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ABSTRACT

Probabilistic methodologies provide successful tools for
automated music composition, such as melodic harmoni-
sation, since they capture statistical rules of the music id-
ioms they are trained with. Proposed methodologies fo-
cus either on specific aspects of harmony (e.g., generat-
ing abstract chord symbols) or incorporate the determina-
tion of many harmonic characteristics in a single proba-
bilistic generative scheme. This paper addresses the prob-
lem of assigning voice leading focussing on the bass voice,
i.e., the realisation of the actual bass pitches of an abstract
chord sequence, under the scope of a modular melodic har-
monisation system where different aspects of the genera-
tive process are arranged by different modules. The pro-
posed technique defines the motion of the bass voice ac-
cording to several statistical aspects: melody voice con-
tour, previous bass line motion, bass-to-melody distances
and statistics regarding inversions and note doublings in
chords. The aforementioned aspects of voicing are mod-
ular, i.e., each criterion is defined by independent statisti-
cal learning tools. Experimental results on diverse music
idioms indicate that the proposed methodology captures
efficiently the voice layout characteristics of each idiom,
whilst additional analyses on separate statistically trained
modules reveal distinctive aspects of each idiom. The pro-
posed system is designed to be flexible and adaptable (for
instance, for the generation of novel blended melodic har-
monisations).

1. INTRODUCTION

In melodic harmonisation systems harmony is expressed
as a sequence of chords, but an important aspect is also
the relative placement of the notes that comprise chord se-
quence, which is known as the voice leading problem. As
in many aspects of harmony, in voice leading there are cer-
tain sets of diverse conventions for different music idioms
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that need to be taken under consideration. Such rules have
been hand-coded by music experts for the development of
rule-based melodic harmonisation systems (see [15] for a
review of such methods). Similarly, such hand-coded rules
have been utilised as fitness criteria for evolutionary sys-
tems (see [4, 18] among others). However, the specifica-
tion of rules that are embedded within these systems are
very complex with many variations and exceptions. Ad-
ditionally, the formalisation of such rules has not yet been
approached for musical idioms that have not hitherto been
thoroughly studied. Most of the works so far, have focused
on either finding a satisfactory chord sequence for a given
melody (performed by the soprano voice), or on complet-
ing the remaining three voices that constitute the harmony
for a given melodic or bass line (known as the “four-part
harmony” task) [5, 14, 18, 24]. Experimental evaluation
of methodologies that utilise statistical machine learning
techniques demonstrated that an efficient way to harmonise
a melody is to add the bass line first [22]. To this end, the
motivation behind the work presented in the paper at hand
is further enforced by the findings in the aforementioned
paper.

This study, is based on the following underlying melodic
harmonisation strategy: 1) analyse a give melody in terms
of segmentation, scale/pitch hierarchy, harmonic/embellish-
ment notes, harmonic rhythm (this can be achieved auto-
matically or, at this stage, manually), 2) assign abstract
chords to the given melody from learned first-order chord
transition tables, 3) select concrete pitches from abstract
chords for the bass-line based on learned melody-to-bass-
line movement (discussed in this paper), 4) select concrete
pitches for inner voices (steady or varied number of notes
per chord). This scheme would seem to be adequate for a
large body of non-monophonic music, but not all. For in-
stance, even the mere concept of chords (with inversions)
is rather controversial in European music before the mid-
eighteenth century and in other traditional polyphonic mu-
sics; more so, the idea of melody with chords and func-
tional bass line is untenable in such music.

However, as the aim of this project is not individual
fully-fleshed harmonic models of different idioms, but rather
a general-as-possible method to ‘extract’ basic components
of harmonic content in various harmonic textures, it is pos-
sible to employ the above strategy in any non-monophonic
texture. It is known that outer voices tend to stand out per-
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ceptually (e.g. in [6]); additionally, note simultaneities can
be encoded in a more abstract manner (e.g., GCT represen-
tation). Employing a computational methodology based
on such generic concepts, can enable the construction of a
‘generic’ melodic harmoniser that can use harmonic com-
ponents from various idioms, without claiming to emulate
the idioms themselves.

