
HYBRID LONG- AND SHORT-TERM MODELS OF FOLK MELODIES

Srikanth Cherla1,2 Son N. Tran2 Tillman Weyde1,2 Artur d’Avila Garcez2
1Music Informatics Research Group, Department of Computer Science, City University London

2 Machine Learning Group, Department of Computer Science, City University London
{srikanth.cherla.1, son.tran.1, t.e.weyde, a.garcez}@city.ac.uk

ABSTRACT

In this paper, we present the results of a study on dynamic
models for predicting sequences of musical pitch in melod-
ies. Such models predict a probability distribution over the
possible values of the next pitch in a sequence, which is
obtained by combining the prediction of two components
(1) a long-term model (LTM) learned offline on a corpus of
melodies, as well as (2) a short-term model (STM) which
incorporates context-specific information available during
prediction. Both the LTM and the STM learn regularities
in pitch sequences solely from data. The models are com-
bined in an ensemble, wherein they are weighted by the
relative entropies of their respective predictions. Going by
previous work that demonstrates the success of Connec-
tionist LTMs, we employ the recently proposed Recurrent
Temporal Discriminative Restricted Boltzmann Machine
(RTDRBM) as the LTM here. While it is indeed possible
for the same model to also serve as an STM, our exper-
iments showed that n-gram models tended to learn faster
than the RTDRBM in an online setting and that the hy-
brid of an RTDRBM LTM and an n-gram STM gives us
the best predictive performance yet on a corpus of mono-
phonic chorale and folk melodies.

1. INTRODUCTION

In the present work, our interest is in learning a model to
predict a probability distribution over the possible values
of the pitch of a musical note in a melody given the se-
quence of notes leading up to it. The motivation for this
stems from theoretical work in musicology and music cog-
nition which attempts to explain various musical phenom-
ena (such as style, genre and mood) in terms of patterns
of fulfilment, prolongation and violation of musical expec-
tation [10, 15, 19], i.e., that our perception of music is in-
fluenced by how its evolution in time conforms to, or de-
viates from our expectations. There exists empirical evi-
dence suggesting that these expectations are shaped by an
underlying mechanism of statistical learning [9], the con-
sequences of which have also been observed in language
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[24]. This apparent commonality between the two domains
has inspired the adoption of statistical models for word se-
quences in language and character sequences in text, to
pitch sequences in melody [4, 6, 21, 31]. Previous work in-
terpreting information theoretic concepts such as entropy
and mutual information (which play a key role in language
and text modelling) in the context of music [5, 16] con-
tributed towards the adoption of these quantities in evaluat-
ing such melody models. Time-varying entropy profiles of
predictions made by such models on musical pieces have
been used for explaining stylistic implications of salient
musical structures [7]. They have also been used to gener-
ate melodic stimuli in music cognition research [20]. Pre-
dictive models of music have also been used as Music Lan-
guage Models in music transcription [26]. The reader is
referred to [23] for a recent review on predictive machine
learning models used in music research.

The melody models considered here contain two com-
ponents - a long-term model (LTM), and a short-term
model (STM) [6]. The parameters of each model are
learned through exposure to appropriate data. From a ma-
chine learning perspective, the LTM is a model whose pa-
rameters are learned offline from a dataset of melodies. It
represents more global stylistic characteristics acquired by
a listener over a longer time-span. The parameters of the
STM are learned online while making predictions on the
test data, without any sequence learning occurring in it be-
forehand. The STM highlights the importance of context-
specific information, available in a melody while it is be-
ing processed by the listener, in the generation of expec-
tations. Predictions (in the form of probability distribu-
tions) made by each model about a certain musical event
in a sequence are combined using ensemble methods, and
this has been shown to improve the quality of predictions
over individual models in the past [6,21]. The idea of com-
bining corpus-based long-term and context-sensitive short-
term predictions from different models was originally a
feature of cache-based language models [12]. It was in-
troduced in the context of music in [6], further extended
in [21], and adopted in [7, 31].

