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ABSTRACT

We introduce a new application of transfer learning for
training and comparing music similarity models based on
relative user data: The proposed Relative Information-The-
oretic Metric Learning (RITML) algorithm adapts a Maha-
lanobis distance using an iterative application of the ITML
algorithm, thereby extending it to relative similarity data.
RITML supports transfer learning by training models with
respect to a given template model that can provide prior
information for regularisation. With this feature we use in-
formation from larger datasets to build better models for
more specific datasets, such as user groups from differ-
ent cultures or of different age. We then evaluate what
model parameters, in this case acoustic features, are rele-
vant for the specific models when compared to the general
user data.

We to this end introduce the new CASimIR dataset, the
first openly available relative similarity dataset with user
attributes. With two age-related subsets, we show that trans-
fer learning with RITML leads to better age-specific mod-
els. RITML here improves learning on small datasets. Us-
ing the larger MagnaTagATune dataset, we show that RITML
performs as well as state-of-the-art algorithms in terms of
general similarity estimation.

1. INTRODUCTION

Music similarity models are a central part of many ap-
plications in music research, particularly Music Informa-
tion Retrieval (MIR). When training similarity models, it
turns out that learnt models vary considerably for differ-
ent data sets and application scenarios. Recently, context-
sensitive models have been introduced, e.g. for the task of
music recommendation (Stober [9] provides an overview).
The main problem with context-sensitive similarity mod-
els is currently to obtain enough data to train the models
for each context. Transfer learning promises to enable ef-
fective training of models for specific contexts by includ-
ing information from related datasets. We here present an
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approach of transfer learning in music similarity that im-
proves results of specialised models, using our W0-RITML
extension of Information-Theoretic Metric Learning (ITML).
The template-based optimisation in W0-RITML allows for
a comparison of the general and specialised models – it
derives the latter from the former – which we suggest as
a tool for comparative analysis of similarity data by (e.g.
cultural) provenance.

We are particularly interested in modelling relative similar-
ity ratings collected from participants during Games With a
Purpose (GWAPs). Using similarity data from user groups
promises to provide tailored model performance and the
opportunity to compare such groups via the trained sim-
ilarity models. The new CASimIR dataset presented in
Section 3 contains such similarity ratings and information
about the contributing subjects. We use this extra data to
group users and here exemplarily train age-specific music
similarity models based on age-bounded subsets. How-
ever, the relatively small size of the CASimIR dataset re-
quires a different approach to training the group-specific
models as existing algorithms are not sufficiently effective
for this purpose.

We contribute a solution to this problem with a novel generic
algorithm for transfer learning with similarity models: The
RITML algorithm (see Section 5.2) extends on ITML to
allow for learning a Mahalanobis metric from relative sim-
ilarity data like in CASimIR. With W0-RITML, informa-
tion learnt from remaining data can be successfully trans-
ferred to an age-bounded dataset via a Mahalanobis ma-
trix. This transfer-learning increases performance on small
datasets and provides interpretable values in the Mahala-
nobis matrix. The Mahalanobis matrix provides a compact
representation of similarity information in a dataset. This
is useful in scenarios where the music data is difficult to
access due to its data volume or copyright restrictions. The
CASimIR dataset and code used in this paper are available
online 1 .

2. RESEARCH BACKGROUND

Transfer learning relates to many areas and approaches in
machine learning. A general overview of transfer learning
is given in Pan and Yang [6]. In their categorisation, our
task is an inductive knowledge transfer from one similarity
modelling task to another via model parameters. Note that

1 http://mirg.city.ac.uk/datasets/ismir2015dw
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in our example the tasks differ only in the dataset, but our
method can also be used for more divergent tasks.

In MIR, transfer learning is a relatively new method. In
2013, [2] described multi-task learning using a shared la-
tent representation for auto-tagging, genre classification and
genre-based music similarity. This representation includes
both the features and the labels for the different tasks. In
experiments on several datasets they showed improvement
of classification accuracy and modelling similarity accord-
ing to genre.

