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ABSTRACT

Musical offset detection is an integral part of a music sig-
nal processing system that requires complete characteriza-
tion of note events. However, unlike onset detection, off-
set detection has seldom been the subject of an in-depth
study in the music information retrieval community, possi-
bly because of the ambiguity involved in the determination
of offset times in music. This paper presents a preliminary
study aiming at discussing ways to annotate and to evaluate
offset times for pitched non-percussive instruments. More-
over, we conduct a case study of offset detection in vio-
lin recordings by evaluating a number of energy, spectral
flux, and pitch based methods using a new dataset cover-
ing 6 different violin playing techniques. The new dataset,
which is going to be shared with the research community,
consists of 63 violin recordings that are thoroughly anno-
tated based on perceptual loudness and note transition. The
offset detection methods, which are adapted from well-
known methods for onset detection, are evaluated using an
onset-aware method we propose for this task. Result shows
that the accuracy of offset detection is highly dependent
on the playing techniques involved. Moreover, pitch-based
methods can better get rid of the soft-decaying behavior of
offsets and achieve the best result among others.

1. INTRODUCTION

In the literature, offset detection has been frequently men-
tioned in the context of performance analysis [14], auto-
matic music transcription (AMT) [4, 13, 21, 24, 29], note
segmentation [10, 15, 18, 26], and computational auditory
scene analysis (CASA) [19]. In these systems, offset detec-
tion is required for complete measurements of duration, in-
tonation, vibrato, dynamics, and other kinds of note-based
properties of music [14]. However, to date, offset detec-
tion is mostly treated as a component in a large system.
Few studies, if any, are dedicated to offset detection.

The challenges of offset detection can be illustrated by
the attack-decay-sustain-release (ADSR) model of music
signals. First, consider the ADSR envelope of a plucked
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(a) Plucked string

(b) Bowed string

Figure 1. The ADSR envelops of a plucked string (upper)
and a bowed string signal (lower). The gray blocks show
the ambiguity of onset (dark) and offset (light) due to the
variation of hearing threshold. The bold-line segments of
the envelopes are the possible regions to detect an offset.

string signal in Figure 1(a). The envelope of such signals
usually consists of a short attack, unobservable sustain, and
a gradual decay right before the release. Due to the dif-
ference in hearing threshold among human listeners, the
possible region of perceptual offset time (i.e. medium gray
region) can be fairly wide due to the gentle slope of the
release. Because of this, offset detection may slip into the
game of comparing the subjective listening thresholds. In
contrast, there is little ambiguity associated with the onset
time (i.e. dark gray region) due to the short attack.

Figure 1(b), on the other hand, shows the possible ADSR
envelope of a bowed string signal, which contains four dis-
cernible parts. Because the release time is shorter, the tem-
poral uncertainty of the perceptual threshold of such sig-
nals should be less than that of plucked string signals. In
practice, however, computationally estimating the percep-
tual threshold in bowed string signals may not be easy, due
to the similar shapes of the decay and the release parts.
Things are more complicated in real-world signals that con-
tain rich variation in the employed instruments and playing
techniques, which would shape the ADSR envelope in to-
tally different ways. Indeed, the challenges of offset detec-
tion can be attributed to the gentle slope of the release part
and the rich variation in timbre in music signals.
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This paper presents a preliminary attempt focusing on
musical offset detection. Specifically, this paper discusses
various aspects of offset detection research, from building
a dataset, designing an algorithm informed by the afore-
mentioned challenges, to evaluating the performance of
offset detection. We restrict our discussion on the violin,
and investigate the offset detection of its six different play-
ing techniques. This way, we exclude musical signals with
very long releases, such as the pedaled piano.

Specifically, we discuss possible approaches to manu-
ally annotating offset times in music and then propose a
new one (see Section 3). The proposed approach is adopted
to construct a new offset detection dataset, which we have
made available to the research community online. 1 With
the new dataset, we present and evaluate a number of off-
set detection algorithms based on the spectral flux, energy
and pitch attributes of music (see Section 4). To investigate
the effect of playing techniques, an in-depth technique-by-
technique discussion is also presented (see Section 5). As
another contribution of this paper, a new evaluation mea-
sure for offset detection is also proposed and discussed.

