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ABSTRACT

Structure in music is traditionally analyzed hierarchically:
large-scale sections can be sub-divided and refined down to
the short melodic ideas at the motivic level. However, typ-
ical algorithmic approaches to structural annotation pro-
duce flat temporal partitions of a track, which are com-
monly evaluated against a similarly flat, human-produced
annotation. Evaluating structure analysis as represented by
flat annotations effectively discards all notions of structural
depth in the evaluation. Although collections of hierar-
chical structure annotations have been recently published,
no techniques yet exist to measure an algorithm’s accuracy
against these rich structural annotations. In this work, we
propose a method to evaluate structural boundary detec-
tion with hierarchical annotations. The proposed method
transforms boundary detection into a ranking problem, and
facilitates the comparison of both flat and hierarchical an-
notations. We demonstrate the behavior of the proposed
method with various synthetic and real examples drawn
from the SALAMI dataset.

1. INTRODUCTION

The analysis of structure in music is a principal area of
interest to musicologists. Its goal is to identify and char-
acterize the form of a musical piece by investigating the
organization of its components, such as sections, phrases,
melodies, or recurring motives. Traditional analyses usu-
ally provide multiple levels of annotation (e.g., Schenke-
rian analysis), which suggest that music is structured hier-
archically [3], and can be modeled and analyzed using tree
representations [2].

In the music information research literature, music seg-
mentation (also known as music structure analysis) is a
task that aims to automatically identify the structure of a
musical recording [6]. The segmentation task has histori-
cally been geared toward algorithms which produce a flat
partition of the recording into disjoint segments. This for-
malization contrasts with our intuition that music exhibits
hierarchical structure [7,8]. Even though a large dataset of
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hierarchically-structured human annotations is now pub-
licly available [8], current evaluation methodologies are
defined only for flat segmentations. As a result, the dimen-
sion of depth has been practically ignored in the evaluation
of music segmentation algorithms.

In contrast to segmentation, the pattern discovery task
formulation allows output segments to overlap, and the an-
notation is not required to cover the entire piece. These two
tasks share multiple attributes [5], and steps toward a gen-
eral formulation musical structure analysis could be made
by accounting for depth in segmentation. Numerous met-
rics to evaluate pattern discovery have been proposed [1].
However, they are designed to capture repeated patterns,
and would be inappropriate for evaluating non-repeating,
hierarchical structure.

1.1 Our contributions

We present the Tree Measures (T -measures): an evaluation
framework designed to measure the accuracy of boundary
detection in hierarchical segmentations. The T -measures
infer frame-wise similarity from a hierarchical annotation,
and then compare the induced rank-orderings to assess
agreement between reference and estimated annotations.
The T -measures integrate information from all layers of
a hierarchy, trivially specialize to handle flat annotations,
and require no explicit correspondence between the depth
of the estimated and reference hierarchies. Thus, the T -
measures encourage the development of new algorithms
to produce richer representations of structure. Although
not all music can necessarily be modeled using trees [11],
we argue that tree-based evaluation represents a first step
toward moving beyond flat structure analyses. We demon-
strate the properties of T -measures with multiple synthetic,
human, and algorithmic examples.

2. SEGMENT BOUNDARY EVALUATION

Segmentation algorithms are typically evaluated for two
distinct goals. The first goal, boundary detection, evalu-
ates the algorithm’s ability to detect the times of transitions
between segments. The second goal, structural grouping,
evaluates the labeling applied to the estimated segmenta-
tion, and thus quantifies the ability of an algorithm to detect
repeated forms, such as verses or refrains. In this paper, we
focus exclusively on the boundary detection task.

Boundary estimates are typically evaluated by precision
and recall [10]. Estimated and reference boundaries are
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matched within a specified tolerance window — typically
either 0.5 or 3 seconds — and the hit rate nh (number of
matches) is used to define precision and recall scores:

P ··= nh

ne
, R ··= nh

nr
, (1)

where ne and nr denote the number of boundaries in the
estimated and reference annotations, respectively. P and
R are typically combined into a single F -measure by com-
puting their harmonic mean.