This paper proposes a modular methodology for deter-
mining the bass voice leading, to be integrated in a melodic
harmonisation system under development. The effective-
ness of the proposed methodology that performs bass voice
leading according to statistics describing the overall voic-
ing layout (i.e. arrangement of pitches) of given chord se-
quences in the General Chord Type (GCT) [2] represen-
tation is examined. This methodology is extending the
bass voice leading scheme presented in [12], by harnessing
voicing layout information through additional voicing lay-
out statistical, independently trained, modules concerning
the chords that constitute the harmonisation. Those charac-
teristics include distributions on the distance between the
bass and the melody voice and statistics regarding the in-
versions and doublings of the chords in the given chord
sequence. By training these modules on multiple diverse
idioms, a deeper study is pursued within the context of
the COINVENT project [20], which examines the devel-
opment of a computationally feasible model for conceptual
blending. Thereby, blending different modules from dif-
ferent idioms will expectedly lead to harmonisations with
blended characteristics.

2. PROBABILISTIC MODULAR BASS VOICE
LEADING

Given the fact that a melody is available in systems that
perform melodic harmonisation, the methodology presented
in [12] derives information from the melody voice in or-
der to calculate the most probable movement for the bass
voice, named as the bass voice leading (BVL). This ap-
proach, in combination with information regarding the voice
layout (Section 2.2), is incorporated into a larger mod-
ular probabilistic framework. In the integrated modular
melodic harmonisation system under development, the se-
lection of chords (in GCT form [2]) is performed by an-
other probabilistic module [10] not discussed in this pa-
per. Therefore, the herein discussed modules have been
developed to provide indications about possible movement
of the bass as well as to define specific notes for the bass
voice, providing a first step to complete information re-
garding specific voices from the chords provided by the
chord selection module.

To this end, both the bass and the melody voice steps
are represented by abstract notions that describe general
quantitative information on pitch direction. In [12] sev-
eral scenarios for voice contour refinement were exam-
ined, providing different levels of accuracy for describ-
ing the bass motion in different datasets. In the paper at
hand, the selected methodology is the one with the great-
est level of detail, i.e. the scenario where the melody and
bass note changes are divided in seven steps, as exhibited

in Table 1. While different range schemes could have been
selected, the rationale behind the utilised one is that the
perfect fourth is considered as a small leap and the perfect
fifth as a big leap.

refinement short name range (semitones)
steady voice st v x = 0

step up s up 1 6 x 6 2
step down s down �2 6 x 6 �1

small leap up sl up 3 6 x 6 5
small leap down sl down �5 6 x 6 �3

big leap up bl up 5 < x
big leap down bl down x < �5

Table 1. The pitch step and direction refinement scale con-
sidered for the development of the utilised bass voice lead-
ing system.

2.1 The hidden Markov model module

The primary module for defining bass motion functions
under the first order Markov assumption in combination
with the fact that it depends on the piece’s melody. To
this end, the next step of the bass voice contour (bass di-
rection descriptor) is dependent on the previous one and
on the current melody contour (melody direction descrip-
tor). This assumption, based on the fact that a probabilistic
framework is required for the harmonisation system, mo-
tivates the utilisation of the hidden Markov model (HMM)
methodology. According to the HMM methodology, a se-
quence of observed elements (melody direction descrip-
tor) is given and a sequence of (hidden) states (bass di-
rection descriptor) is produced as output. The “order” of
the HMM utilised in the presented work, i.e. how many
previous steps are considered to define the current, is 1.
In melodic harmonisation literature different orders have
been examined, e.g. [19], where it is shown that order 1
might not be the most efficient. In the context of the pre-
sented work, this investigation is part of future research.

