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ABSTRACT

This paper presents an automatic system for note tran-
scription of Irish traditional flute music containing orna-
mentation. This is a challenging problem due to the soft
nature of onsets and short durations of ornaments. The
proposed automatic transcription system is based on hid-
den Markov models, with separate models being built for
notes and for single-note ornaments. Mel-frequency cep-
stral coefficients are employed to represent the acoustic
signal. Different setups of parameters in feature extraction
and acoustic modelling are explored. Experimental evalu-
ations are performed on monophonic flute recordings from
Grey Larsen’s CD. The performance of the system is eval-
uated in terms of the transcription of notes as well as detec-
tion of onsets. It is demonstrated that the proposed system
can achieve a very good note transcription and onset de-
tection performance. Over 28% relative improvement in
terms of the F -measure is achieved for onset detection in
comparison to conventional onset detection methods based
on signal energy and fundamental frequency.

1. INTRODUCTION

Automatic transcription of music is concerned with con-
verting an acoustic signal into a symbolic representation
that provides the information on individual notes played
and possibly also other higher-level information about the
structure of music. Over the last decade, there has been a
considerable research interest in this field. Although most
of the current research is devoted to polyphonic music tran-
scription, transcription of monophonic music is still of in-
terest due to existing large amount of real-world mono-
phonic music of specific properties. This paper deals with
the transcription of notes and detection of their onsets
in monophonic flute recordings of Irish traditional music
that contains ornamentation. Ornamentation is used exten-
sively in Irish traditional music by players of all melody
instruments. Ornaments are notes of a very short duration.
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They are central to the style of the performer, adding to the
liveliness and expression of the music.

A wide range of different approaches for automatic mu-
sic transcription have been proposed. A variety of al-
gorithms for estimating the fundamental frequency (F0),
e.g., [4, 10, 16], were employed in transcription of music,
e.g., [1, 5, 10]. As the F0 estimation may suffer from mak-
ing octave errors, music transcription systems typically
employ some way of temporal filtering or post-processing.
The use of hidden Markov models (HMMs) for post-
processing was presented in several works. In [2, 15] the
sequence of pitch salience and onset strength or energy dif-
ference of adjacent signal frames were used as the input
features to HMMs. In [6], the acoustic signal was first seg-
mented by applying an onset detection algorithm and then
HMM was used to track note candidates. Bayesian mod-
eling that exploits knowledge of musical sound generation
was proposed in [3, 9] and applied for piano transcription.
Recently, several methods based on learning of a model /
classifier of notes were presented, e.g., [7, 14]. In [14], a
support vector machine classifier, trained on spectral fea-
tures, was used to clasify frame-level note instances and
the classifier output was then temporally smoothed using a
note level HMM to perform transcription of piano record-
ings. Modelling of a time-frequency representation of au-
dio as a sum of basic elements representing the spectrum
of a single note was presented in [7]. The transcription of
ornamented Irish traditional flute music was investigated
at the level of onset and ornament detection in [8, 11]. In
both works, the presented ornament detection system was
based on detecting onsets and using rules of musical or-
namentation. An energy-based onset detection algorithm
was employed in [8], while a comparison of two energy-
and F0-based onset detection algorithms was performed
in [11].

In this paper, we investigate an automatic transcription
of ornamented Irish traditional flute music by employing
hidden Markov models (HMMs). The proposed system is
based on building an individual HMM for each note as well
as for each ornament. This enables to model the differ-
ences in realisation of ornaments and notes and then detect
ornaments whose fundamental frequency is close to the or-
namented note. Music signal is represented as a sequence
of Mel-frequency cepstral coefficients. Different param-
eter setups at various stages of the feature extraction and
acoustic modelling are explored. Experimental evaluations
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are performed using recordings of Irish traditional tunes
played by flute from Grey Larsen’s CD [13]. Evaluations
are presented for the task of onset detection and note tran-
scription. Results are presented in terms of the precision,
recall and F -measure. Onset detection evaluations are also
compared to energy- and F0-based conventional onset de-
tection algorithms. It is demonstrated that the proposed
HMM-based transcription system achieves over 28% rela-
tive improvement in terms of the F -measure in onset de-
tection task over conventional onset detection algorithms.

