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ABSTRACT

The General Chord Type (GCT) representation is ap-
propriate for encoding tone simultaneities in any harmonic
context (such as tonal, modal, jazz, octatonic, atonal). The
GCT allows the re-arrangement of the notes of a harmonic
sonority such that abstract idiom-specific types of chords
may be derived. This encoding is inspired by the standard
roman numeral chord type labelling and is, therefore, ideal
for hierarchic harmonic systems such as the tonal system
and its many variations; at the same time, it adjusts to any
other harmonic system such as post-tonal, atonal music, or
traditional polyphonic systems. In this paper the descrip-
tive potential of the GCT is assessed in the tonal idiom by
comparing GCT harmonic labels with human expert an-
notations (Kostka & Payne harmonic dataset). Addition-
ally, novel methods for grouping and clustering chords, ac-
cording to their GCT encoding and their functional role in
chord sequences, are introduced. The results of both har-
monic labelling and functional clustering indicate that the
GCT representation constitutes a suitable scheme for rep-
resenting effectively harmony in computational systems.

1. INTRODUCTION

Computational systems developed for harmonic analysis
and/or harmonic generation (e.g. melodic harmonisation),
rely on chord labelling schemes that are relevant and char-
acteristic of particular idioms [7, 10, 20, 21, 26]. There ex-
ist various typologies for encoding note simultaneities that
embody different levels of harmonic information/abstraction
and cover different harmonic idioms. For instance, some
commonly used chord notations in tonal music are the fol-
lowing: figured bass (pitch classes denoted above a bass
note – no concept of ‘chord’), popular music guitar style
notation or jazz notation (absolute chord), roman numeral
encoding (relative chord to a key) [18] - see, Harte’s [12]
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formal tonal chord symbol representation. For atonal and
other non-tonal systems, pitch-class set theoretic encod-
ings [8] may be employed. There exists no single chord
encoding scheme that can be applied to all harmonic sys-
tems with sufficient expressiveness.

Preliminary studies on the General Chord Type (GCT)
[3] representation (e.g. for probabilistic melodic harmoni-
sation [15]) indicate that it can be used both as a means to
represent accurately harmonic chords and to describe mu-
sically meaningful relations between different harmonic
labels in diverse music idioms. The GCT provides accu-
rate harmonic representation in a sense that it encompasses
all the pitch-class-related information about chords. At the
same time, for every pitch class simultaneity the GCT al-
gorithm rearranges pitch classes so that it identifies a root
pitch class and a chord base type and extension, leading
to chord representations that convey musical meaning for
diverse music idioms.

It is true that the main strength of the GCT representa-
tion is its application in non-tonal harmonic idioms; some
such preliminary examples have been presented in [2, 3,
14]. This paper, however, focuses on the tonal idiom, as
this provides a well-studied system with reliable ground
truth data against which a chord labelling and grouping al-
gorithm can be tested. If the GCT representation can cope
with such a sophisticated hierarchical harmonic system as
the tonal system, then it seems likely that it can deal with
other non-tonal systems (even though other simpler repre-
sentations may also be adequate). Applying and testing the
GCT on other musics is part of ongoing research.

The paper at hand addresses two issues regarding the
GCT representation. First, an evaluation of the GCT’s abil-
ity to label chords is performed by comparing the chord
roots and types it produces with human expert annotations
(roman-numeral analysis) on the Kostka & Payne dataset.
This analysis provides clear indications about the inter-
pretational efficiency of the GCT (around 92% agreement
with human annotations). Secondly, a grouping process is
proposed, which allows the identification of the functional
role of chord groups in GCT form. An initial grouping
stage, solely based on the GCT expression of the chords,
allowsn in a second stage, the identification of functional
similarities according to first-order transitions of GCT chord
groups. The results of this analysis on a set of Bach Chorales
indicate that the functional role of GCT chord groups is
determined in a reliable manner, agreeing with theoretic
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functional characteristics of chords in this idiom.