The HMM training process extracts four probability val-
ues for each bass motion: 1) to begin the sequence, 2) to
end the sequence, 3) to follow another bass motion (transi-
tion probability) and 4) to be present given a melody step
(observation probability). The probabilities extracted by
this process for each possible next bass motion is denoted
with a vector of probabilities ~pm (one probability for each
possible bass motion step) and will be utilised in the prod-
uct of probabilities from all modules in Equation 1.

2.2 The voicing layout information module

In order to assign a bass voice to a chord, additional in-
formation is required that is relevant to the chords of the
harmonisation. The voicing layout statistics that are con-
sidered for the modules of the presented methodology are
the inversions and the doublings of chords. The inver-
sions of a chord play an important role in determining how
eligible is a chord’s pitch class to be a bass note, while
the doublings indicate if additional “room” between the
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bass and the melody is required to fit doublings of spe-
cific pitch classes of the chords. For instance, the chord
with pitch classes [0, 4, 7] has three inversions, with each
one having a bass note that corresponds to a different pitch
class, e.g. [60, 64, 67], [64, 67, 72] or [67, 72, 76], while,
by considering the inversion prototype [60, 64, 67] of the
[0, 4, 7] chord, there are four scenarios of single note dou-
blings: [60, 64, 67, 72], [60, 64, 67, 76], [60, 64, 67, 79] and
[60, 64, 67] (no-doubling scenario).

The voicing layout module of the harmonic learning
system regarding chord inversions and note doublings, is
trained through extracting relevant information from every
(GCT) chord in pieces from a music idiom. Specifically,
consider a GCT chord in the form g = [r, ~t], where r is
the root of the chord in relation to the root of the key and ~t
is the vector describing the type of the chord. For instance,
the I chord in any key is expressed as g = [0, [0, 4, 7]] in
the GCT representation, where 4 denotes the major third
and 7 the perfect fifth. This GCT type is a set of integers,
~t = [t1, t2, . . . , tn], where n is the number of type ele-
ments, that can be directly mapped to relative pitch classes
(PCs). The statistics concerning chord inversion are ex-
pressed as the probability that each type element in g is the
bass note of the chord, or

pi = (v1, v2, . . . , vn),

where vi, i 2 {1, 2, . . . , n}, is the probability that the ele-
ment ti is the bass note. Similarly, probabilities about note
doublings are expressed through a probability vector

pd = (d1, d2, . . . , dn, s),

where di, i 2 {1, 2, . . . , n}, is the probability that the pitch
class ti gets doubled, while there is an additional value,
s, that describes the probability that there is no doubling
of pitch classes. Table 2 exhibits the extracted statistics
for inversions and note doublings for the most often met
chords of the major Bach Chorales.

2.3 The melody-to-bass distance module

An important aspect of voice layout has to do with abso-
lute range of chords in the chord sequences of an idiom,
i.e. the absolute difference between the bass voice and the
melody. Different idioms encompass different constraints
and characteristics concerning this voicing layout aspect,
according to several factors, e.g., the utilised instruments’
range. The proposed methodology addresses this voicing
layout aspect by capturing statistics about the region that
the bass voice is allowed to move according to the melody.
Therefore, histograms are extracted that describe the fre-
quency of all melody-to-bass intervals found in a training
dataset, as illustrated by the bars in the example in Fig-
ure 1.

However, interval-related information in the discussed
context are used only as approximate indicators about the
expected pitch height of the bass voice, while the exact
intervals (bars in Figure 1) are referring to specific inter-
vals and, additionally, they are scale-sensitive, e.g. differ-

Figure 1. Histogram of pitch interval distances between
melody and bass for a set of major Bach Chorales.

ent scales potentially produce different distributions of me-
lody-to-bass intervals. Therefore, the “expected” bass pitch
height is approximated by a normal distribution that is ad-
justed to fit the distribution of the melody-to-bass intervals
observed in the dataset. Figure 1 illustrates the normal dis-
tribution that is approximates the distributions of intervals
for a collection of major Bach Chorales.