2. ORNAMENTED FLUTE MUSIC

2.1 Ornamentation in Irish traditional flute playing

Ornaments are used as embellishments in Irish traditional
music [13]. They are notes of a very short duration, cre-
ated through the use of special fingered articulations. They
can be split into single- and multi-note ornaments. Single-
note ornaments, namely ‘cut’ and ‘strike’, are pitch artic-
ulations. The ‘cut’ involves quickly lifting and replacing
a finger from a tonehole, and corresponds to a higher note
than the ornamented note. The ‘strike’ is performed by
momentarily closing an open hole, and corresponds to a
lower note than the ornamented note. Multi-note orna-
ments, namely ‘crann’, ‘roll’ and ‘shake’, are successive
use of single-note ornaments. A schematic visualisation of
the single- and multi-note ornaments in the time-frequency
plane is given in Figure 1.
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Figure 1. A schematic representation of single-note (a)
and multi-note (b) ornaments in the time-frequency plane.

2.2 Annotation of the audio data

The audio signal was manually annotated by an experi-
enced player of Irish traditional flute. The annotation pro-
vides segmentation of the audio signal, where each seg-
ment is characterised by the following: the time of onset,
time of offset, type of segment, note identity (if applica-
ble), and note frequency (if applicable). The type of seg-
ment may be one of the following: note, one of the types of
single-note or multi-note ornaments, and breath. The note
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Figure 2. An extract from the tune ‘The Lonesome Jig’,
depicting the waveform (top) and spectrogram (bottom).

frequency is initially estimated automatically but checked
by the annotator, and, if needed, then corrected manually.
Further information on the process of annotation of the au-
dio recordings is presented in [12].

2.3 Data statistics

The flute music we are dealing with contains notes in the
range from D4 to B5, i.e., with the fundamental frequency
from 293 Hz to 987 Hz. Typically, only first few harmon-
ics of the notes are having sufficient energy. An example of
waveform and spectrogram is given in Figure 2. There are
four instances of the ‘cut’ ornament indicated in the spec-
trogram at around frame indices 400, 540, 890 and 1130.

Based on the manual annotation, we examined the dura-
tion of the notes and single-note ornaments in our record-
ings. The obtained histograms, depicted in Figure 3, indi-
cate that the duration of ornaments is considerably lower
than that of notes. The mean duration of single-note or-
naments is 63 ms, while it is 209 ms for notes. In 95%
of cases, the duration of single-note ornaments is between
32 ms to 95 ms and of notes between 118 ms to 400 ms.
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Figure 3. The distribution of the duration of single-note
ornaments (a) and notes (b) in our recordings.
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3. HMM-BASED NOTE TRANSCRIPTION AND
ONSET DETECTION

This section presents the proposed HMM-based system for
transcription of notes and detection of their onsets. We
first describe the representation of the audio signal and then
modelling using HMMs.

3.1 Feature representation

The acoustic signal is represented by a sequence of feature
vectors, each vector capturing short-time spectral proper-
ties of the signal. Since we are dealing with unaccom-
panied music and in order to obtain lower-dimensional
and less-correlated features, the signal is represented us-
ing Mel-frequency cepstral coefficients (MFCCs). MFCCs
have been widely used in speech and audio processing.
The steps involved in converting audio signal into MFCCs
is depicted in Figure 4.

Figure 4. Processing steps used for converting the audio
signal into a sequence of Mel-frequency cepstral features.

The signal is first segmented into overlapping frames.
The frame length determines the temporal and frequency
resolution. While longer frames allow for a finer frequency
resolution, we are limited in the setting due to possibly
very short duration of ornaments. Each signal frame is
multiplied by Hamming window. The windowed frames
are then zero padded and the Fourier transform is applied
to provide the short-term Fourier spectrum. The short-
time magnitude spectrum is passed through Mel-scale fil-
ter bank analysis and discrete cosine transform is applied
on the logarithm of the filter-bank energies to provide
MFCCs. In order to include information on local dynam-
ics, MFCCs were appended with their temporal deriva-
tives, referred to as the delta and accelleration features,
which were calculated as in [17]. The values of the pa-
rameters within the processing steps need to reflect that we
are dealing with ornamented flute music. As such, in our
experimental evaluations, we explored various parameter
setups.

