
INSTRUMENT IDENTIFICATION IN OPTICAL MUSIC RECOGNITION

Yucong Jiang
School of Informatics and Computing

Indiana University, Bloomington
yujiang@indiana.edu

Christopher Raphael
School of Informatics and Computing

Indiana University, Bloomington
craphael@indiana.edu

ABSTRACT

We present a method for recognizing and interpreting the
text labels for the instruments in an orchestra score, thereby
associating staves with instruments. This task is one of
many necessary in optical music recognition. Our approach
treats the score system as the basic unit of processing. A
graph structure describes the possible orderings of instru-
ments in the system. Each instrument may apply to sev-
eral staves, may be represented with several possible text
strings, and may appear at several possible positions rela-
tive to the staves. We find the optimal labeling of staves
using a globally optimal dynamic programming approach
that embeds simple template-based optical character recog-
nition within the overall recognition scheme. When given
an entire score, we simultaneously optimize on the text la-
beling for each system, as well as the character template
models, thus adapting to the font at hand. Our implemen-
tation alternately optimizes over the text label identifica-
tion and re-estimates the character templates. Experiments
are presented on 10 different scores showing a significant
improvement due to adaptation.

1. INTRODUCTION

In some scores, particularly those for small ensemble, in-
struments appear in the same position in all systems mak-
ing it easy to associate instruments with staves. This scheme
would be typical for a string quartet or sonata for solo in-
strument and piano. Occasionally large-ensemble scores
follow this convention as well, though it requires consider-
ably more space as empty staves must be written out every
time any instrument is not used in a particular system, thus
creating longer scores and lowering the density of informa-
tion. For these reasons many publishers avoid this layout
style, instead notating only the instruments that play in a
particular system. In this case text labels, usually appear-
ing in the left margin of the system, identify the instru-
ment(s) associated with the individual staves, as in Figure
1. These are the scores we treat here, while our goal is the
labeling of each staff with its associated instrument. Such
labeling is necessary for nearly any aspect of optical music

c
� Yucong Jiang, Christopher Raphael.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Yucong Jiang, Christopher Raphael.
“Instrument Identification in Optical Music Recognition”, 16th Interna-
tional Society for Music Information Retrieval Conference, 2015.

recognition (OMR) using “instrument-labeled scores”, as
it allows one to link systems together in a meaningful way.

The first steps of our OMR system [9] are to identify
the staves in a page, and then to group these into systems.
While these tasks present challenges due to the wide vari-
ation in printed scores, they are among the easier OMR
tasks, and are handled reasonably well by our system. The
resulting score systems, including the precise locations of
all the staves they contain, constitute the input to our staff
labeling process.

In spite of the mature nature of optical character recog-
nition (OCR), our staff labeling problem is highly chal-
lenging when viewed purely in these terms. The text strings
we seek to recognize are usually a single word or abbrevi-
ation, thus providing only a small portion of data for each
recognition problem. Furthermore, even though the vocab-
ulary is constrained to the instrument names used in the
score, OCR will encounter difficulties distinguishing sim-
ilar strings, such as “Violin I” and “Violin II,” or “Vln.”,
“Vla.”, and “Vcl.”. Finally, there often is other irrelevant
text in the area of the names we seek to recognize, further
hindering the recognition. But even if OCR were enough
to recognize the instrument names, our goal includes more
than this. As it is common for text strings to apply to mul-
tiple staves in a score, we need the name-to-staff mapping
as well.

Thus, unlike the bottom-up approach used in [12], our
top-down approach uses a graphical model that generates
all legitimate possible partitions of the system into staves
and all legitimate possible labelings of these partitions with
instruments. The graphical representation enables a dy-
namic programming approach that embeds rather generic
OCR into the “innermost loop” for the recognition of indi-
vidual text labels. The model may include strong assump-
tions about the possible orderings of instruments, with the
most obvious choice being that the instruments appear in
the order initially given on the first score page, (though any
subset of instruments can be omitted).

Perhaps the biggest challenge of our task is the font
variation between scores. Even controlling for the height
of the staff, one still sees considerable variation in the size
and shape of the characters between fonts. It might be pos-
sible to develop an omnifont approach [2,3], meaning a text
model that is trained from a variety of fonts, and thus capa-
ble of recognizing this same variety. However, as character
models are required to accept a wider range of presenta-
tions for each given letter, they become less capable of dis-

612

Figure 1. One page with an 8 staves system and an 11
staves system.

tinguishing between different letters. For this reason om-
nifont models generally perform worse than models tuned
for the specific task at hand.