2.4 Combining all modules

The probabilities gathered from all the modules described
hitherto are combined into a single value, computed as the
product of all the probabilities from all the incorporated
modules. To this end, for each GCT chord (C) in the com-
position every possible scenario of chord inversions, dou-
blings and bass note pitch height, denoted by an index x,
is generated. For each scenario (x), the product (bx(C))
of all the modules discussed so far is computed, i.e. the
bass motion (pmx

(C)), the inversions (pix
(C)), doublings

(pdx(C)) and melody-to-bass interval phx(C):

bx(C) = pmx
(C) pix

(C) pdx
(C) phx

(C). (1)

Therefore, the best scenario (xbest) for the bass voice of
chord C is found by: xbest = arg maxx(bx(C)). The bass
note motion probability is obtained by the HMM module
analysed in Section 2.1 and it takes a value given by the
vector ~pm according to the bass step it leads to.

3. EXPERIMENTAL RESULTS

The aim of the experimental process is to evaluate whether
the proposed methodology efficiently captures the bass voice
leading according to several factors related to the voice lay-
out characteristics of each training idiom. Additionally, it
is examined whether the separate trained modules, which
constitute the overall system, statistically reveal aspects of
each idiom that are more distinctive. A collection of eight
datasets has been utilised for training and testing the capa-
bilities of the proposed methodology, exhibited in Table 3.

These pieces are included in a music database with many
diverse music idioms and it is developed for the purposes
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GCT chord relative PC inversions doublings
[0, [0, 4, 7]] [0, 4, 7] [0.74, 0.23, 0.02] [0.68, 0.15, 0.08, 0.09]
[7, [0, 4, 7]] [7, 11, 2] [0.78, 0.22, 0.00] [0.83, 0.02, 0.09, 0.06]
[5, [0, 4, 7]] [5, 9, 0] [0.65, 0.34, 0.01] [0.46, 0.30, 0.11, 0.13]

Table 2. Probabilities for chord inversion (pi) and note doublings (pd) in the three most frequently used chords in the major
Chorales of Bach.

Name (number) Description
Bach Chorales (35) a set of Bach chorales

Beatles (10) set of songs from the band Beatles
Epirus (29) traditional polyphonic songs from

Medieval (12) fauxbourdon and organum pieces
Modal chorales (34) 15th-16th century modal chorales

Rembetika (22) folk Greek songs
Stravinsky (10) pieces composed by Igor Stravinsky

Tango (24) pieces of folk tango songs

Table 3. Dataset description.

of the COINVENT project. For the presented experimen-
tal results, each idiom set includes from around 50 to 150
phrases. The Bach Chorales have been extensively utilised
in automatic probabilistic melodic harmonisation [1, 7, 13,
16], while the polyphonic songs of Epirus [9,11] and Rem-
betika [17] constitute datasets that have hardly been used
in studies.

3.1 Cross-entropies for training and testing in all
idiom combinations

The cross-entropy tests include the statistical modules that
are independent of the GCT chords, i.e. HMM model and
the melody-to-bass distance fitted distribution (will hereby
be symbolised as mbd). Additionally, to examine the ef-
fect of the transition and the observation probabilities, the
probabilities related to transitions of the bass (states transi-
tions and will hereby be symbolised as tr) and the melody
voice (observation transitions and will hereby be symbol-
ised as mel) will be examined separately. The statisti-
cal combinations examined during the experimental eval-
uation process are: 1) the HMM model and the melody-
to-bass distance fitted distribution probabilities (M all), 2)
only the bass voice transition probabilities from the HMM
(M tr), 3) only the melody observation probabilities from
the HMM (Mmel) and 4) only the Melody-to-bass distance
distributions (Mmbd).