2. RELATED WORK

Most of the offset detection algorithms are implemented in
two main directions: thresholding on energy salience, and
thresholding on pitch salience. The energy salience can be
the physical, perceptual or pitch-wise sound levels [15,16,
20]. The thresholding on pitch salience is often seen in the
context of AMT [13, 24], where the offset can be regarded
as the falling position of a pitch salience function for a spe-
cific pitch. In Non-negative matrix factorization (NMF)-
based AMT, the offset is usually determined by a thresh-
old on the activation matrix [29]. Other approaches, such
as novel features like correntropy [10], data-driven models
such as the hidden Markov models (HMM) [4, 14], sup-
port vector machines (SVM) [18], have also been applied
to offset detection. Spectral flux-based approaches (i.e.
using temporal difference of spectrum-based representa-
tions) [3, 6, 7, 28], despite being a conventional method in
onset detection, are rarely used in offset detection except
for some studies [19, 21, 26]. Post-processing with known
onset information is sometimes used [10, 15].

3. DATASET CONSTRUCTION

3.1 Annotating the Offset

There are several possible ways to annotate the offset of
musical notes and build a dataset, depending on the data
format of the music content. For example, one can take
the timestamps of note-off message in MIDI as the ground
truth for offset. Although audio data for experiments can
be generated by MIDI efficiently, this method cannot ac-
curately indicate the perceptual offset time in many cases.
For example, a control message “sustain pedal” makes the
synthesizer prolong the amplitude envelope even after the

1 http://mac.citi.sinica.edu.tw/offset_
detection/

note-off message. In this case, the perceptual offset can
fall far behind the note-off message. Alternatively, one
can also construct a music dataset from video recordings.
Video can plausibly provide visual clues to a performer’s
movement which are sometimes helpful to estimate the
offset time. Inaccuracy, however, may result from audio-
visual asynchrony and low frame rates.

Another useful way to specify the offset times is to an-
notate on the spectrogram of waveform with the aid of au-
dio visualization and musical signal analysis tools such as
Sonic Visualiser. This method, however, may not be re-
liable due to the mismatch between the physical and per-
ceptual offset. For example, human has varied audibility
threshold in different pitch frequency ranges. Perceptual
limitations, such as simultaneous masking and temporal
masking, may also affect. Therefore, a more practical way
is to incorporate visualization software and the hearing per-
ception of musicians, despite the cost may be higher. Since
their is no procedure for such a perception-based offset an-
notation, we propose a new one below.

3.2 Proposed Offset Annotation Procedure

Considering the perceptual aspects of pitched instruments,
the validity of our annotation is based on two assumptions:
First, if a note onset and its fundamental frequency (F0) are
both retrieved, its offset time is the first moment when the
sound intensity level is below the auditory threshold for a
certain period of time. Second, for continuous notes, the
sound intensity level may always be above the threshold.
Therefore, the offset time of preceding note should be ex-
actly or very close to the onset time of the subsequent note
unless there are polyphnic notes.

With the aid of a visualization tool such as the Audacity,
we propose the following steps for annotating offset times.

1. Remove DC offset (bias) and normalize maximum
amplitude to -1.0 dB (software default value). This
is done by the “normalize” function in Audacity.

2. Transcribe all identifiable pitches, excluding unsta-
ble overtones and unidentifiable sound resulting from
playing faults or specific playing techniques (e.g. fla-
geolet or sul ponticello).

3. Carefully and repeatedly listen to a short part of sound
sample as well as zoom in the display of waveform
in order to catch the onset position.

4. Identify the position within a pitch where we find the
start of “attack” of amplitude envelope in the wave-
form. The timestamp corresponds to the note onset.

5. Catch the first perceived disappearance (i.e. below
the audibility threshold) of that given pitch. The cor-
responding timestamp is the note offset time.

6. For continuous notes, we simply find consequent note
onset time and use it as the preceding note offset
time. However, in case of a clear note overlapping,
we annotate the onset and the offset independently.

7. If the time is still not assured, we play the sound at
slower speeds and repeats steps 3–6. This is helpful
in estimating note onset or offset precisely.
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Technique # of clips # of offsets
Pizzicato 13 144
Spiccato 5 168
Sordino 10 539
Flageolet 8 48
Sul tasto 12 140
Sul ponticello 15 187
Total 63 1,226

Table 1. Detailed information of the proposed dataset.