2. THE GENERAL CHORD TYPE
REPRESENTATION

Harmonic analysis is a rather complex musical task that in-
volves not only finding roots and labelling chords within a
key, but also segmentation (points of chord change), iden-
tification of non-chord notes, metric information and more
generally musical context [27]. In this section, we focus on
the core problem of labelling chords within a given pitch
hierarchy (e.g. key). We assume, for simplicity, that a full
harmonic reduction (main harmonic notes) is available as
input to the model along with key/modulation annotations.
It is suggested that the GCT representation scheme can be
used in the future so as to facilitate the harmonic reduction
per se of an unreduced musical surface (e.g. by identifying
dissonant chord extensions in relation to a chord’s conso-
nant base).

The General Chord Type (GCT) representation, allows
the re-arrangement of the notes of a harmonic simultane-
ity such that a maxinal consonant part determines the base
of the chord, and the rest of the dissonant notes form the
chord extension; the lowest note of the base is the root of
the chord. The GCT representation has common charac-
teristics with the stack-of-thirds and the virtual pitch root
finding methods for tonal music, but has differences as well
(see [3]). This encoding is inspired by the standard roman
numeral chord type labelling, but is more general and flex-
ible. A brief description of merely the GCT core algorithm
is presented below (due to space limitations); a more ex-
tended discussion on the background concepts necessary
for the GCT model as well as a more detailed description
of the GCT representation are presented in [3].

2.1 Description of the GCT Algorithm

Given a classification of intervals into consonant/dissonant
(binary values) and an appropriate scale background (i.e.
scale with tonic), the GCT algorithm computes, for a given
multi-tone simultaneity, the ‘optimal’ ordering of pitches
such that a maximal subset of consonant intervals appears
at the ‘base’ of the ordering (left-hand side) in the most
compact form; the rest of the notes that create dissonant
intervals to one or more notes of the chord ‘base’ form the
chord ‘extension’. Since a tonal centre (key) is given, the
position within the given scale is automatically calculated.

Input to the algorithm is the following:

• Consonance vector: a Boolean 12-dimensional vec-
tor is employed indicating the consonance of pitch-
class intervals (from 0 to 11). E.g., the vector [1, 0, 0,
1, 1, 1, 0, 1, 1, 1, 0, 0] means that the unison, minor
and major third, perfect fourth and fifth, minor and
major sixth intervals are consonant – dissonant in-
tervals are the seconds, sevenths and the tritone; this
specific vector is referred to in this text as the tonal
consonance vector.

• Pitch Scale Hierarchy: is given in the form of scale
tones and a tonic. E.g., a D major scale is given as:

Table 1. GCT chord labelling example
Input: Bb major scale: [10, [0, 2, 4, 5, 7, 9, 11]]
Input: Consonance vector: [1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0]

– input [53, 63, 69, 72, 75]
– input converted to pc-set: [0, 3, 5, 9]
– maximal consonant subset: [0, 5, 9]
– rewrite in narrowest range: [5, 9, 0]
– Dissonant tone 3 goes to the end: [5, 9, 0, 3]
– Lowest tone is root, i.e. 5 (note F )
– Chord with root 0: [0, 4, 7, 10] (i.e., dominant seventh)
– Absolute chord: [5, [0, 4, 7, 10]] (i.e., F7)
– Relative position: root is 7 semitones above the tonic

Bb
– Chord in relative position: [7, [0, 4, 7, 10]]
– No other maximal subset exists.

Output: [7, [0, 4, 7, 10]] (i.e. V7)

2, [0, 2, 4, 5, 7, 9, 11], or an A minor pentatonic scale
as: 9, [0, 3, 5, 7, 10]

• Input chord: list of pitch classes (MIDI pitch num-
bers modulo 12).