Each idiom’s dataset is divided in two subsets, a training
and a testing subset, with a proportion of 90% to 10% of
the entire idiom’s pieces. The training subset of an idiom
X is utilised to train the aforementioned modules, form-
ing the trained model MX , while the testing subset of the
same idiom will be hereby denoted as DX . For instance,
the HMM trained with the Bach Chorales will be symbol-
ised as MBach while its testing pieces will be symbolised
as DBach. The evaluation of whether a model MX predicts
a subset DX better than a subset DY is achieved through
the cross-entropy measure. The measure of cross-entropy
is utilised to provide an entropy value for a sequence from
a dataset, {Si, i 2 {1, 2, . . . , n}} 2 DX , according to the

context of each sequence element, Si, denoted as Ci, as
evaluated by a model MY . The value of cross-entropy un-
der this formalisation is given by

� 1

n

n
X

1

log PMY
(Si, Ci,MY

), (2)

where PMY
(Si, Ci,MY

) is the probability value according
to the examined scenarios of probabilities.

By comparing the cross-entropy values of a sequence X
as predicted by two models, DX and DY , we can assume
which model predicts S better: the model that produces the
smaller cross entropy value [8]. Smaller cross entropy val-
ues indicate that the elements of the sequence S “move on
a path” with greater probability values. Tables 4 exhibits
the cross-entropy values produced by the proposed model
for the examined scenarios. The presented values are av-
erages across 100 repetitions of the experimental process,
with different random divisions in training and testing sub-
sets (preserving a ratio of 90%-10% respectively for all
repetitions). In every repetition the average cross entropy
of all the testing sequences is calculated. The effective-
ness of the combined proposed modules is indicated by the
fact that most of the minimum values per row are on the
main diagonal of the upper part of the matrix, i.e. where
model M all

X predicts DX better than any other DY . A 10-
fold cross-validation routine was also tested for splitting
the dataset, however, replications of the experiment where
different pieces in training and testing sets were used, gave
considerably different results. The utilised experimental
setup was providing similar results in several replications
of the experiment.

It is evident that each module isolated does not produce
lower values in the diagonal. Among the clearest isolated
characteristics is the melody observations part of the HMM
(Mmel), where 5 out of 8 diagonal elements are the lowest
in their row. Thereby, these results indicate that the com-
bination of all modules is a vital part for achieving better
results.

3.2 Diversity in inversions and doublings of GCT
chords

A straightforward comparison in statistics related to inver-
sions and doublings between GCTs of different idioms is
not possible for all idioms and all GCTs, since this infor-
mation is harnessed on GCT sets that are in many cases
different for different idioms. The differences in character-
istics about voicing layout between different sets of GCTs
that could be envisaged, relate to the diversity of the voic-
ing layout scenarios that are used across different idioms.
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DBach DBeattles DEpirus DMedieval DModal DRembetika DStravinsky DTango