To address the prediction task, we employ a recently
proposed Connectionist model known as the Recurrent
Temporal Discriminative Restricted Boltzmann Machine
[3]. This model has been shown to have a predictive
performance better than n-gram models and other stan-
dard Connectionist models on a corpus of monophonic
melodies when used as an LTM. We begin by evaluating
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its utility as an STM by carrying out online learning in
it, which has not been done previously. Experiments re-
vealed that, while learning did indeed take place, it did
not progress quickly enough (as a function of the number
of data-points presented to the RTDRBM) to outperform
existing state-of-the-art dynamic models based purely on
n-grams [22]. On adopting the wisdom of previous work
which demonstrated that n-gram models are indeed an ef-
fective choice as STMs, we found here that a hybrid pre-
diction model which combines the predictions of an RT-
DRBM LTM and an n-gram STM achieves better predic-
tive performance, and this also outperforms the state-of-
the-art, purely n-gram based dynamic melody models on a
corpus of 8 melody datasets. In this paper, we present the
results of various LTM-STM combinations that we exper-
imented with to arrive at this result and discuss our obser-
vations.

In the next section we formally introduce the task
of melody modelling, and entropy-weighted combination
strategies for LTMs and STMs. This is followed by a brief
overview of the two types of prediction models involved
in the present work, in Section 3. Various experiments in
combining these models that led to the above mentioned
optimal predictive performance are described in Section 4,
followed by the conclusions in Section 5.

2. MELODY MODELLING

Our interest is in modelling musical pitch sequences
through prediction. The task of music prediction addressed
here has strong parallels with previous work in language
modelling [14]. Thus, the analogy to natural language is
used here to explain it. In statistical language modelling,
the goal is to build a model that can estimate the joint prob-
ability distribution of subsequences of words occurring in
a language L. A statistical language model (SLM) can be
represented by the conditional probability of the next word
w(T ) given all the previous ones [w(1), . . . , w(T�1)] (writ-
ten w(1:T�1)), as

P (w(1:T )) =
T
Y

t=1

P (w(t)|w(1:t�1)) . (1)

The present work treats notes in a monophonic melody
analogous to words in the above language example. This
is inspired by [6] where a similar analogy was made be-
tween sequences of characters in the English language and
notes in music. We use an event-based representation of
music, where the occurrence of each note is treated as
a musical event. Much in the same way as an SLM, a
system for music prediction models the conditional dis-
tribution P (s(t)|s(1:t�1)) given a sequence s(1:T ) of mu-
sical events [4,6,22] from a musical language S, such that
s(t) 2 [S], where [S] is the set of symbols (musical pitch
values) in S. For each prediction, context information is
obtained from the events s(1:t�1) preceding s(t). Although
a range of musical features (such as musical pitch, note
duration, inter-onset interval, etc.) may be extracted from
each musical event as explained in [6], we limit our atten-
tion to sequences of musical pitch. And the symbols that

make up these sequences are MIDI values of the pitches
which occur in a particular dataset.

2.1 Long- and Short-term Models

In the present work, we make a distinction between two
types of prediction models, as introduced previously in the
context of Multiple Viewpoints for Music Prediction [6].
The first is known as a Long-Term Model (LTM). This
model is learned offline on a corpus of melodies (train-
ing data), its parameters thus being finalized beforehand
and kept constant during the prediction stage. It repre-
sents more global stylistic characteristics acquired by a lis-
tener over a longer time-span. And the second is what is
known as the Short-Term Model (STM). It highlights the
importance of context-specific information, available in a
melody while it is being processed by the listener, in the
generation of expectations. The distinction between the
long- and short-term models is also akin to the that made
in [11] between “schematic” (LTM) and “veridical” (STM)
knowledge in a modular view on music processing. A vari-
ant of the LTM which is also considered here was intro-
duced in [22]. This is the LTM+, and in addition to being
learned offline on a corpus of melodies like the LTM, it is
also updated while making predictions just like the STM.
Another distinction between the LTM+ and the STM is that
the former is continuously updated across melodies, while
the latter is re-initialized after each melody in the test set.

