LARGE-SCALE CONTENT-BASED MATCHING OF MIDI AND AUDIO FILES

Colin Raffel, Daniel P. W. Ellis
LabROSA, Department of Electrical Engineering
Columbia University, New York, NY
{craffel,dpwe}lee.columbia.edu

ABSTRACT

MIDI files, when paired with corresponding audio record-
ings, can be used as ground truth for many music infor-
mation retrieval tasks. We present a system which can
efficiently match and align MIDI files to entries in a large
corpus of audio content based solely on content, i.e., with-
out using any metadata. The core of our approach is a con-
volutional network-based cross-modality hashing scheme
which transforms feature matrices into sequences of vectors
in a common Hamming space. Once represented in this
way, we can efficiently perform large-scale dynamic time
warping searches to match MIDI data to audio recordings.
We evaluate our approach on the task of matching a huge
corpus of MIDI files to the Million Song Dataset.

1. TRAINING DATA FOR MIR

Central to the task of content-based Music Information Re-
trieval (MIR) is the curation of ground-truth data for tasks
of interest (e.g. timestamped chord labels for automatic
chord estimation, beat positions for beat tracking, promi-
nent melody time series for melody extraction, etc.). The
quantity and quality of this ground-truth is often instrumen-
tal in the success of MIR systems which utilize it as training
data. Creating appropriate labels for a recording of a given
song by hand typically requires person-hours on the order
of the duration of the data, and so training data availability
is a frequent bottleneck in content-based MIR tasks.

MIDI files that are time-aligned to matching audio can
provide ground-truth information [8,25] and can be utilized
in score-informed source separation systems [9, 10]. A
MIDI file can serve as a timed sequence of note annotations
(a “piano roll”). It is much easier to estimate information
such as beat locations, chord labels, or predominant melody
from these representations than from an audio signal. A
number of tools have been developed for inferring this kind
of information from MIDI files [6,7,17,19].

Halevy et al. [11] argue that some of the biggest suc-
cesses in machine learning came about because “...a large
training set of the input-output behavior that we seek to au-
tomate is available to us in the wild.” The motivation behind

@© Colin Raffel, Daniel P. W. Ellis.

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Colin Raffel, Daniel P. W. Ellis. “Large-
Scale Content-Based Matching of MIDI and Audio Files”, 16th International
Society for Music Information Retrieval Conference, 2015.

234

J/Jerseygi.mid

V/VARIA180.MID

Carpenters/WeveOnly.mid

2009 MIDI/handy_manl-D105.mid

G/Garotos Modernos - Bailanta De Fronteira.mid
Various Artists/REWINDNAS.MID
GoldenEarring/Twilight_Zone.mid
Sure.Polyphone.Midi/Poly 2268.mid
d/danza3.mid
100%sure.polyphone.midi/Fresh.mid
rogers_kenny/medley.mid

2009 MIDI/looking_out_my_backdoor3-Bb192.mid

Figure 1. Random sampling of 12 MIDI filenames and
their parent directories from our corpus of 455,333 MIDI
files scraped from the Internet.

this project is that MIDI files fit this description. Through
a large-scale web scrape, we obtained 455,333 MIDI files,
140,910 of which were unique — orders of magnitude larger
than any available dataset of aligned transcriptions. This
proliferation of data is likely due to the fact that MIDI files
are typically a few kilobytes in size and were therefore a
popular format for distributing and storing music recordings
when hard drives had only megabytes of storage.

The mere existence of a large collection of MIDI data
is not enough: In order to use MIDI files as ground truth,
they need to be both matched (paired with a corresponding
audio recording) and aligned (adjusted so that the timing
of the events in the file match the audio). Alignment has
been studied extensively [8,25], but prior work typically as-
sumes that the MIDI and audio have been correctly matched.
Given large corpora of audio and MIDI files, the task of
matching entries of each type may seem to be a simple mat-
ter of fuzzy text matching of the files’ metadata. However,
MIDI files almost never contain structured metadata, and
as a result the best-case scenario is that the artist and song
title are included in the file or directory name. While we
found some examples of this in our collection of scraped
MIDI files, the vast majority of the files had effectively no
metadata information. Figure 1 shows a random sampling
of directory and filenames from our collection.