M all
Bach 7.17 11.07 15.75 10.79 7.41 9.77 11.86 8.88

M all
Beattles 9.75 7.82 15.97 14.86 9.77 8.27 7.64 9.01

M all
Epirus 16.64 19.62 6.99 10.54 13.11 14.30 16.11 16.46

M all
Medieval 10.96 17.56 7.68 7.47 8.49 12.46 16.18 12.63

M all
Modal 9.27 15.94 15.04 10.96 8.39 10.89 15.32 10.72

M all
Rembetika 8.73 8.56 13.65 11.79 8.22 7.11 7.80 8.29

M all
Stravinsky 14.19 10.82 17.45 19.88 15.84 10.99 9.76 13.88

M all
Tango 8.27 8.78 14.62 11.33 7.98 7.62 9.35 7.70

M tr
Bach 2.09 2.61 3.16 2.25 2.24 2.99 2.97 2.62

M tr
Beattles 3.51 2.33 2.47 3.30 2.88 1.82 2.28 2.20

M tr
Epirus 5.39 3.17 2.04 4.90 4.31 2.06 2.64 3.78

M tr
Medieval 2.73 2.92 1.97 2.33 2.33 2.49 2.74 3.11

M tr
Modal 2.87 2.92 2.82 2.41 3.32 2.79 2.73 3.07

M tr
Rembetika 4.11 2.66 1.90 3.53 3.21 1.67 1.88 2.62

M tr
Stravinsky 5.44 3.98 2.51 4.51 4.73 2.63 3.50 4.50

M tr
Tango 3.11 2.16 2.82 2.98 3.02 1.88 2.55 2.12

Mmel
Bach 1.79 2.14 2.28 1.95 1.85 2.34 2.44 2.15

Mmel
Beattles 2.34 1.92 2.09 2.26 1.93 1.65 1.87 1.86

Mmel
Epirus 2.72 2.43 1.42 2.21 2.43 1.72 1.74 2.59

Mmel
Medieval 2.54 3.32 2.15 2.13 2.50 2.36 2.51 3.04

Mmel
Modal 2.68 2.60 2.57 2.64 2.36 2.12 2.55 2.59

Mmel
Rembetika 2.81 2.13 1.86 2.39 2.20 1.37 2.17 2.00

Mmel
Stravinsky 3.77 3.12 2.29 3.85 3.39 2.83 2.53 3.77

Mmel
Tango 2.33 1.86 1.94 2.36 1.90 1.48 2.17 1.72

Mmbd
Bach 3.58 6.51 10.50 6.77 3.55 4.45 5.65 4.25

Mmbd
Beattles 4.90 4.24 12.17 10.13 5.63 4.72 3.90 5.38

Mmbd
Epirus 9.03 14.89 3.51 4.14 6.83 10.31 12.04 10.34

Mmbd
Medieval 6.10 13.05 3.77 3.93 4.57 7.72 10.82 7.15

Mmbd
Modal 4.44 11.53 10.35 6.48 3.47 6.18 9.70 5.63

Mmbd
Rembetika 3.79 4.80 10.59 6.80 3.92 4.11 4.32 4.20

Mmbd
Stravinsky 5.87 4.56 12.91 12.08 8.00 6.18 4.67 6.73

Mmbd
Tango 3.64 5.35 10.38 6.56 3.70 4.12 4.78 4.19

Table 4. Mean values of cross-entropies for all pairs of datasets, for all the combination of all probabilities, as well as in
isolation concerning previous bass motion, melody motion and bass-to-melody distance.

Along these lines, the question would be: are there more
diverse chord expressions regarding inversions and dou-
blings – regardless of which chords (GCTs) – in the chorales
of Bach, than in the modal chorales? The diversity in a dis-
crete probability distribution (like the ones displayed in the
examples of Table 2) is measured by the Shannon informa-
tion entropy [21] (SIE). The SIE reflects the diversity in
possibilities described by discrete probability distribution,
with higher SIE values indicating a more random distribu-
tion with more diverse / less expectable outcomes. There-
fore, by measuring the SIE values of all GCTs and com-
paring them for every pair of idioms, it can be concluded
whether some idioms have richer possibilities for the voic-
ing layouts of chords than others.

Table 5 exhibits the results of a test in the statistical
significance in differences between the SIE values in ev-
ery pair of idioms. The upper-diagonal elements concern
inversions, while lower-diagonal elements doublings. A
value of +1 indicates that the GCTs in the idiom of the row
are statistically significantly more diverse in their voicing
layout – according to the mean SIE values – than the ones
in the idiom of the column. A �1 value indicates the op-
posite, while a 0 value indicates no statistically significant

difference. The statistical significance is measured through
a two–sided Wilcoxon [23] rank sum test, which is applied
on the SIE values of all GCT voicing layout distributions
for every idiom. The statistical significance test in statistics
related to voice layout reveal that few datasets are signifi-
cantly superior or inferior regarding their diversity.

