factory
2. ”Dr. Who” Theme Song, Mannheim Steamroller
3. Graveyard Of The Living Dead, Halloween Sound

Effects
4. Werewolves - Scary Halloween Sound Effects, Hal-

loween Sound Effects
5. Dracula’s Organ - Scary Halloween Sound Effects,

Halloween Sound Effects
6. Creatures Of The Night (Original Mix), Mannheim

Steamroller
7. This Is Halloween, The Countdown Kids
8. Hall of Screams - Scary Halloween Sound Effects,

Halloween Sound Effects
9. Scary Halloween Haunted House, Sound Fx

10. Grimly Fiendish (Album Edit Version), The Damned

5. ANALYSIS - HOLIDAY

The high values for precision@50, particularly those of
Halloween and Saint Patrick’s, show that a model trained
with user data around Christmas is effective in identify-
ing daily music-temporal context associations. The lower
precision@50 of U.S. Independence Day and the incorrect
tracks being skewed towards the bottom of the list suggests
that our assumption of at least 50 associated tracks for the
holiday may be incorrect. Flaws in the methodology could
also be the cause.

In particular, the assumption that Christmas listening
signals have a distribution that matches those other holi-
days closely is likely flawed. Looking at Christmas signal
in Figure 1 and the Saint Patrick’s signal in Figure 4, they
are similar but do not match exactly. The Christmas tracks
have two peaks, December 24 and December 25, and the
Saint Patrick’s tracks have a single peak on March 17. With
shorter signal lengths, this difference is pronounced and
gives poor results for detecting other holiday tracks. This
is why the experiments in Section 4.1 used rw = 7, and
not the optimal from Section 3, rw = 3.

Among the incorrect U.S. Independence tracks, nearly
one-third were from a single album by electro-punk band
Frittenbude. This highlights other possible reasons for in-
creased engagement such as marketing pushes. This album
appears to have been released in the summer of 2012 and
the synchronized rise and fall of the album’s initial listen-
ing could be one explanation. In this case and other one-
time events, album releases happen just once and could
be separated from the more cyclical holiday listening with
multiple years of data.

Figure 4. Mean listen rates R for top 100 predicted Saint
Patrick’s Day tracks from March 10, 2012 to March 24,
2012.

The effectiveness of general holiday detection im-
plies one obvious commercial application: an automated,
”always-on” seasonal radio station. With multiple years of
data, the results likely could be improved and characterized
by their change over time. Also, the addition of location
data could highlight geographical differences for improved
recommendations. For example, since our dataset is pri-
marily North America, the tracks in Section 4.2.1 may be
poor recommendations to users celebrating Saint Patrick’s
in Ireland or other parts of the world.

6. FUTURE WORK

The issues with matching the signal shapes of Christmas
tracks to other holidays suggest room for improvement.
Artificial templates or hand labeling a holiday ground truth
could estimate the target distributions more accurately. Al-
though labeling track-temporal context associations with
user data has advantages over the other automated methods
as outlined in Section 1, combining these methods could
produce superior results. Lastly, applying this method-
ology at additional time resolutions (e.g hours, weeks,
months) or exploring how these contexts interact with user
data (e.g. age, geography, personality) could further enrich
the user listening experience.

7. CONCLUSION

This study showed improvements to previous method for
detecting Christmas tracks from user listening data and
generalized the method to detect tracks for other holidays.
The proposed improvements showed small increases of
about 0.01 maximum AUROC for the most popular tracks
but larger improvements of about 0.1 maximum AUROC
for less popular tracks. Detection of Halloween, Saint
Patrick’s Day, and July 4th tracks was promising with pre-
cision@50 at 95%, 99%, and 73%, respectively.
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