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ABSTRACT

Traditionally, the computer-assisted comparison of mul-
tiple performances of the same piece focused on perfor-
mances on single instruments. Due to data availability,
there also has been a strong bias towards analyzing piano
performances, in which local timing, dynamics and artic-
ulation are important expressive performance features. In
this paper, we consider the problem of analyzing multiple
performances of the same symphonic piece, performed by
different orchestras and different conductors. While dif-
ferences between interpretations in this genre may include
commonly studied features on timing, dynamics and ar-
ticulation, the timbre of the orchestra and choices of bal-
ance within the ensemble are other important aspects dis-
tinguishing different orchestral interpretations from one
another. While it is hard to model these higher-level as-
pects as explicit audio features, they can usually be noted
visually in spectrogram plots. We therefore propose a
method to compare orchestra performances by examining
visual spectrogram characteristics. Inspired by eigenfaces
in human face recognition, we apply Principal Compo-
nents Analysis on synchronized performance fragments to
localize areas of cross-performance variation in time and
frequency. We discuss how this information can be used
to examine performer differences, and how beyond pair-
wise comparison, relative differences can be studied be-
tween multiple performances in a corpus at once.

1. INTRODUCTION

A written notation is not the final, ultimate representa-
tion of music. As Babbitt proposed, music can be rep-
resented in the acoustic (physical), auditory (perceived)
and graphemic (notated) domain, and as Wiggins noted,
in each of these, projections are observed of the abstract
and intangible concept of ‘music’ [29]. In classical mu-
sic, composers usually write down a notated score. Subse-
quently, in performance, multiple different musicians will
present their own artistic reading and interpretation of it.
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Nowadays, increasing amounts of digital music record-
ings become available. As a consequence, for musical
pieces, an increasing amount of (different) recorded per-
formances can be found. Therefore, in terms of data
availability, increasing opportunities emerge to study and
compare different recordings of the same piece. Beyond
the Music Information Retrieval (Music-IR) domain, this
can serve long-term interests in psychology and cogni-
tion on processes and manifestations of expressive playing
(e.g. [6, 21, 26]), while the analysis of performance styles
and schools also is of interest to musicologists [5, 16].

In this paper, we mostly are interested in the analysis
of multiple performances of the same piece from a search
engine and archive exploration perspective. If one is look-
ing for a piece and is confronted with multiple alterna-
tive performances, how can technology assist in giving
overviews of main differences between available perfor-
mances? Given a corpus, are certain performances very
similar or dissimilar to one another?

In contrast to common approaches in automated analy-
sis of multiple performances, we will not depart from ex-
plicit modeling of performance parameters from a signal.
Instead, we take a more holistic approach, proposing to
consider spectrogram images. This choice has two rea-
sons: first of all, we are particularly interested in finding
methods for comparative analysis of orchestra recordings.
We conjecture that the richness of orchestra sounds is bet-
ter captured in spectrogram images than in mid-level audio
features. Secondly, as we will demonstrate in this paper,
we believe spectrogram images offer interpretable insights
into performance nuances.

After discussing the state of the art in performance anal-
ysis in Section 2, in Section 3, we will further motivate
our choice to compare performances through visual com-
parison of spectrogram images. Subsequently, Section 4
details our chosen comparison method, after which we
present the experimental setup for this paper in Section 5.
We will then illustrate our approach and its outcomes
through a case study in Section 6, with a detailed discus-
sion of selected musically meaningful examples. This is
followed by a discussion on how our method can assist
corpus-wide clustering of performances in Section 7, af-
ter which the Conclusion will be presented.
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2. STATE-OF-THE-ART REVIEW

A lot of work exists on analyzing musical performance
expressivity. In several cases, establishing models for
computer-rendered expressive performances was the ulti-
mate goal (e.g. see [10,11]). Other works focused on iden-
tifying reasons behind performance expressivity, including
lower-level perceptual processes [21]; varying score edi-
tions, individual treatments of ornamentation and pedaling,
and music-theoretic notions of expectation and tension-
relaxation [20]; generative rules, emotional expression,
random variability, motion principles and stylistic unex-
pectedness [14]; and musical structure [9, 13, 20]. His-
torically, the analysis of musical performance strongly fo-
cused on expressivity in piano playing (e.g. [6, 20–22]).
The few exceptions to this rule focused on violin perfor-
mance (e.g. [4]), movement in clarinet players (e.g. [8]),
and performance of trained and untrained singers (e.g. [7],
inspired by [26]), but to the best of our knowledge, no sys-
tematic comparative studies have been performed consid-
ering larger ensembles.