Borrowing a well-known idea from pattern recognition,
[11, 13], we address this challenge by simultaneously rec-
ognizing the instrument labels on the entire collection of
systems in a score and learning the font model for the doc-
ument at hand. Our algorithm iteratively recognizes the
systems, then retrains the font models using the optimal
labeling and text alignments produced in the recognition
phase. One might expect that this approach is simply too
greedy to succeed, failing to explore the high-dimensional
world of possible character models and system interpreta-
tions, while almost guaranteed to get stuck in a mediocre
local optimum. However, we present experiments that show
a large monotonic improvement in recognition accuracy as
we iterate this process, culminating with excellent recog-
nition results. The approach is feasible due to the highly
restrictive assumption made by our graphical model, thus
constraining the admissible interpretations to a tiny frac-
tion of those arising without this restriction. Our experi-
ments demonstrate that this graph model is the difference
between basically successful and unsuccessful results.

2. LABELING STAVES WITH INSTRUMENTS

The usual notational convention for large-ensemble scores
lists all instruments on the first page of a piece or move-
ment, whether or not the instruments play in this page [10].

Figure 2. A directed graph representing the possible or-
derings for the instruments.

In subsequent pages, instruments, perhaps in abbreviated
form, are written in the left score margin. Usually the in-
strument labels are displayed immediately to the left of the
associated staff line, though the labels sometimes describe
collections of staves, such as “Strings”, “Horns”, etc. In
such a case the text label usually appears centered with re-
spect to the group of staves, often emphasized by a brack-
eting of the associated staves in the left margin of the score.
Figure 1 shows a typical example.

2.1 THE MODEL

Our staff labeling procedure requires input from the user
explaining the labeling scheme(s) used in the score at hand.
Typically, the instruments appearing in a system are a sub-
sequence of the order given on the first page of the score.
However, variations are possible such as substituting a col-
lective name for the individual labels, e.g. using the sin-
gle text label “Strings” instead of the the individual la-
bels “Violin 1”, “Violin 2”, “Viola”, “Violoncello” and
“Bass” [10]. We assume that the possible labelings can be
described by a directed graph, G, as in Figure 2, where the
possible paths through the graph give the legitimate label
sequences. We assume the graph is supplied by the user
either implicitly or explicitly. Each vertex g 2 G is asso-
ciated with an instrument, I(g), so recovering the correct
path will give the sequence of instruments employed in the
system.

As mentioned above there may be several staves as-
sociated with a particular instrument or group of instru-
ments, though we do not require such a convention to be
followed consistently. We rely on the user to list, for each
instrument, the possible labeling variations encountered in
the score. We describe this information as a collection
of patterns for each graph node, P (g) = {p1, . . . , pc},
where we suppress the dependence of the list length, c,
on g in our notation. Each pattern, p has three attributes:
p = (pk, pl, pa) giving the number of staves used for the
instrument(s), pk, the location of the text label with respect
to the group of staves, pl, and the specific character se-
quence used for the text label, pa. For instance pl = 0
would mean that the label appears in the middle of the
group of staves (next to the middle staff if pk is odd and
between the middle two staves if pk is even). When pl 6= 0,
pl gives the integral number of inter-staff half spaces above
or below the middle location where the text will be found.
In Figure 1 pl = 0 for all instruments.

Every pair of adjacent vertices, g0, g are connected by

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 613

|P (g)| directed arcs labeled with the various patterns, P (g),
though these are not explicitly drawn in Figure 2. Thus
there may be several arcs that connect g0 to g, each ac-
counting for a possible number of staves for the instrument,
I(g), location of the text label, and the actual text itself.
There is a one-to-one correspondence between the allow-
able labelings of each system and the legal paths through
the graph. That is, if s, g1, . . . , gM is a path beginning from
the start vertex, s, with arc labels p1, . . . , pM that correctly
accounts for the number of staves in the system, N ,

M
X

m=1

pk
m = N (1)

then the labeling associates the first pk
1 staves with instru-

ment I(g1), the next pk
2 staves with instrument I(g2) and

so on. The path may terminate anywhere in the graph other
than at the start vertex, s, as long as Eqn. 1 is satisfied.