We here work with relative similarity ratings from humans
in our new CASimIR dataset for group-specific modelling.
Furthermore, we use the MagnaTagATune dataset [3] for
comparison on non-specific similarity learning. Here, the
Support Vector Machine (SVM) approach developed by
Schultz and Joachims [7] and applied in [10, 11] is used
as state-of-the art baseline.

Another state-of-the-art algorithm for learning from rela-
tive similarity data is Metric Learning To Rank (MLR).
McFee et al. [4] introduce MLR for parametrising a lin-
ear combination of content-based features using collabo-
rative filtering data. Their post-training analysis of feature
weights revealed that tags relating to genre or radio stations
were assigned greater weights than those related to music
theoretical terms.

3. A DATASET FOR USER-AWARE SIMILARITY

In order to perform a related analysis and comparisons of
models between different user groups, we have collected
the CASimIR datasets using Spot the Odd Song Out [13],
an online 2 multi-player Game With a Purpose (GWAP).
The similarity module of the Spot the Odd Song Out game
collects relative similarity data using an odd-one-out sur-
vey: From a set of three music clips, participants are asked
to choose the clip most dissimilar to the remaining clips,
i.e. the odd song out. The game motivates players by
rewarding blind agreement. For various reasons, includ-
ing personal data protection, little music annotation data is
publicly available with information about the provider of
the data and their context.

Although the game can collect anonymised personal in-
formation including gender, nationality, spoken languages
and musical experience, the amount and type information
available varies between participants, as data provision is
voluntary. Our overarching goal is to study the relation
between similarity and culture and we thus link annota-
tions to cultural profiles rather than indexing specific par-
ticipants. With this paper we publish the first set of simi-
larity data with anonymised profiles.

3.1 Constraints from Relative Similarity Ratings

The MagnaTagATune and CASimIR datasets both contain
relative similarity ratings. A participant’s rating of Ck as

2 http://mirg.city.ac.uk/camir/game/

the odd one out (of the triplet Ci, Cj , Ck) results in 2 rela-
tive similarity constraints: clips Ci and Cj are more similar
than Ci and Ck, and clips Cj and Ci are more similar than
Cj and Ck. These constraints are denoted as (i, j, k) and
(j, i, k), respectively which are contained in the constraint
set Q̂.

Human ratings regularly produce inconsistent constraints.
We use the graph representation of the similarity data as
suggested by [5] to analyse and filter inconsistencies: Each
constraint (i, j, k) is represented by an edge connecting
two vertices (i, j)

↵ijk! (i, k) corresponding to two clip
pairs, with the edge weight ↵ijk = 1. When combining
all constraints in a graph, the weights ↵ijk are accumu-
lated. Inconsistencies then appear as cycles in the graph,
which in their most common form are of length 2:

(i, j)
↵ijk

�
↵ikj

(i, k).

We remedy such cycles by removing the edge with the
smaller weight and assigning the weight |↵ijk � ↵ikj | to
the remaining edge. For both the MagnaTagATune and
CASimIR datasets this already creates a cycle-free graph
Q as no larger cycles remain. The cycle-free sets Q are
used in this study for training and evaluation.

Compared to the MagnaTagATune dataset, the CASimIR
dataset features more frequent recurrences of clips between
the triplets presented to the users. Recurring clips relate the
corresponding similarity data, and result in large connected
components in the CASimIR similarity graph: While the
maximal number of clips directly or transitively related
to each other through similarity data in the MagnaTagA-
Tune dataset was 3 (see [11]), most clips in the CASimIR
similarity data are related to at least 5 other clips. The
repetition of clips across triplets results in fewer unique
referenced clips: the current CASimIR similarity dataset
contains only 180 clips referenced by 2102 ratings, while
MagnaTagATune references 2000 ratings with about 500
clips, and has 1019 clips with 7650 ratings in total.