3.2 Modelling

The model of each note is obtained by modelling the tem-
poral evolution of feature vectors using a left-to-right (no
skip allowed) hidden Markov model (HMM). We found
that in addition to having an HMM for each note, it is es-
sential to have also a separate HMM for each single-note
ornament. This allows to deal with the fact that the real-
isation of single-note ornaments may not fully reach the

notional frequency of a note but rather be somewhere be-
tween two notes. In addition to this, we also create a model
for breath and silence. These are used to model the tak-
ing a breath by the player and the initial and final silences
in recordings, respectively. Overall, we have 42 models,
consisting of 14 models for notes, 14 models for cuts, 11
models for strikes (strikes for some notes did not occur in
our data) plus breath and silence. The state output prob-
ability density function (pdf) at each HMM state is mod-
elled using a mixture of Gaussians. This allows for a more
accurate modelling of variations in playing notes than us-
ing a single Gaussian distribution. Gaussian distributions
with a diagonal covariance matrix are used due to compu-
tational reasons, as is typically done in speech and audio
pattern processing. We explore the effect of using differ-
ent number of HMM emitting states and Gaussian mixture
components in the experimental section. The transcription
system was built using the HTK [17].

3.2.1 Training

The initial values for the parameters of individual HMMs
were estimated using isolated extracts from the audio sig-
nal, by applying several iterations of the Viterbi style train-
ing procedure. The isolated extracts were obtained based
on the manual time-stamp annotation, i.e., onset and offset
times. Further training of the models was then performed
using several iterations of the Baum-Welch (aka forward-
backward) algorithm. This uses continuous audio signal as
input and requires only the sequence of notes/ornaments
labels (i.e., no time-stamp). As such, this can eliminate the
effect of possible errors in time-stamp annotation at bor-
ders of notes/ornaments on the trained models.

3.2.2 Recognition

To perform recognition, we need to construct a recogni-
tion network. This defines the allowed sequences of mod-
els (i.e., notes/ornaments). A network that closely reflects
the knowledge of music could be employed. In this pa-
per, we did not employ any such knowledge. We used a
loop network that allows any note to follow any other note.
We modified this slightly to reflect that an ornament model
need to be followed by a note model. The network we used
is depicted in Figure 5. As this network allows the same
note to be subsequently repeated in the recognition output,
we post-process the results such that the repetitions of the
same note are considered to be a single instance of the note,
for example, the original recognition output B4 D4 D4 A5
is considered to be B4 D4 A5. Note that a fixed proba-
bility value, aka word insertion penalty, can be associated
with the transition from the end of one model to the start
of the next model. This is useful in controlling the balance
between the number of models being incorrectly inserted
and deleted in the recognition result and we used it in our
experimental evaluations.

Given a sequence of feature vectors, the Viterbi algo-
rithm is used to find the optimal state sequence. This pro-
vides the sequence of recognised models as well as the start
(and the end) times of each recognised model, i.e., the on-
set detection result.

758 Proceedings of the 16th ISMIR Conference, Málaga, Spain, October 26-30, 2015



Figure 5. The recognition network used in the HMM-
based note transcription system. The elipses denote indi-
vidual HMMs. Models of ornaments are denoted by note
identity appended with either ‘cut’ or ‘str’, representing
models for ‘cut’ and ‘strike’ ornaments, respectively. ‘BR’
denotes breath and ‘SIL’ silence models.

4. EXPERIMENTAL EVALUATIONS

4.1 Data description

Evaluations are performed using recordings of Irish tra-
ditional tunes and training exercises played by flute from
Grey Larsen’s CD which accompanied his book “Essential
Guide to Irish Flute and Tin Whistle” [13]. The tunes are
between 16 sec and 1 min 22 sec long. All recordings are
monophonic and are sampled at 44.1 kHz sampling fre-
quency.