A reason for the general bias towards piano perfor-
mance may be that digital player pianos (e.g. the Yamaha
Disklavier) allow a very precise recording of mechanical
performance parameters. When such parameters are avail-
able, inter-onset-intervals (IOIs), expressing the time be-
tween subsequent onsets, are frequently studied. Other-
wise, performance parameters have to be extracted or an-
notated from the audio signal. As a piano has a discrete
pitch set and percussive mechanics, expressive possibil-
ities for a pianist are restricted to timing, dynamics and
articulation. As a consequence, audio-based performance
analysis methods usually focus on local timing and dynam-
ics. Since it is not trivial to find a suitable time unit for
which these parameters should be extracted, supervised or
semi-supervised methods often have been applied to ob-
tain this, e.g. by departing from manually annotating beat
labels (e.g. [24, 25]). However, it is hard (if not infeasi-
ble) to realize such a (semi-)supervised approach at scale.
Therefore, while a very large corpus of recorded Chopin
Mazurkas exists, in practice only the Mazurkas for which
annotated beat information exists have been studied in fur-
ther depth (e.g. [15, 19, 24, 25]).

Alternatively, in [17, 18] an unsupervised approach for
comparing Mazurka recordings was proposed which does
not rely on explicitly modeled higher-level performance
parameters or semantic temporal units, but rather on align-
ment patterns from low-level short-time frame analyses.
As such, this approach would be scalable to a larger cor-
pus. Furthermore, while the choice of not adopting explicit
performance parameters makes evaluation of a clear-cut
ground truth less trivial, at the same time it allows for any
salient variations to emerge automatically from the analy-
sis. The work of this paper follows a similar philosophy.

3. MOTIVATION FOR SPECTROGRAM IMAGES

In this paper, we focus on the comparative analysis of or-
chestra recordings. An orchestra involves a mix of many

(a) Georg Solti, Chicago Symphony Orchestra, 1973.

(b) Nikolaus Harnoncourt, Chamber Orchestra of Europe, 1990.

Figure 1. Beethoven’s Eroica symphony, 2nd movement,
spectrogram of bars 56-60 for two different interpretations.

instruments. Hence, the overall orchestral sound is richer
than that of a piano, although individual beat placings and
note onsets will be much smoother. Given the multitude
of involved players, an orchestra needs guidance by a con-
ductor. Due to this coordinated setup, there is less room
for individual freedom in both local dynamics and tempo
than in Romantic piano music repertoire. Thus, while lo-
cal tempo deviations still occur in orchestral recordings,
one cannot expect these to reflect performer individuality
as strongly as for example in the case of Chopin Mazurkas.

At the same time, in terms of timbre, balance and phras-
ing articulation, a conductor has a much richer palette than
isolated instruments can offer. These aspects are not trivial
to explicitly model or interpret from audio signals. How-
ever, relevant information may be reflected in recording
spectrograms, as illustrated in Figure 1. While it is hard
to point out individual instruments, a spectrogram can vi-
sually reveal how rich the overall sound is, where signal
energy is concentrated, and if there are any salient sound
quality developments over time, such as vibrato notes.

Indeed, spectrograms are commonly used in audio edit-
ing tools for visualization, navigation and analysis pur-
poses. In an ethnographic study of musicologists studying
historical recordings, it further was shown that examina-
tion of the spectrogram helped musicologists in discover-
ing and listening to performance nuances [1]. Therefore,
regarding potential end users of performance analysis and
exploration tools, spectrogram images may be more fa-
miliar and interpretable than reduced mid-level represen-
tations such as chroma.

4. METHOD

Our proposed analysis method for spectrogram images
is inspired by the eigenfaces method of Turk and Pent-
land [27], which was originally proposed in the context
of human face recognition. Since human faces share
many common features, by applying Principal Compo-
nents Analysis (PCA) on a dataset of aligned facial im-

Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015 303



ages, a set of basis images (‘eigenfaces’) can be found,
explaining most of the variability found in the face dataset.
While PCA has previously been applied as a tool in musi-
cal performance analysis [23], this analysis was performed
on annotation-intensive IOI data. In contrast, our analy-
sis considers information which only requires alignment
of different fragments (as will described in Section 5), but
no further manual annotation effort.