Algorithm 1 GCT algorithm (core) – computational pseu-
docode
Require: (i) the pitch scale (tonality), (ii) a vector of the
intervals considered consonant, (iii) the pitch class set (pc–
set) of a note simultaneity
Ensure: The roots and types of the possible chords de-
scribing the simultaneity

1: find all maximal subsets of pairwise consonant tones
2: select maximal subsets of maximum length
3: for all selected maximal subsets do
4: order the pitch classes of each maximal subset in the

most compact form (chord ‘base’)
5: add the remaining pitch classes (chord ‘extensions’)

above the highest of the chosen maximal subset’s
(if necessary, add octave – pitches may exceed the
octave range)

6: the lowest tone of the chord is the ‘root’
7: transpose the tones of the chord so that the lowest

becomes 0
8: find position of the ‘root’ in regards to the given

tonal centre (pitch scale)
9: end for

Since the aim of this algorithm is not to perform so-
phisticated harmonic analysis, but rather to find a practical
and efficient encoding for tone simultaneities (to be used,
for instance, in statistical learning and automatic harmonic
generation in the context of the project COINVENT [25]),
we decided to extend the algorithm so as to reach a single
chord type for each simultaneity (no ambiguity) in every
case . These additional steps are described in [3] and take
into account overlapping of maximal subsets and avoid-
ance of non-scale notes in the base of chord types.

An example taken from Beethoven’s Andante Favori
(Figure 1) illustrates the application of the GCT algorithm
for different consonance vectors. For the tonal vector, GCT
encodes classical harmony in a straightforward manner.
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All instances of the tonic chord are tagged as [0, [0, 4, 7]];
the dominant seventh (inverted or not) is [7, [0, 4, 7, 10]];
the third to last chord is a minor seventh on the second
degree encoded as [2, [0, 3, 7, 10]]; the second and fourth
chord is a Neapolitan sixth chord encoded as [1, [0, 4, 7]]
(which means major chord on lowered second degree) with
a secondary dominant in between (the pedal G flat note in
the third chord is not taken into account). This way we
have an encoding that is analogous to the standard roman
numeral encoding (Figure 1, ‘tonal’). If the tonal context
is changed to a chromatic scale context and all intervals
are considered equally consonant, i.e. all entries in conso-
nance vector are 1s, we get the second ‘atonal’ GCT anal-
ysis (Figure 1, ‘atonal’) which amounts to normal orders
(not prime forms) in standard pc-set analysis. In pitch class
set theory normal orders do not have roots – however, they
have transposition values (T0-T11) in relation to a refer-
ence pc (normally pc 0); the normal orders with transposi-
tion values of pc-set theory are equivalent to the GCT for
the atonal consonance vector. Obviously, for tonal music,
this pc-set-like analysis is weak as it misses out or obscures
important tonal hierarchical relationships; however, it can
encode efficiently non-tonal musics. More examples from
non-tonal music in [2, 3, 14].

2.2 Qualitative evaluation of the GCT in tonal music

We tested the GCT algorithm on the Kostka-Payne dataset
created by David Temperley. This dataset consists of the
46 excerpts that are longer than 8 measures from the work-
book accompanying Kostka and Payne’s theory textbook
Tonal Harmony, 3rd edition (McGraw-Hill, 1995) 1 . Given
the local tonality (key), the GCT algorithm was applied to
all the Kostka-Payne excerpts. Then, the resulting GCTs
were compared to the Kostka-Payne ground truth (i.e. the
roman numeral analysis included in the Instructor’s Man-
ual, not taking into account chord inversions). From the
919 chords of the dataset, GCT successfully encodes 847
chords, and 72 chords are labelled differently. This means
that the algorithm labels 92.16% of all chords correctly.

The identified mistakes can be categorised as follows:
a) Twenty three (23) mislabeled chords were diminished

seventh chords [0, 3, 6, 9]. As explained earlier, these sym-
metric chords can have as their root any of the four con-
stituent notes. In most cases these were viio7 chords in
various inversions, referring either to the main key or to
other keys as applied chords, but in some cases they were
embellishing (non functional) chords.

b) Twenty two (22) half-diminished chords [0, 3, 6, 10]
were labelled as minor chords with added sixth [0, 3, 7, 9];
e.g. [B, D,F, A] was re-ordered as [D, F, A, B]. As a con-
sequence, all iiø6/5 chords in minor keys were identified as
ivadd6 chords, and all viiø7-type chords in major keys were
identified as iiadd6 chords.

c) Seventeen (17) cases had a salient note missing (e.g.
diminished chord without root, dominant seventh without
third, half-diminished seventh without third, etc) and this