The collection consists of 19 tunes. The list of the tunes,
with the number of notes and ornaments, is given in Ta-
ble 1. In total, there are 3929 onsets, including notes and
ornaments. Out of these there are 804 single-note orna-
ments (which includes also counts from parts of multi-note
ornaments), consisting of 620 cuts and 184 strikes.

First evaluations are performed to demonstrate the ef-
fect of different parameter setups – due to computational
reasons, these experiments use all files for training of mod-
els and also for testing. Final evaluations are performed us-
ing the leave-one-out cross-validation procedure, in which
in turn 1 file is kept for testing and all the 18 remaining
files are used for training. The results were accummulated
over all files and then the evaluation measures calculated.

4.2 Evaluation measures

Performance of both the onset detection and note recog-
nition is evaluated in terms of the precision (P ), re-
call (R) and F -measure. The definition of these measures
is the same as used in MIREX onset detection evaluations,
specifically,

P =
Ntp

Ntp + Nfp
, R =

Ntp

Ntp + Nfn
, F =

2PR

P + R
.

In the case of onset detection, Ntp is the number of cor-

Tune Title Number of Time
Notes Ornaments (sec.)

Cut Strike
Study 5 55 16 0 20
Study 6 56 24 0 20
Study 11 76 20 0 26
Study 17 48 19 0 16
Study 22 127 0 28 47
Maids of Ardagh 98 28 5 32
Hardiman the .. 112 22 7 28
The Whinny Hills .. 117 34 6 30
The Frost is All .. 151 39 14 41
The Humours of .. 289 113 19 82
The Rose in the .. 152 33 13 39
Scotsman over .. 153 33 9 38
A Fig for a Kiss 105 27 9 28
Roaring Mary 176 42 22 44
The Mountain Road 105 20 6 25
The Shaskeen 181 52 23 42
Lady On The Island 118 21 1 21
The Lonesome Jig 153 27 0 46
The Drunken .. 185 50 22 43
Total 2457 620 184 668

Table 1. The list of tunes contained in the dataset, with the
number of onsets and single-note ‘cut’ and ‘strike’ orna-
ments and duration of each tune.

rectly detected onsets and Nfp and Nfn is the number of
inserted and deleted onsets, respectively. The onset de-
tection is considered as correct when it is within ±50 ms
around the onset annotation.

In the case of note recognition, Ntp is the number of
correctly recognised notes and Nfp and Nfn is the number
of inserted and deleted notes, respectively.

4.3 Results for various parameter setups in feature
extraction and modelling

This section explores the effect of different setups of pa-
rameters in the feature extraction and HMM-based mod-
elling on the task of onset detection. A comparison with
three conventional onset detection methods is also given.

4.3.1 Conventional onset detection algorithms

The conventional onset detection methods we employed to
provide a comparison are: two methods which exploit the
change of the signal amplitude over time, with process-
ing performed in the temporal and spectral domain, and
a method based on the fundamental frequency (F0). The
description of these methods, which we also used in our
previous onset detection research, is provided in [11].

We performed extensive evaluations with different pa-
rameter values for each of the conventional onset detection
methods. The best achieved performance for each of the
methods is presented in Table 2. It can be seen that the F0-
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based method performed better than each of the energy-
based methods and achieved the F -measure of 91.2%.

Algorithm for onset Evaluation performance (%)
detection Precision Recall F -measure

sig-energy (spectral) 94.8 85.6 89.9
sig-energy (temporal) 90.8 88.4 89.6

F0 89.3 93.2 91.2

Table 2. Results of onset detection obtained using conven-
tional onset detection methods.

4.3.2 HMM-based onset detection

Now we explore the performance of the HMM-based sys-
tem when using various parameter setup in the feature ex-
traction and acoustic modelling.

