
AUGMENTED LIVE CODING: HARNESSING LINKED DATA IN
MUSICAL PERFORMANCES

Alo Allik
Queen Mary University of London

a.allik@qmul.ac.uk

ABSTRACT

This demo explores how to augment live coding as an im-
provisatory musical performance practice with evolution-
ary sound synthesis, audio feature extraction and linked se-
mantic data formats to aid the performer through the com-
plexities of digital performance environments. The evolver
programming environment uses gene expression synthesis
to generate complex synthesis graphs during live coding
performances. The main principle guiding the evolution
is based on extracting audio features for comparison to a
target sound. The audio features are also employed as an
informative framework for the performer in an otherwise
featureless collection of synthesizer. The structure of the
evolutionary synthesis environment is published in a Se-
mantic Web ontology. The synthesizers are stored in a
database using the JSON-LD data format to enable link-
ing the synthesizer data to the ontology and external data
sources.

1. INTRODUCTION

Live coding has been firmly established as an im-
provisatory musical performance practice. Musicians-
programmers have been exploring alternative methods to
user-interface-driven production software in order to ex-
plore more spontaneous and flexible ways to compose mu-
sic in real time (see for example [2] for a review of differ-
ent live coding practices that existed already over a decade
ago). At the same time, the advances in computing speed
and power are constantly shifting the boundaries of what
is possible to achieve with sound synthesis, algorithmic
composition and performance interfaces in the context of
real time interactive music systems. Arguably this is the
main factor behind the proliferation of real time informa-
tion systems used in musical performances. However, the
abundance and complexity of musical algorithms consti-
tute a specification problem for the artist, who is constantly
faced with difficult choices regarding levels of granularity
for musical parameter control. Writing a low level sound
generating function live on stage does not necessarily make
for a captivating or even intellectually invigorating experi-

c© Alo Allik. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Alo Allik.
“Augmented live coding: harnessing linked data in musical performances
”, Extended abstracts for the Late-Breaking Demo Session of the 16th
International Society for Music Information Retrieval Conference, 2015.

ence for the audience or, arguably, the performer. At the
other end of this imaginary spectrum, graphical user inter-
faces of proprietary music production applications enforce
preconceived and often limited compositional principles
upon users, seriously stifling the latent potential of algo-
rithmic creativity. The optimal parameter control level lies
somewhere in between these two extremes. This demo pro-
poses a framework that aspires to enhance the live coding
practice by evolutionary computing and linked data tech-
nologies. For sound synthesis, an evolutionary algorithm
is utilised that enables evolving large populations of com-
plex synthesis graphs, either in real time or for later reuse.
The structure of the evolutionary synthesis process is de-
scribed in a light-weight OWL ontology, while the graphs
are stored in a CouchDB database and linked to the ontol-
ogy using JSON-LD, a semantic extension of the standard
JSON format.

2. GENE EXPRESSION SYNTHESIS

Gene expression synthesis (GES) [1] is a way to evolve
sound synthesizers in computer code. These synthesiz-
ers are computer programs that produce sound when ex-
ecuted. Gene expression synthesis uses the methods of
gene expression programming [3]. The computer pro-
grams evolved with GES are sound synthesis graphs in
this case implemented in the SuperCollider programming
environment 1 . Each solution generates a SuperCollider
SynthDef object. The functions in a GES chromosome are
Unit Generators, sound generating functions that serve as
basic building blocks of synthesis graphs. Fitness is pri-
marily evaluated in terms of a distance metric of features
from target audio, while secondary methods are used to
ensure the structural and functional integrity of each syn-
thesis graph as well as balancing factors between resource
efficiency and graph complexity. The main fitness func-
tion measures the distance of audio feature vectors be-
tween each candidate synthesizer and a target sound, which
is selected by the user depending on the context of the
experiment. Resource efficiency measure has been im-
plemented in order to imitate the condition of limited re-
sources of natural selection, so each candidate solution is
assigned a CPU usage value measured during the execu-
tion of each synthesizer. To counteract a tendency towards
simpler graphs as a result, a conflicting fitness pressure is
introduced to encourage structural complexity in the form

1 http://supercollider.github.io

of awarding greater nesting depth. Once each individual
has been assigned a fitness value, the population is sub-
jected to various standard genetic operators: replication,
mutation, transposition and recombination.