3.2 Analysis of Age-bounded Similarity Ratings

The additional participant attributes allow us to select sub-
sets of similarity data according to specific profiles of the
participants. This enables the training of more specific
models that support better similarity predictions for the rel-
evant group of users, and allows for comparison of differ-
ent models.

As an example of group-based similarity modelling we
choose age as a separating criterion on the CASimIR simi-
larity data from over 256 participants: We divide the com-
plete set of similarity ratings R into two age-bounded sub-
sets R25 of data provided by participants not older than
25 years and R>25 containing data of older participants.
The boundary of 25 years was chosen as the best approxi-
mation to equal sizes of the subsets (data input is only in 5
year bands). As shown in Table 1, the number of ratings is
higher for the R25 dataset.
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R R25 R>25 R{(25) R{(>25)

ratings 2102 919 644 1183 1458
constr. 914 723 576 732 809

clips 180 171 163 175 176

Table 1. Number of votes, unique constraints and refer-
enced clips, after filtering inconsistencies, per dataset.

539 similarity ratings are not associated to a valid age and
stored separately in R;. For the two age-bounded datasets,
we furthermore define complementary datasets R{(25) and
R{(>25) combining the remaining similarity data, e.g. R{(25)

= R>25 [ R;. These complementary sets will be used for
training of template models for transfer learning.

After splitting, the above (sub)sets of ratings are trans-
ferred into constraints (see Section 3.1) and separately fil-
tered for inconsistencies. We now use the corresponding
sets of unique constraints Q, Q25, Q>25, Q{(25) and
Q{(>25) for training and testing of models. The number of
constraints are also noted in Table 1, together with the total
number of clips referenced by the constraint sets. Due to
multiple ratings referring to the same constraint and filter-
ing the constraint count is lower than the number of ratings.

4. SIMILARITY MODELLING

The computational representations of music through fea-
tures, related to physical, musical, and cultural attributes
determine the basis of similarity models. Both the Magna-
TagATune and CASimIR datasets contain pre-computed
features created by The Echo Nest API. For our exper-
iments with CASimIR we derive acoustic features from
this data which are aggregated to the clip-level. The 41-
dimensional features contain 12 chroma and 12 timbre fea-
tures, both aggregated via averaging, 2 weight vectors and
further features after [8, 11]:

chroma timbre
segmentDurationMean tempo
segmentDurationVariance beatVariance
timeLoudnessMaxMean tatum
loudness tatumConfidence
loudnessMaxMean numTatumsPerBeat
loudnessMaxVariance timeSignature
loudnessBeginMean timeSignatureStability
loudnessBeginVariance –

Table 2. Features used in our experiments.

For experiments with the MagnaTagATune dataset we will
use the similar features provided in [12] which contain pre-
processed tag information in addition to the acoustic fea-
tures described above. For the CASimIR dataset, using un-
processed tags from Last.fm did not increase performance
in earlier experiments due to very sparse tag assignments.
Therefore, our experiments on CASimIR use acoustic fea-
tures only. For a clip Ci, we refer to its feature vector as
xi 2 RN .

4.1 Mahalanobis Distances

We use the inverse of the distance of two feature vectors as
the similarity of the two corresponding clips. The mathe-
matical form of the Mahalanobis distance is used to spec-
ify a parametrised distance measure. Given two feature
vectors xi, xj 2 RN , the distance can be expressed as

dW (xi, xj) =
q

(xi � xj)
|W (xi � xj),

where W 2 RN⇥N is a square matrix parametrising the
distance function: the Mahalanobis matrix. dW qualifies
as a metric if W is positive definite and symmetric.

5. MODEL TRAINING WITH RITML

We now discuss our algorithm which can adapt Mahala-
nobis distances in order to fit relative similarity data. It is
based on the ITML algorithm as described below, which
cannot be used directly with relative similarity data. In-
stead, ITML requires upper or lower bounds on the sim-
ilarity of two clips, e.g. dW (xi, xj) < mi,j for similar
clips. In Section 5.2 we will iteratively derive such con-
straints during the RITML optimisation process.