2.2 RECOGNIZING THE TEXT LABELING

We score every legal path through G as a sum of arc scores
and compute the best scoring path through dynamic pro-
gramming (DP). For this purpose we define E(n, g), for
n = 0, . . . , N , g 2 G, as the best scoring interpretation
of the first n staves ending in state g. We compute E by
initializing E(0, s) = 0, then visiting the staves in order:
n = 1, . . . , N computing for each g 2 G,

E(n, g) = max
g0 p!g

E(n � pk, g0) + L(n, p) (2)

where the maximum is over all legal arcs going from g0 to
g with pk n. In Eqn. 2 L(n, p) is the arc score measuring
the plausibility that the text label pa positioned at relative
position pl is used for staves n � pk + 1, . . . , n. While we
present L in more detail in Section 2.3, for now it suffices
to say that L measures the quality of the best match of the
text, pa, to the score image data in the area determined
by n, pk, pl. It is worth noting that L = 0 is a neutral
result, meaning that the optimal placement of the letters of
pa explains the data as well as a background model. In
contrast, positive (negative) scores of L indicate evidence
for (against) the labeling implied by the transition of g0 p!
g. Thus our algorithm has no inherent bias for assigning
more or less text labels in the optimal interpretation.

Having computed E(n, g) for n = 1, . . . , N and g 2 G,
the score of the optimal path is given by maxg2G E(N, g),
while it is a simple matter to recover the optimal sequence
of vertices and transitions that produce the optimal score.
We denote these by g⇤

1 , . . . , g⇤
M and p⇤

1, . . . , p
⇤
M .

2.3 CHARACTER RECOGNITION

Our approach to character recognition is standard template-
based [7, 8], and will only be discussed briefly and infor-
mally here. L(n, p) evaluates the quality of the hypothesis
n, p. The information contained in n and p collectively de-
scribes a reasonably precise vertical location in the image.
The task in computing L is to search the area around this

position for the optimal locations of the characters of pa,
subject to reasonable constraints regarding their spacing.

Suppose the characters of pa: c1, . . . cL have rectangu-
lar templates m1, . . . , mL which are hypothesized to be
placed at image locations (x1, y1), . . . , (xL, yL). Each tem-
plate is a matrix of values ml(i, j) 2 M where M =
{b, w, t, n} indexes black, white, transitional, and null grey
level probability models denoted by Pb, Pw, Pt, Pn. Pb

mostly “expects” to see low grey levels, Pw “expects” to
see high grey levels, Pt is a mixture of these two models,
and Pn is a null or background model taken as the normal-
ized grey level histogram of the entire image. L

x,y(n, p) is
then defined to be the normalized data log likelihood given
by

L
x,y(n, p) =

L
X

l=1

X

i,j

log
Pml(i,j)(J(xl + i, yl + j))

Pn(J(xl + i, yl + j))

(3)
where (x,y) denotes the entire collection of template lo-
cations, J(x, y) is the image grey level at pixel (x, y) and
the inner sum uses the range for i, j appropriate for the lth
rectangular character template.

In computing Eqn. 3 we consider a variety of possible
vertical positions for the text baseline, and all reasonable
positions for the characters along that baseline so that

L(n, p) = max
x,y

L
x,y(n, p).

Thus the computation consists of a loop over baseline po-
sitions with each iteration accomplished by a DP compu-
tation that optimally locates the character templates.

2.4 SIMULTANEOUS OPTIMIZATION

Section 2.2 gives our procedure for finding the optimal text
labeling for the staves of a system. Computing this label-
ing requires at least reasonable character templates, though
it would be preferable to have templates that represent the
font at hand. Unfortunately, fonts differ greatly from one
music document to another, both in size and shape, so we
have no way of knowing a priori the font used for instru-
ment names in any given score. Our approach here is to
simultaneously estimate both the optimal text labeling and
the optimal character templates, thus adapting to the font at
hand while we recognize. While simultaneous estimation
of both interpretation and model parameters is infeasible
for many recognition problems, we rely here on the strong
graph-based assumptions we have made on the family of
possible labelings. In essence, our assumptions about in-
strument order are powerful enough to get reasonable esti-
mates of the instrument labels even with poorly specified
character templates. Thus we can use this labeling, and the
precise character template positions that come with it, to
re-estimate our character templates. Our overall approach
then becomes an iteration between the (re)estimation of
instrument labels and the (re)estimation of character tem-
plates, similar with [5, 6]. In practice this approach con-
verges after only a few iterations, and usually does so with
significantly better recognition accuracy than with the orig-
inal character templates, as discussed in Section 3.