Since the goal of matching MIDI and audio files is to
find pairs that have content in common, we can in principle
identify matches regardless of metadata availability or accu-
racy. However, comparing content is more complicated and
more expensive than a fuzzy text match. Since N M com-
parisons are required to match a MIDI dataset of size IV to
an audio file dataset of size M, matching large collections

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

is practical only when the individual comparisons can be
made very fast. Thus, the key aspect of our work is a highly-
efficient scheme to match the content of MIDI and audio
files. Our system learns a cross-modality hashing which
converts both MIDI and audio content vectors to a common
Hamming (binary) space in which the “local match” opera-
tion at the core of dynamic time warping (DTW) reduces
to a very fast table lookup. As described below, this allows
us to match a single MIDI file to a huge collection of audio
files in minutes rather than hours.

The idea of using DTW distance to match MIDI files to
audio recordings is not new. For example, in [13], MIDI-
audio matching is done by finding the minimal DTW dis-
tance between all pairs of chromagrams of (synthesized)
MIDI and audio files. Our approach differs in a few key
ways: First, instead of using chromagrams (a hand-designed
representation), we learn a common representation for MIDI
and audio data. Second, our datasets are many orders of
magnitude larger (hundreds of thousands vs. hundreds of
files), which necessitates a much more efficient approach.
Specifically, by mapping to a Hamming space we greatly
speed up distance matrix calculation and we receive quad-
ratic speed gains by implicitly downsampling the audio
and MIDI feature sequences as part of our learned feature
mapping.

In the following section, we detail the dataset of MIDI
files we scraped from the Internet and describe how we pre-
pared a subset for training our hasher. Our cross-modality
hashing model is described in Section 3. Finally, in sec-
tion 4 we evaluate our system’s performance on the task
of matching files from our MIDI dataset to entries in the
Million Song Dataset [3].

2. PREPARING DATA

Our project began with a large-scale scrape of MIDI files
from the Internet. We obtained 455,333 files, of which
140,910 were found to have unique MD5 checksums. The
great majority of these files had little or no metadata in-
formation. The goal of the present work is to develop an
efficient way to match this corpus against the Million Song
Dataset (MSD), or, more specifically, to the short preview
audio recordings provided by 7digital [20].

For evaluation, we need a collection of ground-truth
MIDI-audio pairs which are correctly matched. Our ap-
proach can then be judged based on how accurately it is
able to recover these pairings using the content of the au-
dio and MIDI files alone. To develop our cross-modality
hashing scheme, we further require a collection of aligned
MIDI and audio files, to supply the matching pairs of fea-
ture vectors from each domain that will be used to train our
model for hashing MIDI and audio features to a common
Hamming space (described in Section 3). Given matched
audio and MIDI files, existing alignment techniques can
be used to create this training data; however, we must ex-
clude incorrect matches and failed alignments. Even at the
scale of this reduced set of training data, manual alignment
verification is impractical, so we developed an improved
alignment quality score which we describe in Section 2.3.

2.1 Metadata matching

To obtain a collection of MIDI-audio pairs, we first sepa-
rated a subset of MIDI files for which the directory name
corresponded to the song’s artist and the filename gave
the song’s title. The resulting metadata needed additional
canonicalization; for example, “The Beatles”, “Beatles,
The”, “Beatles”, and “The Beatles John Paul Ringo George”
all appeared as artists. To normalize these issues, we ap-
plied some manual text processing and resolved the artists
and song titles against the Freebase [5] and Echo Nest !
databases. This resulted in a collection of 17,243 MIDI
files for 10,060 unique songs, which we will refer to as the
“clean MIDI subset”.

We will leverage the clean MIDI subset in two ways:
First, to obtain ground-truth pairings of MSD/MIDI matches,
and second, to create training data for our hashing scheme.
The training data does not need to be restricted to the MSD,
and using other sources to increase the training set size
will likely improve our hashing performance, so we com-
bined the MSD with three benchmark audio collections:
CALS500 [26], CAL10k [24], and uspop2002 [2]. To match
these datasets to the clean MIDI subset, we used the Python
search engine library whoosh ? to perform a fuzzy match-
ing of their metadata. This resulted in 26,311 audio/MIDI
file pairs corresponding to 5,243 unique songs.