1 The dataset set is available in machine readable format at
¡http://theory.esm.rochester.edu/temperley/kp-stats/index.html¿.

resulted in finding a wrong root; e.g. [G], D, F ], viio7 in
A minor without 3rd, was identified as [D, F, A[], i.e. as
iv5[; [B, F,A], viiø7 in C major without 3rd, appears as
[F, A, B], i.e. IV5[; [C, E, B[, D[], V7/9 in F minor, is
identified as [B[, D[, F [, C], i.e. as iv5[/9; [E[, G, D[, C],
i.e. V7/13 in A[ major erroneously appeared as [C, E[, G,
D[], i.e. iii9[, while [C, E, B[, A[], i.e. V7/13 in F minor
appears almost correctly as [C, E, G], B[], i.e. as V5]/7

(the difference is that in the first case the 13th interval was
major).

d) Eight (8) chords were misspelled because they ap-
peared over a pedal note (pedal notes were included in
our GCT analysis, while they were omitted in Temperley’s
analysis); e.g. [D, A, C], G], a V7 over a tonic pedal in
D major, appeared as [A, D, G, C]], i.e. as V4/7/10, and
[D, C], G, B], a viiø7 over a tonic pedal, is described as
[G, B, D, C]], i.e. as IV11].

e) Two (2) sus4 chords [0, 5, 7] were identified incor-
rectly as [0, 5, 10]; e.g. [C, F, G], Vsus4 in F major con-
tains the dissonant interval [F, G] and was erroneously re-
ordered as [G, C, F ], i.e. as ii4/7 (quartal chord).

On the other hand, the GCT algorithm correctly identi-
fied numerous functionally ambiguous chords, such as var-
ious cases of augmented 6th chords (mainly German types,
but also Italian and French types) formed over a variety
of scale degrees (6[, 2[, 4, etc.). It also correctly iden-
tified most harmonic circles of fifths, applied dominants,
neapolitan chords, chords produced by modal mixture and
complex triadic chords (with more than four members).

Overall, in the context of tonal music and the for stan-
dard tonal consonance vector, the GCT algorithm produces
quite satisfactory results. However, it makes primarily the
following types of mistakes: firstly, it yields ambiguous
results regarding the root of symmetric chords such as the
full diminished seventh and augmented chords – to disam-
biguate the root for symmetrical chords (mainly for dimin-
ished seventh chords), harmonic context has to be taken
into account (e.g. the root of the following chord); sec-
ondly, it assigns the wrong root to chords that have ‘dis-
sonant’ intervals at their triadic base, such as diminished
fifths in half-diminished chords or major second in sus4
chords; thirdly, tertian chords that have notes missing from
their base (e.g. missing third in seventh chords) are misin-
terpreted as their upper denser part is taken as the chords
base and the lower root as an extension; and, finally, pedal
notes, when taken into account for the identification of the
GCT type, produce complex and functionally incorrect re-
sults.

In order to correct such cases, a more sophisticated model
for harmonic analysis is required, which extends the purely
representational scope of the current proposal. Such a model
would take into account voicing (e.g. the bass note), chord
transition probabilities (functions), and, even, higher-level
domain-specific harmonic knowledge (e.g. specific types
of chords used in particular idioms).

The GCT algorithm captures the common-practice roman-
numeral harmonic analysis encoding scheme (for the ‘stan-
dard’ consonance vector) reasonably well. Additionally, it
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Figure 1. Beethoven, Andante Favori, reduction of mm.189-198. Tonal and atonal GCT analysis (see text).

adapts to non-tonal systems, such as atonal, octatonic or
traditional polyphonic music. The question is whether the
GCT representation works well on such non-tonal systems.
The GCT representation has been employed in the case of
traditional polyphonic music from Epirus [14], whereby,
song transcriptions were initially converted to the GCT en-
coding, followed by a learning HMM scheme. This scheme
was then employed to learn chord transitions, which was fi-
nally used to create new harmonisations in the polyphonic
style of Epirus. Ongoing research is currently studying the
application of GCT on various harmonic idioms, from me-
dieval music to 20th century music, and various pop and
folk traditions.