First, we compare results achieved by the HMM-based
system when using the estimated F0 with energy and the
MFCCs (see the first row in Table 4 for the parameter
setup) as the input features. Results are presented in Ta-
ble 3. It can be seen that when using the estimated F0

as input features to HMMs, the F -measure improved to
93.8%, from 91.2% that was achieved using the conven-
tional F0-based method (as in Table 2). The performance
of the HMM-based system improved considerably further
to 96.7% when using MFCC features as input, instead of
the estimated F0. As such, the use of HMMs driven with
MFCC features provided over 60% error rate reduction
over the best conventional method. The considerably better
performance of the HMM-based system may be attributed
to several factors. First, it is the statistical modelling of the
temporal evolution of features. Second, the features used
provide information about the spectral content. This is un-
like the energy-based and F0-based conventional methods
which accummulate the information from the entire sig-
nal bandwidth into a single detection function or into an
F0 estimate. Third, the use of HMM effectively incorpo-
rates smoothing of the frame-based decisions and imposes
a minimum duration of notes and ornaments.

Features input to HMM F -measure (%)
F0 and energy, both with � and �2 93.8

MFCC, both with � and �2 96.7

Table 3. Results of the HMM-based onset detection when
using an estimate of F0 and MFCCs as input features.

Results obtained using diferent parameter setups in the
MFCC feature extraction are presented in Table 4. The first
line in the table presents the best parameter setup values
and this is: bandwidth of 4 kHz, frame length of 12.5 ms,
frame-shift of 5 ms, Mel-scale filter-bank with 21 chan-
nels, using 12 cepstral coefficients, and appending delta
and acceleration coefficients (which were extracted using

Parameters in MFCC feature F -measure
extraction (%)

BW=4kHz, FrmL=12.5ms, FrmS=5ms, 96.7
nFB=21, nCC=12, � and �2

Bandwidth 6 kHz 95.5
(BW) 8 kHz 95.4
Frame-length 10 ms 95.9
(FrmL) 15 ms 96.3

20 ms 96.3
30 ms 95.7

Frame-shift 3 ms 95.5
(FrmS) 7 ms 95.4
number of Mel filter-bank 17 96.1
(nFB) 25 96.5
Cepstral coefficients 10 95.8
(nCC) 14 96.6
�2 coefficients no 95.8
� and �2 coefficients no 91.6

Table 4. Results of the HMM-based onset detection in
terms of the F -measure obtained with different parameter
setup in MFCC feature extraction.

the window of 3 and 2 signal frames, respectively). We
now analyse the effect of each parameter – in each exper-
iment, only one parameter is modified at a time in refer-
ence to the above best parameter setup. Let us start with
varying the frequency bandwidth of the signal. This was
performed at the stage of designing the Mel filter-banks.
For the bandwidth of 6 kHz and 8 kHz, the number of fil-
ters was adjusted such that the lower 4 kHz was in all cases
covered by 21 filters. It can be seen that the performance is
similar when using the bandwidth of 6 kHz and 8 kHz but
it improves considerably when the bandwidth is reduced to
4 kHz. This reflects, as we have also noticed in our visual
inspection of spectrograms, that there is little signal con-
tent above 4 kHz in our flute recordings and as such the
inclusion of the higher frequency range acts detrimentally
to performance. This result may be used when analysing
flute playing that contains accompaniments in higher fre-
quencies or is recorded in live performances where other
unwanted sounds may be present in higher frequencies.
Next, results using different length of frames show that
similar performance is achieved for lengths between 12 to
20 ms. The performance starts to decrease considerably
when frames of 30 ms are used. This is due to the pres-
ence of ornaments, duration of which may be as short as
20 ms. In the case of frame shift, it can be seen that set-
ting this to 3 ms or 7 ms considerably degrades the per-
formance in comparison to the use of 5 ms shift. Varying
the number of filter-bank channels from 17 to 25 has only
relatively little effect, with performance being at the peak
for 21 channels. The use of 12 or 14 cepstral coefficients
provides very similar performance, while reducing this to
10 has quite negative effect. Finally, experiments when
the delta and accelleration features, denoted by � and �2,
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respectively, are not included in feature representation are
presented. Results show a large decrease in performance
when neither delta nor accelleration features are used. This
demonstrates the importance of incorporating information
on local dynamics of the acoustic signal.