2.2 Aligning audio to synthesized MIDI

Fuzzy metadata matching is not enough to ensure that we
have MIDI and audio files with matching content: For in-
stance, the metadata could be incorrect, the fuzzy text match
could have failed, the MIDI could be a poor transcription
(e.g., missing instruments or sections), and/or the MIDI
and audio data could correspond to different versions of the
song. Since we will use DTW to align the audio content
to an audio resynthesis of the MIDI content [8, 13,25], we
could potentially use the overall match cost — the quantity
minimized by DTW — as an indicator of valid matches,
since unrelated MIDI and audio pairs will likely result in
a high optimal match cost. (An overview of DTW and its
application to music can be found in [18].)

Unfortunately, the calibration of this raw match cost
“confidence score” is typically not comparable between dif-
ferent alignments. Our application, however, requires a
DTW confidence score that can reliably decide when an
audio/MIDI file pairing is valid for use as training data for
our hashing model. Our best results came from the follow-
ing system for aligning a single MIDI/audio file pair: First,
we synthesize the MIDI data using fluidsynth.3 We
then estimate the MIDI beat locations using the MIDI file’s
tempo change information and the method described in [19].
To circumvent the common issue where the beat is tracked
one-half beat out of phase, we double the BPM until it is at
least 240. We compute * beat locations for the audio signal
with the constraint that the BPM should remain close to the

"'http://developer.echonest.com/docs/v4
2https://github.com/dokipen/whoosh
3nttp://www.fluidsynth.org

4 All audio analysis was accomplished with 1ibrosa [16].

235

236

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

global MIDI tempo. We then compute log-amplitude beat-
synchronous constant-Q transforms (CQTs) of audio and
synthesized MIDI data with semitone frequency spacing
and a frequency range from C3 (65.4 Hz) to C7 (1046.5 Hz).
The resulting feature matrices are then of dimensionality
N x D and M x D where N and M are the resulting num-
ber of beats in the MIDI and audio recordings respectively
and D is 48 (the number of semitones between C3 and C7).
Example CQTs computed from a 7digital preview clip and
from a synthesized MIDI file can be seen in Figure 2(a) and
2(b) respectively.

We then use DTW to find the lowest-cost path through
a full pairwise cosine distance matrix S € RV*M of the
MIDI and audio CQTs. This path can be represented as
two sequences p, ¢ € R” of indices from each sequence
such that p[i] = n, g[¢{] = m implies that the nth MIDI beat
should be aligned to the mth audio beat. Traditional DTW
constrains this path to include the start and end of each
sequence, i.e. p[l] = ¢q[1] = 1 and p[L] = N;q[L] = M.
However, the MSD audio consists of cropped preview clips
from 7digital, while MIDI files are generally transcriptions
of the entire song. We therefore modify this constraint so
that either gN < p[L] < N or gM < q[L] < M; g is
a parameter which provides a small amount of additional
tolerance and is normally close to 1. We employ an additive
penalty ¢ for “non-diagonal moves” (i.e. path entries where
either p[i] = p[i + 1] or ¢q[¢] = ¢[i + 1]) which, in our
setting, is set to approximate a typical distance value in
S. The combined use of g and ¢ typically results in paths
where both p[1] and ¢[1] are close to 1, so no further path
constraints are needed. For synthesized MIDI-to-audio
alignment, we used g = .95 and set ¢ to the 90th percentile
of all the values in S. The cosine distance matrix and the
lowest-cost DTW path for the CQTs shown in Figure 2(a)
and 2(b) can be seen in Figure 2(e).