3. GROUPING GCT CHORDS

Chord relationships, and more specifically chord similar-
ity/distance in tonal and non-tonal music, have been stud-
ied by various music theorists/researchers; some notable
examples are the work by Hindemith [13], the classifi-
cation scheme by Harris [11], pitch-class set (pcset) the-
ory [8, 9], neo-riemannian theory [4, 5], tonal pitch space
theory [19] and the work by Quinn [22]. Empirical studies
have attempted to evaluate aspects of such theories in an
empirical manner - see, for instance, [1, 16, 17, 24]. Apart
from sensory, cognitive and musicological factors that play
a significant role in such studies (and also in the first chord
grouping algorithm below), the work herein makes addi-
tional use of data-driven information derived from statisti-
cal harmonic analysis in order to tackle similarity of dif-
ferent chord groups based on their functionality (i.e. tran-
sitions between chords) cf. related work by Quinn and
Mavromatis [23].

A large number of unique note simultaneities may ap-
pear in a certain musical style. These simultaneities, how-
ever, are organised into fewer more cognitively manage-
able chord families/categories. Things like octave equiva-
lence, interval inversion equivalence, root, tonal centre and
so on, enable a parsimonious ‘packing’ of the great variety
of actual note simulaneities into a relatively small number
of musically meaningful chord categories. This categori-
cal organisation of chords is probably most apparent in the
case of tonal music; for instance, ‘major chord’ applies to
many vertical note configurations that may appear in differ-
ent guises such as open/closed position, different registers
and keys, with doubled or missing or, even, extra notes.

The GCT algorithm re-organises note simultaneities in

terms of ‘root’, ‘base’, ‘extension’ and relative root to lo-
cal key, giving the same label to pitch collections that have
identical structure in relation to a tonal centre. However,
missing or extra notes are not taken into account, result-
ing in a larger number of chords than what is musically
acceptable (at least for tonal music). For instance, the
GCTs: [7, [0, 4, 7]], [7, [0, 4]], [7, [0, 4, 10]], [7, [0, 4, 7, 10]]
are all independent chord labels whereas they could be
grouped under one dominant chord label (these share the
same relative root and are all subsets of the [0, 4, 7, 10]
chord type). Additionally, the GCTs: [11, [0, 3, 6]] and
[11, [0, 3, 6, 9]] are diminished chords on the seventh scale
degree; these cannot be grouped with the previous GCTs
because of the different relative root and chord type, even
though we know that they also belong to the dominant
chord functional category.

In the next two subsections, firstly, a simple algorithm is
presented that groups raw GCTs into GCT chord categories
based on GCT properties, such as, relative root, type sim-
ilarity and relationship to underlying scale/key; secondly,
an algorithm is developed that further organises the above
GCT categories into functional chord categories by exam-
ining the function of chords, i.e., chords that tend to be
followed by the same chords (similar rows in a chord tran-
sition matrix) are considered to have the same function.
These two algorithms tidy up the initial raw GCTs into
meaningful chord categories, each represented by the most
frequently occurring instance (exemplar) .

3.1 Grouping chords based on their GCT properties

Following the aforementioned example, the ‘exemplar [7,
[0, 4, 7]] might be found in several ‘reduced’ (e.g. [7, [0, 4]])
or ‘expanded’ (e.g. [7, [0, 4, 7, 11]]) forms, that actually
represent the same chord label. According to the GCT
representation, further abstraction can be achieved through
grouping GCT expressions of simultaneities that ‘evidently’
concern the same chord.

Grouping of GCTs has been studied under some ba-
sic assumptions about the chord characteristics that are re-
flected by the root scale degree, the base and the scale notes
underlying a GCT expression. Specifically, GCT expres-
sions are grouped into more general GCT categories that
potentially contain several GCT members according to the
criteria described below: two chords belong to the same
group if

1. they have the same scale degree root,
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2. their GCT bases are subset-related and
3. they both contain notes that either belong or not to

the given scale context.