3. LINKING SYNTHESIZER DATA

Due to large volumes of data potentially involving thou-
sands of candidate solutions deemed suitable for perfor-
mances, GES synthesizers with their associated metadata
are stored in a CouchDB 2 database as JSON data struc-
tures. This includes all the data necessary to reconstruct
each synthesizer for use during a performance or as sources
for subsequent evolutionary synthesis experiments. This
demo is implemented in a live coding environment that in-
tegrates a customised SuperCollider system with a light-
weight OWL ontology 3 that enables representation of
GES synthesizers on the Semantic Web and linking of the
synthesizer audio features to the concepts defined in the
Audio Feature Ontology framework 4 . The synthesizer
data that is communicated between CouchDB and Super-
Collider is expressed in terms of the GES ontology us-
ing JSON-LD [4]. Listing 1 shows a fragment of a GES
synthesizer data structure. The embedded context defines
the ontology namespace so that the GES ontology classes
and properties can be meaningfully expressed in JSON en-
abling linking concepts from external sources. In this ex-
ample, the GES ontology defines Spectral Centroid and
Spectral Flatness audio features and links to the Audio Fea-
ture Vocabulary, so it becomes possible to query more in-
formation about these features, for example, finding infor-
mation about how these particular features are computed
by querying steps of computational workflows.

4. THE EVOLVER ENVIRONMENT

The gene expression synthesis algorithm can be used for
isolated experiments to generate populations of synthesiz-
ers for reuse during performances. However, the evolver
environment enables the performer to evolve and play syn-
thesizers live on stage. The semantically enriched live cod-
ing environment aids the performer in the decision making
process when selecting synthesizers from the database or
evolving them in real time. The synthesizers are classi-
fied according to audio feature vectors and different maps
are created to visualize the distribution of feature vectors
from different perspectives. For example, a plot of spec-
tral flatness - how noise-like a signal is - against spectral
centroid - how bright the sound is - gives an idea about
the characteristic of each synthesizer. This can be further
aided by classifying synthesizers with a self-organised 2-
dimensional map of MFCC vectors. The performer can
make informed selections of synthesizers either for use in
the real time live coding composition process or as source
material for real time evolution by going through the itera-
tions of the GES algorithm. One of the performance strate-
gies involves selecting 2 chromosomes from the database

2 http://couchdb.apache.org
3 http://geen.tehis.net/ontology
4 http://sovarr.c4dm.eecs.qmul.ac.uk

{
"@context": {

"ges": "http://geen.tehis.net/ontology/"
},
"_id": "1a75f4f87bdcac24b6ba5fc25c003ab2",
"@type": "ges:Synth",
"ges:environment": {

"@type": "ges:Environment",
"ges:headsize": 24,
"ges:numgenes": 1,
"ges:linker": {

"@type": "ges:Function",
"ges:name": "*",
"ges:class": "AbstractFunction"

}
},
"ges:defname": "gep_gen000_061_141212_225728",
"ges:genome": ["LFPar", "LFGauss", "SinOsc",

"v", "PMOsc", "e", "j", "a", "c", "a"
],
"ges:features": {

"ges:centroid": {
"ges:mean": 526.07188020057,
"ges:std_dev": 161.03829149232

},
"ges:flatness": {

"ges:mean": 0.032055785092016,
"ges:std_dev": 0.017184103858522

}
}

}

Listing 1. Fragment of a GES synthesizer JSON structure

to serve as source material for on-stage experiments. These
2 chromosomes are then subjected to genetic operators, in-
cluding recombination, which involves creating 2 new in-
dividuals by exchanging genetic material between the ini-
tial 2 chromosomes. The population can be subsequently
grown by doubling the number of individuals each gener-
ation, evaluating the fitness of each, classifying them us-
ing the features and the existing data and selecting which
ones to use in the performance based on this information.
The evolved synthesizers can be used in a number of dif-
ferent ways as compositional elements. The target sound
towards which the algorithm is converging is selected ac-
cording to context. For example, percussive sounds are
more suitable if the GES synthesizers are used in a dance
music context to fill rhythm patterns, whereas continuous
drone-like sounds are more suitable for building ambient
soundscapes.

5. REFERENCES

[1] A. Allik. Gene expression synthesis. In Proceedings of
the ICMC/SMC, Athens, 14-19 September, 2014.

[2] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(3):321–330, 2003.

[3] C. Ferreira. Gene expression programming: A new
adaptive algorithm for solving problems. Complex Sys-
tems, 13(2):87–129, 2001.

[4] M. Lanthaler and C. Gütl. On using JSON-LD to
create evolvable restful services. In Proceedings of
the 3rd International Workshop on RESTful Design at
WWW2012, 2012.