2.3 DTW cost as confidence score

The cost of a DTW path p, ¢ through S is calculated by the
sum of the distances between the aligned entries of each
sequence:

L
c=7_ Slplil, qldl] + T(pli] — pli — 1], qld] — qli — 1])
i=1

where the transition cost term 7'(u,v) = 0 if w and v are 1,
otherwise T'(u,v) = ¢. As discussed in [13], this cost is
not comparable between different alignments for two main
reasons: Firstly, the path length can vary greatly across
MIDI/audio file pairs depending on N and M. We therefore
prefer a per-step mean distance, where we divide c by L.
Secondly, various factors irrelevant to alignment such as
differences in production and instrumentation can effect a
global shift on the values of .S, even when its local variations
still reveal the correct alignment. This can be mitigated
by normalizing the DTW cost by the mean value of the
submatrix of S containing the DTW path:

max(p) max(q)

B= > > Sl

i=min(p) j=min(q)

‘We combine the above to obtain a modified DTW cost ¢:

c
LB

To estimate the largest value of ¢ for acceptable align-
ments, we manually auditioned 125 alignments and recorded
whether the audio and MIDI were well-synchronized for
their entire duration, our criterion for acceptance. This
ground-truth supported a receiver operating characteristic
(ROC) for ¢ with an AUC score of 0.986, indicating a highly
reliable confidence metric. A threshold of 0.78 allowed zero
false accepts on this set while only falsely discarding 15
well-aligned pairs. Retaining all alignments with costs bet-
ter (lower) than this threshold resulted in 10,035 successful
alignments.

Recall that these matched and aligned pairs serve two
purposes: They provide training data for our hashing model;
and we also use them to evaluate the entire content-based
matching system. For a fair evaluation, we exclude items
used in training from the evaluation, thus we split the suc-
cessful alignments into three parts: 50% to use as training
data, 25% as a “development set” to tune the content-based
matching system, and the remaining 25% to use for final
evaluation of our system. Care was taken to split based
on songs, rather than by entry (since some songs appear
multiple times).

¢ =

3. CROSS-MODALITY HASHING OF MIDI AND
AUDIO DATA

We now arrive at the central part of our work, the scheme
for hashing both audio and MIDI data to a common simple
representation to allow very fast computation of the distance
matrix S needed for DTW alignment. In principle, given
the confidence score of the previous section, to find audio
content that matches a given MIDI file, all we need to
do is perform alignment against every possible candidate
audio file and choose the audio file with the lowest score.
To maximize the chances of finding a match, we need to
use a large and comprehensive pool of audio files. We
use the 994,960 7digital preview clips corresponding to
the Million Song Dataset, which consist of (typically) 30
second portions of recordings from the largest standard
research corpus of popular music [20]. A complete search
for matches could thus involve 994,960 alignments for each
of our 140,910 MIDI files.

The CQT-to-CQT approach of section 2.2 cannot fea-
sibly achieve this. The median number of beats in our
MIDI files is 1218, and for the 7digital preview clips it is
186. Computing the cosine distance matrix S of this size
(for D = 48 dimension CQT features) using the highly
optimized C++ code from scipy [14] takes on average
9.82 milliseconds on an Intel Core 17-4930k processor.
When implemented using the LLVM just-in-time compiler
Python module numba, 5 the DTW cost calculation de-
scribed above takes on average 892 microseconds on the
same processor. Matching a single MIDI file to the MSD
using this approach would thus take just under three hours;

Shttp://numba.pydata.org/

Proceedings of the 16th ISMIR Conference, Mélaga, Spain, October 26-30, 2015

(a) 7d|g|tal audlo CQT

J o
i ’r
c3 HMI“I.II‘\‘I.;M m
0 100 200 300 100 200 300
(c) Audio hash sequence

ﬁmm.umwmm ‘
||hTFmﬂI|...T'mT\.|...m...m.l..mT...|.m.|...|ﬂr¢|.m i .l..m.m.mﬂ I mnmm..m.i.me.mM

400 500 600 700 800 900 1000 1100

(b) Synthesized MIDI CQT

MTW’IJ" ‘Tlmﬁ"m A

(d) MIDI hash sequence

0 25 50 75
(e) CQT distance matrix

0 100 200 300 400 500 600 700 800 900 1000 1100

Figure 2. Audio and hash-based features and alignment for Billy Idol -

- am -

0 25 200 225 250 275

“Dancing With Myself” (MSD track ID

TRCZQLG128F4272961). (a) Normalized constant-Q transform of 7digital preview clip, with semitones on the ver-
tical axis and beats on the horizontal axis. (b) Normalized CQT for synthesized MIDI file. (c) Hash bitvector sequence for
7digital preview clip, with pooled beat indices and Hamming space dimension on the horizontal and vertical axes respectively.
(d) Hash sequence for synthesized MIDI. (e) Distance matrix and DTW path (displayed as a white dotted line) for CQTs.
Darker cells indicate smaller distances. (f) Distance matrix and DTW path for hash sequences.

matching our entire 140,910 MIDI file collection to the
MSD would take years. Clearly, a more efficient approach
is necessary.