Regarding criterion 2, two bases B1 and B2 are consid-
ered subset-related if B1 ✓ B2 or B2 ✓ B1, e.g. [0, 4] ✓
[0, 4, 7] while [0, 4] 6⇢ [0, 3, 7]. Criterion 3 is utilised to
identify and group together chords that belong to secondary
tonalities within the primary tonality of the piece. For in-
stance, in a diatonic major context, while c1 = [0, [0, 4, 7]]
and c2 = [0, [0, 4, 7, 10]] fulfil criteria 1 and 2, according to
criterion 3 they are not grouped together since c2 includes
value 10, which is mapped to the non-diatonic 10 pitch
class value. In a major context [0,[0,4,7,10]] is secondary
dominant to the IV (V/IV) and is differentiated from the I
major chord.

Each GCT group includes the GCT types that satisfy the
aforementioned three criteria. Furthermore, each group is
represented by the ‘exemplar’ GCT type, which is the one
that is more often met in the datasets under study. Some
common chord groups in the major scale Bach Chorales
are illustrated in Table 2. This table also includes the func-
tional naming of each group in order to assist the com-
parison of the derived GCT types and the standard roman-
numeral labelling. Testing this simple algorithm on sets
of both major and minor Bach chorales gives a reasonable
first classification of the ‘raw’ GCTs.

3.2 Functional similarity of chords

According to functional harmony each chord can be viewed
not only in terms of its actual pitches, roots, chord type and
so on, but also in terms of its ‘dynamic’ attributes accord-
ing to its position in a chord sequence and to the chords that
usually follow [18]. For instance, in the tonal idiom, dom-
inant chords are ‘expected’ to resolve to a (relative) tonic
chord. Therefore, different chords can be similar accord-
ing to the purpose they serve in terms of their functionality
within chord sequences.

In this Section, a first approach to derive the function-
ality of the GCT chord groups is addressed by observing
their succeeding chords in chord sequences extracted from
specific idioms. In order to capture the functional relations
between GCT groups of specific music idioms, the first-
order Markov transition table is considered for all the GCT
chord sequences that pertain to a certain idiom. The pro-
posed approach below, tackles chord similarity by employ-
ing the Euclidean distance metrics related to the probabil-
ity distribution for each chord group to precede any other
(i.e., euclidean distance between rows of the transition ma-
trix).

Figure 2 illustrates a colour-based graphic interpretation
of the transition matrix obtained from a collection of Bach
Chorales in major mode (darker areas indicate higher prob-
abilities); transitions between chords that pertain to the
same GCT chord group are disregarded (this neutralises the
diagonal). Furthermore, GCT chord groups that occurred
4 times or less in the entire dataset were discarded, since
their functional role can hardly be determined by so few
observations. The probability that a GCT chord group is

followed by another (a row of the transition matrix in Fig-
ure 2) is regarded as a vector that defines the position of
this group into the ‘space of transitions’. Thereby, func-
tional relations between GCT groups according to their
most common successors can be deduced by employing
distance metrics between rows of the transition matrix.

Figure 2. The first-order Markov transition matrix of GCT
groups in the major Bach Chorales. The numbers after the
colon indicate the number of times a representative of a
GCT group was found in the data.

3.3 Functional similarity results

The Euclidean distance between transitions of GCT groups
(rows in the transition matrix depicted in Figure 2) in a set
of major Bach chorales has been utilised to produce the
dendrogram of distances illustrated in Figure 3. For clarity
of presentation, GCT groups with rare occurrences (less
than 4) were not considered, although their placement in
the grouping results was explainable. The six annotated
clusters underpin interesting functional relations between
the chords involved (the comments are presented in dimin-
ishing cluster coherence order):

Cluster 1 comprises the double dominant V/V [2, [0, 4, 7,
10]] and its subset viio/V [6, [0, 3, 6]]. Both chords have
identical harmonic function (pre-dominant) and they al-
ways lead to the dominant V chord as applied dominants.

Cluster 4 contains the dominant V [7, [0, 4, 7]] and the
leading-tone triad viio [11, [0, 3, 6]], which is a subset of
the dominant 7th chord. Both chords have strong dominant
function.