We apply the same principle to a set of N spectrogram
images for a time-aligned music fragment, as represented
by N different recordings. Each spectrogram image x is
(i · j) pixels in size. We treat each pixel in the image as a
feature; as such, x is a vector of length i · j. We collect all
spectrogram images in an (N ⇥ (i · j)) matrix X.

By applying PCA, we decompose X into an (N ⇥ N)
matrix of principal component loadings W and an ((i ·
j) ⇥ N) matrix of principal components scores T. X can
be reconstructed by performing X = T · WT .

Since the PCA is constructed such that principal com-
ponents are ordered in descending order of variance, di-
mension reduction can be applied by not using the full T
and W, but only the first L columns of both.

The component scores in T can now be interpreted and
visualized as basis images, each representing a linear com-
ponent explaining part of the variability in the dataset.

5. EXPERIMENTAL SETUP

Unfortunately, no standardized corpora on multiple per-
formances of the same orchestra piece exist. 1 Further-
more, no clear-cut ground truth exists of performance sim-
ilarity. We therefore consider a dataset collected for the
PHENICX 2 project, consisting of 24 full-length record-
ings of Beethoven’s Eroica symphony, as well as 7 record-
ings of the Alpensinfonie by Richard Strauss. In the
Beethoven dataset, 18 different conductors and 10 orches-
tras are featured (with a major role for the recording cat-
alogue of the Royal Concertgebouw Orchestra (RCO)),
meaning that the same conductor may conduct multiple or-
chestras, or even the same orchestra at different recording
moments. While metadata and audio content are not fully
identical, in two cases in the dataset (Harnoncourt, Cham-
ber Orchestra of Europe (COE) 1990 and 1991; Haitink,
London Symphony Orchestra (LSO) 2005 (⇥ 2)), there
are suspicions that these near-duplicates pairs consider the
same original recording. In the Strauss dataset, 6 con-
ductors and 6 orchestras are featured: Haitink conducts
both the RCO and LSO, and the RCO is represented once
more with Mariss Jansons as conductor. The oldest (Men-
gelberg, RCO, 1940) and newest (Fischer, RCO, 2013)
recordings are both featured in the Beethoven dataset.

We will demonstrate insights from the PCA spectro-
gram analysis in two ways: (1) by highlighting several
analysis examples in detail in Section 6, based on manual
selection of musically relevant fragments and (2) by dis-
cussing generalization opportunities in Section 7, based on

1 While a dataset of orchestral recordings with multiple renditions of
the same piece was used in [2], these recordings are not publicly available.

2 http://phenicx.upf.edu

Figure 2. Eroica 1st movement, score bars 3-10.

aggregation of 4-bar analysis frames.
In both cases, a similar strategy is taken: first, a mu-

sical fragment is designated, for which all recordings of
the piece should be aligned. Alignment is performed au-
tomatically using the method described in [12]. Then, the
audio fragments, which are all sampled at Fs = 44.1 kHz,
are analyzed using a Hann window of 1024 samples and
a hop size of 512, and the corresponding magnitude spec-
trum is computed using the Essentia framework [3]. Com-
bining the spectra for all frames results in a spectrogram
image. To ensure that all images have equal dimensions, a
constant heigth of 500 pixels is imposed, and the longest
fragment in terms of time determines a fixed width of the
image, to which all other spectrograms are scaled accord-
ingly. While all recordings are offered at 44.1 kHz, the
original recordings sometimes were performed at a lower
sampling rate (particularly in more historical recordings).
Therefore, a sharp energy cut-off may exist in the higher
frequency zones, and for analysis, we try to avoid this as
much as possible by only considering the lower 90% of
the image. In general, by using raw spectrogram images, a
risk is that recording quality is reflected in this spectrum;
nonetheless, in the next sections we will discuss how mu-
sically relevant information can still be inferred.

6. CASE STUDY

In this case study, to illustrate the information revealed
by PCA analysis, we will look in detail at information
obtained on two selected fragments: the start of the first
movement of the Eroica symphony, first theme (bars 3-15),
and the ‘maggiore’ part of the Eroica symphony, second
movement (bars 69-104).

6.1 Eroica first movement, bars 3-15

A score fragment for bars 3-10 of the first movement of
the Eroica is given in Figure 2. In our case, we consider
the full phrase up to bar 15 in our analysis.