Calculating the distance matrix and the DTW cost are
both O(N M) in complexity; the distance matrix calcula-
tion is about 10 times slower presumably because it involves
D multiply-accumulate operations to compute the inner
product for each point. Calculating the distance between
feature vectors is therefore the bottleneck in our system, so
any reduction in the number of feature vectors (i.e., beats)
in each sequence will give quadratic speed gains for both
DTW and distance matrix calculations.

Motivated by these issues, we propose a system which
learns a common, reduced representation for the audio and
MIDI features in a Hamming space. By replacing constant-
Q spectra with bitvectors, we replace the expensive inner
product computation by an exclusive-or operation followed
by simple table lookup: The exclusive-or of two bitvectors
a and b will yield a bitvector consisting of 1s where a
and b differ and Os elsewhere, and the number of 1s in all
bitvectors of length D can be precomputed and stored in a
table of size 2. In the course of computing our Hamming
space representation, we also implicitly downsample the
sequences over time, which provides speedups for both
distance matrix and DTW calculation. Our approach has the
additional potential benefit of learning the most effective
representation for comparing audio and MIDI constant-Q
spectra, rather than assuming the cosine distance of CQT
vectors is suitable.

3.1 Hashing with convolutional networks

Our hashing model is based on the Siamese network archi-
tecture proposed in [15]. Given feature vectors {z} and
{y} from two modalities, and a set of pairs P such that
(z,y) € P indicates that z and y are considered “similar”,
and a second set NV consisting of “dissimilar” pairs, a non-
linear mapping is learned from each modality to a common
Hamming space such that similar and dissimilar feature
vectors are respectively mapped to bitvectors with small
and large Hamming distances. A straightforward objective
function which can be minimized to find an appropriate
mapping is

L= S |f) - 9w
|7)| (z,y)eP

Z max(0,m — || f(z) — g(y)||2)*

|N| (z,y)EN

«

where f and g are the nonlinear mappings for each modality,
o is a parameter to control the importance of separating
dissimilar items, and m is a target separation of dissimilar
pairs.

The task is then to optimize the nonlinear mappings f
and g with respect to £. In [15] the mappings are imple-
mented as multilayer nonlinear networks. In the present
work, we will use convolutional networks due to their abil-
ity to exploit invariances in the input feature representation;
CQTs contain invariances in both the time and frequency
axes, so convolutional networks are particularly well-suited
for our task. Our two feature modalities are CQTs from
synthesized MIDI files and audio files. We assemble the
set of “similar” cross-modality pairs P by taking the CQT

237

238

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

frames from individual aligned beats in our training set. The
choice of NV is less obvious, but randomly choosing CQT
spectra from non-aligned beats in our collection achieved
satisfactory results.

3.2 System specifics

Training the hashing model involves presenting training
examples and backpropagating the gradient of £ through
the model parameters. We held out 10% of the training set
described in Section 2 as a validation set, not used in train-
ing the networks. We z-scored the remaining 90% across
feature dimensions and re-used the means and standard
deviations from this set to z-score the validation set.

For efficiency, we used minibatches of training exam-
ples; each minibatch consisted of 50 sequences obtained by
choosing a random offset for each training sequence pair
and cropping out the next 100 beats. For A/, we simply
presented the network with subsequences chosen at random
from different songs. Each time the network had iterated
over minibatches from the entire training set (one epoch),
we repeated the random sampling process. For optimiza-
tion, we used RMSProp, a recently-proposed stochastic
optimization technique [23]. After each 100 minibatches,
we computed the loss £ on the validation set. If the vali-
dation loss was less than 99% of the previous lowest, we
trained for 1000 more iterations (minibatches).

While the validation loss is a reasonable indicator of
network performance, its scale will vary depending on the
« and m regularization hyperparameters. To obtain a more
consistent metric, we also computed the distribution of
distances between the hash vectors produced by the network
for the pairs in P and those in N. To directly measure
network performance, we used the Bhattacharya distance
[4] to compute the separation of these distributions.