3.3 Proposed Dataset

The dataset contains 63 violin solo excerpts with a total of
1,226 notes derived from the YouTube video clips in [27]
and several sound clips from the website “CompositionTo-
day.com” [1]. This dataset, however, does not include in-
formation about music score, fingering, dynamics, vibrato,
recording environment acoustics, etc. The excerpts covers
6 playing techniques, namely flageolet (harmonic), pizzi-
cato (pluck the string), sordino (mute), spiccato (bounce
the bow), sul ponticello (bow nearing the bridge) and sul
tasto (bow nearing the fingerboard), all of which are widely
used in orchestration [2]. These techniques produce var-
ious patterns of temporal envelopes, thereby providing a
practical reference set for evaluating offset detection algo-
rithms. Detailed information about the number of clips and
notes for each playing techniques is listed in Table 1. We
consider these techniques because the dataset is intended
to be used as an extension of our previous work [27]. For
more comprehensive experiments, people need to include
more playing techniques such as legato and detache.

We hired a professional musician to annotate the dataset.
The musician has profession-level training in music school
and has more than 20 years of experience in playing musi-
cal instruments. He also has long experience in composing
string quartet and orchestral work, and in sound mixing
and recording technology. From the musician’s feedback,
finishing a precise note annotation and double-check costs
1 to 2 minutes through the above process.

4. METHOD

In our study, features are extracted from three different as-
pects of music, including fundamental frequency, energy
envelope and magnitude spectrum. We evaluate the three
aspects separately to investigate their feasibility for offset
detection. Revising a few previous approaches for onset
detection based on these aspects, we discuss five possible
offset detection algorithms in the following subsections.

4.1 Fundamental frequency

In what follows, we denote f0n as the fundamental fre-
quency at the frame index n. The corresponding MIDI
number mn can be obtained by the relation mn = b12 ·
log2(f0n/440)e + 69.

We adopt the spectral-domain YIN algorithm [9] to es-
timate the fundamental frequency. The algorithm reduces

the computation complexity of the original, time-domain
YIN algorithm [12], and can produce efficient and robust
estimate of fundamental frequency. It estimates the funda-
mental frequency by finding the minimum of the tapered
square difference function dn(⌧) below a certain thresh-
old. The function dn(⌧) is formulated as:

dn(⌧) =
2

N

N/2+1
X

k=0

|(1 � e2j⇡k⌧/N )Xn (k) |2 , (1)

where ⌧ is the time lag, and Xn (k) is the short-time Fourier
transform (STFT) spectrum at frame index n. The window
size of STFT is set to N = 2048 in our implementation.

The minimum of Eq.(1) indicates the periodicity. The
smaller the dn(⌧) is, the higher the confidence that the in-
put signal has a fundamental frequency at 1/⌧ . Conversely,
if dn(⌧) is too high then the input signal is considered non-
pitched. The fundamental frequency f0 is represented as:

f0n =

✓

arg min
⌧

dn(⌧)

◆�1

s.t. 1 � dn(⌧) > �c . (2)

We consider the term cn = 1 � min dn(⌧) as the pitch
confidence; as it measures whether an input is periodic and
therefore can determine whether it is a pitch signal [9, 25].
In our implementation, we set the pitch to zero (i.e. mn =
0) if the confidence is below a threshold �c. We set �c =
0.7 empirically.

4.1.1 Pitch change

Pitch change has been known as a useful onset detector
for pitched non-percussive instruments like bowed strings,
where the input signal is usually excited constantly and
exhibits no obvious amplitude or phase variation [11, 17].
Pitch change is a clear indicator of a note transition, which
typically contains an offset of the previous note and the
onset of the latter note. When the pitch contour changes
from one pitch to another, we expect that there should be
one note ending and another note starting. We note that the
limitation of this idea is that it cannot deal with the case of
repeating notes.

Based on the above observation, we propose the fol-
lowing offset detection method using pitch change infor-
mation. We consider there is an offset event at frame n, if
the following two rules are satisfied:

mod12(mn � mn�1) � 1 ^ cn � cn�1 < 0 . (3)

Similar to the onset detector proposed in [17], the mod-
ulo operator in the first rule is applied to prevent octave
errors, although it also hinders the detection of transitions
of octave(s). Because mn = 0 when cn  �c, the first
rule also captures voice/unvoice transition. We also ob-
serve that the falling moment of confidence function can
indicate the chance of a stable pitch fading that enables us
to distinguish offset from onset.