614 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

More precisely, we let z denote a possible text labeling
for the entire collection of system staves. Thus z includes
a path of vertices and arcs through G for each system in
the score, as discussed in Section 2.2, as well as the char-
acter template positions that result from the L(n, p) com-
putations of Section 2.3. Let ✓ denote the complete col-
lection of character templates employed in Section 2.3, for
all letters and punctuation used in the text labels. Finally
we let Ē(z, ✓) be the summed data log likelihood score of
Eqn. 3 produced by evaluating the complete set of recog-
nized characters in z at their precise positions using the
character templates of ✓.

Starting from our initial character templates ✓0, the ba-
sic two-stage iteration of our algorithm is then

zl+1 = arg max
z

E(z, ✓l) (4)

✓l+1 = arg max
✓

E(zl+1, ✓) (5)

for l = 0, 1, The update for z in Eqn. 4 is simply the
dynamic programming procedure from Section 2.2 applied
to each system in the score, which is guaranteed to produce
a global optimum for z. The ✓ update is accomplished by
maximum likelihood estimation, as follows. Suppose our
alphabet of characters and punctuation is c1, . . . , cQ. Also
suppose that cq appears at locations (xq

1, y
q
1), . . . , (x

q
R, yq

R)
as defined through the text labeling and implicit template
alignment of Section 2.2. We then let

cq(i, j) = arg max
µ2M

R
X

r=1

log
Pµ(J(xq

r + i, yq
r + j))

Pn(J(xq
r + i, yq

r + j))

for q = 1, . . . , Q, which is, by definition, Eqn. 5.
The proposed algorithm is simply coordinate-wise opti-

mization over z and ✓, which guarantees that the sequence
E(z1, ✓1), E(z2, ✓2) . . . is non-decreasing. Furthermore,
the sequence is guaranteed to converge due to our finite
(but large) domain. In practice, this happens in only a few
iterations.

It is worth noting that our strategy is different from the
usual EM scheme [4] for performing maximum likelihood
estimation of model parameters. To implement EM we
would need a probabilistic model for the graph transitions,
which would be easy to supply, but absent from our cur-
rent formulation. However, EM attempts to increase the
marginal data likelihood rather than the likelihood of the
optimal path. Thus, if we were to replace our parameter
estimation step by an iteration of EM, we still may end
up decreasing our objective function. That said, EM is
less greedy in its approach than our proposed algorithm,
which, in principle, seems like a good attribute. In prac-
tice, we doubt there would be any significant difference in
the performance of these two approaches.

3. EXPERIMENTS AND RESULTS

Table 1 describes the collection of scores used in our evalu-
ation, all obtained from the IMSLP website [1], consisting
of 10 scores from 6 different publishers. In our evaluation
we used about 20 pages from each score.

score IMSLP pages Publisherindex ID
1 24831 50-69 New York: Charles Foley
2 03631 2-21

Moscow: Muzgiz/Muzyka3 65460 2-18,
21,22,23

4 00569 2-19
Leipzig: Breitkopf & Härtel5 31875 2-21

6 01086 2-20
7 06307 2-21 Leipzig: Ernst Eulenburg8 00191 2-21
9 08535 2-21 Vienna: Universal Edition
10 07354 2-25 Berlin: Schlesinger

Table 1. Information about the scores.

Figure 3. Two kinds of regions for possible text positions.

Our OMR system begins by computing the locations of
the staves and the partition of staves into systems for each
page of the score. These systems constitute the input to our
system.