5.1 Information-Theoretic Metric Learning

Davis et al. [1] describe Information-Theoretic Metric Lear-
ning (ITML) for learning a Mahalanobis distance from ab-
solute distance constraints (e.g. requiring dW (xi, xj) <
0.5). A particularly interesting feature of ITML is that
a template Mahalanobis matrix W0 2 Rn⇥n can be pro-
vided for regularisation. This W0 can be from a metric that
is predefined or learnt on a different dataset. If W0 is not
specified, the identity transform is used. The regularisation
of ITML exploits an interpretation of Mahalanobis matri-
ces as multivariate Gaussian distributions: The distance
between two Mahalanobis distance functions parametrised
by W and W0 is measured by the relative entropy of the
corresponding distributions, which in [1] uses the LogDet
divergence Dld:

Dld(W, W0) = tr(WW�1
0 ) � log det(WW�1

0 ) � n

= 2 ⇤ KL (P (xi; W0) k P (xi; W )) .

KL refers to the Kullback-Leibler divergence. For details
of the transformation see [1]. Given the constraints in form
of similar (Rs) and dissimilar (Rd) clip indices as well as
upper and lower bounds uij , lij , the optimisation problem
is then posed as follows:

ITML(W, ⇠, c, Rs, Rd) =

argmin
W⌫0,⇠

Dld(W, W0) + c · Dld(diag(⇠), diag(⇠0))

s.t. tr(WdL
i,j(d

L
i,j)

|
)  ⇠ij 8(i, j) 2 Rs

tr(WdL
i,j(d

L
i,j)

|
) � ⇠ij 8(i, j) 2 Rd

with dL
i,j = (xi � xj).
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Here, ⇠ij are slack variables enabling and controlling the
violation of individual constraints. The ⇠ij are initialised to
given upper bounds uij , if (i, j) 2 Rs or lower bounds lij ,
if (i, j) 2 Rd. During optimisation, they are regularised by
comparison to the template slack ⇠0 using triangular matri-
ces diag(⇠) and diag(⇠0).

5.2 Relative Learning with RITML

In order to allow for training with relative similarity con-
straints, we present Relative Information-Theoretic Metric
Learning (RITML) based on ITML. Motivated by [14], we
embed ITML into an iterative adaptation of the upper and
lower bounds.

We start with a training set of relative constraints (i, j, k) 2
Qt. We require standard ITML parameters such as c, as
well as the relative learning parameters including shrink-
age factor ⌘, margin ⌧ and number of cycles k at the be-
ginning. We use the identity matrix for the template W0.
During iteration m, the active training set of violated con-
straints Qm is calculated as

Qm = {(i, j, k) 2 Qt | dW m(xi, xj) > dW m(xi, xk)} .

Qm is then further divided into the sets of similar and dis-
similar constraints Rm

s and Rm
d :

Rm
s = {(i, j) | (i, j, k) 2 Qm}

Rm
d = {(i, k) | (i, j, k) 2 Qm},

Afterwards, absolute distance constraints ⇠ij for the fol-
lowing ITML instance are acquired by adding a margin ⌧

to the average distance values µ = dW m (xi,xj)+dW m (xi,xk)
2

of the clip pairs:

⇠m
ij =

(

µ � ⌧ (i, j) 2 Rm
s

µ + ⌧ (i, j) 2 Rm
d

8(i, j, k) 2 Qm

Now, with ⇠m containing the upper and lower bounds, �W
can be calculated using

�W = ITML(Wm, ⇠m, �, Rm
s , Rm

d ) (1)

and the final Mahalanobis matrix is accumulated over iter-
ations using the model update function

Wm+1 =
m ⇤ Wm + ⌘ ⇤ �W

m + 1
.

In order for the algorithm to converge, the cardinality of the
active training set |Qm| needs to decrease. In our experi-
ments, k = 200 training iterations are usually sufficient.
Otherwise an early stopping of the algorithm takes place if
|Qm| does not decrease for 50 iterations. In this case the
Wm for the smallest |Qm| within the last 50 iterations is
returned. RITML does not guarantee dW to be a metric.