Boundary detection has also been evaluated by devi-
ation [10]. This is done by measuring the median time
(absolute) differential between each reference boundary
and the nearest estimated boundary (R2E), and vice versa
(E2R). Boundary deviation is useful for quantifying the
temporal accuracy of a detection event. However, it can
be sensitive to the number of estimated boundaries.

2.1 The limitations of flat evaluation

The precision-recall paradigm has been critical to quanti-
fying improvements in segmentation algorithms, but it has
numerous limitations with hierarchical annotations. The
most obvious limitation is that both the reference and esti-
mated annotations must have flat structure. This is some-
times resolved by collecting multiple flat reference annota-
tions for each track, each corresponding to different levels
of analysis [8].

When only the estimation is flat, it is still not obvious
how to compute accuracy against multiple layers. Aggre-
gating reference boundaries across layers prior to evalua-
tion would imply that all boundaries are equally informa-
tive. However, high-level boundaries often convey more
information about the overall structure of the piece, but
their contribution to the total score may be diluted by the
abundance of low-level boundaries, which necessarily out-
number high-level boundaries in hierarchical annotations.

Flat evaluation followed by aggregation across layers
can be similarly problematic, since it discards the rela-
tional structure between layers in the reference annotation.
This can complicate interpretation of the scores by con-
flating inaccurate boundary detection with mismatch be-
tween the target levels of the estimate and reference anno-
tations [9].

Finally, the above strategies provide no means to di-
rectly compare two hierarchical annotations. While one
may imagine simple comparison strategies when both hi-
erarchies have a small number of layers with an obvious
layer-wise correspondence — e.g., SALAMI’s large- and
small-scale annotations — it is unclear how to proceed in
more general settings.

3. THE TREE MEASURES

In this section, we derive the tree measures for evaluating
multi-level segment boundary detection. The evaluation
is based on a reduction to ranking evaluation, which we
describe in detail below.

Figure 1: An example of a three-level hierarchical segmentation.
Frames i, j, and k are indicated along the x-axis, and their con-
taining segments are indicated within the figure, e.g., H(j, k).

3.1 Preliminaries

Let X denote a set of sample frames generated from the
track at some fixed resolution fr (e.g., 10Hz). 1 Let S de-
note a flat, temporally contiguous partition of X , and let
S(i) identify the segment containing the ith frame in X .
We will use the subscripts SR and SE to denote reference
and estimated annotations, respectively.

A hierarchical segmentation H is defined as a tree of
flat segmentations (S0, S1, . . . , Sd) where each layer is a
refinement of the preceding layer. 2 Let H(i, j) identify
the smallest (most refined) segment containing frames i
and j. We will denote precedence (containment) of seg-
ments by �: e.g., H(j, k) � H(i, k). Note that flat
segmentations are a special case of hierarchical segmen-
tations, where there are only two levels of segmentation,
and the first layer contains no boundaries.

As illustrated in Figure 1, hierarchical segmenta-
tions can be represented as tree structures. Here,
H(i, i), H(j, j) and H(k, k) denote the most specific seg-
ments containing frame i, j and k, respectively. From the
figure, we observe that H(j, k) identifies the least common
ancestor of frames j and k. We can generally infer mem-
bership and precedence relations from the hierarchy, e.g.,

j 2 H(j, j) � H(j, k) � H(i, j) = H(i, k). (2)

3.2 Flat segmentation and bipartite ranking

Segmentation evaluation can be reduced to a ranking eval-
uation problem as follows. Let q denote an arbitrary
frame, and let i and j denote any two frames such that
SR(q) = SR(i) and SR(q) 6= SR(j). In this case, i may
be considered relevant for q, and j is considered irrelevant.
This leads to the following per-frame recall metric:

f(q; SE , SR) ··=
X

i2SR(q)\{q},
j /2SR(q)

JSE(q) = SE(i) 6= SE(j)K
Zq

(3)