2.2 Combining the LTM & STM

It was demonstrated in [6, 21] that an entropy-weighted
combination of the predictions of two or more n-gram
models typically results in ensembles with better predictive
performance than any of the individual models. As it is the
predicted distributions which are combined, this approach
is independent of the types of models involved. Here, we
briefly describe two rules for creating such ensembles. Let
M be a set of models and Pm(s) be the probability as-
signed to symbol s 2 [S] by model m. The first involves
taking a weighted arithmetic mean of their respective pre-
dictions. This is the Mean combination rule, defined as

P (s) =

P

m2M wmPm(s)
P

m2M wm
(2)

where each of the weights wm depends on the entropy of
the distribution generated by the corresponding model m
in the combination such that greater entropy (and hence
uncertainty) is associated with a lower weight [6]. The
weights are given by the expression wm = Hrel(Pm)�b,
where the relative entropy Hrel(Pm) is

Hrel(Pm) =

(

H(Pm)/Hmax(Pm), if Hmax([S]) > 0

1, otherwise
(3)

The best value of the combination bias b � 0 is determined
through cross-validation. When b = 0, all the combined
models have the same weight. The quantities H and Hmax
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are respectively the entropy of the prediction and the maxi-
mum entropy of predictions over the symbol space [S], and
are defined as

H(P ) = �
X

s2[S]

P (s) log2 P (s) . (4)

Hmax(P ) = log2 |S|.
where P (X = s) is the probability mass function of a
random variable X distributed over the discrete alphabet
[S] such that the individual probabilities are independent
and sum to 1.

The second — the Product combination rule, is com-
puted similarly as the weighted geometric mean of the
probability distributions. This is given by

P (s) =
1

R

 

Y

m2M

Pm(s)wm

!

1P
m2M wm

(5)

where R is a normalisation constant which ensures that the
resulting distribution over S sums to unity. The weights
wm in this case are obtained in the same manner as in the
case of the Mean combination rule. It was observed in a
previous application of these two combination methods to
melody modelling [21], that the Product rule resulted in a
greater improvement in predictive performance.

3. PREDICTION MODELS

Before moving on to the experiments carried out on differ-
ent LTM-STM combinations in the next section, here we
provide a quick overview of the two classes of prediction
models that have been employed for this purpose. The first
is the Recurrent Temporal Discriminative Restricted Boltz-
mann Machine, and the other is the n-gram Model.

3.1 Recurrent Temporal Discriminative RBM

The Recurrent Temporal Discriminative Restricted Boltz-
mann Machine (RTDRBM) [3] was proposed by the
authors as the discriminative equivalent of the Recur-
rent Temporal Restricted Boltzmann Machine (RTRBM)
[28]. Both models are identical in structure, and
are composed of a sequence of Restricted Boltzmann
Machines (RBM) [27], where the visible and hid-
den layers of the RBM at time-step t are condi-
tioned on the mean-field values of the hidden layer
of that at (t � 1) through a set of time-dependent
model parameters. The RTDRBM learns the distribu-
tion P (y(1:T )|x(1:T )) over a sequence of input-label pairs
{x(1:T ),y(1:T )}, in contrast to the RTRBM which
learns the joint probability of the entire sequence
P (y(1:T ),x(1:T )) [1].

The RTDRBM (Figure 1) is obtained by carrying out
discriminative learning and inference as put forward in the
Discriminative RBM (DRBM) [13], in a temporal setting
by incorporating the recurrent structure of the RTRBM wh-
ich was originally proposed as a generative model for high-

v(1) v(2)

h(0) h(1) h(2) . . .

x(1) y(1) x(2) y(2) . . .

Whh
c(1)

Whv

b(1)

Whh
c(2)

Whv

b(2)
W U W U

Figure 1: The architecture of the RTDRBM, in which the
biases of the visible and hidden layers b(t) and c(t) re-
spectively at time-step t are conditioned on the mean-field
values of the hidden layer of the RBM ĥ(t�1) at time-step
(t � 1). This is also a feature of the RTRBM.

dimensional sequences. This results in the following ex-
pression for the posterior probabilities at time-step t:

P (y(t)|x(1:t)) = P (y(t)|x(t), ĥ(t�1)) (6)

It takes into account temporal information carried forward
from the previous time-step through the mean-field values
of the hidden units ĥ(t�1) [3]. This can be extended to an
entire sequence of T events as follows:

P (y(1:T )|x(1:T )) =
T
Y

t=1

p(y(t)|x(t), ĥ(t�1)) (7)

One can thus learn the model by maximizing the log-
likelihood function:

O = log P (y(1:T )|x(1:T ))

=
T
X

t=1

log P (y(t)|x(t), ĥ(t�1)) .
(8)

Learning here involves updating the model’s parameters
as dictated by the Backpropagation Through Time (BPTT)
algorithm [30]. It was demonstrated in [3] that the RT-
DRBM outperformed the RTRBM, n-grams and a set of
standard Connectionist models on a corpus of 8 different
datasets of chorale and folk melodies of varying sizes and
complexities when learned offline. In the pitch predic-
tion task of Section 2, the one-hot encoding of the musical
event s(t) (which is to be predicted) substitutes the label
y(t) in (6), whereas that of the most recent event from the
context s(t�1) substitutes the input x(t).

3.2 n-gram Model

The n-gram model is a statistical model of sequences that
relies on the simplifying assumption that the probability of
an event (or in the present case, a musical event) in a se-
quence depends only on the (n�1) immediately preceding
events [14]. This is known as the Markov assumption, and
is applied to model an event sequence s(1:T ) as

P (s(1:T )) =
T
Y

t=1

P (s(t)|s(t�n+1:t�1)) . (9)
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where n is known as the order of the n-gram. The model
can be represented by a state transition graph, or by a tran-
sition matrix. Maximum-Likelihood Estimation can be
carried out to estimate the parameters of the n-gram model
(its transition probabilities) as

P (s(t)|s(t�n+1:t�1)) =
N(s(t�n+1:t))

N(s(t�n+1:t�1))
(10)

where N(s(t1:t2)) is the number of occurrences of a se-
quence s(t1:t2) in the data. As we shall see in Section
4, this simple learning rule is advantageous in an online-
learning scenario where the model needs to be constantly
updated as it encounters new data. As n-grams rely ex-
plicitly on the occurrence frequencies of sequences, it is
often the case that the model comes across a never-before-
encountered context on which to predict the future event,
and this is more common in higher order models. This
issue has been dealt with by using smoothed n-grams [2]
that use lower-order transition probabilities for generating
approximations (through interpolation with or scaling of)
higher-order probabilities. This also applicable to events
that lack a valid context, i.e. {s(t) | 1  t  (n � 1)}.

The present work employs two of the best variants of
the n-gram model evaluated for melody modelling in [22]
exclusively as STMs, as an alternative to the RTDRBM
which performs poorly in this role (Table 3). Both variants
are of unbounded order, wherein they take into account the
longest available matching context (of immediately pre-
ceding musical events) in order to make a prediction. The
first of these (referred to as C⇤I) uses the interpolated
smoothing method proposed in [18] to account for unfa-
miliar contexts. The second (referred to as X⇤UI) uses a
Poisson process based interpolated smoothing method [18]
with update exclusion [17]. We refer the interested reader
to [22] for further details on these two models.

4. EXPERIMENTAL RESULTS

We evaluate six different LTM-STM combinations. These
are listed in Table 1. Also, C⇤I and X⇤UI are the names

(a) LTM: RTDRBM STM: n-gram (X*UI)
(b) LTM: RTDRBM STM: n-gram (C*I)
(c) LTM: RTDRBM STM: RTDRBM
(d) LTM+: RTDRBM STM: n-gram (X*UI)
(e) LTM+: RTDRBM STM: n-gram (C*I)
(f) LTM+: RTDRBM STM: RTDRBM

Table 1: Various LTM-STM combinations evaluated here.

of the two best STMs evaluated in a previous study of n-
gram based melody models [22].

Each of the combined models was evaluated on 8
melody datasets of different sizes and styles. Prediction
cross-entropy was used as the evaluation measure. It was
found that combination (b) had the best predictive perfor-
mance. Furthermore, each case involving an LTM was

Dataset No. events |X|

Yugoslavian folk songs 2691 25
Alsatian folk songs 4496 32
Swiss folk songs 4586 34

Austrian folk songs 5306 35
German folk songs 8393 27

Canadian folk songs 8553 25
Chorale melodies 9227 21

Chinese folk songs 11056 41

Table 2: Melody datasets used for evaluation with their
respective total number of musical events and number of
prediction categories.

better than its LTM+ counterpart. And finally, the n-
grams consistently proved to be a better choice than the
RTDRBM as STMs when combined with the same LTM.