In each modality, the hashing networks have the same ar-
chitecture: A series of alternating convolutional and pooling
layers followed by a series of fully-connected layers. All
layers except the last use rectifier nonlinearities; as in [15],
the output layer uses a hyperbolic tangent. This choice
allows us to obtain binary hash vectors by testing whether
each output unit is greater or less than zero. We chose 16
bits for our Hamming space, since 16 bit values are effi-
ciently manipulated as short unsigned integers. The first
convolutional layer has 16 filters each of size 5 beats by 12
semitones, which gives our network some temporal context
and octave invariance. As advocated by [21], all subse-
quent convolutional layers had 273 3x3 filters, where n
is the depth of the layer. All pooling layers performed max-
pooling, with a pooling size of 2x2. Finally, as suggested
in [12], we initialized all weights with normally-distributed
random variables with mean of zero and a standard devia-
tion of \/2/ny, Where n;, is the number of inputs to each
layer. Our model was implemented using theano [1] and
lasagne. 6

To ensure good performance, we optimized all model
hyperparameters using Whetlab,” a web API which im-

Shttps://github.com/Lasagne/Lasagne
7 Between submission and acceptance of this paper, Whetlab announced

0.30 T T T T T T T T

[Similar
025} I Dissimilar ||
0.20}

Proportion
=} =}
= -
o w
T T

°

o

vl
T

o
o
o

0 2 4 6 8 10 12 14 16 18
Distance

Figure 3. Output hash distance distributions for our best-
performing network.

plements black-box Bayesian optimization [22]. We used
Whetlab to optimize the number of convolutional/pooling
layers, the number and size of the fully-connected layers,
the RMSProp learning rate and decay parameters, and the
« and m regularization parameters of £. As a hyperpa-
rameter optimization objective, we used the Bhattacharyya
distance as described above. The best performing network
found by Whetlab had 2 convolutional layers, 2 “hidden”
fully-connected layers with 2048 units in addition to a fully-
connected output layer, a learning rate of .001 with an
RMSProp decay parameter of .65, « = .5, and m = 4.
This hyperparameter configuration yielded the output hash
distance distributions for P and N shown in Figure 3, for a
Bhattacharyya separation of 0.488.

4. MATCHING MIDI FILES TO THE MSD

After training our hashing system as described above, the
process of matching MIDI collections to the MSD proceeds
as follows: First, we precompute hash sequences for every
7digital preview clip and every MIDI file in the clean MIDI
subset. Note that in this setting we are not computing fea-
ture sequences for known MIDI/audio pairs, so we cannot
force the audio’s beat tracking tempo to be the same as the
MIDTI’s; instead, we estimate their tempos independently.
Then, we compute the DTW cost as described in Section
2.2 between every audio and MIDI hash sequence.

We tuned the parameters of the DTW cost calculation to
optimize results over our “development” set of successfully
aligned MIDI/MSD pairs. We found it beneficial to use a
smaller value of g = 0.9. Using a fixed value for the non-
diagonal move penalty avoids the percentile calculation, so
we chose ¢ = 4. Finally, we found that normalizing by the
average distance value B did not help, so we skipped this
step.

4.1 Results

Bitvector sequences for the CQTs shown in Figure 2(a)
and 2(b) can be seen in 2(c) and 2(d) respectively. Note

it would be ending its service. For posterity, the results of our hyperparame-
ter search are available at http://bit.ly/hash-param-search.

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

Rank 1 10 100 1000 10000
Percent < 152 41.6 628 827 959

Table 1. Percentage of MIDI-MSD pairs whose hash se-
quences had a rank better than each threshold.

that because our networks contain two downsample-by-2
pooling layers, the number of bitvectors is i of the number
of constant-Q spectra for each sequence. The Hamming
distance matrix and lowest-cost DTW path for the hash
sequences are shown in Figure 2(f). In this example, we
see the same structure as in the CQT-based cosine distance
matrix of 2(e), and the same DTW path was successfully
obtained.