Zq ··= (|SR(q)| � 1) · (n � |SR(q)| + 1),

where J·K is the indicator function, n = |X| denotes the
total number of frames, and Zq counts the number of terms
in the summation. The score for frame q is the fraction of

1 Non-uniform samplings (e.g., beat- or onset-aligned samples) are
also easily accommodated.

2 A partition Si+1 is a refinement of partition Si if each member of
Si+1 is contained within exactly one member of Si.
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pairs (i, j) for which SE agrees with SR with respect to q.
Averaging over all q yields a mean recall score:

⇢(SE , SR) ··= 1

n

X

q

f(q; SE , SR). (4)

3.3 Hierarchies and partial ranking

Equation (3) is defined in terms of segment membership
equality, but it has a straightforward generalization to hier-
archical segmentations. If we restrict attention to a query
sample q, then H(q, ·) induces a partial ranking over the
remaining samples. Frames contained in H(q, q) are con-
sidered maximally relevant, followed by those in H(q, q)’s
immediate ancestor, and so on.

Rather than compare frames q, i, and j where
S(q) = S(i) 6= S(j), we can instead compare where
H(q, i) � H(q, j): i.e., the pair (q, i) merge deeper in
the hierarchy than do (q, j). This leads to the following
generalization of Equation (3):

g(q; HE , HR) ··=
X

(i,j),
i 6=q,

HR(q,i)�HR(q,j)

JHE(q, i) � HE(q, j)K
Zq

, (5)

where Zq is suitably modified to count the number of terms
in the summation. This definition is equivalent to Equa-
tion (3) for flat hierarchies, but it applies more generally to
hierarchies of arbitrary (and unequal) depth.

Just as in Equation (3), g can be viewed as a classifica-
tion accuracy of correctly predicting pairs (i, j) as positive
(q and i merge first) or negative (q and j merge first). Ties
(H(q, i) = H(q, j)) are precluded by the strict precedence
operator in the summation. Equation (5) can be alternately
be viewed as a generalized area under the curve (AUC)
over the partial ranking induced by the hierarchical seg-
mentation, where depth within the estimated hierarchy HE

plays the role of the detection threshold.
Averaging over q yields the tree-recall T -measure:

TR(HE , HR) ··= 1

n

X

q

g(q; HE , HR). (6)

The tree-precision metric TP (HE) is defined analogously
by swapping the roles of HE and HR:

TP (HE , HR) ··= TR(HR, HE). (7)

Intuitively, TR measures how many triplets generated by
the reference HR can be found in the estimate HE , while
TP computes the converse. The T -measures retain inter-
pretation as recall and precision scores, albeit at the level
of frame triplets rather than boundaries. Finally, an anal-
ogous F -measure TF can be defined in the usual way by
computing the harmonic mean of TP and TR.

3.4 Windowing in Time

The T -measures defined above capture the basic notion of
hierarchically nested, frame-level relevance, but they pose
three technical limitations. First, the score for each query

will generally depend on the track duration n, which makes
comparisons between tracks of differing length problem-
atic. Second, for large values of n (long tracks), Equa-
tion (5) can be dominated by trivial comparisons where j
lies far from q in time, i.e., |q� i| ⌧ |q� j|. Longer tracks
will produce inflated scores compared to shorter tracks,
simply by having more “easy” comparisons. Finally, the
calculation of Equation (6) can be expensive, taking O(n3)
time using a direct implementation.

To resolve these issues, we introduce a time window of
w seconds to both simplify the calculation of the metric
and normalize its range. This is achieved by restricting
the triples (q, i, j) in the summation such that i and j both
lie within a window of w seconds centered at q. Adding
this windowing property to equations (5, 6) yields the win-
dowed T -measures:

g(q; HE , HR, w) ··=
X

i,j2{x:|q�x|w/2}
i 6=q,

HR(q,i)�HR(q,j)

JHE(q, i) � HE(q, j)K
Zq(w)

,

(8)

TR(HE , HR; w) ··= 1

n

X

q

g(q; HE , HR, w), (9)

and Zq(w) is again modified to count the terms in the
summation. This reduces computational complexity from
O(n3) to O(nw2). Each query frame q now operates over
a bounded number of comparisons, so the windowed T -
measures are calibrated across tracks of different lengths.
This property is useful when compiling score statistics over
a test collection.