Next, we present the effect of different parameter setups
in acoustic modelling. We vary the number of states and of
mixture components of each state pdf for models of notes
and ornaments. Results are presented in Table 5. The suit-
able range of values for the number of states of note and or-
nament models is determined based on the frame shift used
in the feature extraction and statistics of the duration of the
notes and ornaments. As such, we explored the range from
6 to 12 for notes and from 2 to 6 for ornaments. It can be
seen that there is not much performance variation when us-
ing this range of values. In regard to the number of mixture
components, it can be seen that it is useful to have at least 4
mixture components for note models, while even 2 mixture
components seem sufficient for models of ornaments.

Parameters in acoustic modelling F -measure (%)
nStates for N / O / B: 8 / 4 / 8, 96.7

nMix for N / O / B: 6 / 2 / 6
nStates for notes 6 95.9

10 96.1
12 95.8

nStates for ornaments 2 95.8
6 96.4

nMix for notes 2 95.6
4 96.3
8 96.6

nMix for ornaments 1 96.0
4 96.7
6 96.6

Table 5. Results of HMM-based onset detection in terms
of the F -measure obtained with different parameter setup
in acoustic modelling. N, O, and B stand for note, orna-
ment and breath, respectively.

4.4 Results using the leave-one-out cross-validation

The final experimental evaluations are performed using the
leave-one-out cross-validation. The feature extraction and
acoustic modelling parameter setup that achieved best per-
formance in previous section is used. The achieved results
of onset detection and note identity recognition are pre-
sented in Table 6. It can be seen that very good perfor-
mance is obtained for both tasks. The drop in onset de-
tection performance in comparison to the results presented
in the previous section is expected as the testing files have
now not been seen during the training. Nevertheles, the
performance is improved by over 28% relative over the
conventional onset detection algorithms whose parameters
were actually tuned based on both training and testing data.

Evaluation performance (%)
Precision Recall F -measure

Onset detection 95.0 92.4 93.7
Note recognition 96.4 95.2 95.8

Table 6. Results of onset detection and note recognition
obtained by the HMM-based system using the leave-one-
out cross-validation procedure.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented work on transcription of Irish
traditional flute music containing ornamentation. The pre-
sented system is based on modelling of individual notes
and ornaments using hidden Markov models. Acoustic sig-
nal is represented as a sequence of Mel frequency cepstral
coefficients. A wide range of parameter setup values in
both the feature extraction and acoustic modelling were
explored. Experimental evaluations were performed us-
ing recordings of 19 Irish traditional flute tunes, contain-
ing in total 3929 onsets, out of which 804 corresponds to
ornaments. Using the leave-one-out cross-validation pro-
cedure, the proposed HMM-based system achieved the F -
measure of 93.7% in detecting onsets of ornaments and
notes. This represents over 28% error rate reduction com-
pared to conventional onset detectors whose parameters
were even tuned to the testing data. The F -measure in the
task of recognising the note identity was 95.8%.

There are several possible extensions of this work we
are currently considering. First, the presented evaluations
were performed using recordings from the same CD. We
plan to perform evaluations on a range of recordings from
several CDs in order to explore the capability of the system
in dealing with variability due to different recording condi-
tions, makes of flute instruments and performers. We will
investigate techniques to compensate for such variability
in order to improve robustness. Second, we plan to anal-
yse the errors the automatic system makes in onset detec-
tion and note identity recognition tasks and reflect this in
modifications to the system to further improve the perfor-
mance. Then, the current HMM-based framework allows
directly and in a probabilistic manner to incorporate musi-
cal knowledge on the sequences of notes used in flute mu-
sic. Such knowledge could be obtained from musicologists
and/or extracted automatically from annotations. Next, in-
corporation of an explicit duration modelling of notes and
ornaments could help to reduce the number of falsely in-
serted and deleted onsets. Finally, we plan to expand the
system to deal with recordings, in which the flute is accom-
panied by other instruments and/or singing.
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