The first three basis images (component scores) result-
ing from PCA analysis are shown in Figure 3. The first
component of the PCA analysis gives a smoothed ‘basic’
performance version of the fragment. For this very gen-
eral component, it is rather hard to truly contrast perfor-
mances. However, a more interesting mapping can be done
in higher-order components. As an example, Figure 4 dis-
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(a) First component (b) Second component (c) Third component

Figure 3. Eroica, 1st movement, 1st theme start (bars 3-15); first three principal component basis images.
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Figure 4. 2nd and 3rd PCA component scatter plot for Eroica 1st movement, bars 3-15.

(a) Fisher, RCO, 2013 (b) Haitink, RCO, 1987

Figure 5. Spectrogram image examples for Fisher and Haitink interpretations of Eroica 1st movement, bars 3-15.

plays a scatter plot of the second and third principal com-
ponent loadings for this fragment.

While as expected, several historical (and acoustically
noisy) recordings cause outliers, by comparing the com-
ponent scores and loadings to corresponding data samples,
we still note interpretable differences. For example, the
RCO recordings of Fischer and Haitink, of which respec-
tive spectrogram images for the excerpt are shown in Fig-
ure 5, have contrasting loadings on the third PCA com-
ponent. Judging from the principal component image in
Figure 3, this component indicates variability at the start of
the fragment (when the celli play), and in between the frag-
ments highlighted by the second component; more specif-

ically, a variability hotspot occurs at the sforzato in bar
10. When contrasting two opposite examplars in terms
of scores, such as Fischer and Haitink, it can be heard
that in the opening, Haitink emphasizes the lower strings
more strongly than Fischer, while at the sforzato, Haitink
strongly emphasizes the high strings, and lets the sound de-
velop over the a-flat played by violin 1 in bar 10. Fischer
maintains a ‘tighter’ sound over this sforzato.

6.2 Eroica second movement, maggiore

To illustrate findings on another manually selected (and
slightly longer) relevant fragment, we also consider the
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Figure 6. 3rd and 4th PCA component scatter plot for Eroica 2nd movement, maggiore. Jochum’s 1969 and 1978 record-
ings occur within the marked rectangular border.

‘maggiore’ part of the second movement of the Eroica.
Analyses of scatter plots and component images show that
the second principal component is affected by historical
recording artefacts. However, this is less so for the third
and fourth component, of which the scatter plot is dis-
played in Figure 6. It can be seen that the suspected near-
duplicates of Harnoncourt’s two COE recordings have
near-identical loadings on these components. Next to this,
another strong similarity is noted between the recordings
of Jochum with the RCO in 1969 and 1978. While these
both recordings acoustically are clearly different and also
seem to be explicitly different interpretations, there still are
consistencies in Jochum’s work with the same orchestra for
these two recordings.

7. CORPUS-WIDE CLUSTERING

As demonstrated in the previous section, PCA analysis
can be used as an exploratory tool to reveal differences
between selected fragments in recordings. However, se-
lecting incidental manual examples will not yet allow for
scalable analysis of information over the full timeline of
a piece. To do this, instead of pre-selecting designated
fragments, we perform a 4-bar sliding window PCA anal-
ysis on full synchronized recordings, where bar bound-
aries are obtained through the score-to-performance map-
ping obtained in the alignment procedure. Instead of ex-
amining individual component images, in each 4-bar anal-
ysis frame, we consider vectors of component loadings
for the minimum amount of components required to ex-
plain 95% of the variance observed. From these compo-
nent loading vectors, we compute the Euclidean distance
between recordings within a frame, and aggregate these at
the recording track level. 3

3 Note that component loadings obtained for different frames cannot
be directly averaged, as the components are different per frame. How-
ever, observed distances between recordings still remain valid and can be
aggregated.

Based on distances found between performances, clus-
tering can be performed. This reveals whether stable per-
former clusters can found for different movements within
a piece, and to what extent clusterings found in local frag-
ments match those found for a full piece.

Regarding the first question, for each of the Eroica
movements, we calculated the average between-performer
distances per movement, and then made 5 clusters of per-
formers based on Ward’s linkage method [28]. While
space does not allow a full cluster result report, several
clusters co-occur consistently:

• The two Harnoncourt COE recordings consistently
form a separate cluster. These are highly likely to be
duplicate recordings.