3.3 Example compositions

The proposed bass voice leading methodology was utilised
in an “off-line” mode to produce two examples. The term
“off-line” indicates the fact that the system was used to
generate a single description for the bass voice leading on a
given set of chords (in GCT representation [2] produced by
a probabilistic chord-generation model [10]). This means
that if no inversion of the predetermined chord can satisfy
the requirements of the bass voice leading, then the system
simply selected the most probable inversion of this chord,
regardless of the bass voice leading indication. The bass
voice for the generated examples was selected using the
argmax function mentioned in Section 2.4, which allows
the reflection of some typical idiom characteristics, even
though such an approach does not necessarily guaranty in-
terestingness [3] (since the most “expected” scenario is fol-
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SBach SBeattles SEpirus SMedieval SModal SRembetika SStravinsky STango

SBach 0 1 1 �1 1 1 1 1
SBeattles 0 0 0 �1 0 0 0 0
SEpirus 0 0 0 �1 0 0 0 0
SMedieval �1 �1 �1 0 1 1 1 1
SModal 0 0 0 1 0 1 1 0
SRembetika 0 �1 0 1 0 0 0 0
SStravinsky 0 0 1 0 1 1 0 0
STango 0 0 0 1 0 0 0 0

Table 5. Statistical significance of differences in the diversity of inversions (upper diagonal) and doublings (lower diago-
nal). Statistically significant superiority of diversity in the row dataset is exhibited with a +1, of the column dataset with
�1, while 0 indicates no statistical significance in diversity differences.

lowed). The intermediate voices where manually adjusted
by a music expert.

The presented examples (Figure 2) include two alterna-
tive harmonisations of a Bach Chorale melody with both
the chord generation and the bass voice leading systems
trained on sets of (a) the Bach Chorales and (b) polyphonic
songs from Epirus. In the case of the Bach chorale, the sys-
tem made erroneous bass voice assignments in the second
bar that create consecutive anti-parallel octaves between
the outer voices (due to the chord incompatibility problem
discussed above) 1 . The harmonisation in the style of the
polyphonic songs from Epirus indeed preserves an impor-
tant aspect of these pieces: the drone note.

(a) Bach Chorale style

(b) Polyphonic Epirus songs style

Figure 2. Harmonisation examples in two different styles.
Chord sequences in the GCT representation were previ-
ously produced by another probabilistic system.

4. CONCLUSIONS

This paper presented a modular methodology for determin-
ing the bass voice leading in automated melodic harmoni-
sation given a melody voice and a sequence of chords. In
this work it is assumed that harmony is not solely the ex-
pression of a chord sequence, but also of harmonic move-
ment for all voices that comprise the harmonisation. The
presented work focuses on generating the bass voice on a
given sequence of chords by utilising information from the

1 Another voice-leading issue occurs at the first beat of the 3rd bar,
where the D in the 2nd voice is introduced as unprepared accented disso-
nance. Note that the parenthesised pitches in the 3rd voice (bar 2) were
introduced manually (not by the system) to create imitation.

soprano /melody voice and other statistics that are related
to the layout of the chords, captured by different statisti-
cal modules. Specifically, a hidden Markov model (HMM)
is utilised to determine the most probable movement for
the bass voice (hidden states), by observing the soprano
movement (set of observations), while additional voicing
layout characteristics of the incorporated chords are con-
sidered that include distributions on the distance between
the bass and the melody voice and statistics regarding the
inversions and doublings of the chords in the given chord
sequence.

Experimental results evaluate that the learned statisti-
cal values from an idiom’s data are in most cases effi-
cient for capturing the idiom’s characteristics in compar-
ison to others. Additionally, similar tests were performed
for each statistical module of the model in isolation, a pro-
cess that revealed whether some characteristics of the ex-
amined idioms are more prominent than others. Further-
more, preliminary music examples indicate that the pro-
posed methodology indeed captures some of the most promi-
nent characteristics of the idioms it is being trained with,
despite the fact that further adjustments are required for its
application in melodic harmonisation.
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