4.1 Data

Evaluation was carried out on a corpus of 8 datasets of
monophonic MIDI melodies from the Essen Folk Song
Collection 1 [25]. The corpus covers a range of musical
styles and was previously used in [4, 22] to evaluate their
respective prediction models. It contains folk melodies of
7 different traditions, and chorale melodies (Table 2). All
melodies are encoded in the **kern format in each dataset,
and were parsed using the Music21 Python library [8]. Mu-
sical pitch, which occurs as sequences of integer values, is
treated as a discrete random variable X , which can assume
any of |X| distinct values (or prediction categories).

4.2 Evaluation Measure

Given that the models predict a probability distribution
over X at every time-step, their goal may be viewed as
one of minimizing the distance between this predicted dis-
tribution and that representing the correct class label (the
value of the next pitch). An obvious choice of evaluation
measure in this case would be the information theoretic
quantity which calculates this distance: relative entropy.
Here we use a measure derived from it known as cross-
entropy (Hc), in order to compare our results with previ-
ous work [22]. This gives us the mean divergence between
the entropy calculated from the predicted distribution and
that of the correct prediction label (and can be interpreted
as the distance between these two distributions) for every
sample in some given data. It can be computed over all
the events belonging to different sequences in the test data
Dtest, as

Hc(Pmod,Dtest) =

�Ps2Dtest

PTs

t=1 log2 Pmod(s(t)|s(1:t�1))
P

s2Dtest
Ts

(11)
1 Website: http://kern.ccarh.org/browse?l=essen
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where Pmod is the probability assigned by the model to the
pitch of the event s(t) in the melody s 2 Dtest given its
preceding context, and Ts is the length of s. Cross-entropy
approaches the true entropy as the number of test samples,
i.e., the denominator in (11) increases.

4.3 Methodology

The models are evaluated using 10-fold cross-validation.
We use randomised folds identical to those used in previ-
ous work [4, 22] to facilitate fair comparison 2 . A small
part of the training set (5%) in each fold is extracted as
the validation set for model selection over the various hy-
perparameters described below. This procedure is repeated
independently for each of the 8 datasets in the corpus.

The RTDRBM LTMs were learned (offline) up to a
maximum of 250 epochs using mini-batch gradient descent
on the training set, and that with the best validation set
score was chosen for evaluation on the test set. A grid
search was carried out to determine the best set of hyper-
parameters for each model. These constitute the learning
rate ⌘, the L1 and L2 regularization (�1 and �2 respec-
tively) and the number of hidden units nhid. For each
of the models, ⌘ was varied as {0.01, 0.05}, and nhid as
{10, 25, 50, 100, 200}. Both L1 and L2 decay were set
to identical values �1 = �2 = � which was either on
(� = 0.0001) or off (� = 0.0000). Learning rate was made
to decay according to the schedule ⌘t = ⌘init/(1 + t/⌧),
where ⌧ = 50.

The RTDRBM LTM+s and STMs were learned (online)
using stochastic gradient descent, where model parameters
were updated after each time-step during prediction on the
test set, with the only distinction between the two being
that the parameters of the former are initialized to those
of the best LTM learned offline on the dataset. As ex-
plained in Section 2.1, the LTM+ is continuously updated
across melodies, while the STM is re-initialized after each
melody in the test set. Since each of the STMs is expected
to learn a smaller number of patterns than its corresponding
LTM, we decided to extend the model selection with much
smaller models as well (nhid 2 {2, 5, 10, 20, 100, 200}),
with the remaining hyperparameters kept the same, and a
constant learning rate i.e., ⌘t = ⌘init = 0.01.

The combination bias parameter b for computing the
entropy-based weights wm was varied as b = {0, 1, 2, 3, 4,
5, 6, 7, 8, 16, 32}, as in [21]. This range was used for both
combination rules, following the example of [21].

4.4 Results & Discussion

Table 3 shows the predictive performance of various
LTM-STM combination rules evaluated here together with
the corresponding combination bias value used, averaged
across all 8 datasets. The bottom row of this table cor-
responds to the performance of the purely n-gram based
melody model in [22], which we compare the models eval-
uated here with.