In all cases we use a graphical model based on the first
page of the score, allowing for any subsequence of the
named instruments, as in Figure 2. Several scores allow for
the collective labeling of the strings with a single text tag,
rather than an enumeration of instruments. For each g 2 G
(i.e. each instrument) we supply the appropriate patterns,
P (g) = {p1, . . . , pc}, by hand. Some instruments have
two patterns, though most have only one. For all of the
instruments and scores in our test set we only consider pat-
terns where pl = 0 meaning that the text must lie in the
middle of the collection of staves associated with an instru-
ment. Referring to Figure 3, this means we search in the
text in region 1 when pk = 1, and region 2 when pk = 2,
with obvious extensions to larger staff groupings. All of
our test scores place instrument names in the left margin,
though our approach easily accommodates other possible
positions. We also supply the text strings, pa, and the num-
ber of staves for each pattern, pk. Even with instruments
having two patterns, both used the same text (pa) in our
models.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 615

score number number of errors
index of staves ✓0 ✓1 ✓2 ✓3

1 399 19 4 2 1
2 395 13 0
3 317 21 10 4 0
4 331 44 0
5 391 11 8 1
6 443 33 2 0
7 273 3 2 1 0
8 364 34 0
9 381 4 0

72 52 45 38
10 436 ✓4 ✓5 ✓6 ✓7

25 23 22 21

Table 2. Total number of staves and number of errors in
each iteration for each score.

3.1 ORIGINAL TEMPLATES

The character template set includes all the (case sensitive)
letters used in the instrument names of the 10 scores, in
addition to a comma, hyphen, period, and space, giving 34
characters in all. Each score uses a subset of this collection
in labeling instrument names. We create our original set
of templates, ✓0, by, for each character, randomly choos-
ing an example from one of the 10 scores and thresholding
the grey levels to choose probability models for each pixel.
This collection will be the initial configuration for all 10
scores before we begin the adaptation process. We sam-
pled from the test scores as a way of ensuring we could
find examples of all the required templates, and note that,
on average, only a tenth of these initial templates come
from any individual score. A better scheme might use an
omnifont model as our starting place.

We simultaneously estimate the staff labelings and the
trained collection of character templates, iterating the ap-
proach of Section 2.4 until the results converge. Table 2
lists the total number of staves assigned incorrect instru-
ment labels after each iteration of the algorithm, for each
of the 10 scores. As shown in the table, 7 scores correctly
labeled all the staves, 2 scores have only one labeling error,
while the 10th score has 21 out of 436 staff labeling errors
(4.82%), which is still low. The algorithm converged on
all scores within 4 iterations, except for the the score con-
taining the most errors, which used 8 iterations, as shown
in the table.

As the original set of templates, ✓0, comes from a vari-
ety of different scores with different fonts and sizes, they
don’t match any particular score font well. Our hope is
that, through our iterative training process, the templates
will adapt to the current score. Figure 4 gives an exam-
ple from Score 6 with the original and learned characters
drawn on top of the score image at their estimated loca-
tions. Clearly the original templates matched the actual
font poorly, especially in size, as can be seen in the mid-
dle panel of the figure. The right panel of the figure shows
the analogous result after two iterations of recognition and

Figure 4. Comparing templates before (middle) and after
(right) training. The instrument names in the actual score
(left) are “Fl.”, “Ob.” and “Klar.” in order.

retraining. After this process most of the character tem-
plates match the font better, though not all of them. Due
to the greedy nature of our algorithm it is necessary that
our original templates, hence the original recognition and
match, are close enough to pull the result into the correct
local optimum. In this case the ‘O’ and ‘b’ in “Ob.” were
misspecified and consistently matched poorly in the first
iteration. As these characters don’t appear in other instru-
ment names, there was no counteracting force helping to
guide the models toward reasonable results, thus the out-
come of the figure.

Although some of the trained results don’t look partic-
ularly good, Table 2 shows striking improvement in staff
labeling due to training, showing monotonic decrease in
the number of errors. Here is where the strength of the
graphical model comes into play. Even with the poorly
specified character models for “Ob.”, this is the only in-
strument name that can come between “Fl.” and “Klar.”
for which we have good models. This leads to the correct
labeling in spite of the uneven training.

There are three scores having errors in our experiments.
The one error in Score 1 is caused by unrelated text appear-
ing in the left margin which was recognized as an incorrect
instrument name. The one error in Score 5 mistakes “Vc.”
as “Vla.” with “l” and “a” squeezed together. This hap-
pens in a three-staff system, thus the constraints imposed
by graph ordering are less potent.

For Score 10, the errors are caused by badly trained
templates. 8 out of 19 templates used in this score con-
verged into unrecognizable glyphs. We suppose this hap-
pens because the font size of this score is obviously smaller
than other scores and thus harder to adapt to. But surpris-
ingly, this score still has reasonably accurate instrument
labeling, which is our objective.