4.1.2 Pitch confidence

Another perspective is to directly use the pitch confidence
function as an offset detector. In this case, errors of pitch
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detection would not influence the performance. The ba-
sic idea is that the time instant when the pitch confidence
changes from pitched to non-pitched is considered as the
offset time. Therefore, this method searches for the mo-
ment that the pitch confidence falls below the threshold. In
other words, there is an offset event at n, if the following
conditions meet:

cn�1 > �c ^ cn < �c . (4)

Please note that this method is conceptually similar to
the way many NMF-based automatic transcription algo-
rithms detect offsets: they usually detect offsets by thresh-
olding on the activation matrix [29]. While our method
uses cn to measure pitch confidence, NMF-based methods
use the value of activation to measure pitch confidence.

4.2 Energy envelope

The energy envelope as used by the human auditory sys-
tem [6] has been proven to be a robust feature in many on-
set detection tasks [7, 8, 22]. Here we compute the energy-
like temporal envelope based on this feature. The pre-
processing step starts from raw STFT spectra with frame
size 2048, then map into 141 sub-bands by a set of trian-
gular filter bank equally spaced in log-scale ranging from
30 Hz to 17000 Hz. Then, the feature is scaled by the log-
arithm x 7! log(1 + x). Finally, the energy-like envelope
is formulated as: En =

P

k |X̄n(k)|2 , where X̄n(k) is
the pre-processed spectra magnitude of bin k. Since the
perceptual offset is a subjective threshold lies between the
decaying phase of energy envelope, and in most cases note
offset is interrupted by succeeding onset, that make the
setting an absolute thresholding infeasible. Therefore, we
employ the relative threshold peak-picking algorithm [5]
to find the valley of energy envelope as offset.

4.3 Spectral flux

Spectral flux is one of the most common, easy-to-implement
yet powerful methods for onset detection [3, 7]. It can
be formulated as: SFn =

P

k H(|X̄n(k)| � |X̄n�1(k)|),
where H(x) = |x|+x

2 is the rectifier function, and the pre-
processed spectral bins X̄n(k) are the ones that are de-
scribed in Section 4.2.

We are interested in whether the idea of spectral flux
can be adopted for offset detection. Two reversed variants
of spectral flux are considered:

• Reverse rectification (SFrr): The rectifier function
H in onset detection selects only the positive flux
while suppresses the negative flux. Conversely, for
offset detection, H is replaced by H 0 = |x|�x

2 , which
suppress all the positive flux.

• Reverse coding (SFrc): The other setting is to com-
pute spectral flux in the opposite direction, i.e., from
the future to the past:

P

k H(|X̄n(k)|�|X̄n+3(k)|),
to reverse the raw audio signal, and apply the normal
spectral flux method to the reversed signal as look-
ing for onset in the opposite direction.

Offset annotation�
Onset annotation�

i� ii� iii�

Figure 2. A case when an offset and its succeeding onset
are very close, the right margin of the tolerance window
for offset (the solid line) might fall behind the right margin
of the tolerance window for onset (the dash line) of onset.
Regions i–iii are all within the tolerance window for offset,
while region ii is within the tolerance window for onset.

5. EVALUATION

5.1 Onset-aware evaluation metric

We employ the standard measures for evaluation: preci-
sion, recall and F-score. In evaluation, the offset estimate
that falls within a tolerance window of length 2�tolerance of
the groundtruth offset time is considered to be a true posi-
tive. Moreover, the estimate and the groundtruth can only
be matched at most once, based on maximum cardinality
bipartite matching [23]. The remaining estimates are con-
sidered false positives. The tolerance window (centered
at the groundtruth annotation) can be written as �W =
[��tolerance, +�tolerance]. This is referred to as the conven-
tional tolerance window.

A typical problem of this evaluation method is depicted
in Fig. 2. As mentioned in Section 1, the tolerance win-
dow for offset detection is often set to be wider than that
for onset detection in most previous work. 2 In Fig. 2, the
right margin of the tolerance window for offset of the cur-
rent note (i.e. the solid line in Fig. 2) falls behind the right
margin of the tolerance window for onset of the succeeding
note (i.e. the dash line in Fig. 2). Such a situation occurs
for more than 80% of notes in our dataset, when �tolerance is
set to 100ms. If the offset is annotated given the transition
offset annotation rule that we suggest, region iii should not
be considered as a possible true positive area.