• Haitink’s two LSO recordings also consistently co-
occur, and like Harnoncourt are highly likely to be
duplicate recordings. However, Bernstein’s 1978 Vi-
enna Philharmonic recording co-occurs with these
two Haitink recordings in the first three Eroica
movements, and thus may be similar in terms of in-
terpretation. It is striking that Haitink’s 1987 record-
ing with the RCO never co-occurs in this cluster.

• In the first three movements, a consistent cluster oc-
curs with recordings by Klemperer (Philharmonia
Orchestra, 1959), Toscanini (NBC Symphony Or-
chestra, 1953) and Van Beinum (RCO, 1957). While
this may be due to recording artefacts, other histor-
ical recordings (e.g. Kleiber, RCO 1950 / Vienna
Philharmonic 1953) do not co-occur.

• Surprisingly, Gardiner’s historically informed
recording with the Orchestre Révolutionaire et
Romantique (1993) clusters with Kleiber’s 1950
RCO recording for the first and last movement of
the Eroica. Upon closer listening, Gardiner’s choice
of concert pitch matches the pitch of Kleiber’s
recording, and the sound qualities of the orchestras
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Figure 7. Dendrogram images for performer distances in
the Alpensinfonie.

are indeed similar (although in case of Kleiber, this
is caused by recording artefacts).

• The 1969 and 1978 Jochum recordings with the
RCO always co-occur, though in the largest cluster
of recordings. As such, they are similar, but no clear
outlier pair compared to the rest of the corpus.

Regarding consistent clusterings over the course of a
piece, we further illustrate an interesting finding from
the Alpensinfonie, in which we compare a clustering ob-
tained on 18 bars from the ‘Sonnenaufgang’ movement to
the clustering obtained for average distances over the full
piece, as visualized in the form of dendrograms in Fig-
ure 7. As can be noted, the clusterings are very close, with
the only difference that within the ‘Sonnenaufgang’ move-
ment, Karajan’s interpretation is unusually close to Järvi’s
interpretation, while Haitink’s interpretation is unusually
different.

8. CONCLUSION

In this paper, we proposed to analyze differences between
orchestral performance recordings through PCA analysis
of spectrogram images. As we showed, PCA analysis is
capable of visualizing areas of spectral variation between
recordings. It can be applied in a sliding window setup
to assess differences between performers over the timeline

of a piece, and findings can be aggregated over interpre-
tations of multiple movements. While spectrograms in-
evitably have sensitivity to recording artefacts, we showed
that near-duplicate recordings in the corpus could be iden-
tified, and historical recordings in the corpus do not con-
sistently form outliers in the different analyses.

While certain interesting co-occurrences were found
between recordings, no conclusive evidence was found re-
garding consistent clustering of the same conductor with
different orchestras, or the same orchestra with different
conductors. This can either be due to interference from
artefacts and different recording setups, but at the same
time may suggest that different conductors work differ-
ently with different orchestras.

Several directions of future work can be identified. First
of all, further refinement regarding the generation and anal-
ysis of the spectrogram images should be performed. At
the moment, given the linear way of plotting and high
sample rate, the plain spectrogram may be biased towards
higher-frequency components, and risks to be influenced
by sharp frequency cut-offs from lower original recording
sample rates.

Furthermore, it would be interesting to study more
deeply if visual inspection of spectrograms can indeed as-
sist people in becoming more actively aware of perfor-
mance differences. While the spectrogram images are ex-
pected to already be understandable to potential end-users,
appropriate techniques should still be found for visualiz-
ing differences between multiple performers in a corpus.
In the current paper, this was done with scatter plots and
dendrograms, but for non-technical end-users, more intu-
itive and less mathematically-looking visualizations may
be more appropriate.

One concern that may come up with respect to our
work, is that it may be hard to fully associate our reported
findings to expressive performance. As indicated, record-
ing artefacts are superimposed on the signal, and effects
of different halls and choices of orchestra instruments and
concert pitch may further influence acoustic characteris-
tics, which will in turn influence our analysis. Further-
more, since we are dealing with commercial recordings,
we are dealing with produced end results which may have
been formed out of multiple takes, and as such do not re-
flect ‘spontaneous’ performance.

However, our main interest is not in analyzing per-
formance expressivity per se, but in providing novel
ways for archive and search engine exploration, and
making general sense of larger volumes of unannotated
performance recordings. In such settings, the data under
study will mostly be produced recordings with the above
characteristics. For this, we believe our approach is
useful and appropriate, offering interesting application
opportunities.
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