2 Information about the training/test split in the 10 folds was obtained
from the authors of [22]

Model LTM STM Mix. bm Prod. bp

(a) 2.712 3.053 2.480 3 2.496 1
(b) 2.712 3.046 2.421 4 2.487 1
(c) 2.712 3.363 2.674 5 2.703 1
(d) 2.756 3.053 2.574 2 2.563 1
(e) 2.756 3.046 2.540 2 2.581 1
(f) 2.756 3.363 2.749 5 2.773 1

n-gram 2.614 3.147 2.479 2 N/A N/A

Table 3: Predictive performance of various model com-
binations listed in Table 1, in comparison with a purely
n-gram based melody model (bottom row). Each row of
the table contains the prediction cross-entropies of the con-
stituent LTM (or LTM+), STM, and the combination of
these two using the Mean and Product rules together with
the respective biases. A lower value of cross-entropy re-
flects more accurate predictions.

In each case, the RTDRBM LTM has 100 hidden units
(found to be the best in the model selection procedure).
Despite the extended grid search for the STMs, it was
found that the optimal number of hidden units was 100 in
that case as well.

The first thing to note is that combining the models (us-
ing either of the two combination rules) results in an im-
provement in predictive performance over each of the con-
stituent models. Furthermore, the Mean combination rule
results in slightly better prediction cross-entropies than
Product rule. This can be explained by considering the ba-
sic properties of the two rules, as concluded by a previous
study comparing them [29]. The Mean combination rule is
useful in case of identical or very highly correlated feature
spaces (which holds true in the present case) in which clas-
sifiers make independent errors. Furthermore, this rule is
generally more fault tolerant in the case of poor posterior
probability estimates (which is indeed the case here with
the STM being learned afresh at the start of each melody),
whereas the Product rule emphasizes the points of agree-
ment between the two models and is apt where classifiers
make small estimation errors. The best combined model
(RTDRBM LTM; n-gram (C⇤I) STM) performs slightly
better than the best purely n-gram based melody model
in [22]. In the case of both the Mean and Product rules, it
was found that smaller values of the combination bias pa-
rameter were preferred over larger ones, with a value of 1
being consistently optimal in the case of the latter.

Another observation is regarding the LTM and LTM+,
where the latter performs slightly worse when compared
to the former. This contrasts what has been previously
observed when using n-gram models, where there was
an improvement from the LTM to the LTM+ [22]. One
possible reason for this could be the absence of any new
sequential regularities in the test data to update the al-
ready optimized LTM with, since both the training and
test sequences have been sampled from the same data dis-
tribution. Alternatively, the gradient-based optimization
procedure employed here for online learning (stochastic

588 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



gradient-descent) might not be the ideal choice for updat-
ing the model quickly enough to facilitate an improvement
in the predictions. The latter reason could also explain the
relatively poor performance of the RTDRBM STMs when
compared to the STMs based on n-grams. This requires
further investigation.

5. CONCLUSIONS & FUTURE WORK

This paper presented a study on models for melody predic-
tion with a long-term and a short-term component (LTM
and STM respectively). While all the LTMs explored here
are based on the Recurrent Temporal Discriminative RBM
(RTDRBM), the STMs are based both on the RTDRBM
and n-gram models. It was found that, while the RT-
DRBMs are indeed a suitable choice when learned offline
as LTMs [3], they fail to achieve a predictive performance
as good as that of the n-gram models considered here in an
online setting (as in the case of the LTM+ and the STM).
The best model in the present work is a combination of
an RTDRBM LTM and an n-gram STM which performs
better than the state-of-the-art model based purely on n-
grams. Among the two combination rules - Mean and
Product - it was found that the former rule works better
with the models and data used here.

One issue that remains unresolved in the present work,
and requires investigation in the future, is the lack of im-
provement in predictions during online learning in the RT-
DRBM LTM. Another extension to the models employed
here is to incorporate additional melodic features as inputs,
as detailed in Multiple Viewpoints for Music Prediction [6],
and to examine how this would improve or worsen the pre-
dictive performance over the existing models. And finally,
previous work with LTMs and STMs based purely on n-
gram models has found the predictions made by these mod-
els to reflect the musical expectations of human subjects.
This is also relevant to the models explored here, and is of
interest in the future.
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