Algorithm 1: Relative Training with RITML
Data: Constraints Qt, features xi, template matrix W0,

regularisation factor c, shrinkage factor ⌘, margin
⌧ , number of cycles k

m = 0 ;
while m  k ^ Q⇤ 6= ; do

Update training sets Qm, Rm
s and Rm

d ;
Update absolute constraints ⇠m ;
Calculate parameter change �W ;
Calculate Wm+1 ;
m = m+1 ;

end
return Mahalanobis matrix W k

5.3 Transfer Learning with W0-RITML

The property that motivates our usage of RITML is that
it enables transfer learning: If a specific starting value or
template of W0 other than the identity matrix is provided,
the optimisation tends to produce results close to the pro-
vided W0. In order to sustain this effect for large numbers
of iterations we modify Equation (1) such that regularisa-
tion is fixed towards W0 instead of the Euclidean distance:

�W = ITML(W
0

, ⇠m, �, Rm
s , Rm

d )

This constitutes the W0-RITML algorithm for transfer learn-
ing with Mahalanobis matrices.

6. EXPERIMENTS
For all our experiments we use the 10-fold cross-validation
with inductive sampling as described in [11]: Instead of di-
viding the similarity constraints themselves into test/training
sets, the data are divided on the basis of connected clusters
in the similarity data. This approach prevents the recur-
rence of clips from a training-set in the corresponding test
set. It also leads to a greater variance in test-set sizes for
CASimIR where the clusters of connected similarity data
are larger.

We evaluate the algorithms’ performance based on the per-
centage of training and test constraints fulfilled by the trained
model. Our main focus is on the test-set results as we are
interested how well the learnt models generalise to unseen
data. As a baseline we use the Euclidean distance on the
features. We have tested results for statistical significance
using the Wilcoxon signed rank test on cross-validation
folds’ results with a threshold of p < 5%.

Both SVM as implemented in svmlight[7] and RITML have
hyper-parameters affecting the performance on different
datasets. The results reported here were selected on the
basis of best test-set performances after a grid-search over
a range of value combinations identified as reasonable in
preliminary experiments: The regularisation trade-off c is a
parameter common to SVM, RITML and W0-RITML with
a similar effective range: we explored a c 2 [0.001, 10] us-
ing an approximately logarithmic scale. For RITML and
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W0-RITML we additionally used
⌧ 2 {10�4, 10�3 . . . , 10�1, 0.5, 1 . . . 10} and
⌘ 2 {0.1, 0.15 . . . 0.95}.

6.1 Comparing the Performance of RITML
For a comparable evaluation of RITML we chose the Magna-
TagATune-based dataset and constraint sampling published
in [12]. Their evaluation compares various algorithms for
learning a Mahalanobis metric using two different sam-
plings. The inductive sampling used here corresponds to
the sampling B in their text. Table 3 shows the results on
MagnaTagATune and on the complete CASimIR dataset
(Q).

Algorithm MagnaTagATune CASimIR
Euclidean 59.80 / 59.77 59.75 / 59.82
RITML 71.12 / 73.41 64.23 / 93.36
SVM 71.20 / 85.75 63.22 / 69.11
MLR 68.90 / 100.0 62.79 / 73.37

Table 3. Comparison of Test / Training set performance on
the MagnaTagATune and CASimIR datasets for baseline,
RITML and SVM. Reported are the number of constraints
fulfilled by the learnt distance measures.

For MagnaTagATune, RITML achieves similar generalisa-
tion results as SVM (with parameters SVM: c = 0.7 and
RITML: c = 1, ⌘ = 0.85, ⌧ = 0.5), while MLR over-
fits to the training data. For both the MagnaTagATune
and CASimIR datasets all methods perform significantly
better than the baseline. The RITML results are therefore
comparable to the state-of-the-art. The training results on
MagnaTagATune with SVM and MLR are far better than
the test results, indicating overfitting, which does not oc-
cur for RITML. Interestingly, on the CASimIR dataset, the
situation between RITML and SVM is reversed. Results
published by [11] for acoustic-only features on MagnaTag-
ATune show a performance of 66% on MagnaTagATune,
but the lower performance on CASimIR can be explained
by the smaller number of training examples.