To evaluate our system using the known MIDI-audio
pairs of our evaluation set, we rank MSD entries accord-
ing to their hash sequence DTW distance to a given MIDI
file, and determine the rank of the correct match for each
MIDI file. The correct item received a mean reciprocal
rank of 0.241, indicating that the correct matches tended to
be ranked highly. Some intuition about the system perfor-
mance is given by reporting the percentage of MIDI files in
the test set where the correct match ranked below a certain
threshold; this is shown for various thresholds in Table 1.

Studying Table 1 reveals that we can’t rely on the correct
entry appearing as the top match among all the MSD tracks;
the DTW distance for true matches only appears at rank 1
about 15.2% of time. Furthermore, for a significant portion
of our MIDI files, the correct match did not rank in the
top 1000. This was usually caused by the MIDI file being
beat tracked at a different tempo than the audio file, which
inflated the DTW score. For MIDI files where the true
match ranked highly but not first, the top rank was often
a different version (cover, remix, etc.) of the correct entry.
Finally, some degree of inaccuracy can be attributed to the
fact that our hashing model is not perfect (as shown in
Figure 3) and that the MSD is very large, containing many
possible decoys. In a relatively small proportion of cases,
the MIDI hash sequence ended up being very similar to
many MSD hash sequences, pushing down the rank of the
correct entry.

Given that we cannot reliably assume the top hit from
hashing is the correct MSD entry, it is more realistic to
look at our system as a pruning technique; that is, it can be
used to discard MSD entries which we can be reasonably
confident do not match a given MIDI file. For example,
Table 1 tells us that we can use our system to compute the
hash-based DTW score between a MIDI file and every entry
in the MSD, then discard all but 1% of the MSD and only
risk discarding the correct match about 4.1% of the time.
We could then perform the more precise DTW on the full
CQT representations to find the best match in the remain-
ing candidates. Pruning methods are valuable only when
they are substantially faster than performing the original
computation; fortunately, our approach is orders of magni-
tude faster: On the same Intel Core i7-4930k processor, for
the median hash sequence lengths, calculating a Hamming

distance matrix between hash sequences is about 400 times
faster than computing the CQT cosine distance matrix (24.8
microseconds vs. 9.82 milliseconds) and computing the
DTW score is about 9 times faster (106 microseconds vs.
892 microseconds). These speedups can be attributed to the
fact that computing a table lookup is much more efficient
than computing the cosine distance between two vectors
and that, thanks to downsampling, our hash-based distance
matrices have 1—16 of the entries of the CQT-based ones. In
summary, a straightforward way to describe the success of
our system is to observe that we can, with high confidence,
discard 99% of the entries of the MSD by performing a cal-
culation that takes about as much time as matching against
1% of the MSD.

5. FUTURE WORK

Despite our system’s efficiency, we estimate that perform-
ing a full match of our 140,910 MIDI file collection against
the MSD would still take a few weeks, assuming we are
parallelizing the process on the 12-thread Intel 17-4930k.
There is therefore room for improving the efficiency of our
technique. One possibility would be to utilize some of the
many pruning techniques which have been proposed for
the general case of large-scale DTW search. Unfortunately,
most of these techniques rely on the assumption that the
query sequence is of the same length or shorter than all the
sequences in the database and so would need to be modified
before being applied to our problem. In terms of accu-
racy, as noted above most of our hash-match failures can
be attributed to erroneous beat tracking. With a better beat
tracking system or with added robustness to this kind of
error, we could improve the pruning ability of our approach.
We could also compare the accuracy of our system to a
slower approach on a much smaller task to help pinpoint
failure modes. Even without these improvements, our pro-
posed system will successfully provide orders of magnitude
of speedup for our problem of resolving our huge MIDI
collection against the MSD. All the code used in this project
is available online. ®

6. ACKNOWLEDGEMENTS

We would like to thank Zhengshan Shi and Hilary Mogul
for preliminary work on this project and Eric J. Humphrey
and Brian McFee for fruitful discussions.

7. REFERENCES

[1] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, lan J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio. Theano: new
features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS Workshop, 2012.