In light of this observation, we further define a new
tolerance window by �W 0 = [��tolerance, +�post tolerance],
making �post tolerance dependent on the succeeding onset. In
this paper, we set �post tolerance = min(�t+50ms, �tolerance),
where �t denotes the timestamp of the next onset, and 50ms
is a commonly adopted value for �tolerance for onset.

To give a deep insight of the onset-aware tolerance win-
dow, let’s first consider this: if the offset and succeeding
onset are located far apart, the post tolerance would be the
same as the conventional tolerance, so the evaluation re-
sult will be the same as the result of the conventional met-
ric. But, as the distance becomes closer, post tolerance will
shrink to the tolerance of succeeding onset when they are
fully overlapped, resulting in a shortened tolerance win-

2 http://www.music-ir.org/mirex/wiki/2014:
Multiple_Fundamental_Frequency_Estimation_\%
26_Tracking
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Playing technique Performance Pitch confidence Pitch change Energy SF
rc

SF
rr

measure M
A

M
B

M
A

M
B

M
A

M
B

M
A

M
B

M
A

M
B

Pizzicato

F-score

0.689 0.671 0.578 0.557 0.695 0.695 0.576 0.556 0.587 0.567
Spiccato 0.778 0.724 0.740 0.687 0.759 0.759 0.610 0.308 0.584 0.271
Sordino 0.727 0.718 0.701 0.686 0.555 0.512 0.650 0.598 0.652 0.596
Flageolet 0.381 0.381 0.321 0.301 0.414 0.402 0.292 0.262 0.290 0.254
Sul tasto 0.531 0.522 0.544 0.524 0.463 0.433 0.448 0.433 0.440 0.424
Sul ponticello 0.522 0.518 0.44 0.434 0.338 0.309 0.314 0.302 0.310 0.299

Overall
Precision 0.688 0.673 0.514 0.498 0.422 0.398 0.364 0.326 0.361 0.320

Recall 0.623 0.609 0.669 0.648 0.639 0.604 0.758 0.677 0.759 0.674
F-score 0.654 0.640 0.582 0.563 0.508 0.480 0.492 0.440 0.489 0.434

Table 2. Comparison of evaluation metrics to offset detection methods. MA: the conventional evaluation metric. MB : the
proposed onset-aware evaluation metric.

/tolerance

0.05 0.07 0.09 0.11 0.13 0.15

F-
sc
or
e

0.3

0.4

0.5

0.6

0.7

Con-dence (MA)
Con-dence (MB)
SFrr (MA)
SFrr (MB)

Figure 3. Comparison of evaluation using conven-
tional metric (solid line) and proposed onset-aware metric
(dash line) on two offset detection methods. Horizontal
axis shows the tolerance �tolerance (ranging from 50ms to
150ms), and vertical axis shows average F-score.

dow without region iii. In other words, the right margin of
the tolerable window for offset would not exceed the right
margin of the tolerable window for the succeeding onset.

5.2 Experiment result

Table 2 shows the evaluation of detection algorithms per-
formed by both metrics. First of all, we see that pitch-
based methods significantly outperform the others in the
overall result according to both metrics. This is perhaps
not surprising, given that pitch-based methods have been
shown effective for onset detection for notes with slow at-
tack phase. For example, Holzapfel et al. [17] have shown
that pitch-based methods work much better than SF-based
methods for onset detection for bow-string instrument and
wind instrument. The decaying phase exhibits similar sig-
nal characteristics as soft onsets when “looking reversely”
from the end of the signal. This may explain why pitch-
based methods also work better than SF-based methods for
offset detection.

We expect that the result of onset-aware evaluation (us-
ing �W 0) would be equal or less than conventional metric
(using �W ). The interesting finding is that, while most
methods we considered have similar result for the two eval-
uation metrics, the result of SF-based methods degrades a
lot when the onset-aware metric is adopted. For the overall
result, the result of the two SF methods decreases by 11%
and 13%, respectively. The most severe degradation is seen

in spiccato. This result indicates that SF-based methods
may be prone to produce many estimations within region
iii of Fig. 2.

Fig. 3 compares the result of the pitch confidence method
and the SFrr methods using the two metrics. As it will be
shown later in Section 5.3, spectral flux exhibits temporal
alignment issues while the pitch confidence method does
not. It can be seen that the pitch confidence method does
not suffer from the penalty of proposed metric while SFrr

does. We note that the bipartite matching mechanism we
adopted may have also avoided some of the estimation in-
side region iii of Fig. 2. But, by using the proposed metric,
we can ensure region iii is fully eliminated. This is im-
portant because the conventional metric may give us over-
optimistic result.