6.2 Transfer Learning

A core motivation for transfer learning is the training on
highly specialised but small datasets. To evaluate the W0-
RITML method for transfer learning, we firstly compared
the SVM and RITML algorithms with the baseline on the
age-bounded datasets Q>25 and Q25 in Table 4. The
rightmost column shows the average performance across
both age-bounded datasets. Expectedly, on these smaller
datasets generalisation results for RITML as well as the
reference SVM and MLR are lower than on the whole CA-
SimIR. Only for RITML an increase of 4.37% from the
baseline is notable for the slightly larger Q>25 which im-
proves the average score for RITML.

We now apply transfer learning to improve generalisation
results on the age-bounded sets. The overall process is de-
picted in Figure 1. First, an similarity modelling experi-
ment is performed on both of the complementary subsets

Algorithm Q25 Q>25 Average
Euclidean 59.32 / 59.95 59.15 / 59.63 59.23 / 59.79
RITML 63.69 / 75.87 61.02 / 67.95 62.35 / 71.91
SVM 61.56 / 72.78 61.34 / 71.43 61.45 / 72.10
MLR 62.06 / 75.79 62.58 / 78.47 62.32 / 77.13

W
0

-Direct 63.96 / 66.17 64.82 / 69.57 64.39 / 67.87
W

0

-RITML 65.53 / 70.82 67.07 / 73.22 66.30 / 72.02

Table 4. Comparison of Test / Training set performance
on the age-bounded datasets. Training on single datasets
(top 3 rows) and transfer learning with W0-RITML and
W0-Direct.

Complement
Dataset
Q{(>25)

Template
model W

0

Age-
specific

model W

RITML W
0

-RITML

Age-
bounded

DatasetQ>25

Figure 1. Flow diagram for transfer learning, exemplified
for the Q>25 dataset.

Q{(>25) and Q{(25) using cross-validation with training
and test data from only these sets. Comparing the indi-
vidual results for validation folds we choose the Maha-
lanobis matrices with the greatest test-set performance as
template matrix W0. The template matrix W0 learnt on
Q{(25) is then used for transfer learning on Q25, us-
ing W0-RITML. For comparison of the effectiveness of the
fine-tuning with W0-RITML, we report the performance
achieved with the unmodified W0 on Q25 as W0-Direct.
This process is repeated analogously for Q25 by applying
the template matrix W0 from Q{(25) on Q25.

The highlighted lower columns of Table 4 show the results
for transfer learning: Row W0-Direct reports the direct
performances of the template Mahalanobis matrices W0.
The results of fine-tuning these models with W0-RITML
are reported in the last row. We here find that using the ma-
trices trained on the larger datasets, and thus transfer learn-
ing, generally improves results. Only the results for W0-
RITML provide gains > 6.21% that are statistically signif-
icant when compared to the baseline. As the average result
of W0-RITML also significantly outperforms the average
SVM performance, W0-RITML works best for adapting
models to specialised datasets.

A drawback of RITML is that it is computationally de-
manding: For the Q dataset, RITML uses 50 seconds where
SVM converges in 5 seconds. On the other hand, SVM
learns a diagonal W which reduces the number of param-
eters and model flexibility.

6.3 Model Comparison
In order to identify specificities of the Q>25 dataset in
comparison to the remaining Q{(>25), we now analyse changes
made to the template matrix W0 in the fine-tuning pro-
cess. Instead of starting from the Euclidean metric, models
learnt from the W0-RITML method have a model already
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adapted to similarity data as basis.