3.2 DROPPING THE GRAPHICAL CONSTRAINT

For comparison we ran a similar experiment without the or-
dering constraint imposed by the graph, thus allowing any
group of staves to be labeled with any instrument. In this
case all instrument orders are possible, even allowing for
repetition of instruments. The results are shown in Table 3.
After four iterations, the number of errors doesn’t seem to

616 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015

score number number of errors
index of staves ✓0 ✓1 ✓2 ✓3

5 391 78 71 69 73
6 443 59 49 48 57
8 364 102 91 103 103

Table 3. Total number of staves and number of errors in
each iteration for 3 scores without the graphical ordering
constraint.

decrease. This is because many of the trained templates be-
come unrecognizable — some of them become pure white
space! Without the strong ordering constraint there is less
gravitational pull toward the desired optimum, while we
imagine the joint space of interpretations and models to be
filled with local optima.

3.3 WORD MODELS VS. CHARACTER MODELS

Out of curiosity, we modified our model to view the in-
strument names as single rigid glyphs rather than character
based models that allow for some flexibility in the place-
ment of individual characters. Our experiments (not pre-
sented here) show that this approach works well when the
actual document is consistent with the assumption we are
making, but fails badly otherwise. Given the wide variety
of typographical conventions encountered in music scores,
we don’t recommend this approach.

4. CONCLUSIONS

We have presented a method of interpreting the instrument
name labels, which are a common way of labeling staves in
large ensemble scores, showing nearly perfect recognition
in all but one of the test scores we examined. The unusual
aspect of our approach is that we simultaneoulsy estimate
both the labels we seek, as well as the text font used for
the score. The experiments show convincing evidence that
the strong assumption we make regarding possible label-
ings is powerful in practice and largely responsible for the
reliability of the approach. In future work we will consider
initial text models trained from a large variety of scores,
as well as feature based, rather than template based, data
models.

5. REFERENCES

[1] IMSLP website. http://imslp.org.

[2] Henry S Baird and George Nagy. Self-correcting 100-
font classifier. In IS&T/SPIE 1994 International Sym-
posium on Electronic Imaging: Science and Technol-
ogy, pages 106–115. International Society for Optics
and Photonics, 1994.

[3] Issam Bazzi, Richard Schwartz, and John Makhoul.
An omnifont open-vocabulary OCR system for english
and arabic. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 21(6):495–504, 1999.

[4] Jeff A Bilmes et al. A gentle tutorial of the EM algo-
rithm and its application to parameter estimation for
gaussian mixture and hidden markov models. Interna-
tional Computer Science Institute, 4(510):126, 1998.

[5] Gary E Kopec and Mauricio Lomelin. Document im-
age decoding approach to character template estima-
tion. In Image Processing, 1996. Proceedings., Inter-
national Conference on, volume 1, pages 213–216.
IEEE, 1996.

[6] Gary E Kopec and Mauricio Lomelin. Document-
specific character template estimation. In Electronic
Imaging: Science & Technology, pages 14–26. Inter-
national Society for Optics and Photonics, 1996.

[7] Ayatullah Faruk Mollah, Nabamita Majumder, Sub-
hadip Basu, and Mita Nasipuri. Design of an optical
character recognition system for camera-based hand-
held devices. CoRR, abs/1109.3317, 2011.

[8] Shunji Mori, Ching Y Suen, and Kazuhiko Yamamoto.
Historical review of OCR research and development.
Proceedings of the IEEE, 80(7):1029–1058, 1992.

[9] Christopher Raphael and Jingya Wang. New ap-
proaches to optical music recognition. In ISMIR, pages
305–310, 2011.

[10] G. Read. Music Notation: A Manual of Modern Prac-
tice.

[11] Zheng Song, Qiang Chen, Zhongyang Huang, Yang
Hua, and Shuicheng Yan. Contextualizing object de-
tection and classification. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on,
pages 1585–1592. IEEE, 2011.

[12] Verena Thomas, Christian Wagner, and Michael
Clausen. OCR based post processing of OMR for the
recovery of transposing instruments in complex or-
chestral scores. In Proceedings of the 12th Interna-
tional Society for Music Information Retrieval, pages
411–416, 2011.

[13] Frank Wessel and Hermann Ney. Unsupervised train-
ing of acoustic models for large vocabulary continu-
ous speech recognition. Speech and Audio Processing,
IEEE Transactions on, 13(1):23–31, 2005.

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 617

