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ABSTRACT

Deep learning has been actively adopted in the field of mu-
sic information retrieval, e.g. genre classification, mood
detection, and chord recognition. Deep convolutional neu-
ral networks (CNNs), one of the most popular deep learn-
ing approach, also have been used for these tasks. How-
ever, the process of learning and prediction is little under-
stood, particularly when it is applied to spectrograms. We
introduce auralisation of CNNs to understand its underly-
ing mechanism.

1. INTRODUCTION

In the field of computer vision, deep learning approaches
become de facto standard after convolutional neural net-
works (CNNs) showed break-through results in ImageNet
competition in 2012 [3]. It rapidly became popular while
the reason of success was not completely understood.

One effective way to understand and explain the CNNs
was introduced in [5], where the features in deeper levels
are visualised by a method called deconvolution. By de-
convolving and un-pooling layers, it enables people to see
which part of the input image are focused on by each filter.

However, spectrograms have not been analysed by this
approach. Moreover, it is not clear what can be understood
by deconvolving spectrograms. The information from ’see-
ing’ a part of spectrograms can be extended by auralising
the convolutional filters.

In this paper, we introduce the procedure and results of
deconvolution of spectrograms. Furthermore, we propose
auralisastion of filters by extending it to time-domain re-
construction. In Section 2, the background of CNNs and
deconvolution are explained. The proposed auralisation
method is introduced in Section 3. The results are dis-
cussed in Section 4.
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Figure 1. Deconvolution of CNNs trained for image clas-
sification. The filters’ response and a corresponding part
in the input images are shown respectively on the left and
right for each layer. Image courtesy of [5].

2. BACKGROUND

The majority of research of CNNs on audio signal uses 2D
time-frequency representation as input data, considering it
as an image. Various types of representations have been
used including Short-time Fourier transform (STFT), Mel-
spectrogram and constant-Q transform (CQT). In [4], for
example, 80-by-15 (mel-band-by-frame) mel-spectrogram
is used with 7-by-3 and 3-by-3 convolutions for onset de-
tection and CQT is used with 5-by-25 and 5-by-13 convo-
lutions for chord recognition in [2].

Visualisation of CNNs was introduced in [5], which
showed how high-level features (postures/objects) are com-
bined from low-level features (lines/curves), as illustrated
in Figure 1. Visualisation of CNNs helps not only to un-
derstand the process inside the black box model, but also
to decide hyper-parameters of the networks. For exam-
ple, redundancy or deficiency of the capacity of the net-
works, which is limited by hyper-parameters such as the
number of layers and filters, can be judged by inspecting
the learned filters. Network visualisation provides useful
information since fine tuning hyper-parameters is among
the most crucial factors in designing CNNs, while it is a
computationally expensive process.

3. AURALISATION OF FILTERS

The spectrograms used in CNNs can be also deconvolved
as well. Unlike visual images however, a deconvolved
spectrogram does not generally facilitate an intuitive ex-
planation. This is because, first, seeing a spectrogram does
not necessarily provide clear intuition that is comparable to
observing an image. Second, detecting edges of a spectro-
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Figure 2. Filters at the first layer of CNNs trained for genre
classification, initial (on the left) and learned filters (on the
right).

gram, which is known to happen at the first layer in CNNs,
results in removing components of the spectrograms.

To solve this problem, we propose to reconstruct the
audio signal using a process called auralisation. This re-
quires an additional stage for inverse-transformation of a
deconvolved spectrogram. The phase information is pro-
vided by the phase of the original STFT, following the
generic approach in spectrogram-based sound source sepa-
ration algorithms. STFT is therefore recommended which
allows us to later obtain a time-domain signal easily.

4. EXPERIMENTS AND DISCUSSION

We implemented a CNNs-based genre classification algo-
rithm using a dataset obtained from Naver Music 1. Three
genres (ballade, dance, and hiphop) were classified using
8,000 songs in total. 10 clips of 4 seconds were extracted
for each song, generating 80,000 data samples by STFT
with 512-point using windowed Fast Fourier Transform
and 50% hop size. 6,600/700/700 songs were designated
as training/validation/test sets respectively. As a reference
of performance, CNNs with 5 layers, 3-by-3 filters, max-
pooling with size and stride of 2 was used. This system
showed 75% of accuracy with a loss of 0.62.

4.1 Visualisation of First-layer Filters

A 4-layer CNNs was built with larger filter sizes at the
first layer. Since max-pooling layers are involved with in
deeper layers, filters at deeper layers can be only illustrated
when input data is given. To obtain a more intuitive visu-
alisation, large convolutional filters were used, as shown
in [1]. This system showed 76% of accuracy.

Figure 2 shows the visualisation of the first layer, which
consists of 12-by-12 filters. Filters are initialised with uni-
formly distributed random values, which resemble white
noise as shown on the left. After training, some of the fil-
ters develop patterns that can detect certain shapes. For
image classification tasks, the detectors for edges with dif-
ferent orientations usually are observed since the outlines
of objects are a useful cue for the task. Here however, sev-
eral vertical edge detectors are observed as shown on the
right. This may be because the networks learn to extract
not only edges but more complex patterns from spectro-
grams.

An example code of the whole deconvolution procedure is open
to public at https://github.com/gnuchoi/CNNauralisation. The results
are demonstrated at author’s soundcloud https://soundcloud.com/kchoi-
research

1http://music.naver.com, a Korean music streaming service

Figure 3. Original and deconvolved signals and spectro-
grams with ground-truth onsets annotated (on the left)

4.2 Auralisation of Filters

Fig 3 shows original and deconvolved signals and spec-
trograms of Bach’s English Suite No. 1: Prelude from
7th feature at the 1st layer. By listening to these decon-
volved signals, it turns out that this feature provides an
onset detector-like filter. It can also be explained by vi-
sualising the filter. Vertical edge detectors can work as a
crude onset detector when it is applied to spectrograms,
since rapid change along time-axis will pass the edge de-
tector while the sustain parts will be filtered out.

There was a different case at deeper layers, where high-
level information can be expressed in deconvolved spectro-
grams. One of the features at the deepest layer was mostly
deactivated by hiphop music. However, not all the features
can be easily interpreted by listening to the signal.

5. CONCLUSIONS

We introduce auralisation of CNNs, which is an extension
to CNNs visualisation. This is done by inverse-transformation
of a deconvolved spectrogram to obtain a time-domain au-
dio signal. Listening the audio signal enables researchers
to understand the mechanism of CNNs when they are ap-
plied to spectrograms. Further research will include more
in depth interpretation of the learned features.
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