Cluster 6 contains the applied dominant of the sub-me-
diant, i.e. V/vi, and the corresponding applied diminished
7th chord, i.e. viio7/vi. The GCT algorithm erroneously
describes the second chord as its enharmonic equivalent
[11, [0, 3, 6, 9]], i.e. as viio7 [B, D, F, A[], while it should
be [8, [0, 3, 6, 9]], i.e. viio7/vi[G], B, D, F ]. However, the
strong clustering relation could help to disambiguate the
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functional name exemplar Group members
tonic [0, [0, 4, 7]] [0, [0, 4, 7]] [0, [0, 4]] [0, [0, 4, 7], [11]]

dominant [7, [0, 4, 7]] [7, [0, 4, 7]] [7, [0, 4, 7], [10]] [7, [0, 4], [10]] [7, [0, 4]]
subdominant [5, [0, 4, 7]] [5, [0, 4, 7]] [5, [0, 4]] [5, [0, 4, 7], [11]]

V / IV [0, [0, 4, 7], [10]] [0, [0, 4, 7], [10]] [0, [0, 4], [10]]

Table 2. Four tonal chord groups and their exemplar GCTs. Notice how the group of [0, [0, 4, 7]] has been separated from
the group of [0, [0, 4, 7], [10]], due to the non-diatonic pitch class 10 of the latter.

root of the diminished 7th chord; this is future work for
improving the descriptiveness efficiency of the GCT repre-
sentation.

Cluster 5 groups the applied dominant of the super-
tonic, i.e. V/ii[9, [0, 4, 7]], and the corresponding applied
diminished triad, i.e. viio/ii[1, [0, 3, 6]]. Clusters 1, 4, 5, 6
are of the same category, as they share the same dominant
function.

Cluster 2 is different, as it groups three chords that have
(or may have) tonic harmonic function, the tonic I [0, [0, 4,
7]], the submediant vi[9, [0, 3, 7]] and the mediant iii[4,
[0, 3, 7]]. In functional harmony [6], these chords are la-
beled as T, Tp and Tg accordingly and the last two chords
have a diatonic (with two common tones) third-relation
with the first.

Cluster 3 is similar to cluster 2, as it groups two chords
with diatonic third-relation, however in this case the chords
share subdominant harmonic function: the subdominant
IV [5, [0, 4, 7]] and the supertonic ii[2, [0, 3, 7]]. In func-
tional harmony, they are described as S and Sp accordingly.

Overall, the proposed data-driven functional approach
to chord grouping seems to be quite reliable. Further test-
ing is necessary on larger and more varied corpora.

4. CONCLUSIONS

The paper at hand examines two main topics: a) the ability
of the GCT algorithm to analyse chord sequences (in com-
parison to roman numeral analysis) and b) the possibilty to
organise the ‘raw’ GCT labels in higher-level chord fam-
ilies according to the internal GCT properties and to dy-
namic functional properties in terms of chord successions
in harmonic corpora. The first study was based on com-
paring the annotations of chords produced by the GCT al-
gorithm with the harmonic annotations of human experts
(around 92% accuracy in the Kostka-Payne dataset). So,
with its ability to identify roots and chord types, the GCT
can be used as an interpretation/analytic tool allowing it
to be classified as a hybrid between neutral representations
(e.g. Forte pc-set theory analysis) and interpretative ones
(e.g. roman numeral analysis). For the second study, in-
formation about transitions of the GCT chord groups were
utilised to identify similarities between these groups ac-
cording to their successors, thus, reflecting functional rela-
tions.

The results are promising, since they illustrate the abil-
ity of the GCT to accurately label chords, but also to re-
veal chord groups according to (higher) functional mean-
ing in the tonal system. It is maintained that if the GCT
representation can cope with such a sophisticated hierar-
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Figure 3. (a) The dendrogram derived from the Euclidean
distances between rows of the transition matrix (Figure 2).

chic harmonic system as the tonal system, then it seems
likely that it can deal with other non-tonal systems as well.
Preliminary examples presented in [2, 3, 14] illustrate the
potential of the GCT to represent non-tonal harmonic id-
ioms; further reseach is under way to unveil the potential
of the proposed representation in other musics.
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