3.5 Transitive reduction

Just as Equation (5) can be dominated by long-range inter-
actions in the absence of windowing, deep hierarchies can
also pose a problem. To see this, consider the sequence
HR(q, i) � HR(q, j) � HR(q, k). Since the summation
in Equation (5) ranges over all precedence comparisons,
and i 2 HR(q, j), the triple (q, i, k) is double-counted.
Since segments grow in size at higher levels in the hierar-
chy, over-counting can dominate the evaluation.

To counteract this effect, the summation can be re-
stricted to include only direct precedence relations. This
is accomplished by comparing samples only from succes-
sive levels in the hierarchy, i.e., replacing the partial rank-
ing generated by q with its transitive reduction. This both
eliminates redundant comparisons and increases g’s effec-
tive range. We refer to the resulting metrics as reduced
T -measures.

4. SYNTHETIC EXAMPLES

In this section we discuss the behavior of the T -measures
by showing various synthetic examples, and comparing
them against other existing methods when possible. For
each example in this section, we illustrate the behavior
of our proposed metric under different window times w.
This section is subdivided by the types of annotations un-
der consideration.
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T -measures Hit Rate
w T

R

T
P

R P

0.5 0.40 1.00 0.40 1.00
3 0.40 1.00 0.40 1.00
15 0.39 0.53
30 0.69 0.50
1 0.80 0.50

Figure 2: Flat vs. flat boundaries (top), T -measures and bound-
ary detection (hit-rate) scores (bottom).

4.1 Flat vs. flat annotations

We first compare two flat boundary annotations to demon-
strate how the T -measures behave compared to standard
boundary detection. When both annotations are flat, the re-
duced T -measures behave identically to the full measures,
so we omit them from this section. The synthesized flat
boundaries are displayed on the top of Figure 2, and they
aim to capture a situation where an algorithm correctly de-
tects a subset of the reference boundaries.

The hit rate scores obtain a recall of 0.40 and a pre-
cision of 1.0, since all estimated boundaries are also in
the reference, but only two out of five boundaries were re-
trieved. 3 When w does not exceed the minimum segment
duration, the T -measures coincide exactly with the bound-
ary detection metrics. For larger w, TP decreases, while
TR increases as w approaches the track duration. The de-
pendency on w is further explored in Section 5.1.

To understand the relationship between TP and w, con-
sider the example (q, i, j) = (5, 15, 25). The estimation
considers i to be relevant for q (since they belong to the
segment [0, 20]), and j to be irrelevant for q. Meanwhile,
the reference considers both i and j to be equally irrelevant
for q, so this triple contributes 0 to the precision metric.
Note that this comparison is counted only when w is large
enough to span multiple segments.

In general, sensitivity to long-range interactions in-
creases with w. This illustrates how the window size de-
pends on the duration and scale of structure that the practi-
tioner wishes to capture.

4.2 Flat vs. hierarchical annotations

Here we present four examples of flat estimations against a
fixed hierarchical reference, but note that the reverse com-
parisons can be inferred by swapping TP and TR.

4.2.1 Large-scale and under-segmentation

Figure 3 illustrates a flat estimation corresponding to the
highest layer of a hierarchical reference. We report T -

3 The first and last boundaries (0 and 60s) mark the beginning and end
of the track, and since they are constant across all estimates, we suppress
them during the evaluation to avoid score inflation.

Reduced Full
w T

R

T
P

T
R

T
P

0.5 0.00 1.00 0.40 1.00
3 0.00 1.00 0.40 1.00
15 0.37 1.00 0.51 1.00
30 0.70 1.00 0.82 1.00
1 0.80 1.00 0.89 1.00

Figure 3: Hierarchical reference vs. flat (large-scale) estima-
tion (top) and T -measures (bottom). Reduced uses the transi-
tive reduction method of section 3.5, while Full uses comparisons
across all layers.