[2] Adam Berenzweig, Beth Logan, Daniel P. W. Ellis, and
Brian Whitman. A large-scale evaluation of acoustic

8http://github.com/craffel/midi-dataset

239

240

Proceedings of the 16th ISMIR Conference, Malaga, Spain, October 26-30, 2015

(3]

(5]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

and subjective music-similarity measures. Computer
Music Journal, 28(2):63-76, 2004.

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whit-
man, and Paul Lamere. The million song dataset. In
Proceedings of the 12th International Society for Mu-
sic Information Retrieval Conference, pages 591-596,
2011.

Anil Kumar Bhattacharyya. On a measure of diver-
gence between two statistical populations defined by
their probability distributions. Bulletin of the Calcutta
Mathematical Society, 35:99-109, 1943.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. Freebase: a collaboratively
created graph database for structuring human knowl-
edge. In Proceedings of the 2008 ACM SIGMOD in-
ternational conference on Management of data, pages
1247-1250. ACM, 2008.

Michael Scott Cuthbert and Christopher Ariza.
music21: A toolkit for computer-aided musicology
and symbolic music data. In Proceedings of the 11th
International Society for Music Information Retrieval
Conference, pages 637-642, 2010.

Tuomas Eerola and Petri Toiviainen. MIR in Matlab:
The MIDI toolbox. In Proceedings of the 5th Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 22-27,2004.

Sebastian Ewert, Meinard Miiller, Verena Konz, Daniel
Miillensiefen, and Geraint A. Wiggins. Towards cross-
version harmonic analysis of music. IEEE Transactions
on Multimedia, 14(3):770-782, 2012.

Sebastian Ewert, Bryan Pardo, Mathias Muller, and
Mark D. Plumbley. Score-informed source separation
for musical audio recordings: An overview. IEEE Signal
Processing Magazine, 31(3):116-124, 2014.

Joachim Ganseman, Gautham J. Mysore, Paul Scheun-
ders, and Jonathan S. Abel. Source separation by score
synthesis. In Proceedings of the International Computer
Music Conference, pages 462-465, 2010.

Alon Halevy, Peter Norvig, and Fernando Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8—-12, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. arXiv
preprint arXiv:1502.01852, 2015.

Ning Hu, Roger B. Dannenberg, and George Tzanetakis.
Polyphonic audio matching and alignment for music
retrieval. In IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, pages 185-188,
2003.

Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy:
Open source scientific tools for Python. 2014.

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

Jonathan Masci, Michael M. Bronstein, Alexan-
der M. Bronstein, and Jiirgen Schmidhuber. Multimodal
similarity-preserving hashing. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(4):824—
830, 2014.

Brian McFee, Matt McVicar, Colin Raffel, Dawen
Liang, and Douglas Repetto. librosa: v0.3.1, November
2014.

Cory McKay and Ichiro Fujinaga. jSymbolic: A feature
extractor for MIDI files. In Proceedings of the Inter-
national Computer Music Conference, pages 302-305,
2006.

Meinard Miiller. Information retrieval for music and
motion. Springer, 2007.

Colin Raffel and Daniel P. W. Ellis. Intuitive anal-
ysis, creation and manipulation of MIDI data with
pretty_midi. In Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Confer-
ence Late Breaking and Demo Papers, 2014.

Alexander Schindler, Rudolf Mayer, and Andreas
Rauber. Facilitating comprehensive benchmarking ex-
periments on the million song dataset. In Proceedings
of the 13th International Society for Music Information
Retrieval Conference, pages 469-474, 2012.

Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning
algorithms. In Advances in Neural Information Process-
ing Systems, pages 2951-2959, 2012.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks
for Machine Learning, 4, 2012.

Derek Tingle, Youngmoo E. Kim, and Douglas
Turnbull. Exploring automatic music annotation with
“acoustically-objective” tags. In Proceedings of the in-
ternational conference on Multimedia information re-
trieval, pages 55-62. ACM, 2010.

Robert J. Turetsky and Daniel P. W. Ellis. Ground-truth
transcriptions of real music from force-aligned MIDI
syntheses. Proceedings of the 4th International Society
for Music Information Retrieval Conference, pages 135—
141, 2003.

Douglas Turnbull, Luke Barrington, David Torres, and
Gert Lanckriet. Towards musical query-by-semantic-
description using the CAL500 data set. In Proceedings
of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 439-446. ACM, 2007.