Figure 2 shows the relative difference Ŵ � Ŵ0 of the Ma-
halanobis matrix before (W0) and after (W ) fine tuning.
As the fine tuning process rescales the similarity measure
and thereby W , the matrices have been normalised to the
interval of [0, 1] via 3

Ŵ =
W � mini,j (wij)

maxi,j (W � mini,j wij)ij

. (2)

The axes of the figure correspond to feature types, which
for better overview have been grouped into chroma, timbre
and ranges of the features in Table 2. The template matrix
W0 in Figure 3a has large values only in the diagonal and
homogeneous small values off the diagonal. In comparison
to this, Figure 2 shows that specific combinations of tim-
bre features (in the bottom centre) with (B)eat and tempo
statistics were raised in importance by W0-RITML, result-
ing in the final matrix W as shown in Figure 3b. Also,
the centre of the matrix shows increased values for combi-
nations of different timbre coefficients. The strongest in-
creases (20-24%) in weights are reported for the off-dia-
gonal fields of C11C1, T6T5, B4T4 and B4T5, where C, T
relate to chroma and timbre coefficients and B4 refers to
the tatumConfidence feature. Weights are increased mainly
at the cost of diagonal elements, and suggest at a speciali-
sation of the model to the specificities of the Q>25 similar-
ity subset. For this data collected from users aged over 25,
the analysed W0-RITML model with stronger influence of
the timbre and beat-statistics features performs best in our
evaluation.

C· · · · · · · · · · · ·T· · · · · · · · · · · ·S·L· · · · ·B· · · · · ·

C············T············S·L·····B······

Figure 2. Learnt model difference for W0-RITML on
Q>25. Axis labels represent ranges of feature types:
(C)hroma, (T)imbre, as well as (S)egment, (L)oudness and
(B)eat+Tempo statistics. Dark red / blue colours corre-
spond to strong weight increase / decrease.

3 Subtraction and division are applied to W in a point-wise manner.

C· · · · · · · · · · · ·T· · · · · · · · · · · ·S·L· · · · ·B· · · · · ·

C············T············S·L·····B······

(a)

C· · · · · · · · · · · ·T· · · · · · · · · · · ·S·L· · · · ·B· · · · · ·

C············T············S·L·····B······

(b)

Figure 3. (a) Template matrix W0 before and (b) final ma-
trix W after fine-tuning with W0-RITML on Q>25. The
latter shows higher variance in off-diagonal entries for the
specialised model. Axis labels represent ranges of fea-
ture types: (C)hroma, (T)imbre, as well as (S)egment,
(L)oudness and (B)eat+Tempo statistics. Dark red colours
correspond to strong weight increase, light yellow to de-
crease.

7. CONCLUSION & FUTURE WORK

We presented a method for analysing music similarity data
of different user groups via models trained with transfer
learning. To this end, the new RITML algorithm was de-
veloped extending ITML to relative similarity data. A key
feature of RITML is that it enables transfer learning with
template Mahalanobis matrices via W0-RITML. Our eval-
uation of the algorithm was performed on two datasets:
The evaluation on the commonly used MagnaTagATune
dataset showed that RITML performs comparably to state-
of-the-art algorithms for metric learning.

For evaluation of transfer learning with W0-RITML we
provide the CASimIR similarity dataset, the first open dataset
containing user attributes associated to relative similarity
data. Tests on the whole CASimIR dataset corroborated
our finding that RITML competes with current similarity
learning methods. Our analysis of W0-RITML was per-
formed on age-bounded subsets of the dataset. Results
showed that transfer learning with W0-RITML outperforms
the standard SVM algorithm on small datasets.

Our comparison of models allowed us to point out specific
features and combinations that determine similarity in user
data. For this first evaluation we chose age to group users.
We hope this will motivate further research in comparison
of similarity models and adaptation to data with regard to
cultural and user context.

For future work we are interested in collecting larger sim-
ilarity datasets, and applying the methods introduced here
for improved validation of results and the analysis of more
specific user groups. The set-up used for our experiments
motivates transfer learning across the MagnaTagATune and
CASimIR datasets with W0-RITML for further analysis of
the transferability of similarity information via Mahalano-
bis matrices.
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