Reduced Full
w T

R

T
P

T
R

T
P

0.5 0.0 1.00 0.20 1.00
3 0.0 1.00 0.20 1.00
15 0.19 0.94 0.26 0.94
30 0.37 0.71 0.44 0.71
1 0.53 0.67 0.59 0.67

Figure 4: Hierarchical reference vs. flat under-segmentation
(top) and T -measures (bottom).

measures with and without the transitive reduction strategy
described in Section 3.5. The T -measures behave as ex-
pected: the tree-precision score TP is always 100%, since
the reference contains the estimation. We also observe the
general trend that full scores exceed reduced scores.

For small time windows (w  3), the full tree-recall
score is 40%, just as in the previous example. The reduced
recall scores in this case are 0 because no frame q in the
estimation has two frames i, j both within w  3 seconds
that merge within one layer of each-other in the reference.

Figure 4 illustrates an example of under-segmentation:
the estimation misses a high-level structural change at 20s.
Again, small w yields T -measures which coincide with
standard boundary detection metrics. Larger w increases
the tree-recall (and decreases precision) since only long-
range interactions are well represented in the estimation.

4.2.2 Small-scale and over-segmentation

Figure 5 illustrates an example comparable to Figure 3,
except that the estimation now corresponds to the bottom
layer of the reference annotation. Again, since the refer-
ence contains the estimation, precision is maximal for all
w. However, the reference provides strictly more informa-
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Reduced Full
w T

R

T
P

T
R

T
P

0.5 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00
15 0.63 1.00 0.76 1.00
30 0.30 1.00 0.59 1.00
1 0.20 1.00 0.55 1.00

Figure 5: Hierarchical reference vs. flat, small-scale estimation
(top) and T -measures (bottom).

Reduced Full
w T

R

T
P

T
R

T
P

0.5 1.00 0.56 1.0 0.56
3 0.98 0.56 0.98 0.56
15 0.46 0.86 0.53 0.86
30 0.22 0.92 0.40 0.92
1 0.13 0.94 0.37 0.94

Figure 6: Hierarchical reference vs. flat over-segmentation (top)
and T -measures (bottom).

tion: namely, it encodes structure over the low-level seg-
ments. The T -measures quantify the missing information
in the estimation When w exceeds the smallest segment
duration (10s), TR decreases. This information would be
obscured by independent, layer-wise boundary evaluation.

Similarly, Figure 6 illustrates an over-segmentation
where the estimation predicts more boundaries than the
deepest layer of the reference. Again, the TR decays when
the window captures multiple short segments. Unlike the
under-segmented example in Figure 4, long-range interac-
tions derived from HE are mostly satisfied by HR, so TP

increases rather than decreases.

4.3 Hierarchical vs. hierarchical

Figure 7 compares two different hierarchical segmenta-
tions. The estimation contains an additional high-level
layer, but is otherwise identical to the reference. At small
w, both T -measures agree perfectly, since the window is
not large enough to resolve differences. As w increases,
TP decreases as expected, since the estimation has found
an additional structural element not captured in the refer-
ence. The TR scores remain at 100% for all w.

Reduced Full
w T

R

T
P

T
R

T
P

0.5 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00
15 1.00 0.98 1.00 0.99
30 1.00 0.79 1.00 0.89
1 1.00 0.62 1.00 0.79

Figure 7: 2-layer vs. 3-layer hierarchical boundaries (top) and
T -measures scores (bottom).

Reduced Full
w T

R

T
P

T
R

T
P

0.5 0.76 0.77 0.81 0.79
3 0.95 0.95 0.96 0.93
15 0.75 0.75 0.80 0.84
30 0.62 0.83 0.71 0.89
1 0.57 0.96 0.68 0.98

Figure 8: Hierarchical annotations for SALAMI track #636 from
the two different human annotators. Top: annotations; bottom:
T -measures scores.

5. LARGE-SCALE EVALUATION

In this section, we apply the T -measures to quantify inter-
annotator agreement in the SALAMI corpus, and evaluate
the hierarchical predictions of the agglomerative clustering
method (OLDA) of McFee and Ellis [4].