Another important finding is that the pitch confidence
method consistently outperforms the pitch change method,
when the onset-aware metric is adopted. Results show
that the pitch change method has higher recall but much
lower precision, possibly due to the fluctuation of confi-
dence above and below threshold causes some false alarms.
It is possible to mitigate the issue by proper post-processing,
such as by padding the continuous note or using median fil-
ter, but if the pitch confidence method is employed we do
not have to deal with such an issue.

5.3 Illustration

The upper part of Fig. 4 shows the spectrogram and the off-
set detection functions of pizzicato and spiccato. 3 Though
both techniques produce sound by pulse-like excitation, we
can see the envelope of spiccato is much smoother than
spiccato in terms of attack and decay phase possibly, be-
cause of the elasticity of bow cause the striking contacts
the string slightly longer (i.e. leading to longer sustain)
than the plucking string. SF based methods typically take
the the beginning of decay as the offset position, as shown
in Fig. 2, while the estimates of other methods appear to
be closer to the ground truth. SF-based methods are prone
to produce temporal detection errors largely in pizzicato
and spiccato, making the conventional evaluation metric
for onset less appropriate for evaluate the result for offset.
However, some estimations of pizzicato is a lot earlier than

3 We only put one of the spectral flux based methods due to their high
similarity of detection curve.
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(a) Pizzicato (pluck the string) (b) Spiccato (bounce the bow)

(c) Con sordino (mute) (d) Sul tasto (bow nearing the fingerboard)

(e) Sul ponticello (bow nearing the bridge) (f) Flageolet (harmonic)

Figure 4. Comparison of the signal characteristic of six playing techniques. From top to bottom are spectrogram, spectral
flux, energy envelope, and pitch-based offset detection curves. The right-pointing triangle denotes the onset annotation and
the left-pointing triangle denotes the offset annotation.

spiccato that it is even located within the onset tolerance
(i.e. region ii). In that extreme situation, we may have to
shorten the onset tolerance by a few milliseconds in our
evaluation metric.

The low part of Fig. 4 shows the other four bowing tech-
niques. For the lower two techniques, all of the detection
functions exhibit the fluctuating curve due to the noise-like
overtones, leading to inferior result for sul ponticello and
flageolet. In such case, energy relatively remains in the the
same level of performance. On the other hand, from the
middle part of Fig. 4, we can see the pitch confidence is
still a good indicator of offset for con sordino and sul tasto.

6. CONCLUSION

In this paper, we have discussed the challenges of offset
detection, the methodology of constructing an offset de-
tection dataset, some detection algorithms, and a few con-
siderations in evaluation. Based on the newly constructed

violin dataset, we have firstly investigated the behaviors of
musical offsets in the signals generated by various kinds
of mechanism. We find that, in general, the pitch con-
fidence based offset detection function outperforms algo-
rithms based on energy and spectral flux. For the playing
techniques having sharp envelopes such as pizzicato and
spiccato, energy-based method can be competitive. We
have also proposed an onset-aware evaluation metric that is
more reliable than the conventional ones in avoiding over-
estimation of true positives. We hope that these findings
can contribute to the advance of research on automatic mu-
sic transcription and melody tracking.

7. ACKNOWLEDGMENT

This work was supported by the Ministry of Science and
Technology of Taiwan under the contracts MOST 102-2221-
E-001-004-MY3, MOST 104-2221-E-001-029-MY3, and
the Academia Sinica Career Development Program.

286 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



8. REFERENCES

[1] Compositiontoday.com - sound bank – violin.
http://www.compositiontoday.com/sound_
bank/violin/.

[2] S. Adler. The Study of Orchestration–3rd Edition. WW Nor-
ton, 2002.

[3] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies,
and M. B. Sandler. A tutorial on onset detection in music
signals. IEEE Trans. Speech Audio Proc., 13(5):1035–1047,
2005.

[4] E. Benetos and S. Dixon. Polyphonic music transcription us-
ing note onset and offset detection. In Proc. IEEE Int. Conf.
Acoust. Speech Signal Proc., pages 37–40. IEEE, 2011.
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[7] S. Böck and G. Widmer. Maximum filter vibrato suppression
for onset detection. In Proc. Int. Conf. Digital Audio Effects,
2013.
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