5.1 Human annotator agreement

Figure 8 illustrates hierarchical annotations obtained from
two human annotators on one track in the SALAMI
dataset. While the two annotators tend to agree at the small
scale, they differ at the large scale. This is reflected in the
T -measures: at large w, the recall skews low because the
reference’s large-scale annotations are coarser than those
of the estimation.

To further investigate inter-annotator agreement, we
computed T -measure scores between hierarchical refer-
ence annotations for the 410 tracks in the SALAMI dataset
where two annotations are available and both mark the start
and end times of the song equally at both levels. To sim-
plify exposition, we summarize agreement by TF . Figure 9
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Figure 9: T
F

scores between human annotators for SALAMI
tracks over a range of window sizes w.

illustrates the distribution of per-track TF scores as a func-
tion of w. We observe that the score distribution is rela-
tively stable for w � 15. 4 The example in Figure 8 is gen-
erally representative of inter-annotator agreement, achiev-
ing TF = 0.75 at w = 15. The out-lying low scores tend
to be examples where one annotator ignored structure an-
notated by the other: e.g., in track #68, one annotator only
marked silence boundaries.

This analysis quantitatively substantiates prior obser-
vations that humans do not perfectly agree upon struc-
tural annotations [9], and suggests an accuracy ceiling near
70% for hierarchical annotation. Similarly, it suggests
that w = 15 provides a reasonable default value for the
SALAMI dataset. This setting is large enough to capture
multiple small-scale segments: in the tracks considered for
this evaluation, the median small-scale segment duration
was 6.66s, with a 95th percentile of 15.69s.

5.2 Annotator vs. algorithm

Finally, we evaluated the quality of hierarchical segmenta-
tions produced by OLDA [4]. 5 Figure 10 illustrates one
example output of OLDA and the resulting T -measures.
The reference provides two levels of segmentation (large
and small), while the estimation produces several layers
with generally large segments. For sufficiently large w, the
estimation achieves high recall and low precision. This be-
havior is typical of the OLDA method, which constructs
hierarchies in a bottom-up fashion by agglomerative clus-
tering, adding only a single boundary at each layer. Due
to the depth of the estimated boundaries, the full scores are
inflated compared to the reduced scores.

Figure 11 displays the TF score distribution for
OLDA, measured against annotator 1 on 726 tracks from
SALAMI. These results reveal a gap of around 30% be-
tween inter-annotator agreement (Figure 9) and the perfor-
mance of OLDA. This suggests that there is substantial
room for improvement in hierarchical boundary estimation
algorithms.

4 The analogous plots for T
P

and T
R

are omitted for brevity, but illus-
trate the same trend.

5 To the authors’ knowledge, this is the only published method for hi-
erarchical boundary detection.

Reduced Full
w T

R

T
P

T
R

T
P

0.5 0.14 1.00 0.28 0.55
3 0.20 1.00 0.34 0.72
15 0.62 0.56 0.66 0.70
30 0.76 0.53 0.80 0.58
1 0.90 0.16 0.93 0.42

Figure 10: Hierarchical reference annotation vs. OLDA on
SALAMI track #636. (top) and T -measures (bottom).

Figure 11: T
F

scores between OLDA and human reference an-
notations on the SALAMI dataset.

6. DISCUSSION AND CONCLUSIONS

The implementation of T -measures depends upon two crit-
ical parameters: the time window w, and whether to use the
reduced or full metrics. While the setting of w ultimately
depends upon the practitioner’s preference and character-
istics of the dataset, the results on SALAMI suggest that
w = 15 provides a reasonable balance between captur-
ing high-level structure and resilience to long-range inter-
actions. As illustrated in section 4.2.1, when w is large
enough to capture multiple short segments, the transitive
reduction approach can also be used to enhance the range
of the metrics while eliminating redundant comparisons.

In this paper, we focused only on the problem of eval-
uating estimated boundaries. In future work, we plan to
extend general ideas behind T -measures to other structural
annotation problems, such as segment label agreement.
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